1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements bookkeeping for "interesting" users of expressions
11 // computed from induction variables.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/IVUsers.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/LoopPassManager.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 using namespace llvm;
34 
35 #define DEBUG_TYPE "iv-users"
36 
37 AnalysisKey IVUsersAnalysis::Key;
38 
39 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
40                              LoopStandardAnalysisResults &AR) {
41   return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
42 }
43 
44 PreservedAnalyses IVUsersPrinterPass::run(Loop &L, LoopAnalysisManager &AM,
45                                           LoopStandardAnalysisResults &AR,
46                                           LPMUpdater &U) {
47   AM.getResult<IVUsersAnalysis>(L, AR).print(OS);
48   return PreservedAnalyses::all();
49 }
50 
51 char IVUsersWrapperPass::ID = 0;
52 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
53                       "Induction Variable Users", false, true)
54 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
55 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
56 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
57 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
58 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
59                     false, true)
60 
61 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
62 
63 /// isInteresting - Test whether the given expression is "interesting" when
64 /// used by the given expression, within the context of analyzing the
65 /// given loop.
66 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
67                           ScalarEvolution *SE, LoopInfo *LI) {
68   // An addrec is interesting if it's affine or if it has an interesting start.
69   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
70     // Keep things simple. Don't touch loop-variant strides unless they're
71     // only used outside the loop and we can simplify them.
72     if (AR->getLoop() == L)
73       return AR->isAffine() ||
74              (!L->contains(I) &&
75               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
76     // Otherwise recurse to see if the start value is interesting, and that
77     // the step value is not interesting, since we don't yet know how to
78     // do effective SCEV expansions for addrecs with interesting steps.
79     return isInteresting(AR->getStart(), I, L, SE, LI) &&
80           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
81   }
82 
83   // An add is interesting if exactly one of its operands is interesting.
84   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
85     bool AnyInterestingYet = false;
86     for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
87          OI != OE; ++OI)
88       if (isInteresting(*OI, I, L, SE, LI)) {
89         if (AnyInterestingYet)
90           return false;
91         AnyInterestingYet = true;
92       }
93     return AnyInterestingYet;
94   }
95 
96   // Nothing else is interesting here.
97   return false;
98 }
99 
100 /// Return true if all loop headers that dominate this block are in simplified
101 /// form.
102 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
103                                  const LoopInfo *LI,
104                                  SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
105   Loop *NearestLoop = nullptr;
106   for (DomTreeNode *Rung = DT->getNode(BB);
107        Rung; Rung = Rung->getIDom()) {
108     BasicBlock *DomBB = Rung->getBlock();
109     Loop *DomLoop = LI->getLoopFor(DomBB);
110     if (DomLoop && DomLoop->getHeader() == DomBB) {
111       // If the domtree walk reaches a loop with no preheader, return false.
112       if (!DomLoop->isLoopSimplifyForm())
113         return false;
114       // If we have already checked this loop nest, stop checking.
115       if (SimpleLoopNests.count(DomLoop))
116         break;
117       // If we have not already checked this loop nest, remember the loop
118       // header nearest to BB. The nearest loop may not contain BB.
119       if (!NearestLoop)
120         NearestLoop = DomLoop;
121     }
122   }
123   if (NearestLoop)
124     SimpleLoopNests.insert(NearestLoop);
125   return true;
126 }
127 
128 /// AddUsersImpl - Inspect the specified instruction.  If it is a
129 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
130 /// return true.  Otherwise, return false.
131 bool IVUsers::AddUsersImpl(Instruction *I,
132                            SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
133   const DataLayout &DL = I->getModule()->getDataLayout();
134 
135   // Add this IV user to the Processed set before returning false to ensure that
136   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
137   if (!Processed.insert(I).second)
138     return true;    // Instruction already handled.
139 
140   if (!SE->isSCEVable(I->getType()))
141     return false;   // Void and FP expressions cannot be reduced.
