1 //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements inline cost analysis. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/InlineCost.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/CodeMetrics.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/AssemblyAnnotationWriter.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/InstVisitor.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "inline-cost" 49 50 STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); 51 52 static cl::opt<int> 53 DefaultThreshold("inlinedefault-threshold", cl::Hidden, cl::init(225), 54 cl::ZeroOrMore, 55 cl::desc("Default amount of inlining to perform")); 56 57 // We introduce this option since there is a minor compile-time win by avoiding 58 // addition of TTI attributes (target-features in particular) to inline 59 // candidates when they are guaranteed to be the same as top level methods in 60 // some use cases. If we avoid adding the attribute, we need an option to avoid 61 // checking these attributes. 62 static cl::opt<bool> IgnoreTTIInlineCompatible( 63 "ignore-tti-inline-compatible", cl::Hidden, cl::init(false), 64 cl::desc("Ignore TTI attributes compatibility check between callee/caller " 65 "during inline cost calculation")); 66 67 static cl::opt<bool> PrintInstructionComments( 68 "print-instruction-comments", cl::Hidden, cl::init(false), 69 cl::desc("Prints comments for instruction based on inline cost analysis")); 70 71 static cl::opt<int> InlineThreshold( 72 "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 73 cl::desc("Control the amount of inlining to perform (default = 225)")); 74 75 static cl::opt<int> HintThreshold( 76 "inlinehint-threshold", cl::Hidden, cl::init(325), cl::ZeroOrMore, 77 cl::desc("Threshold for inlining functions with inline hint")); 78 79 static cl::opt<int> 80 ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, 81 cl::init(45), cl::ZeroOrMore, 82 cl::desc("Threshold for inlining cold callsites")); 83 84 static cl::opt<bool> InlineEnableCostBenefitAnalysis( 85 "inline-enable-cost-benefit-analysis", cl::Hidden, cl::init(false), 86 cl::desc("Enable the cost-benefit analysis for the inliner")); 87 88 static cl::opt<int> InlineSavingsMultiplier( 89 "inline-savings-multiplier", cl::Hidden, cl::init(8), cl::ZeroOrMore, 90 cl::desc("Multiplier to multiply cycle savings by during inlining")); 91 92 static cl::opt<int> 93 InlineSizeAllowance("inline-size-allowance", cl::Hidden, cl::init(100), 94 cl::ZeroOrMore, 95 cl::desc("The maximum size of a callee that get's " 96 "inlined without sufficient cycle savings")); 97 98 // We introduce this threshold to help performance of instrumentation based 99 // PGO before we actually hook up inliner with analysis passes such as BPI and 100 // BFI. 101 static cl::opt<int> ColdThreshold( 102 "inlinecold-threshold", cl::Hidden, cl::init(45), cl::ZeroOrMore, 103 cl::desc("Threshold for inlining functions with cold attribute")); 104 105 static cl::opt<int> 106 HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), 107 cl::ZeroOrMore, 108 cl::desc("Threshold for hot callsites ")); 109 110 static cl::opt<int> LocallyHotCallSiteThreshold( 111 "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, 112 cl::desc("Threshold for locally hot callsites ")); 113 114 static cl::opt<int> ColdCallSiteRelFreq( 115 "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, 116 cl::desc("Maximum block frequency, expressed as a percentage of caller's " 117 "entry frequency, for a callsite to be cold in the absence of " 118 "profile information.")); 119 120 static cl::opt<int> HotCallSiteRelFreq( 121 "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, 122 cl::desc("Minimum block frequency, expressed as a multiple of caller's " 123 "entry frequency, for a callsite to be hot in the absence of " 124 "profile information.")); 125 126 static cl::opt<int> CallPenalty( 127 "inline-call-penalty", cl::Hidden, cl::init(25), 128 cl::desc("Call penalty that is applied per callsite when inlining")); 129 130 static cl::opt<bool> OptComputeFullInlineCost( 131 "inline-cost-full", cl::Hidden, cl::init(false), cl::ZeroOrMore, 132 cl::desc("Compute the full inline cost of a call site even when the cost " 133 "exceeds the threshold.")); 134 135 static cl::opt<bool> InlineCallerSupersetNoBuiltin( 136 "inline-caller-superset-nobuiltin", cl::Hidden, cl::init(true), 137 cl::ZeroOrMore, 138 cl::desc("Allow inlining when caller has a superset of callee's nobuiltin " 139 "attributes.")); 140 141 static cl::opt<bool> DisableGEPConstOperand( 142 "disable-gep-const-evaluation", cl::Hidden, cl::init(false), 143 cl::desc("Disables evaluation of GetElementPtr with constant operands")); 144 145 namespace { 146 /// This function behaves more like CallBase::hasFnAttr: when it looks for the 147 /// requested attribute, it check both the call instruction and the called 148 /// function (if it's available and operand bundles don't prohibit that). 149 Attribute getFnAttr(CallBase &CB, StringRef AttrKind) { 150 Attribute CallAttr = CB.getFnAttr(AttrKind); 151 if (CallAttr.isValid()) 152 return CallAttr; 153 154 // Operand bundles override attributes on the called function, but don't 155 // override attributes directly present on the call instruction. 156 if (!CB.isFnAttrDisallowedByOpBundle(AttrKind)) 157 if (const Function *F = CB.getCalledFunction()) 158 return F->getFnAttribute(AttrKind); 159 160 return {}; 161 } 162 } // namespace 163 164 namespace llvm { 165 Optional<int> getStringFnAttrAsInt(CallBase &CB, StringRef AttrKind) { 166 Attribute Attr = getFnAttr(CB, AttrKind); 167 int AttrValue; 168 if (Attr.getValueAsString().getAsInteger(10, AttrValue)) 169 return None; 170 return AttrValue; 171 } 172 } // namespace llvm 173 174 namespace { 175 class InlineCostCallAnalyzer; 176 177 // This struct is used to store information about inline cost of a 178 // particular instruction 179 struct InstructionCostDetail { 180 int CostBefore = 0; 181 int CostAfter = 0; 182 int ThresholdBefore = 0; 183 int ThresholdAfter = 0; 184 185 int getThresholdDelta() const { return ThresholdAfter - ThresholdBefore; } 186 187 int getCostDelta() const { return CostAfter - CostBefore; } 188 189 bool hasThresholdChanged() const { return ThresholdAfter != ThresholdBefore; } 190 }; 191 192 class InlineCostAnnotationWriter : public AssemblyAnnotationWriter { 193 private: 194 InlineCostCallAnalyzer *const ICCA; 195 196 public: 197 InlineCostAnnotationWriter(InlineCostCallAnalyzer *ICCA) : ICCA(ICCA) {} 198 virtual void emitInstructionAnnot(const Instruction *I, 199 formatted_raw_ostream &OS) override; 200 }; 201 202 /// Carry out call site analysis, in order to evaluate inlinability. 203 /// NOTE: the type is currently used as implementation detail of functions such 204 /// as llvm::getInlineCost. Note the function_ref constructor parameters - the 205 /// expectation is that they come from the outer scope, from the wrapper 206 /// functions. If we want to support constructing CallAnalyzer objects where 207 /// lambdas are provided inline at construction, or where the object needs to 208 /// otherwise survive past the scope of the provided functions, we need to 209 /// revisit the argument types. 210 class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { 211 typedef InstVisitor<CallAnalyzer, bool> Base; 212 friend class InstVisitor<CallAnalyzer, bool>; 213 214 protected: 215 virtual ~CallAnalyzer() = default; 216 /// The TargetTransformInfo available for this compilation. 217 const TargetTransformInfo &TTI; 218 219 /// Getter for the cache of @llvm.assume intrinsics. 220 function_ref<AssumptionCache &(Function &)> GetAssumptionCache; 221 222 /// Getter for BlockFrequencyInfo 223 function_ref<BlockFrequencyInfo &(Function &)> GetBFI; 224 225 /// Profile summary information. 226 ProfileSummaryInfo *PSI; 227 228 /// The called function. 229 Function &F; 230 231 // Cache the DataLayout since we use it a lot. 232 const DataLayout &DL; 233 234 /// The OptimizationRemarkEmitter available for this compilation. 235 OptimizationRemarkEmitter *ORE; 236 237 /// The candidate callsite being analyzed. Please do not use this to do 238 /// analysis in the caller function; we want the inline cost query to be 239 /// easily cacheable. Instead, use the cover function paramHasAttr. 240 CallBase &CandidateCall; 241 242 /// Extension points for handling callsite features. 243 // Called before a basic block was analyzed. 244 virtual void onBlockStart(const BasicBlock *BB) {} 245 246 /// Called after a basic block was analyzed. 247 virtual void onBlockAnalyzed(const BasicBlock *BB) {} 248 249 /// Called before an instruction was analyzed 250 virtual void onInstructionAnalysisStart(const Instruction *I) {} 251 252 /// Called after an instruction was analyzed 253 virtual void onInstructionAnalysisFinish(const Instruction *I) {} 254 255 /// Called at the end of the analysis of the callsite. Return the outcome of 256 /// the analysis, i.e. 'InlineResult(true)' if the inlining may happen, or 257 /// the reason it can't. 258 virtual InlineResult finalizeAnalysis() { return InlineResult::success(); } 259 /// Called when we're about to start processing a basic block, and every time 260 /// we are done processing an instruction. Return true if there is no point in 261 /// continuing the analysis (e.g. we've determined already the call site is 262 /// too expensive to inline) 263 virtual bool shouldStop() { return false; } 264 265 /// Called before the analysis of the callee body starts (with callsite 266 /// contexts propagated). It checks callsite-specific information. Return a 267 /// reason analysis can't continue if that's the case, or 'true' if it may 268 /// continue. 269 virtual InlineResult onAnalysisStart() { return InlineResult::success(); } 270 /// Called if the analysis engine decides SROA cannot be done for the given 271 /// alloca. 272 virtual void onDisableSROA(AllocaInst *Arg) {} 273 274 /// Called the analysis engine determines load elimination won't happen. 275 virtual void onDisableLoadElimination() {} 276 277 /// Called when we visit a CallBase, before the analysis starts. Return false 278 /// to stop further processing of the instruction. 279 virtual bool onCallBaseVisitStart(CallBase &Call) { return true; } 280 281 /// Called to account for a call. 282 virtual void onCallPenalty() {} 283 284 /// Called to account for the expectation the inlining would result in a load 285 /// elimination. 286 virtual void onLoadEliminationOpportunity() {} 287 288 /// Called to account for the cost of argument setup for the Call in the 289 /// callee's body (not the callsite currently under analysis). 290 virtual void onCallArgumentSetup(const CallBase &Call) {} 291 292 /// Called to account for a load relative intrinsic. 293 virtual void onLoadRelativeIntrinsic() {} 294 295 /// Called to account for a lowered call. 296 virtual void onLoweredCall(Function *F, CallBase &Call, bool IsIndirectCall) { 297 } 298 299 /// Account for a jump table of given size. Return false to stop further 300 /// processing the switch instruction 301 virtual bool onJumpTable(unsigned JumpTableSize) { return true; } 302 303 /// Account for a case cluster of given size. Return false to stop further 304 /// processing of the instruction. 305 virtual bool onCaseCluster(unsigned NumCaseCluster) { return true; } 306 307 /// Called at the end of processing a switch instruction, with the given 308 /// number of case clusters. 309 virtual void onFinalizeSwitch(unsigned JumpTableSize, 310 unsigned NumCaseCluster) {} 311 312 /// Called to account for any other instruction not specifically accounted 313 /// for. 314 virtual void onMissedSimplification() {} 315 316 /// Start accounting potential benefits due to SROA for the given alloca. 317 virtual void onInitializeSROAArg(AllocaInst *Arg) {} 318 319 /// Account SROA savings for the AllocaInst value. 320 virtual void onAggregateSROAUse(AllocaInst *V) {} 321 322 bool handleSROA(Value *V, bool DoNotDisable) { 323 // Check for SROA candidates in comparisons. 324 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 325 if (DoNotDisable) { 326 onAggregateSROAUse(SROAArg); 327 return true; 328 } 329 disableSROAForArg(SROAArg); 330 } 331 return false; 332 } 333 334 bool IsCallerRecursive = false; 335 bool IsRecursiveCall = false; 336 bool ExposesReturnsTwice = false; 337 bool HasDynamicAlloca = false; 338 bool ContainsNoDuplicateCall = false; 339 bool HasReturn = false; 340 bool HasIndirectBr = false; 341 bool HasUninlineableIntrinsic = false; 342 bool InitsVargArgs = false; 343 344 /// Number of bytes allocated statically by the callee. 345 uint64_t AllocatedSize = 0; 346 unsigned NumInstructions = 0; 347 unsigned NumVectorInstructions = 0; 348 349 /// While we walk the potentially-inlined instructions, we build up and 350 /// maintain a mapping of simplified values specific to this callsite. The 351 /// idea is to propagate any special information we have about arguments to 352 /// this call through the inlinable section of the function, and account for 353 /// likely simplifications post-inlining. The most important aspect we track 354 /// is CFG altering simplifications -- when we prove a basic block dead, that 355 /// can cause dramatic shifts in the cost of inlining a function. 356 DenseMap<Value *, Constant *> SimplifiedValues; 357 358 /// Keep track of the values which map back (through function arguments) to 359 /// allocas on the caller stack which could be simplified through SROA. 360 DenseMap<Value *, AllocaInst *> SROAArgValues; 361 362 /// Keep track of Allocas for which we believe we may get SROA optimization. 363 DenseSet<AllocaInst *> EnabledSROAAllocas; 364 365 /// Keep track of values which map to a pointer base and constant offset. 366 DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; 367 368 /// Keep track of dead blocks due to the constant arguments. 369 SmallPtrSet<BasicBlock *, 16> DeadBlocks; 370 371 /// The mapping of the blocks to their known unique successors due to the 372 /// constant arguments. 373 DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; 374 375 /// Model the elimination of repeated loads that is expected to happen 376 /// whenever we simplify away the stores that would otherwise cause them to be 377 /// loads. 378 bool EnableLoadElimination = true; 379 380 /// Whether we allow inlining for recursive call. 381 bool AllowRecursiveCall = false; 382 383 SmallPtrSet<Value *, 16> LoadAddrSet; 384 385 AllocaInst *getSROAArgForValueOrNull(Value *V) const { 386 auto It = SROAArgValues.find(V); 387 if (It == SROAArgValues.end() || EnabledSROAAllocas.count(It->second) == 0) 388 return nullptr; 389 return It->second; 390 } 391 392 // Custom simplification helper routines. 393 bool isAllocaDerivedArg(Value *V); 394 void disableSROAForArg(AllocaInst *SROAArg); 395 void disableSROA(Value *V); 396 void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); 397 void disableLoadElimination(); 398 bool isGEPFree(GetElementPtrInst &GEP); 399 bool canFoldInboundsGEP(GetElementPtrInst &I); 400 bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); 401 bool simplifyCallSite(Function *F, CallBase &Call); 402 template <typename Callable> 403 bool simplifyInstruction(Instruction &I, Callable Evaluate); 404 bool simplifyIntrinsicCallIsConstant(CallBase &CB); 405 ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); 406 407 /// Return true if the given argument to the function being considered for 408 /// inlining has the given attribute set either at the call site or the 409 /// function declaration. Primarily used to inspect call site specific 410 /// attributes since these can be more precise than the ones on the callee 411 /// itself. 