1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements bookkeeping for "interesting" users of expressions 11 // computed from induction variables. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/IVUsers.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/CodeMetrics.h" 19 #include "llvm/Analysis/LoopAnalysisManager.h" 20 #include "llvm/Analysis/LoopPass.h" 21 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 #define DEBUG_TYPE "iv-users" 36 37 AnalysisKey IVUsersAnalysis::Key; 38 39 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, 40 LoopStandardAnalysisResults &AR) { 41 return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); 42 } 43 44 char IVUsersWrapperPass::ID = 0; 45 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", 46 "Induction Variable Users", false, true) 47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 48 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 49 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 50 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 51 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", 52 false, true) 53 54 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } 55 56 /// isInteresting - Test whether the given expression is "interesting" when 57 /// used by the given expression, within the context of analyzing the 58 /// given loop. 59 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, 60 ScalarEvolution *SE, LoopInfo *LI) { 61 // An addrec is interesting if it's affine or if it has an interesting start. 62 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 63 // Keep things simple. Don't touch loop-variant strides unless they're 64 // only used outside the loop and we can simplify them. 65 if (AR->getLoop() == L) 66 return AR->isAffine() || 67 (!L->contains(I) && 68 SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); 69 // Otherwise recurse to see if the start value is interesting, and that 70 // the step value is not interesting, since we don't yet know how to 71 // do effective SCEV expansions for addrecs with interesting steps. 72 return isInteresting(AR->getStart(), I, L, SE, LI) && 73 !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); 74 } 75 76 // An add is interesting if exactly one of its operands is interesting. 77 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 78 bool AnyInterestingYet = false; 79 for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end(); 80 OI != OE; ++OI) 81 if (isInteresting(*OI, I, L, SE, LI)) { 82 if (AnyInterestingYet) 83 return false; 84 AnyInterestingYet = true; 85 } 86 return AnyInterestingYet; 87 } 88 89 // Nothing else is interesting here. 90 return false; 91 } 92 93 /// Return true if all loop headers that dominate this block are in simplified 94 /// form. 95 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT, 96 const LoopInfo *LI, 97 SmallPtrSetImpl<Loop*> &SimpleLoopNests) { 98 Loop *NearestLoop = nullptr; 99 for (DomTreeNode *Rung = DT->getNode(BB); 100 Rung; Rung = Rung->getIDom()) { 101 BasicBlock *DomBB = Rung->getBlock(); 102 Loop *DomLoop = LI->getLoopFor(DomBB); 103 if (DomLoop && DomLoop->getHeader() == DomBB) { 104 // If the domtree walk reaches a loop with no preheader, return false. 105 if (!DomLoop->isLoopSimplifyForm()) 106 return false; 107 // If we have already checked this loop nest, stop checking. 108 if (SimpleLoopNests.count(DomLoop)) 109 break; 110 // If we have not already checked this loop nest, remember the loop 111 // header nearest to BB. The nearest loop may not contain BB. 112 if (!NearestLoop) 113 NearestLoop = DomLoop; 114 } 115 } 116 if (NearestLoop) 117 SimpleLoopNests.insert(NearestLoop); 118 return true; 119 } 120 121 /// AddUsersImpl - Inspect the specified instruction. If it is a 122 /// reducible SCEV, recursively add its users to the IVUsesByStride set and 123 /// return true. Otherwise, return false. 124 bool IVUsers::AddUsersImpl(Instruction *I, 125 SmallPtrSetImpl<Loop*> &SimpleLoopNests) { 126 const DataLayout &DL = I->getModule()->getDataLayout(); 127 128 // Add this IV user to the Processed set before returning false to ensure that 129 // all IV users are members of the set. See IVUsers::isIVUserOrOperand. 130 if (!Processed.insert(I).second) 131 return true; // Instruction already handled. 132 133 if (!SE->isSCEVable(I->getType())) 134 return false; // Void and FP expressions cannot be reduced. 