142 
143   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
144   // pass to SCEVExpander. Expressions are not safe to expand if they represent
145   // operations that are not safe to speculate, namely integer division.
146   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
147     return false;
148 
149   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
150   // Also avoid creating IVs of non-native types. For example, we don't want a
151   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
152   uint64_t Width = SE->getTypeSizeInBits(I->getType());
153   if (Width > 64 || !DL.isLegalInteger(Width))
154     return false;
155 
156   // Don't attempt to promote ephemeral values to indvars. They will be removed
157   // later anyway.
158   if (EphValues.count(I))
159     return false;
160 
161   // Get the symbolic expression for this instruction.
162   const SCEV *ISE = SE->getSCEV(I);
163 
164   // If we've come to an uninteresting expression, stop the traversal and
165   // call this a user.
166   if (!isInteresting(ISE, I, L, SE, LI))
167     return false;
168 
169   SmallPtrSet<Instruction *, 4> UniqueUsers;
170   for (Use &U : I->uses()) {
171     Instruction *User = cast<Instruction>(U.getUser());
172     if (!UniqueUsers.insert(User).second)
173       continue;
174 
175     // Do not infinitely recurse on PHI nodes.
176     if (isa<PHINode>(User) && Processed.count(User))
177       continue;
178 
179     // Only consider IVUsers that are dominated by simplified loop
180     // headers. Otherwise, SCEVExpander will crash.
181     BasicBlock *UseBB = User->getParent();
182     // A phi's use is live out of its predecessor block.
183     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
184       unsigned OperandNo = U.getOperandNo();
185       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
186       UseBB = PHI->getIncomingBlock(ValNo);
187     }
188     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
189       return false;
190 
191     // Descend recursively, but not into PHI nodes outside the current loop.
192     // It's important to see the entire expression outside the loop to get
193     // choices that depend on addressing mode use right, although we won't
194     // consider references outside the loop in all cases.
195     // If User is already in Processed, we don't want to recurse into it again,
196     // but do want to record a second reference in the same instruction.
197     bool AddUserToIVUsers = false;
198     if (LI->getLoopFor(User->getParent()) != L) {
199       if (isa<PHINode>(User) || Processed.count(User) ||
200           !AddUsersImpl(User, SimpleLoopNests)) {
201         DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
202                      << "   OF SCEV: " << *ISE << '\n');
203         AddUserToIVUsers = true;
204       }
205     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
206       DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
207                    << "   OF SCEV: " << *ISE << '\n');
208       AddUserToIVUsers = true;
209     }
210 
211     if (AddUserToIVUsers) {
212       // Okay, we found a user that we cannot reduce.
213       IVStrideUse &NewUse = AddUser(User, I);
214       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
215       // The regular return value here is discarded; instead of recording
216       // it, we just recompute it when we need it.
217       const SCEV *OriginalISE = ISE;
218       ISE = TransformForPostIncUse(NormalizeAutodetect,
219                                    ISE, User, I,
220                                    NewUse.PostIncLoops,
221                                    *SE, *DT);
222 
223       // PostIncNormalization effectively simplifies the expression under
224       // pre-increment assumptions. Those assumptions (no wrapping) might not
225       // hold for the post-inc value. Catch such cases by making sure the
226       // transformation is invertible.
227       if (OriginalISE != ISE) {
228         const SCEV *DenormalizedISE =
229           TransformForPostIncUse(Denormalize, ISE, User, I,
230               NewUse.PostIncLoops, *SE, *DT);
231 
232         // If we normalized the expression, but denormalization doesn't give the
233         // original one, discard this user.
234         if (OriginalISE != DenormalizedISE) {
235           DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
236                        << *ISE << '\n');
237           IVUses.pop_back();
238           return false;
239         }
240       }
241       DEBUG(if (SE->getSCEV(I) != ISE)
242               dbgs() << "   NORMALIZED TO: " << *ISE << '\n');
243     }
244   }
245   return true;
246 }
247 
248 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
249   // SCEVExpander can only handle users that are dominated by simplified loop
250   // entries. Keep track of all loops that are only dominated by other simple
251   // loops so we don't traverse the domtree for each user.