412 bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); 413 414 /// Return true if the given value is known non null within the callee if 415 /// inlined through this particular callsite. 416 bool isKnownNonNullInCallee(Value *V); 417 418 /// Return true if size growth is allowed when inlining the callee at \p Call. 419 bool allowSizeGrowth(CallBase &Call); 420 421 // Custom analysis routines. 422 InlineResult analyzeBlock(BasicBlock *BB, 423 SmallPtrSetImpl<const Value *> &EphValues); 424 425 // Disable several entry points to the visitor so we don't accidentally use 426 // them by declaring but not defining them here. 427 void visit(Module *); 428 void visit(Module &); 429 void visit(Function *); 430 void visit(Function &); 431 void visit(BasicBlock *); 432 void visit(BasicBlock &); 433 434 // Provide base case for our instruction visit. 435 bool visitInstruction(Instruction &I); 436 437 // Our visit overrides. 438 bool visitAlloca(AllocaInst &I); 439 bool visitPHI(PHINode &I); 440 bool visitGetElementPtr(GetElementPtrInst &I); 441 bool visitBitCast(BitCastInst &I); 442 bool visitPtrToInt(PtrToIntInst &I); 443 bool visitIntToPtr(IntToPtrInst &I); 444 bool visitCastInst(CastInst &I); 445 bool visitCmpInst(CmpInst &I); 446 bool visitSub(BinaryOperator &I); 447 bool visitBinaryOperator(BinaryOperator &I); 448 bool visitFNeg(UnaryOperator &I); 449 bool visitLoad(LoadInst &I); 450 bool visitStore(StoreInst &I); 451 bool visitExtractValue(ExtractValueInst &I); 452 bool visitInsertValue(InsertValueInst &I); 453 bool visitCallBase(CallBase &Call); 454 bool visitReturnInst(ReturnInst &RI); 455 bool visitBranchInst(BranchInst &BI); 456 bool visitSelectInst(SelectInst &SI); 457 bool visitSwitchInst(SwitchInst &SI); 458 bool visitIndirectBrInst(IndirectBrInst &IBI); 459 bool visitResumeInst(ResumeInst &RI); 460 bool visitCleanupReturnInst(CleanupReturnInst &RI); 461 bool visitCatchReturnInst(CatchReturnInst &RI); 462 bool visitUnreachableInst(UnreachableInst &I); 463 464 public: 465 CallAnalyzer(Function &Callee, CallBase &Call, const TargetTransformInfo &TTI, 466 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 467 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 468 ProfileSummaryInfo *PSI = nullptr, 469 OptimizationRemarkEmitter *ORE = nullptr) 470 : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), 471 PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), 472 CandidateCall(Call) {} 473 474 InlineResult analyze(); 475 476 Optional<Constant *> getSimplifiedValue(Instruction *I) { 477 if (SimplifiedValues.find(I) != SimplifiedValues.end()) 478 return SimplifiedValues[I]; 479 return None; 480 } 481 482 // Keep a bunch of stats about the cost savings found so we can print them 483 // out when debugging. 484 unsigned NumConstantArgs = 0; 485 unsigned NumConstantOffsetPtrArgs = 0; 486 unsigned NumAllocaArgs = 0; 487 unsigned NumConstantPtrCmps = 0; 488 unsigned NumConstantPtrDiffs = 0; 489 unsigned NumInstructionsSimplified = 0; 490 491 void dump(); 492 }; 493 494 // Considering forming a binary search, we should find the number of nodes 495 // which is same as the number of comparisons when lowered. For a given 496 // number of clusters, n, we can define a recursive function, f(n), to find 497 // the number of nodes in the tree. The recursion is : 498 // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, 499 // and f(n) = n, when n <= 3. 500 // This will lead a binary tree where the leaf should be either f(2) or f(3) 501 // when n > 3. So, the number of comparisons from leaves should be n, while 502 // the number of non-leaf should be : 503 // 2^(log2(n) - 1) - 1 504 // = 2^log2(n) * 2^-1 - 1 505 // = n / 2 - 1. 506 // Considering comparisons from leaf and non-leaf nodes, we can estimate the 507 // number of comparisons in a simple closed form : 508 // n + n / 2 - 1 = n * 3 / 2 - 1 509 int64_t getExpectedNumberOfCompare(int NumCaseCluster) { 510 return 3 * static_cast<int64_t>(NumCaseCluster) / 2 - 1; 511 } 512 513 /// FIXME: if it is necessary to derive from InlineCostCallAnalyzer, note 514 /// the FIXME in onLoweredCall, when instantiating an InlineCostCallAnalyzer 515 class InlineCostCallAnalyzer final : public CallAnalyzer { 516 const int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; 517 const bool ComputeFullInlineCost; 518 int LoadEliminationCost = 0; 519 /// Bonus to be applied when percentage of vector instructions in callee is 520 /// high (see more details in updateThreshold). 521 int VectorBonus = 0; 522 /// Bonus to be applied when the callee has only one reachable basic block. 523 int SingleBBBonus = 0; 524 525 /// Tunable parameters that control the analysis. 526 const InlineParams &Params; 527 528 // This DenseMap stores the delta change in cost and threshold after 529 // accounting for the given instruction. The map is filled only with the 530 // flag PrintInstructionComments on. 531 DenseMap<const Instruction *, InstructionCostDetail> InstructionCostDetailMap; 532 533 /// Upper bound for the inlining cost. Bonuses are being applied to account 534 /// for speculative "expected profit" of the inlining decision. 535 int Threshold = 0; 536 537 /// Attempt to evaluate indirect calls to boost its inline cost. 538 const bool BoostIndirectCalls; 539 540 /// Ignore the threshold when finalizing analysis. 541 const bool IgnoreThreshold; 542 543 // True if the cost-benefit-analysis-based inliner is enabled. 544 const bool CostBenefitAnalysisEnabled; 545 546 /// Inlining cost measured in abstract units, accounts for all the 547 /// instructions expected to be executed for a given function invocation. 548 /// Instructions that are statically proven to be dead based on call-site 549 /// arguments are not counted here. 550 int Cost = 0; 551 552 // The cumulative cost at the beginning of the basic block being analyzed. At 553 // the end of analyzing each basic block, "Cost - CostAtBBStart" represents 554 // the size of that basic block. 555 int CostAtBBStart = 0; 556 557 // The static size of live but cold basic blocks. This is "static" in the 558 // sense that it's not weighted by profile counts at all. 559 int ColdSize = 0; 560 561 // Whether inlining is decided by cost-threshold analysis. 562 bool DecidedByCostThreshold = false; 563 564 // Whether inlining is decided by cost-benefit analysis. 565 bool DecidedByCostBenefit = false; 566 567 // The cost-benefit pair computed by cost-benefit analysis. 568 Optional<CostBenefitPair> CostBenefit = None; 569 570 bool SingleBB = true; 571 572 unsigned SROACostSavings = 0; 573 unsigned SROACostSavingsLost = 0; 574 575 /// The mapping of caller Alloca values to their accumulated cost savings. If 576 /// we have to disable SROA for one of the allocas, this tells us how much 577 /// cost must be added. 578 DenseMap<AllocaInst *, int> SROAArgCosts; 579 580 /// Return true if \p Call is a cold callsite. 581 bool isColdCallSite(CallBase &Call, BlockFrequencyInfo *CallerBFI); 582 583 /// Update Threshold based on callsite properties such as callee 584 /// attributes and callee hotness for PGO builds. The Callee is explicitly 585 /// passed to support analyzing indirect calls whose target is inferred by 586 /// analysis. 587 void updateThreshold(CallBase &Call, Function &Callee); 588 /// Return a higher threshold if \p Call is a hot callsite. 589 Optional<int> getHotCallSiteThreshold(CallBase &Call, 590 BlockFrequencyInfo *CallerBFI); 591 592 /// Handle a capped 'int' increment for Cost. 593 void addCost(int64_t Inc, int64_t UpperBound = INT_MAX) { 594 assert(UpperBound > 0 && UpperBound <= INT_MAX && "invalid upper bound"); 595 Cost = std::min<int>(UpperBound, Cost + Inc); 596 } 597 598 void onDisableSROA(AllocaInst *Arg) override { 599 auto CostIt = SROAArgCosts.find(Arg); 600 if (CostIt == SROAArgCosts.end()) 601 return; 602 addCost(CostIt->second); 603 SROACostSavings -= CostIt->second; 604 SROACostSavingsLost += CostIt->second; 605 SROAArgCosts.erase(CostIt); 606 } 607 608 void onDisableLoadElimination() override { 609 addCost(LoadEliminationCost); 610 LoadEliminationCost = 0; 611 } 612 613 bool onCallBaseVisitStart(CallBase &Call) override { 614 if (Optional<int> AttrCallThresholdBonus = 615 getStringFnAttrAsInt(Call, "call-threshold-bonus")) 616 Threshold += *AttrCallThresholdBonus; 617 618 if (Optional<int> AttrCallCost = 619 getStringFnAttrAsInt(Call, "call-inline-cost")) { 620 addCost(*AttrCallCost); 621 // Prevent further processing of the call since we want to override its 622 // inline cost, not just add to it. 623 return false; 624 } 625 return true; 626 } 627 628 void onCallPenalty() override { addCost(CallPenalty); } 629 void onCallArgumentSetup(const CallBase &Call) override { 630 // Pay the price of the argument setup. We account for the average 1 631 // instruction per call argument setup here. 632 addCost(Call.arg_size() * InlineConstants::InstrCost); 633 } 634 void onLoadRelativeIntrinsic() override { 635 // This is normally lowered to 4 LLVM instructions. 636 addCost(3 * InlineConstants::InstrCost); 637 } 638 void onLoweredCall(Function *F, CallBase &Call, 639 bool IsIndirectCall) override { 640 // We account for the average 1 instruction per call argument setup here. 641 addCost(Call.arg_size() * InlineConstants::InstrCost); 642 643 // If we have a constant that we are calling as a function, we can peer 644 // through it and see the function target. This happens not infrequently 645 // during devirtualization and so we want to give it a hefty bonus for 646 // inlining, but cap that bonus in the event that inlining wouldn't pan out. 647 // Pretend to inline the function, with a custom threshold. 648 if (IsIndirectCall && BoostIndirectCalls) { 649 auto IndirectCallParams = Params; 650 IndirectCallParams.DefaultThreshold = 651 InlineConstants::IndirectCallThreshold; 652 /// FIXME: if InlineCostCallAnalyzer is derived from, this may need 653 /// to instantiate the derived class. 654 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 655 GetAssumptionCache, GetBFI, PSI, ORE, false); 656 if (CA.analyze().isSuccess()) { 657 // We were able to inline the indirect call! Subtract the cost from the 658 // threshold to get the bonus we want to apply, but don't go below zero. 659 Cost -= std::max(0, CA.getThreshold() - CA.getCost()); 660 } 661 } else 662 // Otherwise simply add the cost for merely making the call. 663 addCost(CallPenalty); 664 } 665 666 void onFinalizeSwitch(unsigned JumpTableSize, 667 unsigned NumCaseCluster) override { 668 // If suitable for a jump table, consider the cost for the table size and 669 // branch to destination. 670 // Maximum valid cost increased in this function. 671 if (JumpTableSize) { 672 int64_t JTCost = 673 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 674 4 * InlineConstants::InstrCost; 675 676 addCost(JTCost, static_cast<int64_t>(CostUpperBound)); 677 return; 678 } 679 680 if (NumCaseCluster <= 3) { 681 // Suppose a comparison includes one compare and one conditional branch. 682 addCost(NumCaseCluster * 2 * InlineConstants::InstrCost); 683 return; 684 } 685 686 int64_t ExpectedNumberOfCompare = 687 getExpectedNumberOfCompare(NumCaseCluster); 688 int64_t SwitchCost = 689 ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; 690 691 addCost(SwitchCost, static_cast<int64_t>(CostUpperBound)); 692 } 693 void onMissedSimplification() override { 694 addCost(InlineConstants::InstrCost); 695 } 696 697 void onInitializeSROAArg(AllocaInst *Arg) override { 698 assert(Arg != nullptr && 699 "Should not initialize SROA costs for null value."); 700 SROAArgCosts[Arg] = 0; 701 } 702 703 void onAggregateSROAUse(AllocaInst *SROAArg) override { 704 auto CostIt = SROAArgCosts.find(SROAArg); 705 assert(CostIt != SROAArgCosts.end() && 706 "expected this argument to have a cost"); 707 CostIt->second += InlineConstants::InstrCost; 708 SROACostSavings += InlineConstants::InstrCost; 709 } 710 711 void onBlockStart(const BasicBlock *BB) override { CostAtBBStart = Cost; } 712 713 void onBlockAnalyzed(const BasicBlock *BB) override { 714 if (CostBenefitAnalysisEnabled) { 715 // Keep track of the static size of live but cold basic blocks. For now, 716 // we define a cold basic block to be one that's never executed. 717 assert(GetBFI && "GetBFI must be available"); 718 BlockFrequencyInfo *BFI = &(GetBFI(F)); 719 assert(BFI && "BFI must be available"); 720 auto ProfileCount = BFI->getBlockProfileCount(BB); 721 assert(ProfileCount.hasValue()); 722 if (ProfileCount.getValue() == 0) 723 ColdSize += Cost - CostAtBBStart; 724 } 725 726 auto *TI = BB->getTerminator(); 727 // If we had any successors at this point, than post-inlining is likely to 728 // have them as well. Note that we assume any basic blocks which existed 729 // due to branches or switches which folded above will also fold after 730 // inlining. 731 if (SingleBB && TI->getNumSuccessors() > 1) { 732 // Take off the bonus we applied to the threshold. 733 Threshold -= SingleBBBonus; 734 SingleBB = false; 735 } 736 } 737 738 void onInstructionAnalysisStart(const Instruction *I) override { 739 // This function is called to store the initial cost of inlining before 740 // the given instruction was assessed. 741 if (!PrintInstructionComments) 742 return; 743 InstructionCostDetailMap[I].CostBefore = Cost; 744 InstructionCostDetailMap[I].ThresholdBefore = Threshold; 745 } 746 747 void onInstructionAnalysisFinish(const Instruction *I) override { 748 // This function is called to find new values of cost and threshold after 749 // the instruction has been assessed. 750 if (!PrintInstructionComments) 751 return; 752 InstructionCostDetailMap[I].CostAfter = Cost; 753 InstructionCostDetailMap[I].ThresholdAfter = Threshold; 754 } 755 756 bool isCostBenefitAnalysisEnabled() { 757 if (!PSI || !PSI->hasProfileSummary()) 758 return false; 759 760 if (!GetBFI) 761 return false; 762 763 if (InlineEnableCostBenefitAnalysis.getNumOccurrences()) { 764 // Honor the explicit request from the user. 765 if (!InlineEnableCostBenefitAnalysis) 766 return false; 767 } else { 768 // Otherwise, require instrumentation profile. 769 if (!PSI->hasInstrumentationProfile()) 770 return false; 771 } 772 773 auto *Caller = CandidateCall.getParent()->getParent(); 774 if (!Caller->getEntryCount()) 775 return false; 776 777 BlockFrequencyInfo *CallerBFI = &(GetBFI(*Caller)); 778 if (!CallerBFI) 779 return false; 780 781 // For now, limit to hot call site. 782 if (!PSI->isHotCallSite(CandidateCall, CallerBFI)) 783 return false; 784 785 // Make sure we have a nonzero entry count. 786 auto EntryCount = F.getEntryCount(); 787 if (!EntryCount || !EntryCount->getCount()) 788 return false; 789 790 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 791 if (!CalleeBFI) 792 return false; 793 794 return true; 795 } 796 797 // Determine whether we should inline the given call site, taking into account 798 // both the size cost and the cycle savings. Return None if we don't have 799 // suficient profiling information to determine. 