1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inline cost analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/InlineCost.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BlockFrequencyInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/CodeMetrics.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/ProfileSummaryInfo.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/AssemblyAnnotationWriter.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/InstVisitor.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/raw_ostream.h"
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "inline-cost"
49 
50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed");
51 
52 static cl::opt<int>
53     DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225),
54                      cl::ZeroOrMore,
55                      cl::desc("Default amount of inlining to perform"));
56 
57 static cl::opt<bool> PrintInstructionComments(
58     "print-instruction-comments", cl::Hidden, cl::init(false),
59     cl::desc("Prints comments for instruction based on inline cost analysis"));
60 
61 static cl::opt<int> InlineThreshold(
62     "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore,
63     cl::desc("Control the amount of inlining to perform (default = 225)"));
64 
65 static cl::opt<int> HintThreshold(
66     "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore,
67     cl::desc("Threshold for inlining functions with inline hint"));
68 
69 static cl::opt<int>
70     ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden,
71                           cl::init(45), cl::ZeroOrMore,
72                           cl::desc("Threshold for inlining cold callsites"));
73 
74 static cl::opt<bool> InlineEnableCostBenefitAnalysis(
75     "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false),
76     cl::desc("Enable the cost-benefit analysis for the inliner"));
77 
78 static cl::opt<int> InlineSavingsMultiplier(
79     "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore,
80     cl::desc("Multiplier to multiply cycle savings by during inlining"));
81 
82 static cl::opt<int>
83     InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100),
84                         cl::ZeroOrMore,
85                         cl::desc("The maximum size of a callee that get's "
86                                  "inlined without sufficient cycle savings"));
87 
88 // We introduce this threshold to help performance of instrumentation based
89 // PGO before we actually hook up inliner with analysis passes such as BPI and
90 // BFI.
91 static cl::opt<int> ColdThreshold(
92     "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore,
93     cl::desc("Threshold for inlining functions with cold attribute"));
94 
95 static cl::opt<int>
96     HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000),
97                          cl::ZeroOrMore,
98                          cl::desc("Threshold for hot callsites "));
99 
100 static cl::opt<int> LocallyHotCallSiteThreshold(
101     "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore,
102     cl::desc("Threshold for locally hot callsites "));
103 
104 static cl::opt<int> ColdCallSiteRelFreq(
105     "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
106     cl::desc("Maximum block frequency, expressed as a percentage of caller's "
107              "entry frequency, for a callsite to be cold in the absence of "
108              "profile information."));
109 
110 static cl::opt<int> HotCallSiteRelFreq(
111     "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore,
112     cl::desc("Minimum block frequency, expressed as a multiple of caller's "
113              "entry frequency, for a callsite to be hot in the absence of "
114              "profile information."));
115 
116 static cl::opt<bool> OptComputeFullInlineCost(
117     "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore,
118     cl::desc("Compute the full inline cost of a call site even when the cost "
119              "exceeds the threshold."));
120 
121 static cl::opt<bool> InlineCallerSupersetNoBuiltin(
122     "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true),
123     cl::ZeroOrMore,
124     cl::desc("Allow inlining when caller has a superset of callee's nobuiltin "
125              "attributes."));
126 
127 static cl::opt<bool> DisableGEPConstOperand(
128     "disable-gep-const-evaluation", cl::Hidden, cl::init(false),
129     cl::desc("Disables evaluation of GetElementPtr with constant operands"));
130 
131 namespace {
132 class InlineCostCallAnalyzer;
133 
134 // This struct is used to store information about inline cost of a
135 // particular instruction
136 struct InstructionCostDetail {
137   int CostBefore = 0;
138   int CostAfter = 0;
139   int ThresholdBefore = 0;
140   int ThresholdAfter = 0;
141 
142   int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; }
143 
144   int getCostDelta() const { return CostAfter - CostBefore; }
145 
146   bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; }
147 };
148 
149 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter {
150 private:
151   InlineCostCallAnalyzer *const ICCA;
152 
153 public:
154   InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {}
155   virtual void emitInstructionAnnot(const Instruction *I,
156                                     formatted_raw_ostream &OS) override;
157 };
158 
159 /// Carry out call site analysis, in order to evaluate inlinability.
160 /// NOTE: the type is currently used as implementation detail of functions such
161 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the
162 /// expectation is that they come from the outer scope, from the wrapper
163 /// functions. If we want to support constructing CallAnalyzer objects where
164 /// lambdas are provided inline at construction, or where the object needs to
165 /// otherwise survive past the scope of the provided functions, we need to
166 /// revisit the argument types.
167 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> {
168   typedef InstVisitor<CallAnalyzer, bool> Base;
169   friend class InstVisitor<CallAnalyzer, bool>;
170 
171 protected:
172   virtual ~CallAnalyzer() {}
173   /// The TargetTransformInfo available for this compilation.
174   const TargetTransformInfo &TTI;
175 
176   /// Getter for the cache of @llvm.assume intrinsics.
177   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
178 
179   /// Getter for BlockFrequencyInfo
180   function_ref<BlockFrequencyInfo &(Function &)> GetBFI;
181 
182   /// Profile summary information.
183   ProfileSummaryInfo *PSI;
184 
185   /// The called function.
186   Function &F;
187 
188   // Cache the DataLayout since we use it a lot.
189   const DataLayout &DL;
190 
191   /// The OptimizationRemarkEmitter available for this compilation.
192   OptimizationRemarkEmitter *ORE;
193 
194   /// The candidate callsite being analyzed. Please do not use this to do
195   /// analysis in the caller function; we want the inline cost query to be
196   /// easily cacheable. Instead, use the cover function paramHasAttr.
197   CallBase &CandidateCall;
198 
199   /// Extension points for handling callsite features.
200   // Called before a basic block was analyzed.
201   virtual void onBlockStart(const BasicBlock *BB) {}
202 
203   /// Called after a basic block was analyzed.
204   virtual void onBlockAnalyzed(const BasicBlock *BB) {}
205 
206   /// Called before an instruction was analyzed
207   virtual void onInstructionAnalysisStart(const Instruction *I) {}
208 
209   /// Called after an instruction was analyzed
210   virtual void onInstructionAnalysisFinish(const Instruction *I) {}
211 
212   /// Called at the end of the analysis of the callsite. Return the outcome of
213   /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or
214   /// the reason it can't.
215   virtual InlineResult finalizeAnalysis() { return InlineResult::success(); }
216   /// Called when we're about to start processing a basic block, and every time
217   /// we are done processing an instruction. Return true if there is no point in
218   /// continuing the analysis (e.g. we've determined already the call site is
219   /// too expensive to inline)
220   virtual bool shouldStop() { return false; }
221 
222   /// Called before the analysis of the callee body starts (with callsite
223   /// contexts propagated).  It checks callsite-specific information. Return a
224   /// reason analysis can't continue if that's the case, or 'true' if it may
225   /// continue.
226   virtual InlineResult onAnalysisStart() { return InlineResult::success(); }
227   /// Called if the analysis engine decides SROA cannot be done for the given
228   /// alloca.
229   virtual void onDisableSROA(AllocaInst *Arg) {}
230 
231   /// Called the analysis engine determines load elimination won't happen.
232   virtual void onDisableLoadElimination() {}
233 
234   /// Called to account for a call.
235   virtual void onCallPenalty() {}
236 
237   /// Called to account for the expectation the inlining would result in a load
238   /// elimination.
239   virtual void onLoadEliminationOpportunity() {}
240 
241   /// Called to account for the cost of argument setup for the Call in the
242   /// callee's body (not the callsite currently under analysis).
243   virtual void onCallArgumentSetup(const CallBase &Call) {}
244 
245   /// Called to account for a load relative intrinsic.
246   virtual void onLoadRelativeIntrinsic() {}
247 
248   /// Called to account for a lowered call.
249   virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) {
250   }
251 
252   /// Account for a jump table of given size. Return false to stop further
253   /// processing the switch instruction
254   virtual bool onJumpTable(unsigned JumpTableSize) { return true; }
255 
256   /// Account for a case cluster of given size. Return false to stop further
257   /// processing of the instruction.
258   virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; }
259 
260   /// Called at the end of processing a switch instruction, with the given
261   /// number of case clusters.
262   virtual void onFinalizeSwitch(unsigned JumpTableSize,
263                                 unsigned NumCaseCluster) {}
264 
265   /// Called to account for any other instruction not specifically accounted
266   /// for.
267   virtual void onMissedSimplification() {}
268 
269   /// Start accounting potential benefits due to SROA for the given alloca.
270   virtual void onInitializeSROAArg(AllocaInst *Arg) {}
271 
272   /// Account SROA savings for the AllocaInst value.
273   virtual void onAggregateSROAUse(AllocaInst *V) {}
274 
275   bool handleSROA(Value *V, bool DoNotDisable) {
276     // Check for SROA candidates in comparisons.
277     if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
278       if (DoNotDisable) {
279         onAggregateSROAUse(SROAArg);
280         return true;
281       }
282       disableSROAForArg(SROAArg);
283     }
284     return false;
285   }
286 
287   bool IsCallerRecursive = false;
288   bool IsRecursiveCall = false;
289   bool ExposesReturnsTwice = false;
290   bool HasDynamicAlloca = false;
291   bool ContainsNoDuplicateCall = false;
292   bool HasReturn = false;
293   bool HasIndirectBr = false;
294   bool HasUninlineableIntrinsic = false;
295   bool InitsVargArgs = false;
296 
297   /// Number of bytes allocated statically by the callee.
298   uint64_t AllocatedSize = 0;
299   unsigned NumInstructions = 0;
300   unsigned NumVectorInstructions = 0;
301 
302   /// While we walk the potentially-inlined instructions, we build up and
303   /// maintain a mapping of simplified values specific to this callsite. The
304   /// idea is to propagate any special information we have about arguments to
305   /// this call through the inlinable section of the function, and account for
306   /// likely simplifications post-inlining. The most important aspect we track
307   /// is CFG altering simplifications -- when we prove a basic block dead, that
308   /// can cause dramatic shifts in the cost of inlining a function.
309   DenseMap<Value *, Constant *> SimplifiedValues;
310 
311   /// Keep track of the values which map back (through function arguments) to
312   /// allocas on the caller stack which could be simplified through SROA.
313   DenseMap<Value *, AllocaInst *> SROAArgValues;
314 
315   /// Keep track of Allocas for which we believe we may get SROA optimization.
316   DenseSet<AllocaInst *> EnabledSROAAllocas;
317 
318   /// Keep track of values which map to a pointer base and constant offset.
319   DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs;
320 
321   /// Keep track of dead blocks due to the constant arguments.
322   SetVector<BasicBlock *> DeadBlocks;
323 
324   /// The mapping of the blocks to their known unique successors due to the
325   /// constant arguments.
326   DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors;
327 
328   /// Model the elimination of repeated loads that is expected to happen
329   /// whenever we simplify away the stores that would otherwise cause them to be
330   /// loads.
331   bool EnableLoadElimination;
332   SmallPtrSet<Value *, 16> LoadAddrSet;
333 
334   AllocaInst *getSROAArgForValueOrNull(Value *V) const {
335     auto It = SROAArgValues.find(V);
336     if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0)
337       return nullptr;
338     return It->second;
339   }
340 
341   // Custom simplification helper routines.
342   bool isAllocaDerivedArg(Value *V);
343   void disableSROAForArg(AllocaInst *SROAArg);
344   void disableSROA(Value *V);
345   void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB);
346   void disableLoadElimination();
347   bool isGEPFree(GetElementPtrInst &GEP);
348   bool canFoldInboundsGEP(GetElementPtrInst &I);
349   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset);
350   bool simplifyCallSite(Function *F, CallBase &Call);
351   template <typename Callable>
352   bool simplifyInstruction(Instruction &I, Callable Evaluate);
353   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V);
354 
355   /// Return true if the given argument to the function being considered for
356   /// inlining has the given attribute set either at the call site or the
357   /// function declaration.  Primarily used to inspect call site specific
358   /// attributes since these can be more precise than the ones on the callee
359   /// itself.
360   bool paramHasAttr(Argument *A, Attribute::AttrKind Attr);
361 
362   /// Return true if the given value is known non null within the callee if
363   /// inlined through this particular callsite.
364   bool isKnownNonNullInCallee(Value *V);
365 
366   /// Return true if size growth is allowed when inlining the callee at \p Call.
367   bool allowSizeGrowth(CallBase &Call);
368 
369   // Custom analysis routines.
370   InlineResult analyzeBlock(BasicBlock *BB,
371                             SmallPtrSetImpl<const Value *> &EphValues);
372 
373   // Disable several entry points to the visitor so we don't accidentally use
374   // them by declaring but not defining them here.
375   void visit(Module *);
376   void visit(Module &);
377   void visit(Function *);
378   void visit(Function &);
379   void visit(BasicBlock *);
380   void visit(BasicBlock &);
381 
382   // Provide base case for our instruction visit.
383   bool visitInstruction(Instruction &I);
384 
385   // Our visit overrides.