135 136 // IVUsers is used by LSR which assumes that all SCEV expressions are safe to 137 // pass to SCEVExpander. Expressions are not safe to expand if they represent 138 // operations that are not safe to speculate, namely integer division. 139 if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I)) 140 return false; 141 142 // LSR is not APInt clean, do not touch integers bigger than 64-bits. 143 // Also avoid creating IVs of non-native types. For example, we don't want a 144 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. 145 uint64_t Width = SE->getTypeSizeInBits(I->getType()); 146 if (Width > 64 || !DL.isLegalInteger(Width)) 147 return false; 148 149 // Don't attempt to promote ephemeral values to indvars. They will be removed 150 // later anyway. 151 if (EphValues.count(I)) 152 return false; 153 154 // Get the symbolic expression for this instruction. 155 const SCEV *ISE = SE->getSCEV(I); 156 157 // If we've come to an uninteresting expression, stop the traversal and 158 // call this a user. 159 if (!isInteresting(ISE, I, L, SE, LI)) 160 return false; 161 162 SmallPtrSet<Instruction *, 4> UniqueUsers; 163 for (Use &U : I->uses()) { 164 Instruction *User = cast<Instruction>(U.getUser()); 165 if (!UniqueUsers.insert(User).second) 166 continue; 167 168 // Do not infinitely recurse on PHI nodes. 169 if (isa<PHINode>(User) && Processed.count(User)) 170 continue; 171 172 // Only consider IVUsers that are dominated by simplified loop 173 // headers. Otherwise, SCEVExpander will crash. 174 BasicBlock *UseBB = User->getParent(); 175 // A phi's use is live out of its predecessor block. 176 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 177 unsigned OperandNo = U.getOperandNo(); 178 unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); 179 UseBB = PHI->getIncomingBlock(ValNo); 180 } 181 if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests)) 182 return false; 183 184 // Descend recursively, but not into PHI nodes outside the current loop. 185 // It's important to see the entire expression outside the loop to get 186 // choices that depend on addressing mode use right, although we won't 187 // consider references outside the loop in all cases. 188 // If User is already in Processed, we don't want to recurse into it again, 189 // but do want to record a second reference in the same instruction. 190 bool AddUserToIVUsers = false; 191 if (LI->getLoopFor(User->getParent()) != L) { 192 if (isa<PHINode>(User) || Processed.count(User) || 193 !AddUsersImpl(User, SimpleLoopNests)) { 194 DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' 195 << " OF SCEV: " << *ISE << '\n'); 196 AddUserToIVUsers = true; 197 } 198 } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { 199 DEBUG(dbgs() << "FOUND USER: " << *User << '\n' 200 << " OF SCEV: " << *ISE << '\n'); 201 AddUserToIVUsers = true; 202 } 203 204 if (AddUserToIVUsers) { 205 // Okay, we found a user that we cannot reduce. 206 IVStrideUse &NewUse = AddUser(User, I); 207 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. 208 // The regular return value here is discarded; instead of recording 209 // it, we just recompute it when we need it. 210 const SCEV *OriginalISE = ISE; 211 ISE = TransformForPostIncUse(NormalizeAutodetect, 212 ISE, User, I, 213 NewUse.PostIncLoops, 214 *SE, *DT); 215 216 // PostIncNormalization effectively simplifies the expression under 217 // pre-increment assumptions. Those assumptions (no wrapping) might not 218 // hold for the post-inc value. Catch such cases by making sure the 219 // transformation is invertible. 220 if (OriginalISE != ISE) { 221 const SCEV *DenormalizedISE = 222 TransformForPostIncUse(Denormalize, ISE, User, I, 223 NewUse.PostIncLoops, *SE, *DT); 224 225 // If we normalized the expression, but denormalization doesn't give the 226 // original one, discard this user. 227 if (OriginalISE != DenormalizedISE) { 228 DEBUG(dbgs() << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " 229 << *ISE << '\n'); 230 IVUses.pop_back(); 231 return false; 232 } 233 } 234 DEBUG(if (SE->getSCEV(I) != ISE) 235 dbgs() << " NORMALIZED TO: " << *ISE << '\n'); 236 } 237 } 238 return true; 239 } 240 241 bool IVUsers::AddUsersIfInteresting(Instruction *I) { 242 // SCEVExpander can only handle users that are dominated by simplified loop 243 // entries. Keep track of all loops that are only dominated by other simple 244 // loops so we don't traverse