800 Optional<bool> costBenefitAnalysis() { 801 if (!CostBenefitAnalysisEnabled) 802 return None; 803 804 // buildInlinerPipeline in the pass builder sets HotCallSiteThreshold to 0 805 // for the prelink phase of the AutoFDO + ThinLTO build. Honor the logic by 806 // falling back to the cost-based metric. 807 // TODO: Improve this hacky condition. 808 if (Threshold == 0) 809 return None; 810 811 assert(GetBFI); 812 BlockFrequencyInfo *CalleeBFI = &(GetBFI(F)); 813 assert(CalleeBFI); 814 815 // The cycle savings expressed as the sum of InlineConstants::InstrCost 816 // multiplied by the estimated dynamic count of each instruction we can 817 // avoid. Savings come from the call site cost, such as argument setup and 818 // the call instruction, as well as the instructions that are folded. 819 // 820 // We use 128-bit APInt here to avoid potential overflow. This variable 821 // should stay well below 10^^24 (or 2^^80) in practice. This "worst" case 822 // assumes that we can avoid or fold a billion instructions, each with a 823 // profile count of 10^^15 -- roughly the number of cycles for a 24-hour 824 // period on a 4GHz machine. 825 APInt CycleSavings(128, 0); 826 827 for (auto &BB : F) { 828 APInt CurrentSavings(128, 0); 829 for (auto &I : BB) { 830 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) { 831 // Count a conditional branch as savings if it becomes unconditional. 832 if (BI->isConditional() && 833 isa_and_nonnull<ConstantInt>( 834 SimplifiedValues.lookup(BI->getCondition()))) { 835 CurrentSavings += InlineConstants::InstrCost; 836 } 837 } else if (Value *V = dyn_cast<Value>(&I)) { 838 // Count an instruction as savings if we can fold it. 839 if (SimplifiedValues.count(V)) { 840 CurrentSavings += InlineConstants::InstrCost; 841 } 842 } 843 } 844 845 auto ProfileCount = CalleeBFI->getBlockProfileCount(&BB); 846 assert(ProfileCount.hasValue()); 847 CurrentSavings *= ProfileCount.getValue(); 848 CycleSavings += CurrentSavings; 849 } 850 851 // Compute the cycle savings per call. 852 auto EntryProfileCount = F.getEntryCount(); 853 assert(EntryProfileCount.hasValue() && EntryProfileCount->getCount()); 854 auto EntryCount = EntryProfileCount->getCount(); 855 CycleSavings += EntryCount / 2; 856 CycleSavings = CycleSavings.udiv(EntryCount); 857 858 // Compute the total savings for the call site. 859 auto *CallerBB = CandidateCall.getParent(); 860 BlockFrequencyInfo *CallerBFI = &(GetBFI(*(CallerBB->getParent()))); 861 CycleSavings += getCallsiteCost(this->CandidateCall, DL); 862 CycleSavings *= CallerBFI->getBlockProfileCount(CallerBB).getValue(); 863 864 // Remove the cost of the cold basic blocks. 865 int Size = Cost - ColdSize; 866 867 // Allow tiny callees to be inlined regardless of whether they meet the 868 // savings threshold. 869 Size = Size > InlineSizeAllowance ? Size - InlineSizeAllowance : 1; 870 871 CostBenefit.emplace(APInt(128, Size), CycleSavings); 872 873 // Return true if the savings justify the cost of inlining. Specifically, 874 // we evaluate the following inequality: 875 // 876 // CycleSavings PSI->getOrCompHotCountThreshold() 877 // -------------- >= ----------------------------------- 878 // Size InlineSavingsMultiplier 879 // 880 // Note that the left hand side is specific to a call site. The right hand 881 // side is a constant for the entire executable. 882 APInt LHS = CycleSavings; 883 LHS *= InlineSavingsMultiplier; 884 APInt RHS(128, PSI->getOrCompHotCountThreshold()); 885 RHS *= Size; 886 return LHS.uge(RHS); 887 } 888 889 InlineResult finalizeAnalysis() override { 890 // Loops generally act a lot like calls in that they act like barriers to 891 // movement, require a certain amount of setup, etc. So when optimising for 892 // size, we penalise any call sites that perform loops. We do this after all 893 // other costs here, so will likely only be dealing with relatively small 894 // functions (and hence DT and LI will hopefully be cheap). 895 auto *Caller = CandidateCall.getFunction(); 896 if (Caller->hasMinSize()) { 897 DominatorTree DT(F); 898 LoopInfo LI(DT); 899 int NumLoops = 0; 900 for (Loop *L : LI) { 901 // Ignore loops that will not be executed 902 if (DeadBlocks.count(L->getHeader())) 903 continue; 904 NumLoops++; 905 } 906 addCost(NumLoops * InlineConstants::LoopPenalty); 907 } 908 909 // We applied the maximum possible vector bonus at the beginning. Now, 910 // subtract the excess bonus, if any, from the Threshold before 911 // comparing against Cost. 912 if (NumVectorInstructions <= NumInstructions / 10) 913 Threshold -= VectorBonus; 914 else if (NumVectorInstructions <= NumInstructions / 2) 915 Threshold -= VectorBonus / 2; 916 917 if (Optional<int> AttrCost = 918 getStringFnAttrAsInt(CandidateCall, "function-inline-cost")) 919 Cost = *AttrCost; 920 921 if (Optional<int> AttrCostMult = getStringFnAttrAsInt( 922 CandidateCall, 923 InlineConstants::FunctionInlineCostMultiplierAttributeName)) 924 Cost *= *AttrCostMult; 925 926 if (Optional<int> AttrThreshold = 927 getStringFnAttrAsInt(CandidateCall, "function-inline-threshold")) 928 Threshold = *AttrThreshold; 929 930 if (auto Result = costBenefitAnalysis()) { 931 DecidedByCostBenefit = true; 932 if (Result.getValue()) 933 return InlineResult::success(); 934 else 935 return InlineResult::failure("Cost over threshold."); 936 } 937 938 if (IgnoreThreshold) 939 return InlineResult::success(); 940 941 DecidedByCostThreshold = true; 942 return Cost < std::max(1, Threshold) 943 ? InlineResult::success() 944 : InlineResult::failure("Cost over threshold."); 945 } 946 947 bool shouldStop() override { 948 if (IgnoreThreshold || ComputeFullInlineCost) 949 return false; 950 // Bail out the moment we cross the threshold. This means we'll under-count 951 // the cost, but only when undercounting doesn't matter. 952 if (Cost < Threshold) 953 return false; 954 DecidedByCostThreshold = true; 955 return true; 956 } 957 958 void onLoadEliminationOpportunity() override { 959 LoadEliminationCost += InlineConstants::InstrCost; 960 } 961 962 InlineResult onAnalysisStart() override { 963 // Perform some tweaks to the cost and threshold based on the direct 964 // callsite information. 965 966 // We want to more aggressively inline vector-dense kernels, so up the 967 // threshold, and we'll lower it if the % of vector instructions gets too 968 // low. Note that these bonuses are some what arbitrary and evolved over 969 // time by accident as much as because they are principled bonuses. 970 // 971 // FIXME: It would be nice to remove all such bonuses. At least it would be 972 // nice to base the bonus values on something more scientific. 973 assert(NumInstructions == 0); 974 assert(NumVectorInstructions == 0); 975 976 // Update the threshold based on callsite properties 977 updateThreshold(CandidateCall, F); 978 979 // While Threshold depends on commandline options that can take negative 980 // values, we want to enforce the invariant that the computed threshold and 981 // bonuses are non-negative. 982 assert(Threshold >= 0); 983 assert(SingleBBBonus >= 0); 984 assert(VectorBonus >= 0); 985 986 // Speculatively apply all possible bonuses to Threshold. If cost exceeds 987 // this Threshold any time, and cost cannot decrease, we can stop processing 988 // the rest of the function body. 989 Threshold += (SingleBBBonus + VectorBonus); 990 991 // Give out bonuses for the callsite, as the instructions setting them up 992 // will be gone after inlining. 993 addCost(-getCallsiteCost(this->CandidateCall, DL)); 994 995 // If this function uses the coldcc calling convention, prefer not to inline 996 // it. 997 if (F.getCallingConv() == CallingConv::Cold) 998 Cost += InlineConstants::ColdccPenalty; 999 1000 // Check if we're done. This can happen due to bonuses and penalties. 1001 if (Cost >= Threshold && !ComputeFullInlineCost) 1002 return InlineResult::failure("high cost"); 1003 1004 return InlineResult::success(); 1005 } 1006 1007 public: 1008 InlineCostCallAnalyzer( 1009 Function &Callee, CallBase &Call, const InlineParams &Params, 1010 const TargetTransformInfo &TTI, 1011 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 1012 function_ref<BlockFrequencyInfo &(Function &)> GetBFI = nullptr, 1013 ProfileSummaryInfo *PSI = nullptr, 1014 OptimizationRemarkEmitter *ORE = nullptr, bool BoostIndirect = true, 1015 bool IgnoreThreshold = false) 1016 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI, ORE), 1017 ComputeFullInlineCost(OptComputeFullInlineCost || 1018 Params.ComputeFullInlineCost || ORE || 1019 isCostBenefitAnalysisEnabled()), 1020 Params(Params), Threshold(Params.DefaultThreshold), 1021 BoostIndirectCalls(BoostIndirect), IgnoreThreshold(IgnoreThreshold), 1022 CostBenefitAnalysisEnabled(isCostBenefitAnalysisEnabled()), 1023 Writer(this) { 1024 AllowRecursiveCall = Params.AllowRecursiveCall.getValue(); 1025 } 1026 1027 /// Annotation Writer for instruction details 1028 InlineCostAnnotationWriter Writer; 1029 1030 void dump(); 1031 1032 // Prints the same analysis as dump(), but its definition is not dependent 1033 // on the build. 1034 void print(raw_ostream &OS); 1035 1036 Optional<InstructionCostDetail> getCostDetails(const Instruction *I) { 1037 if (InstructionCostDetailMap.find(I) != InstructionCostDetailMap.end()) 1038 return InstructionCostDetailMap[I]; 1039 return None; 1040 } 1041 1042 virtual ~InlineCostCallAnalyzer() = default; 1043 int getThreshold() const { return Threshold; } 1044 int getCost() const { return Cost; } 1045 Optional<CostBenefitPair> getCostBenefitPair() { return CostBenefit; } 1046 bool wasDecidedByCostBenefit() const { return DecidedByCostBenefit; } 1047 bool wasDecidedByCostThreshold() const { return DecidedByCostThreshold; } 1048 }; 1049 1050 class InlineCostFeaturesAnalyzer final : public CallAnalyzer { 1051 private: 1052 InlineCostFeatures Cost = {}; 1053 1054 // FIXME: These constants are taken from the heuristic-based cost visitor. 1055 // These should be removed entirely in a later revision to avoid reliance on 1056 // heuristics in the ML inliner. 1057 static constexpr int JTCostMultiplier = 4; 1058 static constexpr int CaseClusterCostMultiplier = 2; 1059 static constexpr int SwitchCostMultiplier = 2; 1060 1061 // FIXME: These are taken from the heuristic-based cost visitor: we should 1062 // eventually abstract these to the CallAnalyzer to avoid duplication. 1063 unsigned SROACostSavingOpportunities = 0; 1064 int VectorBonus = 0; 1065 int SingleBBBonus = 0; 1066 int Threshold = 5; 1067 1068 DenseMap<AllocaInst *, unsigned> SROACosts; 1069 1070 void increment(InlineCostFeatureIndex Feature, int64_t Delta = 1) { 1071 Cost[static_cast<size_t>(Feature)] += Delta; 1072 } 1073 1074 void set(InlineCostFeatureIndex Feature, int64_t Value) { 1075 Cost[static_cast<size_t>(Feature)] = Value; 1076 } 1077 1078 void onDisableSROA(AllocaInst *Arg) override { 1079 auto CostIt = SROACosts.find(Arg); 1080 if (CostIt == SROACosts.end()) 1081 return; 1082 1083 increment(InlineCostFeatureIndex::SROALosses, CostIt->second); 1084 SROACostSavingOpportunities -= CostIt->second; 1085 SROACosts.erase(CostIt); 1086 } 1087 1088 void onDisableLoadElimination() override { 1089 set(InlineCostFeatureIndex::LoadElimination, 1); 1090 } 1091 1092 void onCallPenalty() override { 1093 increment(InlineCostFeatureIndex::CallPenalty, CallPenalty); 1094 } 1095 1096 void onCallArgumentSetup(const CallBase &Call) override { 1097 increment(InlineCostFeatureIndex::CallArgumentSetup, 1098 Call.arg_size() * InlineConstants::InstrCost); 1099 } 1100 1101 void onLoadRelativeIntrinsic() override { 1102 increment(InlineCostFeatureIndex::LoadRelativeIntrinsic, 1103 3 * InlineConstants::InstrCost); 1104 } 1105 1106 void onLoweredCall(Function *F, CallBase &Call, 1107 bool IsIndirectCall) override { 1108 increment(InlineCostFeatureIndex::LoweredCallArgSetup, 1109 Call.arg_size() * InlineConstants::InstrCost); 1110 1111 if (IsIndirectCall) { 1112 InlineParams IndirectCallParams = {/* DefaultThreshold*/ 0, 1113 /*HintThreshold*/ {}, 1114 /*ColdThreshold*/ {}, 1115 /*OptSizeThreshold*/ {}, 1116 /*OptMinSizeThreshold*/ {}, 1117 /*HotCallSiteThreshold*/ {}, 1118 /*LocallyHotCallSiteThreshold*/ {}, 1119 /*ColdCallSiteThreshold*/ {}, 1120 /*ComputeFullInlineCost*/ true, 1121 /*EnableDeferral*/ true}; 1122 IndirectCallParams.DefaultThreshold = 1123 InlineConstants::IndirectCallThreshold; 1124 1125 InlineCostCallAnalyzer CA(*F, Call, IndirectCallParams, TTI, 1126 GetAssumptionCache, GetBFI, PSI, ORE, false, 1127 true); 1128 if (CA.analyze().isSuccess()) { 1129 increment(InlineCostFeatureIndex::NestedInlineCostEstimate, 1130 CA.getCost()); 1131 increment(InlineCostFeatureIndex::NestedInlines, 1); 1132 } 1133 } else { 1134 onCallPenalty(); 1135 } 1136 } 1137 1138 void onFinalizeSwitch(unsigned JumpTableSize, 1139 unsigned NumCaseCluster) override { 1140 1141 if (JumpTableSize) { 1142 int64_t JTCost = 1143 static_cast<int64_t>(JumpTableSize) * InlineConstants::InstrCost + 1144 JTCostMultiplier * InlineConstants::InstrCost; 1145 increment(InlineCostFeatureIndex::JumpTablePenalty, JTCost); 1146 return; 1147 } 1148 1149 if (NumCaseCluster <= 3) { 1150 increment(InlineCostFeatureIndex::CaseClusterPenalty, 1151 NumCaseCluster * CaseClusterCostMultiplier * 1152 InlineConstants::InstrCost); 1153 return; 1154 } 1155 1156 int64_t ExpectedNumberOfCompare = 1157 getExpectedNumberOfCompare(NumCaseCluster); 1158 1159 int64_t SwitchCost = ExpectedNumberOfCompare * SwitchCostMultiplier * 1160 InlineConstants::InstrCost; 1161 increment(InlineCostFeatureIndex::SwitchPenalty, SwitchCost); 1162 } 1163 1164 void onMissedSimplification() override { 1165 increment(InlineCostFeatureIndex::UnsimplifiedCommonInstructions, 1166 InlineConstants::InstrCost); 1167 } 1168 1169 void onInitializeSROAArg(AllocaInst *Arg) override { SROACosts[Arg] = 0; } 1170 void onAggregateSROAUse(AllocaInst *Arg) override { 1171 SROACosts.find(Arg)->second += InlineConstants::InstrCost; 1172 SROACostSavingOpportunities += InlineConstants::InstrCost; 1173 } 1174 1175 void onBlockAnalyzed(const BasicBlock *BB) override { 1176 if (BB->getTerminator()->getNumSuccessors() > 1) 1177 set(InlineCostFeatureIndex::IsMultipleBlocks, 1); 1178 Threshold -= SingleBBBonus; 1179 } 1180 1181 InlineResult finalizeAnalysis() override { 1182 auto *Caller = CandidateCall.getFunction(); 1183 if (Caller->hasMinSize()) { 1184 DominatorTree DT(F); 1185 LoopInfo LI(DT); 1186 for (Loop *L : LI) { 1187 // Ignore loops that will not be executed 1188 if (DeadBlocks.count(L->getHeader())) 1189 continue; 1190 increment(InlineCostFeatureIndex::NumLoops, 1191 InlineConstants::LoopPenalty); 1192 } 1193 } 1194 set(InlineCostFeatureIndex::DeadBlocks, DeadBlocks.size()); 1195 set(InlineCostFeatureIndex::SimplifiedInstructions, 1196 NumInstructionsSimplified); 1197 set(InlineCostFeatureIndex::ConstantArgs, NumConstantArgs); 1198 set(InlineCostFeatureIndex::ConstantOffsetPtrArgs, 1199 NumConstantOffsetPtrArgs); 1200 set(InlineCostFeatureIndex::SROASavings, SROACostSavingOpportunities); 1201 1202 if (NumVectorInstructions <= NumInstructions / 10) 1203 Threshold -= VectorBonus; 1204 else if (NumVectorInstructions <= NumInstructions / 2) 1205 Threshold -= VectorBonus / 2; 1206 1207 set(InlineCostFeatureIndex::Threshold, Threshold); 1208 1209 return InlineResult::success(); 1210 } 1211 1212 bool shouldStop() override { return false; } 1213 1214 void onLoadEliminationOpportunity() override { 1215 increment(InlineCostFeatureIndex::LoadElimination, 1); 1216 } 1217 1218 InlineResult onAnalysisStart() override { 1219 increment(InlineCostFeatureIndex::CallSiteCost, 1220 -1 * getCallsiteCost(this->CandidateCall, DL)); 1221 1222 set(InlineCostFeatureIndex::ColdCcPenalty, 1223 (F.getCallingConv() == CallingConv::Cold)); 1224 1225 // FIXME: we shouldn't repeat this logic in both the Features and Cost 1226 // analyzer - instead, we should abstract it to a common method in the 1227 // CallAnalyzer 1228 int SingleBBBonusPercent = 50; 1229 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1230 Threshold += TTI.adjustInliningThreshold(&CandidateCall); 1231 Threshold *= TTI.getInliningThresholdMultiplier(); 1232 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1233 VectorBonus = Threshold * VectorBonusPercent / 100; 1234 Threshold += (SingleBBBonus + VectorBonus); 1235 1236 return InlineResult::success(); 1237 } 1238 1239 public: 1240 InlineCostFeaturesAnalyzer( 1241 const TargetTransformInfo &TTI, 1242 function_ref<AssumptionCache &(Function &)> &GetAssumptionCache, 1243 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 1244 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, Function &Callee, 1245 CallBase &Call) 1246 : CallAnalyzer(Callee, Call, TTI, GetAssumptionCache, GetBFI, PSI) {} 1247 1248 const InlineCostFeatures &features() const { return Cost; } 1249 }; 1250 1251 } // namespace 1252 1253 /// Test whether the given value is an Alloca-derived function argument. 