386   bool visitAlloca(AllocaInst &I);
387   bool visitPHI(PHINode &I);
388   bool visitGetElementPtr(GetElementPtrInst &I);
389   bool visitBitCast(BitCastInst &I);
390   bool visitPtrToInt(PtrToIntInst &I);
391   bool visitIntToPtr(IntToPtrInst &I);
392   bool visitCastInst(CastInst &I);
393   bool visitUnaryInstruction(UnaryInstruction &I);
394   bool visitCmpInst(CmpInst &I);
395   bool visitSub(BinaryOperator &I);
396   bool visitBinaryOperator(BinaryOperator &I);
397   bool visitFNeg(UnaryOperator &I);
398   bool visitLoad(LoadInst &I);
399   bool visitStore(StoreInst &I);
400   bool visitExtractValue(ExtractValueInst &I);
401   bool visitInsertValue(InsertValueInst &I);
402   bool visitCallBase(CallBase &Call);
403   bool visitReturnInst(ReturnInst &RI);
404   bool visitBranchInst(BranchInst &BI);
405   bool visitSelectInst(SelectInst &SI);
406   bool visitSwitchInst(SwitchInst &SI);
407   bool visitIndirectBrInst(IndirectBrInst &IBI);
408   bool visitResumeInst(ResumeInst &RI);
409   bool visitCleanupReturnInst(CleanupReturnInst &RI);
410   bool visitCatchReturnInst(CatchReturnInst &RI);
411   bool visitUnreachableInst(UnreachableInst &I);
412 
413 public:
414   CallAnalyzer(
415       Function &Callee, CallBase &Call, const TargetTransformInfo &TTI,
416       function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
417       function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
418       ProfileSummaryInfo *PSI = nullptr,
419       OptimizationRemarkEmitter *ORE = nullptr)
420       : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI),
421         PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE),
422         CandidateCall(Call), EnableLoadElimination(true) {}
423 
424   InlineResult analyze();
425 
426   Optional<Constant*> getSimplifiedValue(Instruction *I) {
427     if (SimplifiedValues.find(I) != SimplifiedValues.end())
428       return SimplifiedValues[I];
429     return None;
430   }
431 
432   // Keep a bunch of stats about the cost savings found so we can print them
433   // out when debugging.
434   unsigned NumConstantArgs = 0;
435   unsigned NumConstantOffsetPtrArgs = 0;
436   unsigned NumAllocaArgs = 0;
437   unsigned NumConstantPtrCmps = 0;
438   unsigned NumConstantPtrDiffs = 0;
439   unsigned NumInstructionsSimplified = 0;
440 
441   void dump();
442 };
443 
444 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note
445 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer
446 class InlineCostCallAnalyzer final : public CallAnalyzer {
447   const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1;
448   const bool ComputeFullInlineCost;
449   int LoadEliminationCost = 0;
450   /// Bonus to be applied when percentage of vector instructions in callee is
451   /// high (see more details in updateThreshold).
452   int VectorBonus = 0;
453   /// Bonus to be applied when the callee has only one reachable basic block.
454   int SingleBBBonus = 0;
455 
456   /// Tunable parameters that control the analysis.
457   const InlineParams &Params;
458 
459   // This DenseMap stores the delta change in cost and threshold after
460   // accounting for the given instruction. The map is filled only with the
461   // flag PrintInstructionComments on.
462   DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap;
463 
464   /// Upper bound for the inlining cost. Bonuses are being applied to account
465   /// for speculative "expected profit" of the inlining decision.
466   int Threshold = 0;
467 
468   /// Attempt to evaluate indirect calls to boost its inline cost.
469   const bool BoostIndirectCalls;
470 
471   /// Ignore the threshold when finalizing analysis.
472   const bool IgnoreThreshold;
473 
474   // True if the cost-benefit-analysis-based inliner is enabled.
475   const bool CostBenefitAnalysisEnabled;
476 
477   /// Inlining cost measured in abstract units, accounts for all the
478   /// instructions expected to be executed for a given function invocation.
479   /// Instructions that are statically proven to be dead based on call-site
480   /// arguments are not counted here.
481   int Cost = 0;
482 
483   // The cumulative cost at the beginning of the basic block being analyzed.  At
484   // the end of analyzing each basic block, "Cost - CostAtBBStart" represents
485   // the size of that basic block.
486   int CostAtBBStart = 0;
487 
488   // The static size of live but cold basic blocks.  This is "static" in the
489   // sense that it's not weighted by profile counts at all.
490   int ColdSize = 0;
491 
492   // Whether inlining is decided by cost-benefit analysis.
493   bool DecidedByCostBenefit = false;
494 
495   bool SingleBB = true;
496 
497   unsigned SROACostSavings = 0;
498   unsigned SROACostSavingsLost = 0;
499 
500   /// The mapping of caller Alloca values to their accumulated cost savings. If
501   /// we have to disable SROA for one of the allocas, this tells us how much
502   /// cost must be added.
503   DenseMap<AllocaInst *, int> SROAArgCosts;
504 
505   /// Return true if \p Call is a cold callsite.
506   bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI);
507 
508   /// Update Threshold based on callsite properties such as callee
509   /// attributes and callee hotness for PGO builds. The Callee is explicitly
510   /// passed to support analyzing indirect calls whose target is inferred by
511   /// analysis.
512   void updateThreshold(CallBase &Call, Function &Callee);
513   /// Return a higher threshold if \p Call is a hot callsite.
514   Optional<int> getHotCallSiteThreshold(CallBase &Call,
515                                         BlockFrequencyInfo *CallerBFI);
516 
517   /// Handle a capped 'int' increment for Cost.
518   void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) {
519     assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound");
520     Cost = (int)std::min(UpperBound, Cost + Inc);
521   }
522 
523   void onDisableSROA(AllocaInst *Arg) override {
524     auto CostIt = SROAArgCosts.find(Arg);
525     if (CostIt == SROAArgCosts.end())
526       return;
527     addCost(CostIt->second);
528     SROACostSavings -= CostIt->second;
529     SROACostSavingsLost += CostIt->second;
530     SROAArgCosts.erase(CostIt);
531   }
532 
533   void onDisableLoadElimination() override {
534     addCost(LoadEliminationCost);
535     LoadEliminationCost = 0;
536   }
537   void onCallPenalty() override { addCost(InlineConstants::CallPenalty); }
538   void onCallArgumentSetup(const CallBase &Call) override {
539     // Pay the price of the argument setup. We account for the average 1
540     // instruction per call argument setup here.
541     addCost(Call.arg_size() * InlineConstants::InstrCost);
542   }
543   void onLoadRelativeIntrinsic() override {
544     // This is normally lowered to 4 LLVM instructions.
545     addCost(3 * InlineConstants::InstrCost);
546   }
547   void onLoweredCall(Function *F, CallBase &Call,
548                      bool IsIndirectCall) override {
549     // We account for the average 1 instruction per call argument setup here.
550     addCost(Call.arg_size() * InlineConstants::InstrCost);
551 
552     // If we have a constant that we are calling as a function, we can peer
553     // through it and see the function target. This happens not infrequently
554     // during devirtualization and so we want to give it a hefty bonus for
555     // inlining, but cap that bonus in the event that inlining wouldn't pan out.
556     // Pretend to inline the function, with a custom threshold.
557     if (IsIndirectCall && BoostIndirectCalls) {
558       auto IndirectCallParams = Params;
559       IndirectCallParams.DefaultThreshold =
560           InlineConstants::IndirectCallThreshold;
561       /// FIXME: if InlineCostCallAnalyzer is derived from, this may need
562       /// to instantiate the derived class.
563       InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI,
564                                 GetAssumptionCache, GetBFI, PSI, ORE, false);
565       if (CA.analyze().isSuccess()) {
566         // We were able to inline the indirect call! Subtract the cost from the
567         // threshold to get the bonus we want to apply, but don't go below zero.
568         Cost -= std::max(0, CA.getThreshold() - CA.getCost());
569       }
570     } else
571       // Otherwise simply add the cost for merely making the call.
572       addCost(InlineConstants::CallPenalty);
573   }
574 
575   void onFinalizeSwitch(unsigned JumpTableSize,
576                         unsigned NumCaseCluster) override {
577     // If suitable for a jump table, consider the cost for the table size and
578     // branch to destination.
579     // Maximum valid cost increased in this function.
580     if (JumpTableSize) {
581       int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost +
582                        4 * InlineConstants::InstrCost;
583 
584       addCost(JTCost, (int64_t)CostUpperBound);
585       return;
586     }
587     // Considering forming a binary search, we should find the number of nodes
588     // which is same as the number of comparisons when lowered. For a given
589     // number of clusters, n, we can define a recursive function, f(n), to find
590     // the number of nodes in the tree. The recursion is :
591     // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3,
592     // and f(n) = n, when n <= 3.
593     // This will lead a binary tree where the leaf should be either f(2) or f(3)
594     // when n > 3.  So, the number of comparisons from leaves should be n, while
595     // the number of non-leaf should be :
596     //   2^(log2(n) - 1) - 1
597     //   = 2^log2(n) * 2^-1 - 1
598     //   = n / 2 - 1.
599     // Considering comparisons from leaf and non-leaf nodes, we can estimate the
600     // number of comparisons in a simple closed form :
601     //   n + n / 2 - 1 = n * 3 / 2 - 1
602     if (NumCaseCluster <= 3) {
603       // Suppose a comparison includes one compare and one conditional branch.
604       addCost(NumCaseCluster * 2 * InlineConstants::InstrCost);
605       return;
606     }
607 
608     int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1;
609     int64_t SwitchCost =
610         ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost;
611 
612     addCost(SwitchCost, (int64_t)CostUpperBound);
613   }
614   void onMissedSimplification() override {
615     addCost(InlineConstants::InstrCost);
616   }
617 
618   void onInitializeSROAArg(AllocaInst *Arg) override {
619     assert(Arg != nullptr &&
620            "Should not initialize SROA costs for null value.");
621     SROAArgCosts[Arg] = 0;
622   }
623 
624   void onAggregateSROAUse(AllocaInst *SROAArg) override {
625     auto CostIt = SROAArgCosts.find(SROAArg);
626     assert(CostIt != SROAArgCosts.end() &&
627            "expected this argument to have a cost");
628     CostIt->second += InlineConstants::InstrCost;
629     SROACostSavings += InlineConstants::InstrCost;
630   }
631 
632   void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; }
633 
634   void onBlockAnalyzed(const BasicBlock *BB) override {
635     if (CostBenefitAnalysisEnabled) {
636       // Keep track of the static size of live but cold basic blocks.  For now,
637       // we define a cold basic block to be one that's never executed.
638       assert(GetBFI && "GetBFI must be available");
639       BlockFrequencyInfo *BFI = &(GetBFI(F));
640       assert(BFI && "BFI must be available");
641       auto ProfileCount = BFI->getBlockProfileCount(BB);
642       assert(ProfileCount.hasValue());
643       if (ProfileCount.getValue() == 0)
644         ColdSize += Cost - CostAtBBStart;
645     }
646 
647     auto *TI = BB->getTerminator();
648     // If we had any successors at this point, than post-inlining is likely to
649     // have them as well. Note that we assume any basic blocks which existed
650     // due to branches or switches which folded above will also fold after
651     // inlining.
652     if (SingleBB && TI->getNumSuccessors() > 1) {
653       // Take off the bonus we applied to the threshold.
654       Threshold -= SingleBBBonus;
655       SingleBB = false;
656     }
657   }
658 
659   void onInstructionAnalysisStart(const Instruction *I) override {
660     // This function is called to store the initial cost of inlining before
661     // the given instruction was assessed.
662     if (!PrintInstructionComments)
663       return;
664     InstructionCostDetailMap[I].CostBefore = Cost;
665     InstructionCostDetailMap[I].ThresholdBefore = Threshold;
666   }
667 
668   void onInstructionAnalysisFinish(const Instruction *I) override {
669     // This function is called to find new values of cost and threshold after
670     // the instruction has been assessed.
671     if (!PrintInstructionComments)
672       return;
673     InstructionCostDetailMap[I].CostAfter = Cost;
674     InstructionCostDetailMap[I].ThresholdAfter = Threshold;
675   }
676 
677   bool isCostBenefitAnalysisEnabled() {
678     if (!PSI || !PSI->hasProfileSummary())
679       return false;
680 
681     if (!GetBFI)
682       return false;
683 
684     if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) {
685       // Honor the explicit request from the user.
686       if (!InlineEnableCostBenefitAnalysis)
687         return false;
688     } else {
689       // Otherwise, require instrumentation profile.
690       if (!PSI->hasInstrumentationProfile())
691         return false;
692     }
693 
694     auto *Caller = CandidateCall.getParent()->getParent();
695     if (!Caller->getEntryCount())
696       return false;
697 
698     BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller));
699     if (!CallerBFI)
700       return false;
701 
702     // For now, limit to hot call site.
703     if (!PSI->isHotCallSite(CandidateCall, CallerBFI))
704       return false;
705 
706     // Make sure we have a nonzero entry count.
707     auto EntryCount = F.getEntryCount();
708     if (!EntryCount || !EntryCount.getCount())
709       return false;
710 
711     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
712     if (!CalleeBFI)
713       return false;
714 
715     return true;
716   }
717 
718   // Determine whether we should inline the given call site, taking into account
719   // both the size cost and the cycle savings.  Return None if we don't have
720   // suficient profiling information to determine.
721   Optional<bool> costBenefitAnalysis() {
722     if (!CostBenefitAnalysisEnabled)
723       return None;
724 
725     // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0
726     // for the prelink phase of the AutoFDO + ThinLTO build.  Honor the logic by
727     // falling back to the cost-based metric.