the domtree for each user. 245 SmallPtrSet<Loop*,16> SimpleLoopNests; 246 247 return AddUsersImpl(I, SimpleLoopNests); 248 } 249 250 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { 251 IVUses.push_back(new IVStrideUse(this, User, Operand)); 252 return IVUses.back(); 253 } 254 255 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, 256 ScalarEvolution *SE) 257 : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() { 258 // Collect ephemeral values so that AddUsersIfInteresting skips them. 259 EphValues.clear(); 260 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 261 262 // Find all uses of induction variables in this loop, and categorize 263 // them by stride. Start by finding all of the PHI nodes in the header for 264 // this loop. If they are induction variables, inspect their uses. 265 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) 266 (void)AddUsersIfInteresting(&*I); 267 } 268 269 void IVUsers::print(raw_ostream &OS, const Module *M) const { 270 OS << "IV Users for loop "; 271 L->getHeader()->printAsOperand(OS, false); 272 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 273 OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); 274 } 275 OS << ":\n"; 276 277 for (const IVStrideUse &IVUse : IVUses) { 278 OS << " "; 279 IVUse.getOperandValToReplace()->printAsOperand(OS, false); 280 OS << " = " << *getReplacementExpr(IVUse); 281 for (auto PostIncLoop : IVUse.PostIncLoops) { 282 OS << " (post-inc with loop "; 283 PostIncLoop->getHeader()->printAsOperand(OS, false); 284 OS << ")"; 285 } 286 OS << " in "; 287 if (IVUse.getUser()) 288 IVUse.getUser()->print(OS); 289 else 290 OS << "Printing <null> User"; 291 OS << '\n'; 292 } 293 } 294 295 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 296 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } 297 #endif 298 299 void IVUsers::releaseMemory() { 300 Processed.clear(); 301 IVUses.clear(); 302 } 303 304 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { 305 initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); 306 } 307 308 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 309 AU.addRequired<AssumptionCacheTracker>(); 310 AU.addRequired<LoopInfoWrapperPass>(); 311 AU.addRequired<DominatorTreeWrapperPass>(); 312 AU.addRequired<ScalarEvolutionWrapperPass>(); 313 AU.setPreservesAll(); 314 } 315 316 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { 317 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 318 *L->getHeader()->getParent()); 319 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 320 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 321 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 322 323 IU.reset(new IVUsers(L, AC, LI, DT, SE)); 324 return false; 325 } 326 327 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { 328 IU->print(OS, M); 329 } 330 331 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } 332 333 /// getReplacementExpr - Return a SCEV expression which computes the 334 /// value of the OperandValToReplace. 335 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { 336 return SE->getSCEV(IU.getOperandValToReplace()); 337 } 338 339 /// getExpr - Return the expression for the use. 340 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { 341 return 342 TransformForPostIncUse(Normalize, getReplacementExpr(IU), 343 IU.getUser(), IU.getOperandValToReplace(), 344 const_cast<PostIncLoopSet &>(IU.getPostIncLoops()), 345 *SE, *DT); 346 } 347 348 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { 349 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 350 if (AR->getLoop() == L) 351 return AR; 352 return findAddRecForLoop(AR->getStart(), L); 353 } 354 355 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 356 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 357 I != E; ++I) 358 if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L)) 359 return AR; 360 return nullptr; 361 } 362 363 return nullptr; 364 } 365 366 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { 367 if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) 368 return AR->getStepRecurrence(*SE); 369 return nullptr; 370 } 371 372 void IVStrideUse::transformToPostInc(const Loop *L) { 373 PostIncLoops.insert(L); 374 } 375 376 void IVStrideUse::deleted() { 377 // Remove this user from the list. 378 Parent->Processed.erase(this->getUser()); 379 Parent->IVUses.erase(this); 380 // this now dangles! 381 } 382