1254 bool CallAnalyzer::isAllocaDerivedArg(Value *V) { 1255 return SROAArgValues.count(V); 1256 } 1257 1258 void CallAnalyzer::disableSROAForArg(AllocaInst *SROAArg) { 1259 onDisableSROA(SROAArg); 1260 EnabledSROAAllocas.erase(SROAArg); 1261 disableLoadElimination(); 1262 } 1263 1264 void InlineCostAnnotationWriter::emitInstructionAnnot( 1265 const Instruction *I, formatted_raw_ostream &OS) { 1266 // The cost of inlining of the given instruction is printed always. 1267 // The threshold delta is printed only when it is non-zero. It happens 1268 // when we decided to give a bonus at a particular instruction. 1269 Optional<InstructionCostDetail> Record = ICCA->getCostDetails(I); 1270 if (!Record) 1271 OS << "; No analysis for the instruction"; 1272 else { 1273 OS << "; cost before = " << Record->CostBefore 1274 << ", cost after = " << Record->CostAfter 1275 << ", threshold before = " << Record->ThresholdBefore 1276 << ", threshold after = " << Record->ThresholdAfter << ", "; 1277 OS << "cost delta = " << Record->getCostDelta(); 1278 if (Record->hasThresholdChanged()) 1279 OS << ", threshold delta = " << Record->getThresholdDelta(); 1280 } 1281 auto C = ICCA->getSimplifiedValue(const_cast<Instruction *>(I)); 1282 if (C) { 1283 OS << ", simplified to "; 1284 C.getValue()->print(OS, true); 1285 } 1286 OS << "\n"; 1287 } 1288 1289 /// If 'V' maps to a SROA candidate, disable SROA for it. 1290 void CallAnalyzer::disableSROA(Value *V) { 1291 if (auto *SROAArg = getSROAArgForValueOrNull(V)) { 1292 disableSROAForArg(SROAArg); 1293 } 1294 } 1295 1296 void CallAnalyzer::disableLoadElimination() { 1297 if (EnableLoadElimination) { 1298 onDisableLoadElimination(); 1299 EnableLoadElimination = false; 1300 } 1301 } 1302 1303 /// Accumulate a constant GEP offset into an APInt if possible. 1304 /// 1305 /// Returns false if unable to compute the offset for any reason. Respects any 1306 /// simplified values known during the analysis of this callsite. 1307 bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { 1308 unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); 1309 assert(IntPtrWidth == Offset.getBitWidth()); 1310 1311 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1312 GTI != GTE; ++GTI) { 1313 ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); 1314 if (!OpC) 1315 if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) 1316 OpC = dyn_cast<ConstantInt>(SimpleOp); 1317 if (!OpC) 1318 return false; 1319 if (OpC->isZero()) 1320 continue; 1321 1322 // Handle a struct index, which adds its field offset to the pointer. 1323 if (StructType *STy = GTI.getStructTypeOrNull()) { 1324 unsigned ElementIdx = OpC->getZExtValue(); 1325 const StructLayout *SL = DL.getStructLayout(STy); 1326 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); 1327 continue; 1328 } 1329 1330 APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); 1331 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; 1332 } 1333 return true; 1334 } 1335 1336 /// Use TTI to check whether a GEP is free. 1337 /// 1338 /// Respects any simplified values known during the analysis of this callsite. 1339 bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { 1340 SmallVector<Value *, 4> Operands; 1341 Operands.push_back(GEP.getOperand(0)); 1342 for (const Use &Op : GEP.indices()) 1343 if (Constant *SimpleOp = SimplifiedValues.lookup(Op)) 1344 Operands.push_back(SimpleOp); 1345 else 1346 Operands.push_back(Op); 1347 return TTI.getUserCost(&GEP, Operands, 1348 TargetTransformInfo::TCK_SizeAndLatency) == 1349 TargetTransformInfo::TCC_Free; 1350 } 1351 1352 bool CallAnalyzer::visitAlloca(AllocaInst &I) { 1353 disableSROA(I.getOperand(0)); 1354 1355 // Check whether inlining will turn a dynamic alloca into a static 1356 // alloca and handle that case. 1357 if (I.isArrayAllocation()) { 1358 Constant *Size = SimplifiedValues.lookup(I.getArraySize()); 1359 if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { 1360 // Sometimes a dynamic alloca could be converted into a static alloca 1361 // after this constant prop, and become a huge static alloca on an 1362 // unconditional CFG path. Avoid inlining if this is going to happen above 1363 // a threshold. 1364 // FIXME: If the threshold is removed or lowered too much, we could end up 1365 // being too pessimistic and prevent inlining non-problematic code. This 1366 // could result in unintended perf regressions. A better overall strategy 1367 // is needed to track stack usage during inlining. 1368 Type *Ty = I.getAllocatedType(); 1369 AllocatedSize = SaturatingMultiplyAdd( 1370 AllocSize->getLimitedValue(), 1371 DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1372 if (AllocatedSize > InlineConstants::MaxSimplifiedDynamicAllocaToInline) 1373 HasDynamicAlloca = true; 1374 return false; 1375 } 1376 } 1377 1378 // Accumulate the allocated size. 1379 if (I.isStaticAlloca()) { 1380 Type *Ty = I.getAllocatedType(); 1381 AllocatedSize = 1382 SaturatingAdd(DL.getTypeAllocSize(Ty).getKnownMinSize(), AllocatedSize); 1383 } 1384 1385 // FIXME: This is overly conservative. Dynamic allocas are inefficient for 1386 // a variety of reasons, and so we would like to not inline them into 1387 // functions which don't currently have a dynamic alloca. This simply 1388 // disables inlining altogether in the presence of a dynamic alloca. 1389 if (!I.isStaticAlloca()) 1390 HasDynamicAlloca = true; 1391 1392 return false; 1393 } 1394 1395 bool CallAnalyzer::visitPHI(PHINode &I) { 1396 // FIXME: We need to propagate SROA *disabling* through phi nodes, even 1397 // though we don't want to propagate it's bonuses. The idea is to disable 1398 // SROA if it *might* be used in an inappropriate manner. 1399 1400 // Phi nodes are always zero-cost. 1401 // FIXME: Pointer sizes may differ between different address spaces, so do we 1402 // need to use correct address space in the call to getPointerSizeInBits here? 1403 // Or could we skip the getPointerSizeInBits call completely? As far as I can 1404 // see the ZeroOffset is used as a dummy value, so we can probably use any 1405 // bit width for the ZeroOffset? 1406 APInt ZeroOffset = APInt::getZero(DL.getPointerSizeInBits(0)); 1407 bool CheckSROA = I.getType()->isPointerTy(); 1408 1409 // Track the constant or pointer with constant offset we've seen so far. 1410 Constant *FirstC = nullptr; 1411 std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; 1412 Value *FirstV = nullptr; 1413 1414 for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { 1415 BasicBlock *Pred = I.getIncomingBlock(i); 1416 // If the incoming block is dead, skip the incoming block. 1417 if (DeadBlocks.count(Pred)) 1418 continue; 1419 // If the parent block of phi is not the known successor of the incoming 1420 // block, skip the incoming block. 1421 BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; 1422 if (KnownSuccessor && KnownSuccessor != I.getParent()) 1423 continue; 1424 1425 Value *V = I.getIncomingValue(i); 1426 // If the incoming value is this phi itself, skip the incoming value. 1427 if (&I == V) 1428 continue; 1429 1430 Constant *C = dyn_cast<Constant>(V); 1431 if (!C) 1432 C = SimplifiedValues.lookup(V); 1433 1434 std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; 1435 if (!C && CheckSROA) 1436 BaseAndOffset = ConstantOffsetPtrs.lookup(V); 1437 1438 if (!C && !BaseAndOffset.first) 1439 // The incoming value is neither a constant nor a pointer with constant 1440 // offset, exit early. 1441 return true; 1442 1443 if (FirstC) { 1444 if (FirstC == C) 1445 // If we've seen a constant incoming value before and it is the same 1446 // constant we see this time, continue checking the next incoming value. 1447 continue; 1448 // Otherwise early exit because we either see a different constant or saw 1449 // a constant before but we have a pointer with constant offset this time. 1450 return true; 1451 } 1452 1453 if (FirstV) { 1454 // The same logic as above, but check pointer with constant offset here. 1455 if (FirstBaseAndOffset == BaseAndOffset) 1456 continue; 1457 return true; 1458 } 1459 1460 if (C) { 1461 // This is the 1st time we've seen a constant, record it. 1462 FirstC = C; 1463 continue; 1464 } 1465 1466 // The remaining case is that this is the 1st time we've seen a pointer with 1467 // constant offset, record it. 1468 FirstV = V; 1469 FirstBaseAndOffset = BaseAndOffset; 1470 } 1471 1472 // Check if we can map phi to a constant. 1473 if (FirstC) { 1474 SimplifiedValues[&I] = FirstC; 1475 return true; 1476 } 1477 1478 // Check if we can map phi to a pointer with constant offset. 1479 if (FirstBaseAndOffset.first) { 1480 ConstantOffsetPtrs[&I] = FirstBaseAndOffset; 1481 1482 if (auto *SROAArg = getSROAArgForValueOrNull(FirstV)) 1483 SROAArgValues[&I] = SROAArg; 1484 } 1485 1486 return true; 1487 } 1488 1489 /// Check we can fold GEPs of constant-offset call site argument pointers. 1490 /// This requires target data and inbounds GEPs. 1491 /// 1492 /// \return true if the specified GEP can be folded. 1493 bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { 1494 // Check if we have a base + offset for the pointer. 1495 std::pair<Value *, APInt> BaseAndOffset = 1496 ConstantOffsetPtrs.lookup(I.getPointerOperand()); 1497 if (!BaseAndOffset.first) 1498 return false; 1499 1500 // Check if the offset of this GEP is constant, and if so accumulate it 1501 // into Offset. 1502 if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) 1503 return false; 1504 1505 // Add the result as a new mapping to Base + Offset. 1506 ConstantOffsetPtrs[&I] = BaseAndOffset; 1507 1508 return true; 1509 } 1510 1511 bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { 1512 auto *SROAArg = getSROAArgForValueOrNull(I.getPointerOperand()); 1513 1514 // Lambda to check whether a GEP's indices are all constant. 1515 auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { 1516 for (const Use &Op : GEP.indices()) 1517 if (!isa<Constant>(Op) && !SimplifiedValues.lookup(Op)) 1518 return false; 1519 return true; 1520 }; 1521 1522 if (!DisableGEPConstOperand) 1523 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1524 SmallVector<Constant *, 2> Indices; 1525 for (unsigned int Index = 1; Index < COps.size(); ++Index) 1526 Indices.push_back(COps[Index]); 1527 return ConstantExpr::getGetElementPtr( 1528 I.getSourceElementType(), COps[0], Indices, I.isInBounds()); 1529 })) 1530 return true; 1531 1532 if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { 1533 if (SROAArg) 1534 SROAArgValues[&I] = SROAArg; 1535 1536 // Constant GEPs are modeled as free. 1537 return true; 1538 } 1539 1540 // Variable GEPs will require math and will disable SROA. 1541 if (SROAArg) 1542 disableSROAForArg(SROAArg); 1543 return isGEPFree(I); 1544 } 1545 1546 /// Simplify \p I if its operands are constants and update SimplifiedValues. 1547 /// \p Evaluate is a callable specific to instruction type that evaluates the 1548 /// instruction when all the operands are constants. 1549 template <typename Callable> 1550 bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { 1551 SmallVector<Constant *, 2> COps; 1552 for (Value *Op : I.operands()) { 1553 Constant *COp = dyn_cast<Constant>(Op); 1554 if (!COp) 1555 COp = SimplifiedValues.lookup(Op); 1556 if (!COp) 1557 return false; 1558 COps.push_back(COp); 1559 } 1560 auto *C = Evaluate(COps); 1561 if (!C) 1562 return false; 1563 SimplifiedValues[&I] = C; 1564 return true; 1565 } 1566 1567 /// Try to simplify a call to llvm.is.constant. 1568 /// 1569 /// Duplicate the argument checking from CallAnalyzer::simplifyCallSite since 1570 /// we expect calls of this specific intrinsic to be infrequent. 1571 /// 1572 /// FIXME: Given that we know CB's parent (F) caller 1573 /// (CandidateCall->getParent()->getParent()), we might be able to determine 1574 /// whether inlining F into F's caller would change how the call to 1575 /// llvm.is.constant would evaluate. 1576 bool CallAnalyzer::simplifyIntrinsicCallIsConstant(CallBase &CB) { 1577 Value *Arg = CB.getArgOperand(0); 1578 auto *C = dyn_cast<Constant>(Arg); 1579 1580 if (!C) 1581 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(Arg)); 1582 1583 Type *RT = CB.getFunctionType()->getReturnType(); 1584 SimplifiedValues[&CB] = ConstantInt::get(RT, C ? 1 : 0); 1585 return true; 1586 } 1587 1588 bool CallAnalyzer::visitBitCast(BitCastInst &I) { 1589 // Propagate constants through bitcasts. 1590 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1591 return ConstantExpr::getBitCast(COps[0], I.getType()); 1592 })) 1593 return true; 1594 1595 // Track base/offsets through casts 1596 std::pair<Value *, APInt> BaseAndOffset = 1597 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1598 // Casts don't change the offset, just wrap it up. 1599 if (BaseAndOffset.first) 1600 ConstantOffsetPtrs[&I] = BaseAndOffset; 1601 1602 // Also look for SROA candidates here. 1603 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1604 SROAArgValues[&I] = SROAArg; 1605 1606 // Bitcasts are always zero cost. 1607 return true; 1608 } 1609 1610 bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { 1611 // Propagate constants through ptrtoint. 1612 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1613 return ConstantExpr::getPtrToInt(COps[0], I.getType()); 1614 })) 1615 return true; 1616 1617 // Track base/offset pairs when converted to a plain integer provided the 1618 // integer is large enough to represent the pointer. 