728     // TODO: Improve this hacky condition.
729     if (Threshold == 0)
730       return None;
731 
732     assert(GetBFI);
733     BlockFrequencyInfo *CalleeBFI = &(GetBFI(F));
734     assert(CalleeBFI);
735 
736     // The cycle savings expressed as the sum of InlineConstants::InstrCost
737     // multiplied by the estimated dynamic count of each instruction we can
738     // avoid.  Savings come from the call site cost, such as argument setup and
739     // the call instruction, as well as the instructions that are folded.
740     //
741     // We use 128-bit APInt here to avoid potential overflow.  This variable
742     // should stay well below 10^^24 (or 2^^80) in practice.  This "worst" case
743     // assumes that we can avoid or fold a billion instructions, each with a
744     // profile count of 10^^15 -- roughly the number of cycles for a 24-hour
745     // period on a 4GHz machine.
746     APInt CycleSavings(128, 0);
747 
748     for (auto &BB : F) {
749       APInt CurrentSavings(128, 0);
750       for (auto &I : BB) {
751         if (BranchInst *BI = dyn_cast<BranchInst>(&I)) {
752           // Count a conditional branch as savings if it becomes unconditional.
753           if (BI->isConditional() &&
754               dyn_cast_or_null<ConstantInt>(
755                   SimplifiedValues.lookup(BI->getCondition()))) {
756             CurrentSavings += InlineConstants::InstrCost;
757           }
758         } else if (Value *V = dyn_cast<Value>(&I)) {
759           // Count an instruction as savings if we can fold it.
760           if (SimplifiedValues.count(V)) {
761             CurrentSavings += InlineConstants::InstrCost;
762           }
763         }
764       }
765 
766       auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB);
767       assert(ProfileCount.hasValue());
768       CurrentSavings *= ProfileCount.getValue();
769       CycleSavings += CurrentSavings;
770     }
771 
772     // Compute the cycle savings per call.
773     auto EntryProfileCount = F.getEntryCount();
774     assert(EntryProfileCount.hasValue() && EntryProfileCount.getCount());
775     auto EntryCount = EntryProfileCount.getCount();
776     CycleSavings += EntryCount / 2;
777     CycleSavings = CycleSavings.udiv(EntryCount);
778 
779     // Compute the total savings for the call site.
780     auto *CallerBB = CandidateCall.getParent();
781     BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent())));
782     CycleSavings += getCallsiteCost(this->CandidateCall, DL);
783     CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue();
784 
785     // Remove the cost of the cold basic blocks.
786     int Size = Cost - ColdSize;
787 
788     // Allow tiny callees to be inlined regardless of whether they meet the
789     // savings threshold.
790     Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1;
791 
792     // Return true if the savings justify the cost of inlining.  Specifically,
793     // we evaluate the following inequality:
794     //
795     //  CycleSavings      PSI->getOrCompHotCountThreshold()
796     // -------------- >= -----------------------------------
797     //       Size              InlineSavingsMultiplier
798     //
799     // Note that the left hand side is specific to a call site.  The right hand
800     // side is a constant for the entire executable.
801     APInt LHS = CycleSavings;
802     LHS *= InlineSavingsMultiplier;
803     APInt RHS(128, PSI->getOrCompHotCountThreshold());
804     RHS *= Size;
805     return LHS.uge(RHS);
806   }
807 
808   InlineResult finalizeAnalysis() override {
809     // Loops generally act a lot like calls in that they act like barriers to
810     // movement, require a certain amount of setup, etc. So when optimising for
811     // size, we penalise any call sites that perform loops. We do this after all
812     // other costs here, so will likely only be dealing with relatively small
813     // functions (and hence DT and LI will hopefully be cheap).
814     auto *Caller = CandidateCall.getFunction();
815     if (Caller->hasMinSize()) {
816       DominatorTree DT(F);
817       LoopInfo LI(DT);
818       int NumLoops = 0;
819       for (Loop *L : LI) {
820         // Ignore loops that will not be executed
821         if (DeadBlocks.count(L->getHeader()))
822           continue;
823         NumLoops++;
824       }
825       addCost(NumLoops * InlineConstants::CallPenalty);
826     }
827 
828     // We applied the maximum possible vector bonus at the beginning. Now,
829     // subtract the excess bonus, if any, from the Threshold before
830     // comparing against Cost.
831     if (NumVectorInstructions <= NumInstructions / 10)
832       Threshold -= VectorBonus;
833     else if (NumVectorInstructions <= NumInstructions / 2)
834       Threshold -= VectorBonus / 2;
835 
836     if (auto Result = costBenefitAnalysis()) {
837       DecidedByCostBenefit = true;
838       if (Result.getValue())
839         return InlineResult::success();
840       else
841         return InlineResult::failure("Cost over threshold.");
842     }
843 
844     if (IgnoreThreshold || Cost < std::max(1, Threshold))
845       return InlineResult::success();
846     return InlineResult::failure("Cost over threshold.");
847   }
848   bool shouldStop() override {
849     // Bail out the moment we cross the threshold. This means we'll under-count
850     // the cost, but only when undercounting doesn't matter.
851     return !IgnoreThreshold && Cost >= Threshold && !ComputeFullInlineCost;
852   }
853 
854   void onLoadEliminationOpportunity() override {
855     LoadEliminationCost += InlineConstants::InstrCost;
856   }
857 
858   InlineResult onAnalysisStart() override {
859     // Perform some tweaks to the cost and threshold based on the direct
860     // callsite information.
861 
862     // We want to more aggressively inline vector-dense kernels, so up the
863     // threshold, and we'll lower it if the % of vector instructions gets too
864     // low. Note that these bonuses are some what arbitrary and evolved over
865     // time by accident as much as because they are principled bonuses.
866     //
867     // FIXME: It would be nice to remove all such bonuses. At least it would be
868     // nice to base the bonus values on something more scientific.
869     assert(NumInstructions == 0);
870     assert(NumVectorInstructions == 0);
871 
872     // Update the threshold based on callsite properties
873     updateThreshold(CandidateCall, F);
874 
875     // While Threshold depends on commandline options that can take negative
876     // values, we want to enforce the invariant that the computed threshold and
877     // bonuses are non-negative.
878     assert(Threshold >= 0);
879     assert(SingleBBBonus >= 0);
880     assert(VectorBonus >= 0);
881 
882     // Speculatively apply all possible bonuses to Threshold. If cost exceeds
883     // this Threshold any time, and cost cannot decrease, we can stop processing
884     // the rest of the function body.
885     Threshold += (SingleBBBonus + VectorBonus);
886 
887     // Give out bonuses for the callsite, as the instructions setting them up
888     // will be gone after inlining.
889     addCost(-getCallsiteCost(this->CandidateCall, DL));
890 
891     // If this function uses the coldcc calling convention, prefer not to inline
892     // it.
893     if (F.getCallingConv() == CallingConv::Cold)
894       Cost += InlineConstants::ColdccPenalty;
895 
896     // Check if we're done. This can happen due to bonuses and penalties.
897     if (Cost >= Threshold && !ComputeFullInlineCost)
898       return InlineResult::failure("high cost");
899 
900     return InlineResult::success();
901   }
902 
903 public:
904   InlineCostCallAnalyzer(
905       Function &Callee, CallBase &Call, const InlineParams &Params,
906       const TargetTransformInfo &TTI,
907       function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
908       function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr,
909       ProfileSummaryInfo *PSI = nullptr,
910       OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true,
911       bool IgnoreThreshold = false)
912       : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE),
913         ComputeFullInlineCost(OptComputeFullInlineCost ||
914                               Params.ComputeFullInlineCost || ORE ||
915                               isCostBenefitAnalysisEnabled()),
916         Params(Params), Threshold(Params.DefaultThreshold),
917         BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold),
918         CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()),
919         Writer(this) {}
920 
921   /// Annotation Writer for instruction details
922   InlineCostAnnotationWriter Writer;
923 
924   void dump();
925 
926   // Prints the same analysis as dump(), but its definition is not dependent
927   // on the build.
928   void print();
929 
930   Optional<InstructionCostDetail> getCostDetails(const Instruction *I) {
931     if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end())
932       return InstructionCostDetailMap[I];
933     return None;
934   }
935 
936   virtual ~InlineCostCallAnalyzer() {}
937   int getThreshold() { return Threshold; }
938   int getCost() { return Cost; }
939   bool wasDecidedByCostBenefit() { return DecidedByCostBenefit; }
940 };
941 } // namespace
942 
943 /// Test whether the given value is an Alloca-derived function argument.
944 bool CallAnalyzer::isAllocaDerivedArg(Value *V) {
945   return SROAArgValues.count(V);
946 }
947 
948 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) {
949   onDisableSROA(SROAArg);
950   EnabledSROAAllocas.erase(SROAArg);
951   disableLoadElimination();
952 }
953 
954 void InlineCostAnnotationWriter::emitInstructionAnnot(const Instruction *I,
955                                                 formatted_raw_ostream &OS) {
956   // The cost of inlining of the given instruction is printed always.
957   // The threshold delta is printed only when it is non-zero. It happens
958   // when we decided to give a bonus at a particular instruction.
959   Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I);
960   if (!Record)
961     OS << "; No analysis for the instruction";
962   else {
963     OS << "; cost before = " << Record->CostBefore
964        << ", cost after = " << Record->CostAfter
965        << ", threshold before = " << Record->ThresholdBefore
966        << ", threshold after = " << Record->ThresholdAfter << ", ";
967     OS << "cost delta = " << Record->getCostDelta();
968     if (Record->hasThresholdChanged())
969       OS << ", threshold delta = " << Record->getThresholdDelta();
970   }
971   auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I));
972   if (C) {
973     OS << ", simplified to ";
974     C.getValue()->print(OS, true);
975   }
976   OS << "\n";
977 }
978 
979 /// If 'V' maps to a SROA candidate, disable SROA for it.
980 void CallAnalyzer::disableSROA(Value *V) {
981   if (auto *SROAArg = getSROAArgForValueOrNull(V)) {
982     disableSROAForArg(SROAArg);
983   }
984 }
985 
986 void CallAnalyzer::disableLoadElimination() {
987   if (EnableLoadElimination) {
988     onDisableLoadElimination();
989     EnableLoadElimination = false;
990   }
991 }
992 
993 /// Accumulate a constant GEP offset into an APInt if possible.
994 ///
995 /// Returns false if unable to compute the offset for any reason. Respects any
996 /// simplified values known during the analysis of this callsite.
997 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) {
998   unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType());
999   assert(IntPtrWidth == Offset.getBitWidth());
1000 
1001   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1002        GTI != GTE; ++GTI) {
1003     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
1004     if (!OpC)
1005       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand()))
1006         OpC = dyn_cast<ConstantInt>(SimpleOp);
1007     if (!OpC)
1008       return false;
1009     if (OpC->isZero())
1010       continue;
1011 
1012     // Handle a struct index, which adds its field offset to the pointer.
1013     if (StructType *STy = GTI.getStructTypeOrNull()) {
1014       unsigned ElementIdx = OpC->getZExtValue();
1015       const StructLayout *SL = DL.getStructLayout(STy);
1016       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
1017       continue;
1018     }
1019 
1020     APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
1021     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
1022   }
1023   return true;
1024 }
1025 
1026 /// Use TTI to check whether a GEP is free.
1027 ///
1028 /// Respects any simplified values known during the analysis of this callsite.
1029 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) {
1030   SmallVector<Value *, 4> Operands;
1031   Operands.push_back(GEP.getOperand(0));
1032   for (const Use &Op : GEP.indices())
1033     if (Constant *SimpleOp = SimplifiedValues.lookup(Op))
1034       Operands.push_back(SimpleOp);
1035     else
1036       Operands.push_back(Op);
1037   return TTI.getUserCost(&GEP, Operands,
1038                          TargetTransformInfo::TCK_SizeAndLatency) ==
1039          TargetTransformInfo::TCC_Free;
1040 }
1041 
1042 bool CallAnalyzer::visitAlloca(AllocaInst &I) {
1043   // Check whether inlining will turn a dynamic alloca into a static
1044   // alloca and handle that case.
1045   if (I.isArrayAllocation()) {
1046     Constant *Size = SimplifiedValues.lookup(I.getArraySize());
1047     if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) {
1048       // Sometimes a dynamic alloca could be converted into a static alloca
1049       // after this constant prop, and become a huge static alloca on an
1050       // unconditional CFG path. Avoid inlining if this is going to happen above
1051       // a threshold.
1052       // FIXME: If the threshold is removed or lowered too much, we could end up
1053       // being too pessimistic and prevent inlining non-problematic code. This
1054       // could result in unintended perf regressions. A better overall strategy
1055       // is needed to track stack usage during inlining.
1056       Type *Ty = I.getAllocatedType();
1057       AllocatedSize = SaturatingMultiplyAdd(
1058           AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty).getKnownMinSize(),
1059           AllocatedSize);
1060       if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) {
1061         HasDynamicAlloca = true;
1062         return false;
1063       }
1064       return Base::visitAlloca(I);
1065     }
1066   }
1067 
1068   // Accumulate the allocated size.
1069   if (I.isStaticAlloca()) {
1070     Type *Ty = I.getAllocatedType();
1071     AllocatedSize =
1072         SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize);
1073   }
1074 
1075   // We will happily inline static alloca instructions.
