1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements bookkeeping for "interesting" users of expressions 11 // computed from induction variables. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/IVUsers.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Analysis/CodeMetrics.h" 18 #include "llvm/Analysis/LoopPass.h" 19 #include "llvm/Analysis/LoopPassManager.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 #define DEBUG_TYPE "iv-users" 35 36 AnalysisKey IVUsersAnalysis::Key; 37 38 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM) { 39 const auto &FAM = 40 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 41 Function *F = L.getHeader()->getParent(); 42 43 return IVUsers(&L, FAM.getCachedResult<LoopAnalysis>(*F), 44 FAM.getCachedResult<DominatorTreeAnalysis>(*F), 45 FAM.getCachedResult<ScalarEvolutionAnalysis>(*F)); 46 } 47 48 PreservedAnalyses IVUsersPrinterPass::run(Loop &L, LoopAnalysisManager &AM) { 49 AM.getResult<IVUsersAnalysis>(L).print(OS); 50 return PreservedAnalyses::all(); 51 } 52 53 char IVUsersWrapperPass::ID = 0; 54 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", 55 "Induction Variable Users", false, true) 56 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 57 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 58 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 59 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", 60 false, true) 61 62 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } 63 64 /// isInteresting - Test whether the given expression is "interesting" when 65 /// used by the given expression, within the context of analyzing the 66 /// given loop. 67 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, 68 ScalarEvolution *SE, LoopInfo *LI) { 69 // An addrec is interesting if it's affine or if it has an interesting start. 70 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 71 // Keep things simple. Don't touch loop-variant strides unless they're 72 // only used outside the loop and we can simplify them. 73 if (AR->getLoop() == L) 74 return AR->isAffine() || 75 (!L->contains(I) && 76 SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); 77 // Otherwise recurse to see if the start value is interesting, and that 78 // the step value is not interesting, since we don't yet know how to 79 // do effective SCEV expansions for addrecs with interesting steps. 80 return isInteresting(AR->getStart(), I, L, SE, LI) && 81 !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); 82 } 83 84 // An add is interesting if exactly one of its operands is interesting. 85 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 86 bool AnyInterestingYet = false; 87 for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end(); 88 OI != OE; ++OI) 89 if (isInteresting(*OI, I, L, SE, LI)) { 90 if (AnyInterestingYet) 91 return false; 92 AnyInterestingYet = true; 93 } 94 return AnyInterestingYet; 95 } 96 97 // Nothing else is interesting here. 98 return false; 99 } 100 101 /// Return true if all loop headers that dominate this block are in simplified 102 /// form. 103 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT, 104 const LoopInfo *LI, 105 SmallPtrSetImpl<Loop*> &SimpleLoopNests) { 106 Loop *NearestLoop = nullptr; 107 for (DomTreeNode *Rung = DT->getNode(BB); 108 Rung; Rung = Rung->getIDom()) { 109 BasicBlock *DomBB = Rung->getBlock(); 110 Loop *DomLoop = LI->getLoopFor(DomBB); 111 if (DomLoop && DomLoop->getHeader() == DomBB) { 112 // If the domtree walk reaches a loop with no preheader, return false. 113 if (!DomLoop->isLoopSimplifyForm()) 114 return false; 115 // If we have already checked this loop nest, stop checking. 116 if (SimpleLoopNests.count(DomLoop)) 117 break; 118 // If we have not already checked this loop nest, remember the loop 119 // header nearest to BB. The nearest loop may not contain BB. 120 if (!NearestLoop) 121 NearestLoop = DomLoop; 122 } 123 } 124 if (NearestLoop) 125 SimpleLoopNests.insert(NearestLoop); 126 return true; 127 } 128 129 /// AddUsersImpl - Inspect the specified instruction. If it is a 130 /// reducible SCEV, recursively add its users to the IVUsesByStride set and 131 /// return true. Otherwise, return false. 132 bool IVUsers::AddUsersImpl(Instruction *I, 133 SmallPtrSetImpl<Loop*> &SimpleLoopNests) { 134 const DataLayout &DL = I->getModule()->getDataLayout(); 135 136 // Add this IV user to the Processed set before returning false to ensure that 137 // all IV users are members of the set. See IVUsers::isIVUserOrOperand. 