1619 unsigned IntegerSize = I.getType()->getScalarSizeInBits(); 1620 unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); 1621 if (IntegerSize == DL.getPointerSizeInBits(AS)) { 1622 std::pair<Value *, APInt> BaseAndOffset = 1623 ConstantOffsetPtrs.lookup(I.getOperand(0)); 1624 if (BaseAndOffset.first) 1625 ConstantOffsetPtrs[&I] = BaseAndOffset; 1626 } 1627 1628 // This is really weird. Technically, ptrtoint will disable SROA. However, 1629 // unless that ptrtoint is *used* somewhere in the live basic blocks after 1630 // inlining, it will be nuked, and SROA should proceed. All of the uses which 1631 // would block SROA would also block SROA if applied directly to a pointer, 1632 // and so we can just add the integer in here. The only places where SROA is 1633 // preserved either cannot fire on an integer, or won't in-and-of themselves 1634 // disable SROA (ext) w/o some later use that we would see and disable. 1635 if (auto *SROAArg = getSROAArgForValueOrNull(I.getOperand(0))) 1636 SROAArgValues[&I] = SROAArg; 1637 1638 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1639 TargetTransformInfo::TCC_Free; 1640 } 1641 1642 bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { 1643 // Propagate constants through ptrtoint. 1644 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1645 return ConstantExpr::getIntToPtr(COps[0], I.getType()); 1646 })) 1647 return true; 1648 1649 // Track base/offset pairs when round-tripped through a pointer without 1650 // modifications provided the integer is not too large. 1651 Value *Op = I.getOperand(0); 1652 unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); 1653 if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { 1654 std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); 1655 if (BaseAndOffset.first) 1656 ConstantOffsetPtrs[&I] = BaseAndOffset; 1657 } 1658 1659 // "Propagate" SROA here in the same manner as we do for ptrtoint above. 1660 if (auto *SROAArg = getSROAArgForValueOrNull(Op)) 1661 SROAArgValues[&I] = SROAArg; 1662 1663 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1664 TargetTransformInfo::TCC_Free; 1665 } 1666 1667 bool CallAnalyzer::visitCastInst(CastInst &I) { 1668 // Propagate constants through casts. 1669 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1670 return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); 1671 })) 1672 return true; 1673 1674 // Disable SROA in the face of arbitrary casts we don't explicitly list 1675 // elsewhere. 1676 disableSROA(I.getOperand(0)); 1677 1678 // If this is a floating-point cast, and the target says this operation 1679 // is expensive, this may eventually become a library call. Treat the cost 1680 // as such. 1681 switch (I.getOpcode()) { 1682 case Instruction::FPTrunc: 1683 case Instruction::FPExt: 1684 case Instruction::UIToFP: 1685 case Instruction::SIToFP: 1686 case Instruction::FPToUI: 1687 case Instruction::FPToSI: 1688 if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) 1689 onCallPenalty(); 1690 break; 1691 default: 1692 break; 1693 } 1694 1695 return TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1696 TargetTransformInfo::TCC_Free; 1697 } 1698 1699 bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { 1700 return CandidateCall.paramHasAttr(A->getArgNo(), Attr); 1701 } 1702 1703 bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { 1704 // Does the *call site* have the NonNull attribute set on an argument? We 1705 // use the attribute on the call site to memoize any analysis done in the 1706 // caller. This will also trip if the callee function has a non-null 1707 // parameter attribute, but that's a less interesting case because hopefully 1708 // the callee would already have been simplified based on that. 1709 if (Argument *A = dyn_cast<Argument>(V)) 1710 if (paramHasAttr(A, Attribute::NonNull)) 1711 return true; 1712 1713 // Is this an alloca in the caller? This is distinct from the attribute case 1714 // above because attributes aren't updated within the inliner itself and we 1715 // always want to catch the alloca derived case. 1716 if (isAllocaDerivedArg(V)) 1717 // We can actually predict the result of comparisons between an 1718 // alloca-derived value and null. Note that this fires regardless of 1719 // SROA firing. 1720 return true; 1721 1722 return false; 1723 } 1724 1725 bool CallAnalyzer::allowSizeGrowth(CallBase &Call) { 1726 // If the normal destination of the invoke or the parent block of the call 1727 // site is unreachable-terminated, there is little point in inlining this 1728 // unless there is literally zero cost. 1729 // FIXME: Note that it is possible that an unreachable-terminated block has a 1730 // hot entry. For example, in below scenario inlining hot_call_X() may be 1731 // beneficial : 1732 // main() { 1733 // hot_call_1(); 1734 // ... 1735 // hot_call_N() 1736 // exit(0); 1737 // } 1738 // For now, we are not handling this corner case here as it is rare in real 1739 // code. In future, we should elaborate this based on BPI and BFI in more 1740 // general threshold adjusting heuristics in updateThreshold(). 1741 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) { 1742 if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) 1743 return false; 1744 } else if (isa<UnreachableInst>(Call.getParent()->getTerminator())) 1745 return false; 1746 1747 return true; 1748 } 1749 1750 bool InlineCostCallAnalyzer::isColdCallSite(CallBase &Call, 1751 BlockFrequencyInfo *CallerBFI) { 1752 // If global profile summary is available, then callsite's coldness is 1753 // determined based on that. 1754 if (PSI && PSI->hasProfileSummary()) 1755 return PSI->isColdCallSite(Call, CallerBFI); 1756 1757 // Otherwise we need BFI to be available. 1758 if (!CallerBFI) 1759 return false; 1760 1761 // Determine if the callsite is cold relative to caller's entry. We could 1762 // potentially cache the computation of scaled entry frequency, but the added 1763 // complexity is not worth it unless this scaling shows up high in the 1764 // profiles. 1765 const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); 1766 auto CallSiteBB = Call.getParent(); 1767 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); 1768 auto CallerEntryFreq = 1769 CallerBFI->getBlockFreq(&(Call.getCaller()->getEntryBlock())); 1770 return CallSiteFreq < CallerEntryFreq * ColdProb; 1771 } 1772 1773 Optional<int> 1774 InlineCostCallAnalyzer::getHotCallSiteThreshold(CallBase &Call, 1775 BlockFrequencyInfo *CallerBFI) { 1776 1777 // If global profile summary is available, then callsite's hotness is 1778 // determined based on that. 1779 if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(Call, CallerBFI)) 1780 return Params.HotCallSiteThreshold; 1781 1782 // Otherwise we need BFI to be available and to have a locally hot callsite 1783 // threshold. 1784 if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) 1785 return None; 1786 1787 // Determine if the callsite is hot relative to caller's entry. We could 1788 // potentially cache the computation of scaled entry frequency, but the added 1789 // complexity is not worth it unless this scaling shows up high in the 1790 // profiles. 1791 auto CallSiteBB = Call.getParent(); 1792 auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); 1793 auto CallerEntryFreq = CallerBFI->getEntryFreq(); 1794 if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) 1795 return Params.LocallyHotCallSiteThreshold; 1796 1797 // Otherwise treat it normally. 1798 return None; 1799 } 1800 1801 void InlineCostCallAnalyzer::updateThreshold(CallBase &Call, Function &Callee) { 1802 // If no size growth is allowed for this inlining, set Threshold to 0. 1803 if (!allowSizeGrowth(Call)) { 1804 Threshold = 0; 1805 return; 1806 } 1807 1808 Function *Caller = Call.getCaller(); 1809 1810 // return min(A, B) if B is valid. 1811 auto MinIfValid = [](int A, Optional<int> B) { 1812 return B ? std::min(A, B.getValue()) : A; 1813 }; 1814 1815 // return max(A, B) if B is valid. 1816 auto MaxIfValid = [](int A, Optional<int> B) { 1817 return B ? std::max(A, B.getValue()) : A; 1818 }; 1819 1820 // Various bonus percentages. These are multiplied by Threshold to get the 1821 // bonus values. 1822 // SingleBBBonus: This bonus is applied if the callee has a single reachable 1823 // basic block at the given callsite context. This is speculatively applied 1824 // and withdrawn if more than one basic block is seen. 1825 // 1826 // LstCallToStaticBonus: This large bonus is applied to ensure the inlining 1827 // of the last call to a static function as inlining such functions is 1828 // guaranteed to reduce code size. 1829 // 1830 // These bonus percentages may be set to 0 based on properties of the caller 1831 // and the callsite. 1832 int SingleBBBonusPercent = 50; 1833 int VectorBonusPercent = TTI.getInlinerVectorBonusPercent(); 1834 int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; 1835 1836 // Lambda to set all the above bonus and bonus percentages to 0. 1837 auto DisallowAllBonuses = [&]() { 1838 SingleBBBonusPercent = 0; 1839 VectorBonusPercent = 0; 1840 LastCallToStaticBonus = 0; 1841 }; 1842 1843 // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available 1844 // and reduce the threshold if the caller has the necessary attribute. 1845 if (Caller->hasMinSize()) { 1846 Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); 1847 // For minsize, we want to disable the single BB bonus and the vector 1848 // bonuses, but not the last-call-to-static bonus. Inlining the last call to 1849 // a static function will, at the minimum, eliminate the parameter setup and 1850 // call/return instructions. 1851 SingleBBBonusPercent = 0; 1852 VectorBonusPercent = 0; 1853 } else if (Caller->hasOptSize()) 1854 Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); 1855 1856 // Adjust the threshold based on inlinehint attribute and profile based 1857 // hotness information if the caller does not have MinSize attribute. 1858 if (!Caller->hasMinSize()) { 1859 if (Callee.hasFnAttribute(Attribute::InlineHint)) 1860 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1861 1862 // FIXME: After switching to the new passmanager, simplify the logic below 1863 // by checking only the callsite hotness/coldness as we will reliably 1864 // have local profile information. 1865 // 1866 // Callsite hotness and coldness can be determined if sample profile is 1867 // used (which adds hotness metadata to calls) or if caller's 1868 // BlockFrequencyInfo is available. 1869 BlockFrequencyInfo *CallerBFI = GetBFI ? &(GetBFI(*Caller)) : nullptr; 1870 auto HotCallSiteThreshold = getHotCallSiteThreshold(Call, CallerBFI); 1871 if (!Caller->hasOptSize() && HotCallSiteThreshold) { 1872 LLVM_DEBUG(dbgs() << "Hot callsite.\n"); 1873 // FIXME: This should update the threshold only if it exceeds the 1874 // current threshold, but AutoFDO + ThinLTO currently relies on this 1875 // behavior to prevent inlining of hot callsites during ThinLTO 1876 // compile phase. 1877 Threshold = HotCallSiteThreshold.getValue(); 1878 } else if (isColdCallSite(Call, CallerBFI)) { 1879 LLVM_DEBUG(dbgs() << "Cold callsite.\n"); 1880 // Do not apply bonuses for a cold callsite including the 1881 // LastCallToStatic bonus. While this bonus might result in code size 1882 // reduction, it can cause the size of a non-cold caller to increase 1883 // preventing it from being inlined. 1884 DisallowAllBonuses(); 1885 Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); 1886 } else if (PSI) { 1887 // Use callee's global profile information only if we have no way of 1888 // determining this via callsite information. 1889 if (PSI->isFunctionEntryHot(&Callee)) { 1890 LLVM_DEBUG(dbgs() << "Hot callee.\n"); 1891 // If callsite hotness can not be determined, we may still know 1892 // that the callee is hot and treat it as a weaker hint for threshold 1893 // increase. 1894 Threshold = MaxIfValid(Threshold, Params.HintThreshold); 1895 } else if (PSI->isFunctionEntryCold(&Callee)) { 1896 LLVM_DEBUG(dbgs() << "Cold callee.\n"); 1897 // Do not apply bonuses for a cold callee including the 1898 // LastCallToStatic bonus. While this bonus might result in code size 1899 // reduction, it can cause the size of a non-cold caller to increase 1900 // preventing it from being inlined. 1901 DisallowAllBonuses(); 1902 Threshold = MinIfValid(Threshold, Params.ColdThreshold); 1903 } 1904 } 1905 } 1906 1907 Threshold += TTI.adjustInliningThreshold(&Call); 1908 1909 // Finally, take the target-specific inlining threshold multiplier into 1910 // account. 1911 Threshold *= TTI.getInliningThresholdMultiplier(); 1912 1913 SingleBBBonus = Threshold * SingleBBBonusPercent / 100; 1914 VectorBonus = Threshold * VectorBonusPercent / 100; 1915 1916 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 1917 &F == Call.getCalledFunction(); 1918 // If there is only one call of the function, and it has internal linkage, 1919 // the cost of inlining it drops dramatically. It may seem odd to update 1920 // Cost in updateThreshold, but the bonus depends on the logic in this method. 1921 if (OnlyOneCallAndLocalLinkage) 1922 Cost -= LastCallToStaticBonus; 1923 } 1924 1925 bool CallAnalyzer::visitCmpInst(CmpInst &I) { 1926 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1927 // First try to handle simplified comparisons. 1928 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 1929 return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); 1930 })) 1931 return true; 1932 1933 if (I.getOpcode() == Instruction::FCmp) 1934 return false; 1935 1936 // Otherwise look for a comparison between constant offset pointers with 1937 // a common base. 1938 Value *LHSBase, *RHSBase; 1939 APInt LHSOffset, RHSOffset; 1940 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1941 if (LHSBase) { 1942 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1943 if (RHSBase && LHSBase == RHSBase) { 1944 // We have common bases, fold the icmp to a constant based on the 1945 // offsets. 1946 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1947 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1948 if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { 1949 SimplifiedValues[&I] = C; 1950 ++NumConstantPtrCmps; 1951 return true; 1952 } 1953 } 1954 } 1955 1956 // If the comparison is an equality comparison with null, we can simplify it 1957 // if we know the value (argument) can't be null 1958 if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && 1959 isKnownNonNullInCallee(I.getOperand(0))) { 1960 bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; 1961 SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) 1962 : ConstantInt::getFalse(I.getType()); 1963 return true; 1964 } 1965 return handleSROA(I.getOperand(0), isa<ConstantPointerNull>(I.getOperand(1))); 1966 } 1967 1968 bool CallAnalyzer::visitSub(BinaryOperator &I) { 1969 // Try to handle a special case: we can fold computing the difference of two 1970 // constant-related pointers. 1971 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1972 Value *LHSBase, *RHSBase; 1973 APInt LHSOffset, RHSOffset; 1974 std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); 1975 if (LHSBase) { 1976 std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); 1977 if (RHSBase && LHSBase == RHSBase) { 1978 // We have common bases, fold the subtract to a constant based on the 1979 // offsets. 