1076   if (I.isStaticAlloca())
1077     return Base::visitAlloca(I);
1078 
1079   // FIXME: This is overly conservative. Dynamic allocas are inefficient for
1080   // a variety of reasons, and so we would like to not inline them into
1081   // functions which don't currently have a dynamic alloca. This simply
1082   // disables inlining altogether in the presence of a dynamic alloca.
1083   HasDynamicAlloca = true;
1084   return false;
1085 }
1086 
1087 bool CallAnalyzer::visitPHI(PHINode &I) {
1088   // FIXME: We need to propagate SROA *disabling* through phi nodes, even
1089   // though we don't want to propagate it's bonuses. The idea is to disable
1090   // SROA if it *might* be used in an inappropriate manner.
1091 
1092   // Phi nodes are always zero-cost.
1093   // FIXME: Pointer sizes may differ between different address spaces, so do we
1094   // need to use correct address space in the call to getPointerSizeInBits here?
1095   // Or could we skip the getPointerSizeInBits call completely? As far as I can
1096   // see the ZeroOffset is used as a dummy value, so we can probably use any
1097   // bit width for the ZeroOffset?
1098   APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0));
1099   bool CheckSROA = I.getType()->isPointerTy();
1100 
1101   // Track the constant or pointer with constant offset we've seen so far.
1102   Constant *FirstC = nullptr;
1103   std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset};
1104   Value *FirstV = nullptr;
1105 
1106   for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) {
1107     BasicBlock *Pred = I.getIncomingBlock(i);
1108     // If the incoming block is dead, skip the incoming block.
1109     if (DeadBlocks.count(Pred))
1110       continue;
1111     // If the parent block of phi is not the known successor of the incoming
1112     // block, skip the incoming block.
1113     BasicBlock *KnownSuccessor = KnownSuccessors[Pred];
1114     if (KnownSuccessor && KnownSuccessor != I.getParent())
1115       continue;
1116 
1117     Value *V = I.getIncomingValue(i);
1118     // If the incoming value is this phi itself, skip the incoming value.
1119     if (&I == V)
1120       continue;
1121 
1122     Constant *C = dyn_cast<Constant>(V);
1123     if (!C)
1124       C = SimplifiedValues.lookup(V);
1125 
1126     std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset};
1127     if (!C && CheckSROA)
1128       BaseAndOffset = ConstantOffsetPtrs.lookup(V);
1129 
1130     if (!C && !BaseAndOffset.first)
1131       // The incoming value is neither a constant nor a pointer with constant
1132       // offset, exit early.
1133       return true;
1134 
1135     if (FirstC) {
1136       if (FirstC == C)
1137         // If we've seen a constant incoming value before and it is the same
1138         // constant we see this time, continue checking the next incoming value.
1139         continue;
1140       // Otherwise early exit because we either see a different constant or saw
1141       // a constant before but we have a pointer with constant offset this time.
1142       return true;
1143     }
1144 
1145     if (FirstV) {
1146       // The same logic as above, but check pointer with constant offset here.
1147       if (FirstBaseAndOffset == BaseAndOffset)
1148         continue;
1149       return true;
1150     }
1151 
1152     if (C) {
1153       // This is the 1st time we've seen a constant, record it.
1154       FirstC = C;
1155       continue;
1156     }
1157 
1158     // The remaining case is that this is the 1st time we've seen a pointer with
1159     // constant offset, record it.
1160     FirstV = V;
1161     FirstBaseAndOffset = BaseAndOffset;
1162   }
1163 
1164   // Check if we can map phi to a constant.
1165   if (FirstC) {
1166     SimplifiedValues[&I] = FirstC;
1167     return true;
1168   }
1169 
1170   // Check if we can map phi to a pointer with constant offset.
1171   if (FirstBaseAndOffset.first) {
1172     ConstantOffsetPtrs[&I] = FirstBaseAndOffset;
1173 
1174     if (auto *SROAArg = getSROAArgForValueOrNull(FirstV))
1175       SROAArgValues[&I] = SROAArg;
1176   }
1177 
1178   return true;
1179 }
1180 
1181 /// Check we can fold GEPs of constant-offset call site argument pointers.
1182 /// This requires target data and inbounds GEPs.
1183 ///
1184 /// \return true if the specified GEP can be folded.
1185 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) {
1186   // Check if we have a base + offset for the pointer.
1187   std::pair<Value *, APInt> BaseAndOffset =
1188       ConstantOffsetPtrs.lookup(I.getPointerOperand());
1189   if (!BaseAndOffset.first)
1190     return false;
1191 
1192   // Check if the offset of this GEP is constant, and if so accumulate it
1193   // into Offset.
1194   if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second))
1195     return false;
1196 
1197   // Add the result as a new mapping to Base + Offset.
1198   ConstantOffsetPtrs[&I] = BaseAndOffset;
1199 
1200   return true;
1201 }
1202 
1203 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) {
1204   auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand());
1205 
1206   // Lambda to check whether a GEP's indices are all constant.
1207   auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) {
1208     for (const Use &Op : GEP.indices())
1209       if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op))
1210         return false;
1211     return true;
1212   };
1213 
1214   if (!DisableGEPConstOperand)
1215     if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1216         SmallVector<Constant *, 2> Indices;
1217         for (unsigned int Index = 1 ; Index < COps.size() ; ++Index)
1218             Indices.push_back(COps[Index]);
1219         return ConstantExpr::getGetElementPtr(I.getSourceElementType(), COps[0],
1220                                               Indices, I.isInBounds());
1221         }))
1222       return true;
1223 
1224   if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) {
1225     if (SROAArg)
1226       SROAArgValues[&I] = SROAArg;
1227 
1228     // Constant GEPs are modeled as free.
1229     return true;
1230   }
1231 
1232   // Variable GEPs will require math and will disable SROA.
1233   if (SROAArg)
1234     disableSROAForArg(SROAArg);
1235   return isGEPFree(I);
1236 }
1237 
1238 /// Simplify \p I if its operands are constants and update SimplifiedValues.
1239 /// \p Evaluate is a callable specific to instruction type that evaluates the
1240 /// instruction when all the operands are constants.
1241 template <typename Callable>
1242 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) {
1243   SmallVector<Constant *, 2> COps;
1244   for (Value *Op : I.operands()) {
1245     Constant *COp = dyn_cast<Constant>(Op);
1246     if (!COp)
1247       COp = SimplifiedValues.lookup(Op);
1248     if (!COp)
1249       return false;
1250     COps.push_back(COp);
1251   }
1252   auto *C = Evaluate(COps);
1253   if (!C)
1254     return false;
1255   SimplifiedValues[&I] = C;
1256   return true;
1257 }
1258 
1259 bool CallAnalyzer::visitBitCast(BitCastInst &I) {
1260   // Propagate constants through bitcasts.
1261   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1262         return ConstantExpr::getBitCast(COps[0], I.getType());
1263       }))
1264     return true;
1265 
1266   // Track base/offsets through casts
1267   std::pair<Value *, APInt> BaseAndOffset =
1268       ConstantOffsetPtrs.lookup(I.getOperand(0));
1269   // Casts don't change the offset, just wrap it up.
1270   if (BaseAndOffset.first)
1271     ConstantOffsetPtrs[&I] = BaseAndOffset;
1272 
1273   // Also look for SROA candidates here.
1274   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1275     SROAArgValues[&I] = SROAArg;
1276 
1277   // Bitcasts are always zero cost.
1278   return true;
1279 }
1280 
1281 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) {
1282   // Propagate constants through ptrtoint.
1283   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1284         return ConstantExpr::getPtrToInt(COps[0], I.getType());
1285       }))
1286     return true;
1287 
1288   // Track base/offset pairs when converted to a plain integer provided the
1289   // integer is large enough to represent the pointer.
1290   unsigned IntegerSize = I.getType()->getScalarSizeInBits();
1291   unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace();
1292   if (IntegerSize == DL.getPointerSizeInBits(AS)) {
1293     std::pair<Value *, APInt> BaseAndOffset =
1294         ConstantOffsetPtrs.lookup(I.getOperand(0));
1295     if (BaseAndOffset.first)
1296       ConstantOffsetPtrs[&I] = BaseAndOffset;
1297   }
1298 
1299   // This is really weird. Technically, ptrtoint will disable SROA. However,
1300   // unless that ptrtoint is *used* somewhere in the live basic blocks after
1301   // inlining, it will be nuked, and SROA should proceed. All of the uses which
1302   // would block SROA would also block SROA if applied directly to a pointer,
1303   // and so we can just add the integer in here. The only places where SROA is
1304   // preserved either cannot fire on an integer, or won't in-and-of themselves
1305   // disable SROA (ext) w/o some later use that we would see and disable.
1306   if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0)))
1307     SROAArgValues[&I] = SROAArg;
1308 
1309   return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1310          TargetTransformInfo::TCC_Free;
1311 }
1312 
1313 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) {
1314   // Propagate constants through ptrtoint.
1315   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1316         return ConstantExpr::getIntToPtr(COps[0], I.getType());
1317       }))
1318     return true;
1319 
1320   // Track base/offset pairs when round-tripped through a pointer without
1321   // modifications provided the integer is not too large.
1322   Value *Op = I.getOperand(0);
1323   unsigned IntegerSize = Op->getType()->getScalarSizeInBits();
1324   if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) {
1325     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op);
1326     if (BaseAndOffset.first)
1327       ConstantOffsetPtrs[&I] = BaseAndOffset;
1328   }
1329 
1330   // "Propagate" SROA here in the same manner as we do for ptrtoint above.
1331   if (auto *SROAArg = getSROAArgForValueOrNull(Op))
1332     SROAArgValues[&I] = SROAArg;
1333 
1334   return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1335          TargetTransformInfo::TCC_Free;
1336 }
1337 
1338 bool CallAnalyzer::visitCastInst(CastInst &I) {
1339   // Propagate constants through casts.
1340   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1341         return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType());
1342       }))
1343     return true;
1344 
1345   // Disable SROA in the face of arbitrary casts we don't explicitly list
1346   // elsewhere.
1347   disableSROA(I.getOperand(0));
1348 
1349   // If this is a floating-point cast, and the target says this operation
1350   // is expensive, this may eventually become a library call. Treat the cost
1351   // as such.
1352   switch (I.getOpcode()) {
1353   case Instruction::FPTrunc:
1354   case Instruction::FPExt:
1355   case Instruction::UIToFP:
1356   case Instruction::SIToFP:
1357   case Instruction::FPToUI:
1358   case Instruction::FPToSI:
1359     if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive)
1360       onCallPenalty();
1361     break;
1362   default:
1363     break;
1364   }
1365 
1366   return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1367          TargetTransformInfo::TCC_Free;
1368 }
1369 
1370 bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) {
1371   Value *Operand = I.getOperand(0);
1372   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1373         return ConstantFoldInstOperands(&I, COps[0], DL);
1374       }))
1375     return true;
1376 
1377   // Disable any SROA on the argument to arbitrary unary instructions.
1378   disableSROA(Operand);
1379 
1380   return false;
1381 }
1382 
1383 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) {
1384   return CandidateCall.paramHasAttr(A->getArgNo(), Attr);
1385 }
1386 
1387 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) {
1388   // Does the *call site* have the NonNull attribute set on an argument?  We
1389   // use the attribute on the call site to memoize any analysis done in the
1390   // caller. This will also trip if the callee function has a non-null
1391   // parameter attribute, but that's a less interesting case because hopefully
1392   // the callee would already have been simplified based on that.
1393   if (Argument *A = dyn_cast<Argument>(V))
1394     if (paramHasAttr(A, Attribute::NonNull))
1395       return true;
1396 
1397   // Is this an alloca in the caller?  This is distinct from the attribute case
1398   // above because attributes aren't updated within the inliner itself and we
1399   // always want to catch the alloca derived case.
1400   if (isAllocaDerivedArg(V))
1401     // We can actually predict the result of comparisons between an
1402     // alloca-derived value and null. Note that this fires regardless of
1403     // SROA firing.
1404     return true;
1405 
1406   return false;
1407 }
1408 
1409 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) {
1410   // If the normal destination of the invoke or the parent block of the call
1411   // site is unreachable-terminated, there is little point in inlining this
1412   // unless there is literally zero cost.
1413   // FIXME: Note that it is possible that an unreachable-terminated block has a
1414   // hot entry. For example, in below scenario inlining hot_call_X() may be
1415   // beneficial :
1416   // main() {
1417   //   hot_call_1();
1418   //   ...
1419   //   hot_call_N()
1420   //   exit(0);
1421   // }
1422   // For now, we are not handling this corner case here as it is rare in real
1423   // code. In future, we should elaborate this based on BPI and BFI in more
1424   // general threshold adjusting heuristics in updateThreshold().
1425   if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
1426     if (isa<UnreachableInst>(II->getNormalDest()->getTerminator()))
1427       return false;
1428   } else if (isa<UnreachableInst>(Call.getParent()->getTerminator()))
1429     return false;
1430 
1431   return true;
1432 }
1433 
1434 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call,
1435                                             BlockFrequencyInfo *CallerBFI) {
1436   // If global profile summary is available, then callsite's coldness is
1437   // determined based on that.