138 if (!Processed.insert(I).second) 139 return true; // Instruction already handled. 140 141 if (!SE->isSCEVable(I->getType())) 142 return false; // Void and FP expressions cannot be reduced. 143 144 // IVUsers is used by LSR which assumes that all SCEV expressions are safe to 145 // pass to SCEVExpander. Expressions are not safe to expand if they represent 146 // operations that are not safe to speculate, namely integer division. 147 if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I)) 148 return false; 149 150 // LSR is not APInt clean, do not touch integers bigger than 64-bits. 151 // Also avoid creating IVs of non-native types. For example, we don't want a 152 // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. 153 uint64_t Width = SE->getTypeSizeInBits(I->getType()); 154 if (Width > 64 || !DL.isLegalInteger(Width)) 155 return false; 156 157 // Don't attempt to promote ephemeral values to indvars. They will be removed 158 // later anyway. 159 if (EphValues.count(I)) 160 return false; 161 162 // Get the symbolic expression for this instruction. 163 const SCEV *ISE = SE->getSCEV(I); 164 165 // If we've come to an uninteresting expression, stop the traversal and 166 // call this a user. 167 if (!isInteresting(ISE, I, L, SE, LI)) 168 return false; 169 170 SmallPtrSet<Instruction *, 4> UniqueUsers; 171 for (Use &U : I->uses()) { 172 Instruction *User = cast<Instruction>(U.getUser()); 173 if (!UniqueUsers.insert(User).second) 174 continue; 175 176 // Do not infinitely recurse on PHI nodes. 177 if (isa<PHINode>(User) && Processed.count(User)) 178 continue; 179 180 // Only consider IVUsers that are dominated by simplified loop 181 // headers. Otherwise, SCEVExpander will crash. 182 BasicBlock *UseBB = User->getParent(); 183 // A phi's use is live out of its predecessor block. 184 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 185 unsigned OperandNo = U.getOperandNo(); 186 unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo); 187 UseBB = PHI->getIncomingBlock(ValNo); 188 } 189 if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests)) 190 return false; 191 192 // Descend recursively, but not into PHI nodes outside the current loop. 193 // It's important to see the entire expression outside the loop to get 194 // choices that depend on addressing mode use right, although we won't 195 // consider references outside the loop in all cases. 196 // If User is already in Processed, we don't want to recurse into it again, 197 // but do want to record a second reference in the same instruction. 198 bool AddUserToIVUsers = false; 199 if (LI->getLoopFor(User->getParent()) != L) { 200 if (isa<PHINode>(User) || Processed.count(User) || 201 !AddUsersImpl(User, SimpleLoopNests)) { 202 DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' 203 << " OF SCEV: " << *ISE << '\n'); 204 AddUserToIVUsers = true; 205 } 206 } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) { 207 DEBUG(dbgs() << "FOUND USER: " << *User << '\n' 208 << " OF SCEV: " << *ISE << '\n'); 209 AddUserToIVUsers = true; 210 } 211 212 if (AddUserToIVUsers) { 213 // Okay, we found a user that we cannot reduce. 214 IVStrideUse &NewUse = AddUser(User, I); 215 // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. 216 // The regular return value here is discarded; instead of recording 217 // it, we just recompute it when we need it. 218 const SCEV *OriginalISE = ISE; 219 ISE = TransformForPostIncUse(NormalizeAutodetect, 220 ISE, User, I, 221 NewUse.PostIncLoops, 222 *SE, *DT); 223 224 // PostIncNormalization effectively simplifies the expression under 225 // pre-increment assumptions. Those assumptions (no wrapping) might not 226 // hold for the post-inc value. Catch such cases by making sure the 227 // transformation is invertible. 