1980 Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); 1981 Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); 1982 if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { 1983 SimplifiedValues[&I] = C; 1984 ++NumConstantPtrDiffs; 1985 return true; 1986 } 1987 } 1988 } 1989 1990 // Otherwise, fall back to the generic logic for simplifying and handling 1991 // instructions. 1992 return Base::visitSub(I); 1993 } 1994 1995 bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { 1996 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1997 Constant *CLHS = dyn_cast<Constant>(LHS); 1998 if (!CLHS) 1999 CLHS = SimplifiedValues.lookup(LHS); 2000 Constant *CRHS = dyn_cast<Constant>(RHS); 2001 if (!CRHS) 2002 CRHS = SimplifiedValues.lookup(RHS); 2003 2004 Value *SimpleV = nullptr; 2005 if (auto FI = dyn_cast<FPMathOperator>(&I)) 2006 SimpleV = SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, 2007 FI->getFastMathFlags(), DL); 2008 else 2009 SimpleV = 2010 SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); 2011 2012 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2013 SimplifiedValues[&I] = C; 2014 2015 if (SimpleV) 2016 return true; 2017 2018 // Disable any SROA on arguments to arbitrary, unsimplified binary operators. 2019 disableSROA(LHS); 2020 disableSROA(RHS); 2021 2022 // If the instruction is floating point, and the target says this operation 2023 // is expensive, this may eventually become a library call. Treat the cost 2024 // as such. Unless it's fneg which can be implemented with an xor. 2025 using namespace llvm::PatternMatch; 2026 if (I.getType()->isFloatingPointTy() && 2027 TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive && 2028 !match(&I, m_FNeg(m_Value()))) 2029 onCallPenalty(); 2030 2031 return false; 2032 } 2033 2034 bool CallAnalyzer::visitFNeg(UnaryOperator &I) { 2035 Value *Op = I.getOperand(0); 2036 Constant *COp = dyn_cast<Constant>(Op); 2037 if (!COp) 2038 COp = SimplifiedValues.lookup(Op); 2039 2040 Value *SimpleV = SimplifyFNegInst( 2041 COp ? COp : Op, cast<FPMathOperator>(I).getFastMathFlags(), DL); 2042 2043 if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) 2044 SimplifiedValues[&I] = C; 2045 2046 if (SimpleV) 2047 return true; 2048 2049 // Disable any SROA on arguments to arbitrary, unsimplified fneg. 2050 disableSROA(Op); 2051 2052 return false; 2053 } 2054 2055 bool CallAnalyzer::visitLoad(LoadInst &I) { 2056 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2057 return true; 2058 2059 // If the data is already loaded from this address and hasn't been clobbered 2060 // by any stores or calls, this load is likely to be redundant and can be 2061 // eliminated. 2062 if (EnableLoadElimination && 2063 !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { 2064 onLoadEliminationOpportunity(); 2065 return true; 2066 } 2067 2068 return false; 2069 } 2070 2071 bool CallAnalyzer::visitStore(StoreInst &I) { 2072 if (handleSROA(I.getPointerOperand(), I.isSimple())) 2073 return true; 2074 2075 // The store can potentially clobber loads and prevent repeated loads from 2076 // being eliminated. 2077 // FIXME: 2078 // 1. We can probably keep an initial set of eliminatable loads substracted 2079 // from the cost even when we finally see a store. We just need to disable 2080 // *further* accumulation of elimination savings. 2081 // 2. We should probably at some point thread MemorySSA for the callee into 2082 // this and then use that to actually compute *really* precise savings. 2083 disableLoadElimination(); 2084 return false; 2085 } 2086 2087 bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { 2088 // Constant folding for extract value is trivial. 2089 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2090 return ConstantExpr::getExtractValue(COps[0], I.getIndices()); 2091 })) 2092 return true; 2093 2094 // SROA can't look through these, but they may be free. 2095 return Base::visitExtractValue(I); 2096 } 2097 2098 bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { 2099 // Constant folding for insert value is trivial. 2100 if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { 2101 return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], 2102 /*InsertedValueOperand*/ COps[1], 2103 I.getIndices()); 2104 })) 2105 return true; 2106 2107 // SROA can't look through these, but they may be free. 2108 return Base::visitInsertValue(I); 2109 } 2110 2111 /// Try to simplify a call site. 2112 /// 2113 /// Takes a concrete function and callsite and tries to actually simplify it by 2114 /// analyzing the arguments and call itself with instsimplify. Returns true if 2115 /// it has simplified the callsite to some other entity (a constant), making it 2116 /// free. 2117 bool CallAnalyzer::simplifyCallSite(Function *F, CallBase &Call) { 2118 // FIXME: Using the instsimplify logic directly for this is inefficient 2119 // because we have to continually rebuild the argument list even when no 2120 // simplifications can be performed. Until that is fixed with remapping 2121 // inside of instsimplify, directly constant fold calls here. 2122 if (!canConstantFoldCallTo(&Call, F)) 2123 return false; 2124 2125 // Try to re-map the arguments to constants. 2126 SmallVector<Constant *, 4> ConstantArgs; 2127 ConstantArgs.reserve(Call.arg_size()); 2128 for (Value *I : Call.args()) { 2129 Constant *C = dyn_cast<Constant>(I); 2130 if (!C) 2131 C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(I)); 2132 if (!C) 2133 return false; // This argument doesn't map to a constant. 2134 2135 ConstantArgs.push_back(C); 2136 } 2137 if (Constant *C = ConstantFoldCall(&Call, F, ConstantArgs)) { 2138 SimplifiedValues[&Call] = C; 2139 return true; 2140 } 2141 2142 return false; 2143 } 2144 2145 bool CallAnalyzer::visitCallBase(CallBase &Call) { 2146 if (!onCallBaseVisitStart(Call)) 2147 return true; 2148 2149 if (Call.hasFnAttr(Attribute::ReturnsTwice) && 2150 !F.hasFnAttribute(Attribute::ReturnsTwice)) { 2151 // This aborts the entire analysis. 2152 ExposesReturnsTwice = true; 2153 return false; 2154 } 2155 if (isa<CallInst>(Call) && cast<CallInst>(Call).cannotDuplicate()) 2156 ContainsNoDuplicateCall = true; 2157 2158 Value *Callee = Call.getCalledOperand(); 2159 Function *F = dyn_cast_or_null<Function>(Callee); 2160 bool IsIndirectCall = !F; 2161 if (IsIndirectCall) { 2162 // Check if this happens to be an indirect function call to a known function 2163 // in this inline context. If not, we've done all we can. 2164 F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); 2165 if (!F) { 2166 onCallArgumentSetup(Call); 2167 2168 if (!Call.onlyReadsMemory()) 2169 disableLoadElimination(); 2170 return Base::visitCallBase(Call); 2171 } 2172 } 2173 2174 assert(F && "Expected a call to a known function"); 2175 2176 // When we have a concrete function, first try to simplify it directly. 2177 if (simplifyCallSite(F, Call)) 2178 return true; 2179 2180 // Next check if it is an intrinsic we know about. 2181 // FIXME: Lift this into part of the InstVisitor. 2182 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Call)) { 2183 switch (II->getIntrinsicID()) { 2184 default: 2185 if (!Call.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) 2186 disableLoadElimination(); 2187 return Base::visitCallBase(Call); 2188 2189 case Intrinsic::load_relative: 2190 onLoadRelativeIntrinsic(); 2191 return false; 2192 2193 case Intrinsic::memset: 2194 case Intrinsic::memcpy: 2195 case Intrinsic::memmove: 2196 disableLoadElimination(); 2197 // SROA can usually chew through these intrinsics, but they aren't free. 2198 return false; 2199 case Intrinsic::icall_branch_funnel: 2200 case Intrinsic::localescape: 2201 HasUninlineableIntrinsic = true; 2202 return false; 2203 case Intrinsic::vastart: 2204 InitsVargArgs = true; 2205 return false; 2206 case Intrinsic::launder_invariant_group: 2207 case Intrinsic::strip_invariant_group: 2208 if (auto *SROAArg = getSROAArgForValueOrNull(II->getOperand(0))) 2209 SROAArgValues[II] = SROAArg; 2210 return true; 2211 case Intrinsic::is_constant: 2212 return simplifyIntrinsicCallIsConstant(Call); 2213 } 2214 } 2215 2216 if (F == Call.getFunction()) { 2217 // This flag will fully abort the analysis, so don't bother with anything 2218 // else. 2219 IsRecursiveCall = true; 2220 if (!AllowRecursiveCall) 2221 return false; 2222 } 2223 2224 if (TTI.isLoweredToCall(F)) { 2225 onLoweredCall(F, Call, IsIndirectCall); 2226 } 2227 2228 if (!(Call.onlyReadsMemory() || (IsIndirectCall && F->onlyReadsMemory()))) 2229 disableLoadElimination(); 2230 return Base::visitCallBase(Call); 2231 } 2232 2233 bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { 2234 // At least one return instruction will be free after inlining. 2235 bool Free = !HasReturn; 2236 HasReturn = true; 2237 return Free; 2238 } 2239 2240 bool CallAnalyzer::visitBranchInst(BranchInst &BI) { 2241 // We model unconditional branches as essentially free -- they really 2242 // shouldn't exist at all, but handling them makes the behavior of the 2243 // inliner more regular and predictable. Interestingly, conditional branches 2244 // which will fold away are also free. 2245 return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || 2246 isa_and_nonnull<ConstantInt>( 2247 SimplifiedValues.lookup(BI.getCondition())); 2248 } 2249 2250 bool CallAnalyzer::visitSelectInst(SelectInst &SI) { 2251 bool CheckSROA = SI.getType()->isPointerTy(); 2252 Value *TrueVal = SI.getTrueValue(); 2253 Value *FalseVal = SI.getFalseValue(); 2254 2255 Constant *TrueC = dyn_cast<Constant>(TrueVal); 2256 if (!TrueC) 2257 TrueC = SimplifiedValues.lookup(TrueVal); 2258 Constant *FalseC = dyn_cast<Constant>(FalseVal); 2259 if (!FalseC) 2260 FalseC = SimplifiedValues.lookup(FalseVal); 2261 Constant *CondC = 2262 dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); 2263 2264 if (!CondC) { 2265 // Select C, X, X => X 2266 if (TrueC == FalseC && TrueC) { 2267 SimplifiedValues[&SI] = TrueC; 2268 return true; 2269 } 2270 2271 if (!CheckSROA) 2272 return Base::visitSelectInst(SI); 2273 2274 std::pair<Value *, APInt> TrueBaseAndOffset = 2275 ConstantOffsetPtrs.lookup(TrueVal); 2276 std::pair<Value *, APInt> FalseBaseAndOffset = 2277 ConstantOffsetPtrs.lookup(FalseVal); 2278 if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { 2279 ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; 2280 2281 if (auto *SROAArg = getSROAArgForValueOrNull(TrueVal)) 2282 SROAArgValues[&SI] = SROAArg; 2283 return true; 2284 } 2285 2286 return Base::visitSelectInst(SI); 2287 } 2288 2289 // Select condition is a constant. 2290 Value *SelectedV = CondC->isAllOnesValue() ? TrueVal 2291 : (CondC->isNullValue()) ? FalseVal 2292 : nullptr; 2293 if (!SelectedV) { 2294 // Condition is a vector constant that is not all 1s or all 0s. If all 2295 // operands are constants, ConstantExpr::getSelect() can handle the cases 2296 // such as select vectors. 2297 if (TrueC && FalseC) { 2298 if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { 2299 SimplifiedValues[&SI] = C; 2300 return true; 2301 } 2302 } 2303 return Base::visitSelectInst(SI); 2304 } 2305 2306 // Condition is either all 1s or all 0s. SI can be simplified. 2307 if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { 2308 SimplifiedValues[&SI] = SelectedC; 2309 return true; 2310 } 2311 2312 if (!CheckSROA) 2313 return true; 2314 2315 std::pair<Value *, APInt> BaseAndOffset = 2316 ConstantOffsetPtrs.lookup(SelectedV); 2317 if (BaseAndOffset.first) { 2318 ConstantOffsetPtrs[&SI] = BaseAndOffset; 2319 2320 if (auto *SROAArg = getSROAArgForValueOrNull(SelectedV)) 2321 SROAArgValues[&SI] = SROAArg; 2322 } 2323 2324 return true; 2325 } 2326 2327 bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { 2328 // We model unconditional switches as free, see the comments on handling 2329 // branches. 2330 if (isa<ConstantInt>(SI.getCondition())) 2331 return true; 2332 if (Value *V = SimplifiedValues.lookup(SI.getCondition())) 2333 if (isa<ConstantInt>(V)) 2334 return true; 2335 2336 // Assume the most general case where the switch is lowered into 2337 // either a jump table, bit test, or a balanced binary tree consisting of 2338 // case clusters without merging adjacent clusters with the same 2339 // destination. We do not consider the switches that are lowered with a mix 2340 // of jump table/bit test/binary search tree. The cost of the switch is 2341 // proportional to the size of the tree or the size of jump table range. 2342 // 2343 // NB: We convert large switches which are just used to initialize large phi 2344 // nodes to lookup tables instead in simplifycfg, so this shouldn't prevent 2345 // inlining those. It will prevent inlining in cases where the optimization 2346 // does not (yet) fire. 2347 2348 unsigned JumpTableSize = 0; 2349 BlockFrequencyInfo *BFI = GetBFI ? &(GetBFI(F)) : nullptr; 2350 unsigned NumCaseCluster = 2351 TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize, PSI, BFI); 2352 2353 onFinalizeSwitch(JumpTableSize, NumCaseCluster); 2354 return false; 2355 } 2356 2357 bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { 2358 // We never want to inline functions that contain an indirectbr. This is 2359 // incorrect because all the blockaddress's (in static global initializers 2360 // for example) would be referring to the original function, and this 2361 // indirect jump would jump from the inlined copy of the function into the 2362 // original function which is extremely undefined behavior. 2363 // FIXME: This logic isn't really right; we can safely inline functions with 2364 // indirectbr's as long as no other function or global references the 2365 // blockaddress of a block within the current function. 2366 HasIndirectBr = true; 2367 return false; 2368 } 2369 2370 bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { 2371 // FIXME: It's not clear that a single instruction is an accurate model for 2372 // the inline cost of a resume instruction. 2373 return false; 2374 } 2375 2376 bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { 2377 // FIXME: It's not clear that a single instruction is an accurate model for 2378 // the inline cost of a cleanupret instruction. 2379 return false; 2380 } 2381 2382 bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { 2383 // FIXME: It's not clear that a single instruction is an accurate model for 2384 // the inline cost of a catchret instruction. 2385 return false; 2386 } 2387 2388 bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { 2389 // FIXME: It might be reasonably to discount the cost of instructions leading 2390 // to unreachable as they have the lowest possible impact on both runtime and 2391 // code size. 2392 return true; // No actual code is needed for unreachable. 2393 } 2394 2395 bool CallAnalyzer::visitInstruction(Instruction &I) { 2396 // Some instructions are free. All of the free intrinsics can also be 2397 // handled by SROA, etc. 2398 if (TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 2399 TargetTransformInfo::TCC_Free) 2400 return true; 2401 2402 // We found something we don't understand or can't handle. Mark any SROA-able 2403 // values in the operand list as no longer viable. 