1438   if (PSI && PSI->hasProfileSummary())
1439     return PSI->isColdCallSite(Call, CallerBFI);
1440 
1441   // Otherwise we need BFI to be available.
1442   if (!CallerBFI)
1443     return false;
1444 
1445   // Determine if the callsite is cold relative to caller's entry. We could
1446   // potentially cache the computation of scaled entry frequency, but the added
1447   // complexity is not worth it unless this scaling shows up high in the
1448   // profiles.
1449   const BranchProbability ColdProb(ColdCallSiteRelFreq, 100);
1450   auto CallSiteBB = Call.getParent();
1451   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB);
1452   auto CallerEntryFreq =
1453       CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock()));
1454   return CallSiteFreq < CallerEntryFreq * ColdProb;
1455 }
1456 
1457 Optional<int>
1458 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call,
1459                                                 BlockFrequencyInfo *CallerBFI) {
1460 
1461   // If global profile summary is available, then callsite's hotness is
1462   // determined based on that.
1463   if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI))
1464     return Params.HotCallSiteThreshold;
1465 
1466   // Otherwise we need BFI to be available and to have a locally hot callsite
1467   // threshold.
1468   if (!CallerBFI || !Params.LocallyHotCallSiteThreshold)
1469     return None;
1470 
1471   // Determine if the callsite is hot relative to caller's entry. We could
1472   // potentially cache the computation of scaled entry frequency, but the added
1473   // complexity is not worth it unless this scaling shows up high in the
1474   // profiles.
1475   auto CallSiteBB = Call.getParent();
1476   auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency();
1477   auto CallerEntryFreq = CallerBFI->getEntryFreq();
1478   if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq)
1479     return Params.LocallyHotCallSiteThreshold;
1480 
1481   // Otherwise treat it normally.
1482   return None;
1483 }
1484 
1485 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) {
1486   // If no size growth is allowed for this inlining, set Threshold to 0.
1487   if (!allowSizeGrowth(Call)) {
1488     Threshold = 0;
1489     return;
1490   }
1491 
1492   Function *Caller = Call.getCaller();
1493 
1494   // return min(A, B) if B is valid.
1495   auto MinIfValid = [](int A, Optional<int> B) {
1496     return B ? std::min(A, B.getValue()) : A;
1497   };
1498 
1499   // return max(A, B) if B is valid.
1500   auto MaxIfValid = [](int A, Optional<int> B) {
1501     return B ? std::max(A, B.getValue()) : A;
1502   };
1503 
1504   // Various bonus percentages. These are multiplied by Threshold to get the
1505   // bonus values.
1506   // SingleBBBonus: This bonus is applied if the callee has a single reachable
1507   // basic block at the given callsite context. This is speculatively applied
1508   // and withdrawn if more than one basic block is seen.
1509   //
1510   // LstCallToStaticBonus: This large bonus is applied to ensure the inlining
1511   // of the last call to a static function as inlining such functions is
1512   // guaranteed to reduce code size.
1513   //
1514   // These bonus percentages may be set to 0 based on properties of the caller
1515   // and the callsite.
1516   int SingleBBBonusPercent = 50;
1517   int VectorBonusPercent = TTI.getInlinerVectorBonusPercent();
1518   int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus;
1519 
1520   // Lambda to set all the above bonus and bonus percentages to 0.
1521   auto DisallowAllBonuses = [&]() {
1522     SingleBBBonusPercent = 0;
1523     VectorBonusPercent = 0;
1524     LastCallToStaticBonus = 0;
1525   };
1526 
1527   // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available
1528   // and reduce the threshold if the caller has the necessary attribute.
1529   if (Caller->hasMinSize()) {
1530     Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold);
1531     // For minsize, we want to disable the single BB bonus and the vector
1532     // bonuses, but not the last-call-to-static bonus. Inlining the last call to
1533     // a static function will, at the minimum, eliminate the parameter setup and
1534     // call/return instructions.
1535     SingleBBBonusPercent = 0;
1536     VectorBonusPercent = 0;
1537   } else if (Caller->hasOptSize())
1538     Threshold = MinIfValid(Threshold, Params.OptSizeThreshold);
1539 
1540   // Adjust the threshold based on inlinehint attribute and profile based
1541   // hotness information if the caller does not have MinSize attribute.
1542   if (!Caller->hasMinSize()) {
1543     if (Callee.hasFnAttribute(Attribute::InlineHint))
1544       Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1545 
1546     // FIXME: After switching to the new passmanager, simplify the logic below
1547     // by checking only the callsite hotness/coldness as we will reliably
1548     // have local profile information.
1549     //
1550     // Callsite hotness and coldness can be determined if sample profile is
1551     // used (which adds hotness metadata to calls) or if caller's
1552     // BlockFrequencyInfo is available.
1553     BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr;
1554     auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI);
1555     if (!Caller->hasOptSize() && HotCallSiteThreshold) {
1556       LLVM_DEBUG(dbgs() << "Hot callsite.\n");
1557       // FIXME: This should update the threshold only if it exceeds the
1558       // current threshold, but AutoFDO + ThinLTO currently relies on this
1559       // behavior to prevent inlining of hot callsites during ThinLTO
1560       // compile phase.
1561       Threshold = HotCallSiteThreshold.getValue();
1562     } else if (isColdCallSite(Call, CallerBFI)) {
1563       LLVM_DEBUG(dbgs() << "Cold callsite.\n");
1564       // Do not apply bonuses for a cold callsite including the
1565       // LastCallToStatic bonus. While this bonus might result in code size
1566       // reduction, it can cause the size of a non-cold caller to increase
1567       // preventing it from being inlined.
1568       DisallowAllBonuses();
1569       Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold);
1570     } else if (PSI) {
1571       // Use callee's global profile information only if we have no way of
1572       // determining this via callsite information.
1573       if (PSI->isFunctionEntryHot(&Callee)) {
1574         LLVM_DEBUG(dbgs() << "Hot callee.\n");
1575         // If callsite hotness can not be determined, we may still know
1576         // that the callee is hot and treat it as a weaker hint for threshold
1577         // increase.
1578         Threshold = MaxIfValid(Threshold, Params.HintThreshold);
1579       } else if (PSI->isFunctionEntryCold(&Callee)) {
1580         LLVM_DEBUG(dbgs() << "Cold callee.\n");
1581         // Do not apply bonuses for a cold callee including the
1582         // LastCallToStatic bonus. While this bonus might result in code size
1583         // reduction, it can cause the size of a non-cold caller to increase
1584         // preventing it from being inlined.
1585         DisallowAllBonuses();
1586         Threshold = MinIfValid(Threshold, Params.ColdThreshold);
1587       }
1588     }
1589   }
1590 
1591   Threshold += TTI.adjustInliningThreshold(&Call);
1592 
1593   // Finally, take the target-specific inlining threshold multiplier into
1594   // account.
1595   Threshold *= TTI.getInliningThresholdMultiplier();
1596 
1597   SingleBBBonus = Threshold * SingleBBBonusPercent / 100;
1598   VectorBonus = Threshold * VectorBonusPercent / 100;
1599 
1600   bool OnlyOneCallAndLocalLinkage =
1601       F.hasLocalLinkage() && F.hasOneUse() && &F == Call.getCalledFunction();
1602   // If there is only one call of the function, and it has internal linkage,
1603   // the cost of inlining it drops dramatically. It may seem odd to update
1604   // Cost in updateThreshold, but the bonus depends on the logic in this method.
1605   if (OnlyOneCallAndLocalLinkage)
1606     Cost -= LastCallToStaticBonus;
1607 }
1608 
1609 bool CallAnalyzer::visitCmpInst(CmpInst &I) {
1610   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1611   // First try to handle simplified comparisons.
1612   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1613         return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]);
1614       }))
1615     return true;
1616 
1617   if (I.getOpcode() == Instruction::FCmp)
1618     return false;
1619 
1620   // Otherwise look for a comparison between constant offset pointers with
1621   // a common base.
1622   Value *LHSBase, *RHSBase;
1623   APInt LHSOffset, RHSOffset;
1624   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1625   if (LHSBase) {
1626     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1627     if (RHSBase && LHSBase == RHSBase) {
1628       // We have common bases, fold the icmp to a constant based on the
1629       // offsets.
1630       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1631       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1632       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) {
1633         SimplifiedValues[&I] = C;
1634         ++NumConstantPtrCmps;
1635         return true;
1636       }
1637     }
1638   }
1639 
1640   // If the comparison is an equality comparison with null, we can simplify it
1641   // if we know the value (argument) can't be null
1642   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) &&
1643       isKnownNonNullInCallee(I.getOperand(0))) {
1644     bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE;
1645     SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType())
1646                                       : ConstantInt::getFalse(I.getType());
1647     return true;
1648   }
1649   return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1)));
1650 }
1651 
1652 bool CallAnalyzer::visitSub(BinaryOperator &I) {
1653   // Try to handle a special case: we can fold computing the difference of two
1654   // constant-related pointers.
1655   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1656   Value *LHSBase, *RHSBase;
1657   APInt LHSOffset, RHSOffset;
1658   std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS);
1659   if (LHSBase) {
1660     std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS);
1661     if (RHSBase && LHSBase == RHSBase) {
1662       // We have common bases, fold the subtract to a constant based on the
1663       // offsets.
1664       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset);
1665       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset);
1666       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) {
1667         SimplifiedValues[&I] = C;
1668         ++NumConstantPtrDiffs;
1669         return true;
1670       }
1671     }
1672   }
1673 
1674   // Otherwise, fall back to the generic logic for simplifying and handling
1675   // instructions.
1676   return Base::visitSub(I);
1677 }
1678 
1679 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) {
1680   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1681   Constant *CLHS = dyn_cast<Constant>(LHS);
1682   if (!CLHS)
1683     CLHS = SimplifiedValues.lookup(LHS);
1684   Constant *CRHS = dyn_cast<Constant>(RHS);
1685   if (!CRHS)
1686     CRHS = SimplifiedValues.lookup(RHS);
1687 
1688   Value *SimpleV = nullptr;
1689   if (auto FI = dyn_cast<FPMathOperator>(&I))
1690     SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS,
1691                             FI->getFastMathFlags(), DL);
1692   else
1693     SimpleV =
1694         SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL);
1695 
1696   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1697     SimplifiedValues[&I] = C;
1698 
1699   if (SimpleV)
1700     return true;
1701 
1702   // Disable any SROA on arguments to arbitrary, unsimplified binary operators.
1703   disableSROA(LHS);
1704   disableSROA(RHS);
1705 
1706   // If the instruction is floating point, and the target says this operation
1707   // is expensive, this may eventually become a library call. Treat the cost
1708   // as such. Unless it's fneg which can be implemented with an xor.
1709   using namespace llvm::PatternMatch;
1710   if (I.getType()->isFloatingPointTy() &&
1711       TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive &&
1712       !match(&I, m_FNeg(m_Value())))
1713     onCallPenalty();
1714 
1715   return false;
1716 }
1717 
1718 bool CallAnalyzer::visitFNeg(UnaryOperator &I) {
1719   Value *Op = I.getOperand(0);
1720   Constant *COp = dyn_cast<Constant>(Op);
1721   if (!COp)
1722     COp = SimplifiedValues.lookup(Op);
1723 
1724   Value *SimpleV = SimplifyFNegInst(
1725       COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL);
1726 
1727   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
1728     SimplifiedValues[&I] = C;
1729 
1730   if (SimpleV)
1731     return true;
1732 
1733   // Disable any SROA on arguments to arbitrary, unsimplified fneg.
1734   disableSROA(Op);
1735 
1736   return false;
1737 }
1738 
1739 bool CallAnalyzer::visitLoad(LoadInst &I) {
1740   if (handleSROA(I.getPointerOperand(), I.isSimple()))
1741     return true;
1742 
1743   // If the data is already loaded from this address and hasn't been clobbered
1744   // by any stores or calls, this load is likely to be redundant and can be
1745   // eliminated.
1746   if (EnableLoadElimination &&
1747       !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) {
1748     onLoadEliminationOpportunity();
1749     return true;
1750   }
1751 
1752   return false;
1753 }
1754 
1755 bool CallAnalyzer::visitStore(StoreInst &I) {
1756   if (handleSROA(I.getPointerOperand(), I.isSimple()))
1757     return true;
1758 
1759   // The store can potentially clobber loads and prevent repeated loads from
1760   // being eliminated.
1761   // FIXME:
1762   // 1. We can probably keep an initial set of eliminatable loads substracted
1763   // from the cost even when we finally see a store. We just need to disable
1764   // *further* accumulation of elimination savings.
1765   // 2. We should probably at some point thread MemorySSA for the callee into
1766   // this and then use that to actually compute *really* precise savings.
1767   disableLoadElimination();
1768   return false;
1769 }
1770 
1771 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) {
1772   // Constant folding for extract value is trivial.
1773   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1774         return ConstantExpr::getExtractValue(COps[0], I.getIndices());
1775       }))
1776     return true;
1777 
1778   // SROA can look through these but give them a cost.
1779   return false;
1780 }
1781 
1782 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) {
1783   // Constant folding for insert value is trivial.
1784   if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) {
1785         return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0],
1786                                             /*InsertedValueOperand*/ COps[1],
1787                                             I.getIndices());
1788       }))
1789     return true;
1790 
1791   // SROA can look through these but give them a cost.