228 if (OriginalISE != ISE) { 229 const SCEV *DenormalizedISE = 230 TransformForPostIncUse(Denormalize, ISE, User, I, 231 NewUse.PostIncLoops, *SE, *DT); 232 233 // If we normalized the expression, but denormalization doesn't give the 234 // original one, discard this user. 235 if (OriginalISE != DenormalizedISE) { 236 DEBUG(dbgs() << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " 237 << *ISE << '\n'); 238 IVUses.pop_back(); 239 return false; 240 } 241 } 242 DEBUG(if (SE->getSCEV(I) != ISE) 243 dbgs() << " NORMALIZED TO: " << *ISE << '\n'); 244 } 245 } 246 return true; 247 } 248 249 bool IVUsers::AddUsersIfInteresting(Instruction *I) { 250 // SCEVExpander can only handle users that are dominated by simplified loop 251 // entries. Keep track of all loops that are only dominated by other simple 252 // loops so we don't traverse the domtree for each user. 253 SmallPtrSet<Loop*,16> SimpleLoopNests; 254 255 return AddUsersImpl(I, SimpleLoopNests); 256 } 257 258 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { 259 IVUses.push_back(new IVStrideUse(this, User, Operand)); 260 return IVUses.back(); 261 } 262 263 IVUsers::IVUsers(Loop *L, LoopInfo *LI, DominatorTree *DT, ScalarEvolution *SE) 264 : L(L), LI(LI), DT(DT), SE(SE), IVUses() { 265 // Collect ephemeral values so that AddUsersIfInteresting skips them. 266 EphValues.clear(); 267 CodeMetrics::collectEphemeralValues(L, EphValues); 268 269 // Find all uses of induction variables in this loop, and categorize 270 // them by stride. Start by finding all of the PHI nodes in the header for 271 // this loop. If they are induction variables, inspect their uses. 272 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) 273 (void)AddUsersIfInteresting(&*I); 274 } 275 276 void IVUsers::print(raw_ostream &OS, const Module *M) const { 277 OS << "IV Users for loop "; 278 L->getHeader()->printAsOperand(OS, false); 279 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 280 OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); 281 } 282 OS << ":\n"; 283 284 for (const IVStrideUse &IVUse : IVUses) { 285 OS << " "; 286 IVUse.getOperandValToReplace()->printAsOperand(OS, false); 287 OS << " = " << *getReplacementExpr(IVUse); 288 for (auto PostIncLoop : IVUse.PostIncLoops) { 289 OS << " (post-inc with loop "; 290 PostIncLoop->getHeader()->printAsOperand(OS, false); 291 OS << ")"; 292 } 293 OS << " in "; 294 if (IVUse.getUser()) 295 IVUse.getUser()->print(OS); 296 else 297 OS << "Printing <null> User"; 298 OS << '\n'; 299 } 300 } 301 302 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 303 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } 304 #endif 305 306 void IVUsers::releaseMemory() { 307 Processed.clear(); 308 IVUses.clear(); 309 } 310 311 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { 312 initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); 313 } 314 315 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 316 AU.addRequired<LoopInfoWrapperPass>(); 317 AU.addRequired<DominatorTreeWrapperPass>(); 318 AU.addRequired<ScalarEvolutionWrapperPass>(); 319 AU.setPreservesAll(); 320 } 321 322 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { 323 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 324 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 325 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 326 327 IU.reset(new IVUsers(L, LI, DT, SE)); 328 return false; 329 } 330 331 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { 332 IU->print(OS, M); 333 } 334 335 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } 336 337 /// getReplacementExpr - Return a SCEV expression which computes the 338 /// value of the OperandValToReplace. 339 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { 340 return SE->getSCEV(IU.getOperandValToReplace()); 341 } 342 343 /// getExpr - Return the expression for the use. 344 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { 345 return 346 TransformForPostIncUse(Normalize, getReplacementExpr(IU), 347 IU.getUser(), IU.getOperandValToReplace(), 348 const_cast<PostIncLoopSet &>(IU.getPostIncLoops()), 349 *SE, *DT); 350 } 351 352 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { 353 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 354 if (AR->getLoop() == L) 355 return AR; 356 return findAddRecForLoop(AR->getStart(), L); 357 } 358 359 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 360 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 361 I != E; ++I) 362 if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L)) 363 return AR; 364 return nullptr; 365 } 366 367 return nullptr; 368 } 369 370 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { 371 if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L)) 372 return AR->getStepRecurrence(*SE); 373 return nullptr; 374 } 375 376 void IVStrideUse::transformToPostInc(const Loop *L) { 377 PostIncLoops.insert(L); 378 } 379 380 void IVStrideUse::deleted() { 381 // Remove this user from the list. 382 Parent->Processed.erase(this->getUser()); 383 Parent->IVUses.erase(this); 384 // this now dangles! 385 } 386