2404 for (const Use &Op : I.operands()) 2405 disableSROA(Op); 2406 2407 return false; 2408 } 2409 2410 /// Analyze a basic block for its contribution to the inline cost. 2411 /// 2412 /// This method walks the analyzer over every instruction in the given basic 2413 /// block and accounts for their cost during inlining at this callsite. It 2414 /// aborts early if the threshold has been exceeded or an impossible to inline 2415 /// construct has been detected. It returns false if inlining is no longer 2416 /// viable, and true if inlining remains viable. 2417 InlineResult 2418 CallAnalyzer::analyzeBlock(BasicBlock *BB, 2419 SmallPtrSetImpl<const Value *> &EphValues) { 2420 for (Instruction &I : *BB) { 2421 // FIXME: Currently, the number of instructions in a function regardless of 2422 // our ability to simplify them during inline to constants or dead code, 2423 // are actually used by the vector bonus heuristic. As long as that's true, 2424 // we have to special case debug intrinsics here to prevent differences in 2425 // inlining due to debug symbols. Eventually, the number of unsimplified 2426 // instructions shouldn't factor into the cost computation, but until then, 2427 // hack around it here. 2428 // Similarly, skip pseudo-probes. 2429 if (I.isDebugOrPseudoInst()) 2430 continue; 2431 2432 // Skip ephemeral values. 2433 if (EphValues.count(&I)) 2434 continue; 2435 2436 ++NumInstructions; 2437 if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy()) 2438 ++NumVectorInstructions; 2439 2440 // If the instruction simplified to a constant, there is no cost to this 2441 // instruction. Visit the instructions using our InstVisitor to account for 2442 // all of the per-instruction logic. The visit tree returns true if we 2443 // consumed the instruction in any way, and false if the instruction's base 2444 // cost should count against inlining. 2445 onInstructionAnalysisStart(&I); 2446 2447 if (Base::visit(&I)) 2448 ++NumInstructionsSimplified; 2449 else 2450 onMissedSimplification(); 2451 2452 onInstructionAnalysisFinish(&I); 2453 using namespace ore; 2454 // If the visit this instruction detected an uninlinable pattern, abort. 2455 InlineResult IR = InlineResult::success(); 2456 if (IsRecursiveCall && !AllowRecursiveCall) 2457 IR = InlineResult::failure("recursive"); 2458 else if (ExposesReturnsTwice) 2459 IR = InlineResult::failure("exposes returns twice"); 2460 else if (HasDynamicAlloca) 2461 IR = InlineResult::failure("dynamic alloca"); 2462 else if (HasIndirectBr) 2463 IR = InlineResult::failure("indirect branch"); 2464 else if (HasUninlineableIntrinsic) 2465 IR = InlineResult::failure("uninlinable intrinsic"); 2466 else if (InitsVargArgs) 2467 IR = InlineResult::failure("varargs"); 2468 if (!IR.isSuccess()) { 2469 if (ORE) 2470 ORE->emit([&]() { 2471 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2472 &CandidateCall) 2473 << NV("Callee", &F) << " has uninlinable pattern (" 2474 << NV("InlineResult", IR.getFailureReason()) 2475 << ") and cost is not fully computed"; 2476 }); 2477 return IR; 2478 } 2479 2480 // If the caller is a recursive function then we don't want to inline 2481 // functions which allocate a lot of stack space because it would increase 2482 // the caller stack usage dramatically. 2483 if (IsCallerRecursive && 2484 AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { 2485 auto IR = 2486 InlineResult::failure("recursive and allocates too much stack space"); 2487 if (ORE) 2488 ORE->emit([&]() { 2489 return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", 2490 &CandidateCall) 2491 << NV("Callee", &F) << " is " 2492 << NV("InlineResult", IR.getFailureReason()) 2493 << ". Cost is not fully computed"; 2494 }); 2495 return IR; 2496 } 2497 2498 if (shouldStop()) 2499 return InlineResult::failure( 2500 "Call site analysis is not favorable to inlining."); 2501 } 2502 2503 return InlineResult::success(); 2504 } 2505 2506 /// Compute the base pointer and cumulative constant offsets for V. 2507 /// 2508 /// This strips all constant offsets off of V, leaving it the base pointer, and 2509 /// accumulates the total constant offset applied in the returned constant. It 2510 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 2511 /// no constant offsets applied. 2512 ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { 2513 if (!V->getType()->isPointerTy()) 2514 return nullptr; 2515 2516 unsigned AS = V->getType()->getPointerAddressSpace(); 2517 unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); 2518 APInt Offset = APInt::getZero(IntPtrWidth); 2519 2520 // Even though we don't look through PHI nodes, we could be called on an 2521 // instruction in an unreachable block, which may be on a cycle. 2522 SmallPtrSet<Value *, 4> Visited; 2523 Visited.insert(V); 2524 do { 2525 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2526 if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) 2527 return nullptr; 2528 V = GEP->getPointerOperand(); 2529 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 2530 V = cast<Operator>(V)->getOperand(0); 2531 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2532 if (GA->isInterposable()) 2533 break; 2534 V = GA->getAliasee(); 2535 } else { 2536 break; 2537 } 2538 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2539 } while (Visited.insert(V).second); 2540 2541 Type *IdxPtrTy = DL.getIndexType(V->getType()); 2542 return cast<ConstantInt>(ConstantInt::get(IdxPtrTy, Offset)); 2543 } 2544 2545 /// Find dead blocks due to deleted CFG edges during inlining. 2546 /// 2547 /// If we know the successor of the current block, \p CurrBB, has to be \p 2548 /// NextBB, the other successors of \p CurrBB are dead if these successors have 2549 /// no live incoming CFG edges. If one block is found to be dead, we can 2550 /// continue growing the dead block list by checking the successors of the dead 2551 /// blocks to see if all their incoming edges are dead or not. 2552 void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { 2553 auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { 2554 // A CFG edge is dead if the predecessor is dead or the predecessor has a 2555 // known successor which is not the one under exam. 2556 return (DeadBlocks.count(Pred) || 2557 (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); 2558 }; 2559 2560 auto IsNewlyDead = [&](BasicBlock *BB) { 2561 // If all the edges to a block are dead, the block is also dead. 2562 return (!DeadBlocks.count(BB) && 2563 llvm::all_of(predecessors(BB), 2564 [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); 2565 }; 2566 2567 for (BasicBlock *Succ : successors(CurrBB)) { 2568 if (Succ == NextBB || !IsNewlyDead(Succ)) 2569 continue; 2570 SmallVector<BasicBlock *, 4> NewDead; 2571 NewDead.push_back(Succ); 2572 while (!NewDead.empty()) { 2573 BasicBlock *Dead = NewDead.pop_back_val(); 2574 if (DeadBlocks.insert(Dead).second) 2575 // Continue growing the dead block lists. 2576 for (BasicBlock *S : successors(Dead)) 2577 if (IsNewlyDead(S)) 2578 NewDead.push_back(S); 2579 } 2580 } 2581 } 2582 2583 /// Analyze a call site for potential inlining. 2584 /// 2585 /// Returns true if inlining this call is viable, and false if it is not 2586 /// viable. It computes the cost and adjusts the threshold based on numerous 2587 /// factors and heuristics. If this method returns false but the computed cost 2588 /// is below the computed threshold, then inlining was forcibly disabled by 2589 /// some artifact of the routine. 2590 InlineResult CallAnalyzer::analyze() { 2591 ++NumCallsAnalyzed; 2592 2593 auto Result = onAnalysisStart(); 2594 if (!Result.isSuccess()) 2595 return Result; 2596 2597 if (F.empty()) 2598 return InlineResult::success(); 2599 2600 Function *Caller = CandidateCall.getFunction(); 2601 // Check if the caller function is recursive itself. 2602 for (User *U : Caller->users()) { 2603 CallBase *Call = dyn_cast<CallBase>(U); 2604 if (Call && Call->getFunction() == Caller) { 2605 IsCallerRecursive = true; 2606 break; 2607 } 2608 } 2609 2610 // Populate our simplified values by mapping from function arguments to call 2611 // arguments with known important simplifications. 2612 auto CAI = CandidateCall.arg_begin(); 2613 for (Argument &FAI : F.args()) { 2614 assert(CAI != CandidateCall.arg_end()); 2615 if (Constant *C = dyn_cast<Constant>(CAI)) 2616 SimplifiedValues[&FAI] = C; 2617 2618 Value *PtrArg = *CAI; 2619 if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { 2620 ConstantOffsetPtrs[&FAI] = std::make_pair(PtrArg, C->getValue()); 2621 2622 // We can SROA any pointer arguments derived from alloca instructions. 2623 if (auto *SROAArg = dyn_cast<AllocaInst>(PtrArg)) { 2624 SROAArgValues[&FAI] = SROAArg; 2625 onInitializeSROAArg(SROAArg); 2626 EnabledSROAAllocas.insert(SROAArg); 2627 } 2628 } 2629 ++CAI; 2630 } 2631 NumConstantArgs = SimplifiedValues.size(); 2632 NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); 2633 NumAllocaArgs = SROAArgValues.size(); 2634 2635 // FIXME: If a caller has multiple calls to a callee, we end up recomputing 2636 // the ephemeral values multiple times (and they're completely determined by 2637 // the callee, so this is purely duplicate work). 2638 SmallPtrSet<const Value *, 32> EphValues; 2639 CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); 2640 2641 // The worklist of live basic blocks in the callee *after* inlining. We avoid 2642 // adding basic blocks of the callee which can be proven to be dead for this 2643 // particular call site in order to get more accurate cost estimates. This 2644 // requires a somewhat heavyweight iteration pattern: we need to walk the 2645 // basic blocks in a breadth-first order as we insert live successors. To 2646 // accomplish this, prioritizing for small iterations because we exit after 2647 // crossing our threshold, we use a small-size optimized SetVector. 2648 typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, 2649 SmallPtrSet<BasicBlock *, 16>> 2650 BBSetVector; 2651 BBSetVector BBWorklist; 2652 BBWorklist.insert(&F.getEntryBlock()); 2653 2654 // Note that we *must not* cache the size, this loop grows the worklist. 2655 for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { 2656 if (shouldStop()) 2657 break; 2658 2659 BasicBlock *BB = BBWorklist[Idx]; 2660 if (BB->empty()) 2661 continue; 2662 2663 onBlockStart(BB); 2664 2665 // Disallow inlining a blockaddress with uses other than strictly callbr. 2666 // A blockaddress only has defined behavior for an indirect branch in the 2667 // same function, and we do not currently support inlining indirect 2668 // branches. But, the inliner may not see an indirect branch that ends up 2669 // being dead code at a particular call site. If the blockaddress escapes 2670 // the function, e.g., via a global variable, inlining may lead to an 2671 // invalid cross-function reference. 2672 // FIXME: pr/39560: continue relaxing this overt restriction. 2673 if (BB->hasAddressTaken()) 2674 for (User *U : BlockAddress::get(&*BB)->users()) 2675 if (!isa<CallBrInst>(*U)) 2676 return InlineResult::failure("blockaddress used outside of callbr"); 2677 2678 // Analyze the cost of this block. If we blow through the threshold, this 2679 // returns false, and we can bail on out. 2680 InlineResult IR = analyzeBlock(BB, EphValues); 2681 if (!IR.isSuccess()) 2682 return IR; 2683 2684 Instruction *TI = BB->getTerminator(); 2685 2686 // Add in the live successors by first checking whether we have terminator 2687 // that may be simplified based on the values simplified by this call. 2688 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 2689 if (BI->isConditional()) { 2690 Value *Cond = BI->getCondition(); 2691 if (ConstantInt *SimpleCond = 2692 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2693 BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); 2694 BBWorklist.insert(NextBB); 2695 KnownSuccessors[BB] = NextBB; 2696 findDeadBlocks(BB, NextBB); 2697 continue; 2698 } 2699 } 2700 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 2701 Value *Cond = SI->getCondition(); 2702 if (ConstantInt *SimpleCond = 2703 dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { 2704 BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); 2705 BBWorklist.insert(NextBB); 2706 KnownSuccessors[BB] = NextBB; 2707 findDeadBlocks(BB, NextBB); 2708 continue; 2709 } 2710 } 2711 2712 // If we're unable to select a particular successor, just count all of 2713 // them. 2714 for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; 2715 ++TIdx) 2716 BBWorklist.insert(TI->getSuccessor(TIdx)); 2717 2718 onBlockAnalyzed(BB); 2719 } 2720 2721 bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneLiveUse() && 2722 &F == CandidateCall.getCalledFunction(); 2723 // If this is a noduplicate call, we can still inline as long as 2724 // inlining this would cause the removal of the caller (so the instruction 2725 // is not actually duplicated, just moved). 2726 if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) 2727 return InlineResult::failure("noduplicate"); 2728 2729 return finalizeAnalysis(); 2730 } 2731 2732 void InlineCostCallAnalyzer::print(raw_ostream &OS) { 2733 #define DEBUG_PRINT_STAT(x) OS << " " #x ": " << x << "\n" 2734 if (PrintInstructionComments) 2735 F.print(OS, &Writer); 2736 DEBUG_PRINT_STAT(NumConstantArgs); 2737 DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); 2738 DEBUG_PRINT_STAT(NumAllocaArgs); 2739 DEBUG_PRINT_STAT(NumConstantPtrCmps); 2740 DEBUG_PRINT_STAT(NumConstantPtrDiffs); 2741 DEBUG_PRINT_STAT(NumInstructionsSimplified); 2742 DEBUG_PRINT_STAT(NumInstructions); 2743 DEBUG_PRINT_STAT(SROACostSavings); 2744 DEBUG_PRINT_STAT(SROACostSavingsLost); 2745 DEBUG_PRINT_STAT(LoadEliminationCost); 2746 DEBUG_PRINT_STAT(ContainsNoDuplicateCall); 2747 DEBUG_PRINT_STAT(Cost); 2748 DEBUG_PRINT_STAT(Threshold); 2749 #undef DEBUG_PRINT_STAT 2750 } 2751 2752 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2753 /// Dump stats about this call's analysis. 2754 LLVM_DUMP_METHOD void InlineCostCallAnalyzer::dump() { print(dbgs()); } 2755 #endif 2756 2757 /// Test that there are no attribute conflicts between Caller and Callee 2758 /// that prevent inlining. 2759 static bool functionsHaveCompatibleAttributes( 2760 Function *Caller, Function *Callee, TargetTransformInfo &TTI, 2761 function_ref<const TargetLibraryInfo &(Function &)> &GetTLI) { 2762 // Note that CalleeTLI must be a copy not a reference. The legacy pass manager 2763 // caches the most recently created TLI in the TargetLibraryInfoWrapperPass 2764 // object, and always returns the same object (which is overwritten on each 2765 // GetTLI call). Therefore we copy the first result. 2766 auto CalleeTLI = GetTLI(*Callee); 2767 return (IgnoreTTIInlineCompatible || 2768 TTI.areInlineCompatible(Caller, Callee)) && 2769 GetTLI(*Caller).areInlineCompatible(CalleeTLI, 2770 InlineCallerSupersetNoBuiltin) && 2771 AttributeFuncs::areInlineCompatible(*Caller, *Callee); 2772 } 2773 2774 int llvm::getCallsiteCost(CallBase &Call, const DataLayout &DL) { 2775 int Cost = 0; 2776 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) { 2777 if (Call.isByValArgument(I)) { 2778 // We approximate the number of loads and stores needed by dividing the 2779 // size of the byval type by the target's pointer size. 2780 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2781 unsigned TypeSize = DL.getTypeSizeInBits(Call.getParamByValType(I)); 2782 unsigned AS = PTy->getAddressSpace(); 2783 unsigned PointerSize = DL.getPointerSizeInBits(AS); 2784 // Ceiling division. 