1792   return false;
1793 }
1794 
1795 /// Try to simplify a call site.
1796 ///
1797 /// Takes a concrete function and callsite and tries to actually simplify it by
1798 /// analyzing the arguments and call itself with instsimplify. Returns true if
1799 /// it has simplified the callsite to some other entity (a constant), making it
1800 /// free.
1801 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) {
1802   // FIXME: Using the instsimplify logic directly for this is inefficient
1803   // because we have to continually rebuild the argument list even when no
1804   // simplifications can be performed. Until that is fixed with remapping
1805   // inside of instsimplify, directly constant fold calls here.
1806   if (!canConstantFoldCallTo(&Call, F))
1807     return false;
1808 
1809   // Try to re-map the arguments to constants.
1810   SmallVector<Constant *, 4> ConstantArgs;
1811   ConstantArgs.reserve(Call.arg_size());
1812   for (Value *I : Call.args()) {
1813     Constant *C = dyn_cast<Constant>(I);
1814     if (!C)
1815       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I));
1816     if (!C)
1817       return false; // This argument doesn't map to a constant.
1818 
1819     ConstantArgs.push_back(C);
1820   }
1821   if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) {
1822     SimplifiedValues[&Call] = C;
1823     return true;
1824   }
1825 
1826   return false;
1827 }
1828 
1829 bool CallAnalyzer::visitCallBase(CallBase &Call) {
1830   if (Call.hasFnAttr(Attribute::ReturnsTwice) &&
1831       !F.hasFnAttribute(Attribute::ReturnsTwice)) {
1832     // This aborts the entire analysis.
1833     ExposesReturnsTwice = true;
1834     return false;
1835   }
1836   if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate())
1837     ContainsNoDuplicateCall = true;
1838 
1839   Value *Callee = Call.getCalledOperand();
1840   Function *F = dyn_cast_or_null<Function>(Callee);
1841   bool IsIndirectCall = !F;
1842   if (IsIndirectCall) {
1843     // Check if this happens to be an indirect function call to a known function
1844     // in this inline context. If not, we've done all we can.
1845     F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee));
1846     if (!F) {
1847       onCallArgumentSetup(Call);
1848 
1849       if (!Call.onlyReadsMemory())
1850         disableLoadElimination();
1851       return Base::visitCallBase(Call);
1852     }
1853   }
1854 
1855   assert(F && "Expected a call to a known function");
1856 
1857   // When we have a concrete function, first try to simplify it directly.
1858   if (simplifyCallSite(F, Call))
1859     return true;
1860 
1861   // Next check if it is an intrinsic we know about.
1862   // FIXME: Lift this into part of the InstVisitor.
1863   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) {
1864     switch (II->getIntrinsicID()) {
1865     default:
1866       if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II))
1867         disableLoadElimination();
1868       return Base::visitCallBase(Call);
1869 
1870     case Intrinsic::load_relative:
1871       onLoadRelativeIntrinsic();
1872       return false;
1873 
1874     case Intrinsic::memset:
1875     case Intrinsic::memcpy:
1876     case Intrinsic::memmove:
1877       disableLoadElimination();
1878       // SROA can usually chew through these intrinsics, but they aren't free.
1879       return false;
1880     case Intrinsic::icall_branch_funnel:
1881     case Intrinsic::localescape:
1882       HasUninlineableIntrinsic = true;
1883       return false;
1884     case Intrinsic::vastart:
1885       InitsVargArgs = true;
1886       return false;
1887     }
1888   }
1889 
1890   if (F == Call.getFunction()) {
1891     // This flag will fully abort the analysis, so don't bother with anything
1892     // else.
1893     IsRecursiveCall = true;
1894     return false;
1895   }
1896 
1897   if (TTI.isLoweredToCall(F)) {
1898     onLoweredCall(F, Call, IsIndirectCall);
1899   }
1900 
1901   if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory())))
1902     disableLoadElimination();
1903   return Base::visitCallBase(Call);
1904 }
1905 
1906 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) {
1907   // At least one return instruction will be free after inlining.
1908   bool Free = !HasReturn;
1909   HasReturn = true;
1910   return Free;
1911 }
1912 
1913 bool CallAnalyzer::visitBranchInst(BranchInst &BI) {
1914   // We model unconditional branches as essentially free -- they really
1915   // shouldn't exist at all, but handling them makes the behavior of the
1916   // inliner more regular and predictable. Interestingly, conditional branches
1917   // which will fold away are also free.
1918   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) ||
1919          dyn_cast_or_null<ConstantInt>(
1920              SimplifiedValues.lookup(BI.getCondition()));
1921 }
1922 
1923 bool CallAnalyzer::visitSelectInst(SelectInst &SI) {
1924   bool CheckSROA = SI.getType()->isPointerTy();
1925   Value *TrueVal = SI.getTrueValue();
1926   Value *FalseVal = SI.getFalseValue();
1927 
1928   Constant *TrueC = dyn_cast<Constant>(TrueVal);
1929   if (!TrueC)
1930     TrueC = SimplifiedValues.lookup(TrueVal);
1931   Constant *FalseC = dyn_cast<Constant>(FalseVal);
1932   if (!FalseC)
1933     FalseC = SimplifiedValues.lookup(FalseVal);
1934   Constant *CondC =
1935       dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition()));
1936 
1937   if (!CondC) {
1938     // Select C, X, X => X
1939     if (TrueC == FalseC && TrueC) {
1940       SimplifiedValues[&SI] = TrueC;
1941       return true;
1942     }
1943 
1944     if (!CheckSROA)
1945       return Base::visitSelectInst(SI);
1946 
1947     std::pair<Value *, APInt> TrueBaseAndOffset =
1948         ConstantOffsetPtrs.lookup(TrueVal);
1949     std::pair<Value *, APInt> FalseBaseAndOffset =
1950         ConstantOffsetPtrs.lookup(FalseVal);
1951     if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) {
1952       ConstantOffsetPtrs[&SI] = TrueBaseAndOffset;
1953 
1954       if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal))
1955         SROAArgValues[&SI] = SROAArg;
1956       return true;
1957     }
1958 
1959     return Base::visitSelectInst(SI);
1960   }
1961 
1962   // Select condition is a constant.
1963   Value *SelectedV = CondC->isAllOnesValue()
1964                          ? TrueVal
1965                          : (CondC->isNullValue()) ? FalseVal : nullptr;
1966   if (!SelectedV) {
1967     // Condition is a vector constant that is not all 1s or all 0s.  If all
1968     // operands are constants, ConstantExpr::getSelect() can handle the cases
1969     // such as select vectors.
1970     if (TrueC && FalseC) {
1971       if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) {
1972         SimplifiedValues[&SI] = C;
1973         return true;
1974       }
1975     }
1976     return Base::visitSelectInst(SI);
1977   }
1978 
1979   // Condition is either all 1s or all 0s. SI can be simplified.
1980   if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) {
1981     SimplifiedValues[&SI] = SelectedC;
1982     return true;
1983   }
1984 
1985   if (!CheckSROA)
1986     return true;
1987 
1988   std::pair<Value *, APInt> BaseAndOffset =
1989       ConstantOffsetPtrs.lookup(SelectedV);
1990   if (BaseAndOffset.first) {
1991     ConstantOffsetPtrs[&SI] = BaseAndOffset;
1992 
1993     if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV))
1994       SROAArgValues[&SI] = SROAArg;
1995   }
1996 
1997   return true;
1998 }
1999 
2000 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) {
2001   // We model unconditional switches as free, see the comments on handling
2002   // branches.
2003   if (isa<ConstantInt>(SI.getCondition()))
2004     return true;
2005   if (Value *V = SimplifiedValues.lookup(SI.getCondition()))
2006     if (isa<ConstantInt>(V))
2007       return true;
2008 
2009   // Assume the most general case where the switch is lowered into
2010   // either a jump table, bit test, or a balanced binary tree consisting of
2011   // case clusters without merging adjacent clusters with the same
2012   // destination. We do not consider the switches that are lowered with a mix
2013   // of jump table/bit test/binary search tree. The cost of the switch is
2014   // proportional to the size of the tree or the size of jump table range.
2015   //
2016   // NB: We convert large switches which are just used to initialize large phi
2017   // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent
2018   // inlining those. It will prevent inlining in cases where the optimization
2019   // does not (yet) fire.
2020 
2021   unsigned JumpTableSize = 0;
2022   BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr;
2023   unsigned NumCaseCluster =
2024       TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI);
2025 
2026   onFinalizeSwitch(JumpTableSize, NumCaseCluster);
2027   return false;
2028 }
2029 
2030 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) {
2031   // We never want to inline functions that contain an indirectbr.  This is
2032   // incorrect because all the blockaddress's (in static global initializers
2033   // for example) would be referring to the original function, and this
2034   // indirect jump would jump from the inlined copy of the function into the
2035   // original function which is extremely undefined behavior.
2036   // FIXME: This logic isn't really right; we can safely inline functions with
2037   // indirectbr's as long as no other function or global references the
2038   // blockaddress of a block within the current function.
2039   HasIndirectBr = true;
2040   return false;
2041 }
2042 
2043 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) {
2044   // FIXME: It's not clear that a single instruction is an accurate model for
2045   // the inline cost of a resume instruction.
2046   return false;
2047 }
2048 
2049 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) {
2050   // FIXME: It's not clear that a single instruction is an accurate model for
2051   // the inline cost of a cleanupret instruction.
2052   return false;
2053 }
2054 
2055 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) {
2056   // FIXME: It's not clear that a single instruction is an accurate model for
2057   // the inline cost of a catchret instruction.
2058   return false;
2059 }
2060 
2061 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) {
2062   // FIXME: It might be reasonably to discount the cost of instructions leading
2063   // to unreachable as they have the lowest possible impact on both runtime and
2064   // code size.
2065   return true; // No actual code is needed for unreachable.
2066 }
2067 
2068 bool CallAnalyzer::visitInstruction(Instruction &I) {
2069   // Some instructions are free. All of the free intrinsics can also be
2070   // handled by SROA, etc.
2071   if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
2072       TargetTransformInfo::TCC_Free)
2073     return true;
2074 
2075   // We found something we don't understand or can't handle. Mark any SROA-able
2076   // values in the operand list as no longer viable.
2077   for (const Use &Op : I.operands())
2078     disableSROA(Op);
2079 
2080   return false;
2081 }
2082 
2083 /// Analyze a basic block for its contribution to the inline cost.
2084 ///
2085 /// This method walks the analyzer over every instruction in the given basic
2086 /// block and accounts for their cost during inlining at this callsite. It
2087 /// aborts early if the threshold has been exceeded or an impossible to inline
2088 /// construct has been detected. It returns false if inlining is no longer
2089 /// viable, and true if inlining remains viable.
2090 InlineResult
2091 CallAnalyzer::analyzeBlock(BasicBlock *BB,
2092                            SmallPtrSetImpl<const Value *> &EphValues) {
2093   for (Instruction &I : *BB) {
2094     // FIXME: Currently, the number of instructions in a function regardless of
2095     // our ability to simplify them during inline to constants or dead code,
2096     // are actually used by the vector bonus heuristic. As long as that's true,
2097     // we have to special case debug intrinsics here to prevent differences in
2098     // inlining due to debug symbols. Eventually, the number of unsimplified
2099     // instructions shouldn't factor into the cost computation, but until then,
2100     // hack around it here.
2101     if (isa<DbgInfoIntrinsic>(I))
2102       continue;
2103 
2104     // Skip pseudo-probes.
2105     if (isa<PseudoProbeInst>(I))
2106       continue;
2107 
2108     // Skip ephemeral values.
2109     if (EphValues.count(&I))
2110       continue;
2111 
2112     ++NumInstructions;
2113     if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
2114       ++NumVectorInstructions;
2115 
2116     // If the instruction simplified to a constant, there is no cost to this
2117     // instruction. Visit the instructions using our InstVisitor to account for
2118     // all of the per-instruction logic. The visit tree returns true if we
2119     // consumed the instruction in any way, and false if the instruction's base
2120     // cost should count against inlining.
2121     onInstructionAnalysisStart(&I);
2122 
2123     if (Base::visit(&I))
2124       ++NumInstructionsSimplified;
2125     else
2126       onMissedSimplification();
2127 
2128     onInstructionAnalysisFinish(&I);
2129     using namespace ore;
2130     // If the visit this instruction detected an uninlinable pattern, abort.
2131     InlineResult IR = InlineResult::success();
2132     if (IsRecursiveCall)
2133       IR = InlineResult::failure("recursive");
2134     else if (ExposesReturnsTwice)
2135       IR = InlineResult::failure("exposes returns twice");
2136     else if (HasDynamicAlloca)
2137       IR = InlineResult::failure("dynamic alloca");
2138     else if (HasIndirectBr)
2139       IR = InlineResult::failure("indirect branch");
2140     else if (HasUninlineableIntrinsic)
2141       IR = InlineResult::failure("uninlinable intrinsic");
2142     else if (InitsVargArgs)
2143       IR = InlineResult::failure("varargs");
2144     if (!IR.isSuccess()) {
2145       if (ORE)
2146         ORE->emit([&]() {
2147           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2148                                           &CandidateCall)
2149                  << NV("Callee", &F) << " has uninlinable pattern ("
2150                  << NV("InlineResult", IR.getFailureReason())
2151                  << ") and cost is not fully computed";
2152         });
2153       return IR;
2154     }
2155 
2156     // If the caller is a recursive function then we don't want to inline
2157     // functions which allocate a lot of stack space because it would increase
2158     // the caller stack usage dramatically.