252   SmallPtrSet<Loop*,16> SimpleLoopNests;
253 
254   return AddUsersImpl(I, SimpleLoopNests);
255 }
256 
257 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
258   IVUses.push_back(new IVStrideUse(this, User, Operand));
259   return IVUses.back();
260 }
261 
262 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
263                  ScalarEvolution *SE)
264     : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() {
265   // Collect ephemeral values so that AddUsersIfInteresting skips them.
266   EphValues.clear();
267   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
268 
269   // Find all uses of induction variables in this loop, and categorize
270   // them by stride.  Start by finding all of the PHI nodes in the header for
271   // this loop.  If they are induction variables, inspect their uses.
272   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
273     (void)AddUsersIfInteresting(&*I);
274 }
275 
276 void IVUsers::print(raw_ostream &OS, const Module *M) const {
277   OS << "IV Users for loop ";
278   L->getHeader()->printAsOperand(OS, false);
279   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
280     OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
281   }
282   OS << ":\n";
283 
284   for (const IVStrideUse &IVUse : IVUses) {
285     OS << "  ";
286     IVUse.getOperandValToReplace()->printAsOperand(OS, false);
287     OS << " = " << *getReplacementExpr(IVUse);
288     for (auto PostIncLoop : IVUse.PostIncLoops) {
289       OS << " (post-inc with loop ";
290       PostIncLoop->getHeader()->printAsOperand(OS, false);
291       OS << ")";
292     }
293     OS << " in  ";
294     if (IVUse.getUser())
295       IVUse.getUser()->print(OS);
296     else
297       OS << "Printing <null> User";
298     OS << '\n';
299   }
300 }
301 
302 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
303 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
304 #endif
305 
306 void IVUsers::releaseMemory() {
307   Processed.clear();
308   IVUses.clear();
309 }
310 
311 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
312   initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
313 }
314 
315 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
316   AU.addRequired<AssumptionCacheTracker>();
317   AU.addRequired<LoopInfoWrapperPass>();
318   AU.addRequired<DominatorTreeWrapperPass>();
319   AU.addRequired<ScalarEvolutionWrapperPass>();
320   AU.setPreservesAll();
321 }
322 
323 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
324   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
325       *L->getHeader()->getParent());
326   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
327   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
328   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
329 
330   IU.reset(new IVUsers(L, AC, LI, DT, SE));
331   return false;
332 }
333 
334 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
335   IU->print(OS, M);
336 }
337 
338 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
339 
340 /// getReplacementExpr - Return a SCEV expression which computes the
341 /// value of the OperandValToReplace.
342 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
343   return SE->getSCEV(IU.getOperandValToReplace());
344 }
345 
346 /// getExpr - Return the expression for the use.
347 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
348   return
349     TransformForPostIncUse(Normalize, getReplacementExpr(IU),
350                            IU.getUser(), IU.getOperandValToReplace(),
351                            const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
352                            *SE, *DT);
353 }
354 
355 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
356   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
357     if (AR->getLoop() == L)
358       return AR;
359     return findAddRecForLoop(AR->getStart(), L);
360   }
361 
362   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
363     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
364          I != E; ++I)
365       if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
366         return AR;
367     return nullptr;
368   }
369 
370   return nullptr;
371 }
372 
373 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
374   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
375     return AR->getStepRecurrence(*SE);
376   return nullptr;
377 }
378 
379 void IVStrideUse::transformToPostInc(const Loop *L) {
380   PostIncLoops.insert(L);
381 }
382 
383 void IVStrideUse::deleted() {
384   // Remove this user from the list.
385   Parent->Processed.erase(this->getUser());
386   Parent->IVUses.erase(this);
387   // this now dangles!
388 }
389