2785 unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; 2786 2787 // If it generates more than 8 stores it is likely to be expanded as an 2788 // inline memcpy so we take that as an upper bound. Otherwise we assume 2789 // one load and one store per word copied. 2790 // FIXME: The maxStoresPerMemcpy setting from the target should be used 2791 // here instead of a magic number of 8, but it's not available via 2792 // DataLayout. 2793 NumStores = std::min(NumStores, 8U); 2794 2795 Cost += 2 * NumStores * InlineConstants::InstrCost; 2796 } else { 2797 // For non-byval arguments subtract off one instruction per call 2798 // argument. 2799 Cost += InlineConstants::InstrCost; 2800 } 2801 } 2802 // The call instruction also disappears after inlining. 2803 Cost += InlineConstants::InstrCost + CallPenalty; 2804 return Cost; 2805 } 2806 2807 InlineCost llvm::getInlineCost( 2808 CallBase &Call, const InlineParams &Params, TargetTransformInfo &CalleeTTI, 2809 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2810 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2811 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2812 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2813 return getInlineCost(Call, Call.getCalledFunction(), Params, CalleeTTI, 2814 GetAssumptionCache, GetTLI, GetBFI, PSI, ORE); 2815 } 2816 2817 Optional<int> llvm::getInliningCostEstimate( 2818 CallBase &Call, TargetTransformInfo &CalleeTTI, 2819 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2820 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2821 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2822 const InlineParams Params = {/* DefaultThreshold*/ 0, 2823 /*HintThreshold*/ {}, 2824 /*ColdThreshold*/ {}, 2825 /*OptSizeThreshold*/ {}, 2826 /*OptMinSizeThreshold*/ {}, 2827 /*HotCallSiteThreshold*/ {}, 2828 /*LocallyHotCallSiteThreshold*/ {}, 2829 /*ColdCallSiteThreshold*/ {}, 2830 /*ComputeFullInlineCost*/ true, 2831 /*EnableDeferral*/ true}; 2832 2833 InlineCostCallAnalyzer CA(*Call.getCalledFunction(), Call, Params, CalleeTTI, 2834 GetAssumptionCache, GetBFI, PSI, ORE, true, 2835 /*IgnoreThreshold*/ true); 2836 auto R = CA.analyze(); 2837 if (!R.isSuccess()) 2838 return None; 2839 return CA.getCost(); 2840 } 2841 2842 Optional<InlineCostFeatures> llvm::getInliningCostFeatures( 2843 CallBase &Call, TargetTransformInfo &CalleeTTI, 2844 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2845 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2846 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2847 InlineCostFeaturesAnalyzer CFA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, 2848 ORE, *Call.getCalledFunction(), Call); 2849 auto R = CFA.analyze(); 2850 if (!R.isSuccess()) 2851 return None; 2852 return CFA.features(); 2853 } 2854 2855 Optional<InlineResult> llvm::getAttributeBasedInliningDecision( 2856 CallBase &Call, Function *Callee, TargetTransformInfo &CalleeTTI, 2857 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 2858 2859 // Cannot inline indirect calls. 2860 if (!Callee) 2861 return InlineResult::failure("indirect call"); 2862 2863 // When callee coroutine function is inlined into caller coroutine function 2864 // before coro-split pass, 2865 // coro-early pass can not handle this quiet well. 2866 // So we won't inline the coroutine function if it have not been unsplited 2867 if (Callee->isPresplitCoroutine()) 2868 return InlineResult::failure("unsplited coroutine call"); 2869 2870 // Never inline calls with byval arguments that does not have the alloca 2871 // address space. Since byval arguments can be replaced with a copy to an 2872 // alloca, the inlined code would need to be adjusted to handle that the 2873 // argument is in the alloca address space (so it is a little bit complicated 2874 // to solve). 2875 unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); 2876 for (unsigned I = 0, E = Call.arg_size(); I != E; ++I) 2877 if (Call.isByValArgument(I)) { 2878 PointerType *PTy = cast<PointerType>(Call.getArgOperand(I)->getType()); 2879 if (PTy->getAddressSpace() != AllocaAS) 2880 return InlineResult::failure("byval arguments without alloca" 2881 " address space"); 2882 } 2883 2884 // Calls to functions with always-inline attributes should be inlined 2885 // whenever possible. 2886 if (Call.hasFnAttr(Attribute::AlwaysInline)) { 2887 if (Call.getAttributes().hasFnAttr(Attribute::NoInline)) 2888 return InlineResult::failure("noinline call site attribute"); 2889 2890 auto IsViable = isInlineViable(*Callee); 2891 if (IsViable.isSuccess()) 2892 return InlineResult::success(); 2893 return InlineResult::failure(IsViable.getFailureReason()); 2894 } 2895 2896 // Never inline functions with conflicting attributes (unless callee has 2897 // always-inline attribute). 2898 Function *Caller = Call.getCaller(); 2899 if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI, GetTLI)) 2900 return InlineResult::failure("conflicting attributes"); 2901 2902 // Don't inline this call if the caller has the optnone attribute. 2903 if (Caller->hasOptNone()) 2904 return InlineResult::failure("optnone attribute"); 2905 2906 // Don't inline a function that treats null pointer as valid into a caller 2907 // that does not have this attribute. 2908 if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) 2909 return InlineResult::failure("nullptr definitions incompatible"); 2910 2911 // Don't inline functions which can be interposed at link-time. 2912 if (Callee->isInterposable()) 2913 return InlineResult::failure("interposable"); 2914 2915 // Don't inline functions marked noinline. 2916 if (Callee->hasFnAttribute(Attribute::NoInline)) 2917 return InlineResult::failure("noinline function attribute"); 2918 2919 // Don't inline call sites marked noinline. 2920 if (Call.isNoInline()) 2921 return InlineResult::failure("noinline call site attribute"); 2922 2923 return None; 2924 } 2925 2926 InlineCost llvm::getInlineCost( 2927 CallBase &Call, Function *Callee, const InlineParams &Params, 2928 TargetTransformInfo &CalleeTTI, 2929 function_ref<AssumptionCache &(Function &)> GetAssumptionCache, 2930 function_ref<const TargetLibraryInfo &(Function &)> GetTLI, 2931 function_ref<BlockFrequencyInfo &(Function &)> GetBFI, 2932 ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { 2933 2934 auto UserDecision = 2935 llvm::getAttributeBasedInliningDecision(Call, Callee, CalleeTTI, GetTLI); 2936 2937 if (UserDecision.hasValue()) { 2938 if (UserDecision->isSuccess()) 2939 return llvm::InlineCost::getAlways("always inline attribute"); 2940 return llvm::InlineCost::getNever(UserDecision->getFailureReason()); 2941 } 2942 2943 LLVM_DEBUG(llvm::dbgs() << " Analyzing call of " << Callee->getName() 2944 << "... (caller:" << Call.getCaller()->getName() 2945 << ")\n"); 2946 2947 InlineCostCallAnalyzer CA(*Callee, Call, Params, CalleeTTI, 2948 GetAssumptionCache, GetBFI, PSI, ORE); 2949 InlineResult ShouldInline = CA.analyze(); 2950 2951 LLVM_DEBUG(CA.dump()); 2952 2953 // Always make cost benefit based decision explicit. 2954 // We use always/never here since threshold is not meaningful, 2955 // as it's not what drives cost-benefit analysis. 2956 if (CA.wasDecidedByCostBenefit()) { 2957 if (ShouldInline.isSuccess()) 2958 return InlineCost::getAlways("benefit over cost", 2959 CA.getCostBenefitPair()); 2960 else 2961 return InlineCost::getNever("cost over benefit", CA.getCostBenefitPair()); 2962 } 2963 2964 if (CA.wasDecidedByCostThreshold()) 2965 return InlineCost::get(CA.getCost(), CA.getThreshold()); 2966 2967 // No details on how the decision was made, simply return always or never. 2968 return ShouldInline.isSuccess() 2969 ? InlineCost::getAlways("empty function") 2970 : InlineCost::getNever(ShouldInline.getFailureReason()); 2971 } 2972 2973 InlineResult llvm::isInlineViable(Function &F) { 2974 bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); 2975 for (BasicBlock &BB : F) { 2976 // Disallow inlining of functions which contain indirect branches. 2977 if (isa<IndirectBrInst>(BB.getTerminator())) 2978 return InlineResult::failure("contains indirect branches"); 2979 2980 // Disallow inlining of blockaddresses which are used by non-callbr 2981 // instructions. 2982 if (BB.hasAddressTaken()) 2983 for (User *U : BlockAddress::get(&BB)->users()) 2984 if (!isa<CallBrInst>(*U)) 2985 return InlineResult::failure("blockaddress used outside of callbr"); 2986 2987 for (auto &II : BB) { 2988 CallBase *Call = dyn_cast<CallBase>(&II); 2989 if (!Call) 2990 continue; 2991 2992 // Disallow recursive calls. 2993 Function *Callee = Call->getCalledFunction(); 2994 if (&F == Callee) 2995 return InlineResult::failure("recursive call"); 2996 2997 // Disallow calls which expose returns-twice to a function not previously 2998 // attributed as such. 2999 if (!ReturnsTwice && isa<CallInst>(Call) && 3000 cast<CallInst>(Call)->canReturnTwice()) 3001 return InlineResult::failure("exposes returns-twice attribute"); 3002 3003 if (Callee) 3004 switch (Callee->getIntrinsicID()) { 3005 default: 3006 break; 3007 case llvm::Intrinsic::icall_branch_funnel: 3008 // Disallow inlining of @llvm.icall.branch.funnel because current 3009 // backend can't separate call targets from call arguments. 3010 return InlineResult::failure( 3011 "disallowed inlining of @llvm.icall.branch.funnel"); 3012 case llvm::Intrinsic::localescape: 3013 // Disallow inlining functions that call @llvm.localescape. Doing this 3014 // correctly would require major changes to the inliner. 3015 return InlineResult::failure( 3016 "disallowed inlining of @llvm.localescape"); 3017 case llvm::Intrinsic::vastart: 3018 // Disallow inlining of functions that initialize VarArgs with 3019 // va_start. 3020 return InlineResult::failure( 3021 "contains VarArgs initialized with va_start"); 3022 } 3023 } 3024 } 3025 3026 return InlineResult::success(); 3027 } 3028 3029 // APIs to create InlineParams based on command line flags and/or other 3030 // parameters. 3031 3032 InlineParams llvm::getInlineParams(int Threshold) { 3033 InlineParams Params; 3034 3035 // This field is the threshold to use for a callee by default. This is 3036 // derived from one or more of: 3037 // * optimization or size-optimization levels, 3038 // * a value passed to createFunctionInliningPass function, or 3039 // * the -inline-threshold flag. 3040 // If the -inline-threshold flag is explicitly specified, that is used 3041 // irrespective of anything else. 3042 if (InlineThreshold.getNumOccurrences() > 0) 3043 Params.DefaultThreshold = InlineThreshold; 3044 else 3045 Params.DefaultThreshold = Threshold; 3046 3047 // Set the HintThreshold knob from the -inlinehint-threshold. 3048 Params.HintThreshold = HintThreshold; 3049 3050 // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. 3051 Params.HotCallSiteThreshold = HotCallSiteThreshold; 3052 3053 // If the -locally-hot-callsite-threshold is explicitly specified, use it to 3054 // populate LocallyHotCallSiteThreshold. Later, we populate 3055 // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if 3056 // we know that optimization level is O3 (in the getInlineParams variant that 3057 // takes the opt and size levels). 3058 // FIXME: Remove this check (and make the assignment unconditional) after 3059 // addressing size regression issues at O2. 3060 if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) 3061 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3062 3063 // Set the ColdCallSiteThreshold knob from the 3064 // -inline-cold-callsite-threshold. 3065 Params.ColdCallSiteThreshold = ColdCallSiteThreshold; 3066 3067 // Set the OptMinSizeThreshold and OptSizeThreshold params only if the 3068 // -inlinehint-threshold commandline option is not explicitly given. If that 3069 // option is present, then its value applies even for callees with size and 3070 // minsize attributes. 3071 // If the -inline-threshold is not specified, set the ColdThreshold from the 3072 // -inlinecold-threshold even if it is not explicitly passed. If 3073 // -inline-threshold is specified, then -inlinecold-threshold needs to be 3074 // explicitly specified to set the ColdThreshold knob 3075 if (InlineThreshold.getNumOccurrences() == 0) { 3076 Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; 3077 Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; 3078 Params.ColdThreshold = ColdThreshold; 3079 } else if (ColdThreshold.getNumOccurrences() > 0) { 3080 Params.ColdThreshold = ColdThreshold; 3081 } 3082 return Params; 3083 } 3084 3085 InlineParams llvm::getInlineParams() { 3086 return getInlineParams(DefaultThreshold); 3087 } 3088 3089 // Compute the default threshold for inlining based on the opt level and the 3090 // size opt level. 3091 static int computeThresholdFromOptLevels(unsigned OptLevel, 3092 unsigned SizeOptLevel) { 3093 if (OptLevel > 2) 3094 return InlineConstants::OptAggressiveThreshold; 3095 if (SizeOptLevel == 1) // -Os 3096 return InlineConstants::OptSizeThreshold; 3097 if (SizeOptLevel == 2) // -Oz 3098 return InlineConstants::OptMinSizeThreshold; 3099 return DefaultThreshold; 3100 } 3101 3102 InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { 3103 auto Params = 3104 getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); 3105 // At O3, use the value of -locally-hot-callsite-threshold option to populate 3106 // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only 3107 // when it is specified explicitly. 3108 if (OptLevel > 2) 3109 Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; 3110 return Params; 3111 } 3112 3113 PreservedAnalyses 3114 InlineCostAnnotationPrinterPass::run(Function &F, 3115 FunctionAnalysisManager &FAM) { 3116 PrintInstructionComments = true; 3117 std::function<AssumptionCache &(Function &)> GetAssumptionCache = 3118 [&](Function &F) -> AssumptionCache & { 3119 return FAM.getResult<AssumptionAnalysis>(F); 3120 }; 3121 Module *M = F.getParent(); 3122 ProfileSummaryInfo PSI(*M); 3123 DataLayout DL(M); 3124 TargetTransformInfo TTI(DL); 3125 // FIXME: Redesign the usage of InlineParams to expand the scope of this pass. 3126 // In the current implementation, the type of InlineParams doesn't matter as 3127 // the pass serves only for verification of inliner's decisions. 3128 // We can add a flag which determines InlineParams for this run. Right now, 3129 // the default InlineParams are used. 3130 const InlineParams Params = llvm::getInlineParams(); 3131 for (BasicBlock &BB : F) { 3132 for (Instruction &I : BB) { 3133 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 3134 Function *CalledFunction = CI->getCalledFunction(); 3135 if (!CalledFunction || CalledFunction->isDeclaration()) 3136 continue; 3137 OptimizationRemarkEmitter ORE(CalledFunction); 3138 InlineCostCallAnalyzer ICCA(*CalledFunction, *CI, Params, TTI, 3139 GetAssumptionCache, nullptr, &PSI, &ORE); 3140 ICCA.analyze(); 3141 OS << " Analyzing call of " << CalledFunction->getName() 3142 << "... (caller:" << CI->getCaller()->getName() << ")\n"; 3143 ICCA.print(OS); 3144 OS << "\n"; 3145 } 3146 } 3147 } 3148 return PreservedAnalyses::all(); 3149 } 3150