2159     if (IsCallerRecursive &&
2160         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) {
2161       auto IR =
2162           InlineResult::failure("recursive and allocates too much stack space");
2163       if (ORE)
2164         ORE->emit([&]() {
2165           return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline",
2166                                           &CandidateCall)
2167                  << NV("Callee", &F) << " is "
2168                  << NV("InlineResult", IR.getFailureReason())
2169                  << ". Cost is not fully computed";
2170         });
2171       return IR;
2172     }
2173 
2174     if (shouldStop())
2175       return InlineResult::failure(
2176           "Call site analysis is not favorable to inlining.");
2177   }
2178 
2179   return InlineResult::success();
2180 }
2181 
2182 /// Compute the base pointer and cumulative constant offsets for V.
2183 ///
2184 /// This strips all constant offsets off of V, leaving it the base pointer, and
2185 /// accumulates the total constant offset applied in the returned constant. It
2186 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
2187 /// no constant offsets applied.
2188 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) {
2189   if (!V->getType()->isPointerTy())
2190     return nullptr;
2191 
2192   unsigned AS = V->getType()->getPointerAddressSpace();
2193   unsigned IntPtrWidth = DL.getIndexSizeInBits(AS);
2194   APInt Offset = APInt::getNullValue(IntPtrWidth);
2195 
2196   // Even though we don't look through PHI nodes, we could be called on an
2197   // instruction in an unreachable block, which may be on a cycle.
2198   SmallPtrSet<Value *, 4> Visited;
2199   Visited.insert(V);
2200   do {
2201     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2202       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset))
2203         return nullptr;
2204       V = GEP->getPointerOperand();
2205     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2206       V = cast<Operator>(V)->getOperand(0);
2207     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2208       if (GA->isInterposable())
2209         break;
2210       V = GA->getAliasee();
2211     } else {
2212       break;
2213     }
2214     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2215   } while (Visited.insert(V).second);
2216 
2217   Type *IdxPtrTy = DL.getIndexType(V->getType());
2218   return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset));
2219 }
2220 
2221 /// Find dead blocks due to deleted CFG edges during inlining.
2222 ///
2223 /// If we know the successor of the current block, \p CurrBB, has to be \p
2224 /// NextBB, the other successors of \p CurrBB are dead if these successors have
2225 /// no live incoming CFG edges.  If one block is found to be dead, we can
2226 /// continue growing the dead block list by checking the successors of the dead
2227 /// blocks to see if all their incoming edges are dead or not.
2228 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) {
2229   auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) {
2230     // A CFG edge is dead if the predecessor is dead or the predecessor has a
2231     // known successor which is not the one under exam.
2232     return (DeadBlocks.count(Pred) ||
2233             (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ));
2234   };
2235 
2236   auto IsNewlyDead = [&](BasicBlock *BB) {
2237     // If all the edges to a block are dead, the block is also dead.
2238     return (!DeadBlocks.count(BB) &&
2239             llvm::all_of(predecessors(BB),
2240                          [&](BasicBlock *P) { return IsEdgeDead(P, BB); }));
2241   };
2242 
2243   for (BasicBlock *Succ : successors(CurrBB)) {
2244     if (Succ == NextBB || !IsNewlyDead(Succ))
2245       continue;
2246     SmallVector<BasicBlock *, 4> NewDead;
2247     NewDead.push_back(Succ);
2248     while (!NewDead.empty()) {
2249       BasicBlock *Dead = NewDead.pop_back_val();
2250       if (DeadBlocks.insert(Dead))
2251         // Continue growing the dead block lists.
2252         for (BasicBlock *S : successors(Dead))
2253           if (IsNewlyDead(S))
2254             NewDead.push_back(S);
2255     }
2256   }
2257 }
2258 
2259 /// Analyze a call site for potential inlining.
2260 ///
2261 /// Returns true if inlining this call is viable, and false if it is not
2262 /// viable. It computes the cost and adjusts the threshold based on numerous
2263 /// factors and heuristics. If this method returns false but the computed cost
2264 /// is below the computed threshold, then inlining was forcibly disabled by
2265 /// some artifact of the routine.
2266 InlineResult CallAnalyzer::analyze() {
2267   ++NumCallsAnalyzed;
2268 
2269   auto Result = onAnalysisStart();
2270   if (!Result.isSuccess())
2271     return Result;
2272 
2273   if (F.empty())
2274     return InlineResult::success();
2275 
2276   Function *Caller = CandidateCall.getFunction();
2277   // Check if the caller function is recursive itself.
2278   for (User *U : Caller->users()) {
2279     CallBase *Call = dyn_cast<CallBase>(U);
2280     if (Call && Call->getFunction() == Caller) {
2281       IsCallerRecursive = true;
2282       break;
2283     }
2284   }
2285 
2286   // Populate our simplified values by mapping from function arguments to call
2287   // arguments with known important simplifications.
2288   auto CAI = CandidateCall.arg_begin();
2289   for (Argument &FAI : F.args()) {
2290     assert(CAI != CandidateCall.arg_end());
2291     if (Constant *C = dyn_cast<Constant>(CAI))
2292       SimplifiedValues[&FAI] = C;
2293 
2294     Value *PtrArg = *CAI;
2295     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) {
2296       ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue());
2297 
2298       // We can SROA any pointer arguments derived from alloca instructions.
2299       if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) {
2300         SROAArgValues[&FAI] = SROAArg;
2301         onInitializeSROAArg(SROAArg);
2302         EnabledSROAAllocas.insert(SROAArg);
2303       }
2304     }
2305     ++CAI;
2306   }
2307   NumConstantArgs = SimplifiedValues.size();
2308   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size();
2309   NumAllocaArgs = SROAArgValues.size();
2310 
2311   // FIXME: If a caller has multiple calls to a callee, we end up recomputing
2312   // the ephemeral values multiple times (and they're completely determined by
2313   // the callee, so this is purely duplicate work).
2314   SmallPtrSet<const Value *, 32> EphValues;
2315   CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues);
2316 
2317   // The worklist of live basic blocks in the callee *after* inlining. We avoid
2318   // adding basic blocks of the callee which can be proven to be dead for this
2319   // particular call site in order to get more accurate cost estimates. This
2320   // requires a somewhat heavyweight iteration pattern: we need to walk the
2321   // basic blocks in a breadth-first order as we insert live successors. To
2322   // accomplish this, prioritizing for small iterations because we exit after
2323   // crossing our threshold, we use a small-size optimized SetVector.
2324   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>,
2325                     SmallPtrSet<BasicBlock *, 16>>
2326       BBSetVector;
2327   BBSetVector BBWorklist;
2328   BBWorklist.insert(&F.getEntryBlock());
2329 
2330   // Note that we *must not* cache the size, this loop grows the worklist.
2331   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
2332     if (shouldStop())
2333       break;
2334 
2335     BasicBlock *BB = BBWorklist[Idx];
2336     if (BB->empty())
2337       continue;
2338 
2339     onBlockStart(BB);
2340 
2341     // Disallow inlining a blockaddress with uses other than strictly callbr.
2342     // A blockaddress only has defined behavior for an indirect branch in the
2343     // same function, and we do not currently support inlining indirect
2344     // branches.  But, the inliner may not see an indirect branch that ends up
2345     // being dead code at a particular call site. If the blockaddress escapes
2346     // the function, e.g., via a global variable, inlining may lead to an
2347     // invalid cross-function reference.
2348     // FIXME: pr/39560: continue relaxing this overt restriction.
2349     if (BB->hasAddressTaken())
2350       for (User *U : BlockAddress::get(&*BB)->users())
2351         if (!isa<CallBrInst>(*U))
2352           return InlineResult::failure("blockaddress used outside of callbr");
2353 
2354     // Analyze the cost of this block. If we blow through the threshold, this
2355     // returns false, and we can bail on out.
2356     InlineResult IR = analyzeBlock(BB, EphValues);
2357     if (!IR.isSuccess())
2358       return IR;
2359 
2360     Instruction *TI = BB->getTerminator();
2361 
2362     // Add in the live successors by first checking whether we have terminator
2363     // that may be simplified based on the values simplified by this call.
2364     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2365       if (BI->isConditional()) {
2366         Value *Cond = BI->getCondition();
2367         if (ConstantInt *SimpleCond =
2368                 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2369           BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0);
2370           BBWorklist.insert(NextBB);
2371           KnownSuccessors[BB] = NextBB;
2372           findDeadBlocks(BB, NextBB);
2373           continue;
2374         }
2375       }
2376     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2377       Value *Cond = SI->getCondition();
2378       if (ConstantInt *SimpleCond =
2379               dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) {
2380         BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor();
2381         BBWorklist.insert(NextBB);
2382         KnownSuccessors[BB] = NextBB;
2383         findDeadBlocks(BB, NextBB);
2384         continue;
2385       }
2386     }
2387 
2388     // If we're unable to select a particular successor, just count all of
2389     // them.
2390     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize;
2391          ++TIdx)
2392       BBWorklist.insert(TI->getSuccessor(TIdx));
2393 
2394     onBlockAnalyzed(BB);
2395   }
2396 
2397   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() &&
2398                                     &F == CandidateCall.getCalledFunction();
2399   // If this is a noduplicate call, we can still inline as long as
2400   // inlining this would cause the removal of the caller (so the instruction
2401   // is not actually duplicated, just moved).
2402   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall)
2403     return InlineResult::failure("noduplicate");
2404 
2405   return finalizeAnalysis();
2406 }
2407 
2408 void InlineCostCallAnalyzer::print() {
2409 #define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n"
2410   if (PrintInstructionComments)
2411     F.print(dbgs(), &Writer);
2412   DEBUG_PRINT_STAT(NumConstantArgs);
2413   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs);
2414   DEBUG_PRINT_STAT(NumAllocaArgs);
2415   DEBUG_PRINT_STAT(NumConstantPtrCmps);
2416   DEBUG_PRINT_STAT(NumConstantPtrDiffs);
2417   DEBUG_PRINT_STAT(NumInstructionsSimplified);
2418   DEBUG_PRINT_STAT(NumInstructions);
2419   DEBUG_PRINT_STAT(SROACostSavings);
2420   DEBUG_PRINT_STAT(SROACostSavingsLost);
2421   DEBUG_PRINT_STAT(LoadEliminationCost);
2422   DEBUG_PRINT_STAT(ContainsNoDuplicateCall);
2423   DEBUG_PRINT_STAT(Cost);
2424   DEBUG_PRINT_STAT(Threshold);
2425 #undef DEBUG_PRINT_STAT
2426 }
2427 
2428 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2429 /// Dump stats about this call's analysis.
2430 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() {
2431   print();
2432 }
2433 #endif
2434 
2435 /// Test that there are no attribute conflicts between Caller and Callee
2436 ///        that prevent inlining.
2437 static bool functionsHaveCompatibleAttributes(
2438     Function *Caller, Function *Callee, TargetTransformInfo &TTI,
2439     function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) {
2440   // Note that CalleeTLI must be a copy not a reference. The legacy pass manager
2441   // caches the most recently created TLI in the TargetLibraryInfoWrapperPass
2442   // object, and always returns the same object (which is overwritten on each
2443   // GetTLI call). Therefore we copy the first result.
2444   auto CalleeTLI = GetTLI(*Callee);
2445   return TTI.areInlineCompatible(Caller, Callee) &&
2446          GetTLI(*Caller).areInlineCompatible(CalleeTLI,
2447                                              InlineCallerSupersetNoBuiltin) &&
2448          AttributeFuncs::areInlineCompatible(*Caller, *Callee);
2449 }
2450 
2451 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) {
2452   int Cost = 0;
2453   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) {
2454     if (Call.isByValArgument(I)) {
2455       // We approximate the number of loads and stores needed by dividing the
2456       // size of the byval type by the target's pointer size.
2457       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2458       unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType());
2459       unsigned AS = PTy->getAddressSpace();
2460       unsigned PointerSize = DL.getPointerSizeInBits(AS);
2461       // Ceiling division.
2462       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize;
2463 
2464       // If it generates more than 8 stores it is likely to be expanded as an
2465       // inline memcpy so we take that as an upper bound. Otherwise we assume
2466       // one load and one store per word copied.
2467       // FIXME: The maxStoresPerMemcpy setting from the target should be used
2468       // here instead of a magic number of 8, but it's not available via
2469       // DataLayout.
2470       NumStores = std::min(NumStores, 8U);
2471 
2472       Cost += 2 * NumStores * InlineConstants::InstrCost;
2473     } else {
2474       // For non-byval arguments subtract off one instruction per call
2475       // argument.
2476       Cost += InlineConstants::InstrCost;
2477     }
2478   }
2479   // The call instruction also disappears after inlining.
2480   Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty;
2481   return Cost;
2482 }
2483 
2484 InlineCost llvm::getInlineCost(
2485     CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI,
2486     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2487     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2488     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2489     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2490   return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI,
2491                        GetAssumptionCache, GetTLI, GetBFI, PSI, ORE);
2492 }
2493 
2494 Optional<int> llvm::getInliningCostEstimate(
2495     CallBase &Call, TargetTransformInfo &CalleeTTI,
2496     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2497     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2498     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2499   const InlineParams Params = {/* DefaultThreshold*/ 0,
2500                                /*HintThreshold*/ {},
2501                                /*ColdThreshold*/ {},
2502                                /*OptSizeThreshold*/ {},
2503                                /*OptMinSizeThreshold*/ {},
2504                                /*HotCallSiteThreshold*/ {},
2505                                /*LocallyHotCallSiteThreshold*/ {},
2506                                /*ColdCallSiteThreshold*/ {},
2507                                /*ComputeFullInlineCost*/ true,
2508                                /*EnableDeferral*/ true};
2509 
2510   InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI,
2511                             GetAssumptionCache, GetBFI, PSI, ORE, true,
2512                             /*IgnoreThreshold*/ true);
2513   auto R = CA.analyze();
2514   if (!R.isSuccess())
2515     return None;
2516   return CA.getCost();
2517 }
2518 
2519 Optional<InlineResult> llvm::getAttributeBasedInliningDecision(
2520     CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI,
2521     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
2522 
2523   // Cannot inline indirect calls.
2524   if (!Callee)
2525     return InlineResult::failure("indirect call");
2526 
2527   // When callee coroutine function is inlined into caller coroutine function
2528   // before coro-split pass,
2529   // coro-early pass can not handle this quiet well.
2530   // So we won't inline the coroutine function if it have not been unsplited
2531   if (Callee->isPresplitCoroutine())
2532     return InlineResult::failure("unsplited coroutine call");
2533 
2534   // Never inline calls with byval arguments that does not have the alloca
2535   // address space. Since byval arguments can be replaced with a copy to an
2536   // alloca, the inlined code would need to be adjusted to handle that the
2537   // argument is in the alloca address space (so it is a little bit complicated
2538   // to solve).
2539   unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace();
2540   for (unsigned I = 0, E = Call.arg_size(); I != E; ++I)
2541     if (Call.isByValArgument(I)) {
2542       PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType());
2543       if (PTy->getAddressSpace() != AllocaAS)
2544         return InlineResult::failure("byval arguments without alloca"
2545                                      " address space");
2546     }
2547 
2548   // Calls to functions with always-inline attributes should be inlined
2549   // whenever possible.
2550   if (Call.hasFnAttr(Attribute::AlwaysInline)) {
2551     auto IsViable = isInlineViable(*Callee);
2552     if (IsViable.isSuccess())
2553       return InlineResult::success();
2554     return InlineResult::failure(IsViable.getFailureReason());
2555   }
2556 
2557   // Never inline functions with conflicting attributes (unless callee has
2558   // always-inline attribute).
2559   Function *Caller = Call.getCaller();
2560   if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI))
2561     return InlineResult::failure("conflicting attributes");
2562 
2563   // Don't inline this call if the caller has the optnone attribute.
2564   if (Caller->hasOptNone())
2565     return InlineResult::failure("optnone attribute");
2566 
2567   // Don't inline a function that treats null pointer as valid into a caller
2568   // that does not have this attribute.
2569   if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined())
2570     return InlineResult::failure("nullptr definitions incompatible");
2571 
2572   // Don't inline functions which can be interposed at link-time.
2573   if (Callee->isInterposable())
2574     return InlineResult::failure("interposable");
2575 
2576   // Don't inline functions marked noinline.
2577   if (Callee->hasFnAttribute(Attribute::NoInline))
2578     return InlineResult::failure("noinline function attribute");
2579 
2580   // Don't inline call sites marked noinline.
2581   if (Call.isNoInline())
2582     return InlineResult::failure("noinline call site attribute");
2583 
2584   // Don't inline functions if one does not have any stack protector attribute
2585   // but the other does.
2586   if (Caller->hasStackProtectorFnAttr() && !Callee->hasStackProtectorFnAttr())
2587     return InlineResult::failure(
2588         "stack protected caller but callee requested no stack protector");
2589   if (Callee->hasStackProtectorFnAttr() && !Caller->hasStackProtectorFnAttr())
2590     return InlineResult::failure(
2591         "stack protected callee but caller requested no stack protector");
2592 
2593   return None;
2594 }
2595 
2596 InlineCost llvm::getInlineCost(
2597     CallBase &Call, Function *Callee, const InlineParams &Params,
2598     TargetTransformInfo &CalleeTTI,
2599     function_ref<AssumptionCache &(Function &)> GetAssumptionCache,
2600     function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
2601     function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2602     ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) {
2603 
2604   auto UserDecision =
2605       llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI);
2606 
2607   if (UserDecision.hasValue()) {
2608     if (UserDecision->isSuccess())
2609       return llvm::InlineCost::getAlways("always inline attribute");
2610     return llvm::InlineCost::getNever(UserDecision->getFailureReason());
2611   }
2612 
2613   LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName()
2614                           << "... (caller:" << Call.getCaller()->getName()
2615                           << ")\n");
2616 
2617   InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI,
2618                             GetAssumptionCache, GetBFI, PSI, ORE);
2619   InlineResult ShouldInline = CA.analyze();
2620 
2621   LLVM_DEBUG(CA.dump());
2622 
2623   // Always make cost benefit based decision explicit.
2624   // We use always/never here since threshold is not meaningful,
2625   // as it's not what drives cost-benefit analysis.
2626   if (CA.wasDecidedByCostBenefit()) {
2627     if (ShouldInline.isSuccess())
2628       return InlineCost::getAlways("benefit over cost");
2629     else
2630       return InlineCost::getNever("cost over benefit");
2631   }
2632 
2633   // Check if there was a reason to force inlining or no inlining.
2634   if (!ShouldInline.isSuccess() && CA.getCost() < CA.getThreshold())
2635     return InlineCost::getNever(ShouldInline.getFailureReason());
2636   if (ShouldInline.isSuccess() && CA.getCost() >= CA.getThreshold())
2637     return InlineCost::getAlways("empty function");
2638 
2639   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold());
2640 }
2641 
2642 InlineResult llvm::isInlineViable(Function &F) {
2643   bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice);
2644   for (BasicBlock &BB : F) {
2645     // Disallow inlining of functions which contain indirect branches.
2646     if (isa<IndirectBrInst>(BB.getTerminator()))
2647       return InlineResult::failure("contains indirect branches");
2648 
2649     // Disallow inlining of blockaddresses which are used by non-callbr
2650     // instructions.
2651     if (BB.hasAddressTaken())
2652       for (User *U : BlockAddress::get(&BB)->users())
2653         if (!isa<CallBrInst>(*U))
2654           return InlineResult::failure("blockaddress used outside of callbr");
2655 
2656     for (auto &II : BB) {
2657       CallBase *Call = dyn_cast<CallBase>(&II);
2658       if (!Call)
2659         continue;
2660 
2661       // Disallow recursive calls.
2662       Function *Callee = Call->getCalledFunction();
2663       if (&F == Callee)
2664         return InlineResult::failure("recursive call");
2665 
2666       // Disallow calls which expose returns-twice to a function not previously
2667       // attributed as such.
2668       if (!ReturnsTwice && isa<CallInst>(Call) &&
2669           cast<CallInst>(Call)->canReturnTwice())
2670         return InlineResult::failure("exposes returns-twice attribute");
2671 
2672       if (Callee)
2673         switch (Callee->getIntrinsicID()) {
2674         default:
2675           break;
2676         case llvm::Intrinsic::icall_branch_funnel:
2677           // Disallow inlining of @llvm.icall.branch.funnel because current
2678           // backend can't separate call targets from call arguments.
2679           return InlineResult::failure(
2680               "disallowed inlining of @llvm.icall.branch.funnel");
2681         case llvm::Intrinsic::localescape:
2682           // Disallow inlining functions that call @llvm.localescape. Doing this
2683           // correctly would require major changes to the inliner.
2684           return InlineResult::failure(
2685               "disallowed inlining of @llvm.localescape");
2686         case llvm::Intrinsic::vastart:
2687           // Disallow inlining of functions that initialize VarArgs with
2688           // va_start.
2689           return InlineResult::failure(
2690               "contains VarArgs initialized with va_start");
2691         }
2692     }
2693   }
2694 
2695   return InlineResult::success();
2696 }
2697 
2698 // APIs to create InlineParams based on command line flags and/or other
2699 // parameters.
2700 
2701 InlineParams llvm::getInlineParams(int Threshold) {
2702   InlineParams Params;
2703 
2704   // This field is the threshold to use for a callee by default. This is
2705   // derived from one or more of:
2706   //  * optimization or size-optimization levels,
2707   //  * a value passed to createFunctionInliningPass function, or
2708   //  * the -inline-threshold flag.
2709   //  If the -inline-threshold flag is explicitly specified, that is used
2710   //  irrespective of anything else.
2711   if (InlineThreshold.getNumOccurrences() > 0)
2712     Params.DefaultThreshold = InlineThreshold;
2713   else
2714     Params.DefaultThreshold = Threshold;
2715 
2716   // Set the HintThreshold knob from the -inlinehint-threshold.
2717   Params.HintThreshold = HintThreshold;
2718 
2719   // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold.
2720   Params.HotCallSiteThreshold = HotCallSiteThreshold;
2721 
2722   // If the -locally-hot-callsite-threshold is explicitly specified, use it to
2723   // populate LocallyHotCallSiteThreshold. Later, we populate
2724   // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if
2725   // we know that optimization level is O3 (in the getInlineParams variant that
2726   // takes the opt and size levels).
2727   // FIXME: Remove this check (and make the assignment unconditional) after
2728   // addressing size regression issues at O2.
2729   if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0)
2730     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2731 
2732   // Set the ColdCallSiteThreshold knob from the
2733   // -inline-cold-callsite-threshold.
2734   Params.ColdCallSiteThreshold = ColdCallSiteThreshold;
2735 
2736   // Set the OptMinSizeThreshold and OptSizeThreshold params only if the
2737   // -inlinehint-threshold commandline option is not explicitly given. If that
2738   // option is present, then its value applies even for callees with size and
2739   // minsize attributes.
2740   // If the -inline-threshold is not specified, set the ColdThreshold from the
2741   // -inlinecold-threshold even if it is not explicitly passed. If
2742   // -inline-threshold is specified, then -inlinecold-threshold needs to be
2743   // explicitly specified to set the ColdThreshold knob
2744   if (InlineThreshold.getNumOccurrences() == 0) {
2745     Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold;
2746     Params.OptSizeThreshold = InlineConstants::OptSizeThreshold;
2747     Params.ColdThreshold = ColdThreshold;
2748   } else if (ColdThreshold.getNumOccurrences() > 0) {
2749     Params.ColdThreshold = ColdThreshold;
2750   }
2751   return Params;
2752 }
2753 
2754 InlineParams llvm::getInlineParams() {
2755   return getInlineParams(DefaultThreshold);
2756 }
2757 
2758 // Compute the default threshold for inlining based on the opt level and the
2759 // size opt level.
2760 static int computeThresholdFromOptLevels(unsigned OptLevel,
2761                                          unsigned SizeOptLevel) {
2762   if (OptLevel > 2)
2763     return InlineConstants::OptAggressiveThreshold;
2764   if (SizeOptLevel == 1) // -Os
2765     return InlineConstants::OptSizeThreshold;
2766   if (SizeOptLevel == 2) // -Oz
2767     return InlineConstants::OptMinSizeThreshold;
2768   return DefaultThreshold;
2769 }
2770 
2771 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) {
2772   auto Params =
2773       getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel));
2774   // At O3, use the value of -locally-hot-callsite-threshold option to populate
2775   // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only
2776   // when it is specified explicitly.
2777   if (OptLevel > 2)
2778     Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold;
2779   return Params;
2780 }
2781 
2782 PreservedAnalyses
2783 InlineCostAnnotationPrinterPass::run(Function &F,
2784                                      FunctionAnalysisManager &FAM) {
2785   PrintInstructionComments = true;
2786   std::function<AssumptionCache &(Function &)> GetAssumptionCache = [&](
2787       Function &F) -> AssumptionCache & {
2788     return FAM.getResult<AssumptionAnalysis>(F);
2789   };
2790   Module *M = F.getParent();
2791   ProfileSummaryInfo PSI(*M);
2792   DataLayout DL(M);
2793   TargetTransformInfo TTI(DL);
2794   // FIXME: Redesign the usage of InlineParams to expand the scope of this pass.
2795   // In the current implementation, the type of InlineParams doesn't matter as
2796   // the pass serves only for verification of inliner's decisions.
2797   // We can add a flag which determines InlineParams for this run. Right now,
2798   // the default InlineParams are used.
2799   const InlineParams Params = llvm::getInlineParams();
2800   for (BasicBlock &BB : F) {
2801     for (Instruction &I : BB) {
2802       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2803         Function *CalledFunction = CI->getCalledFunction();
2804         if (!CalledFunction || CalledFunction->isDeclaration())
2805           continue;
2806         OptimizationRemarkEmitter ORE(CalledFunction);
2807         InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI,
2808                                     GetAssumptionCache, nullptr, &PSI, &ORE);
2809         ICCA.analyze();
2810         OS << "      Analyzing call of " << CalledFunction->getName()
2811            << "... (caller:" << CI->getCaller()->getName() << ")\n";
2812         ICCA.print();
2813       }
2814     }
2815   }
2816   return PreservedAnalyses::all();
2817 }
2818