1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements bookkeeping for "interesting" users of expressions
11 // computed from induction variables.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/IVUsers.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Analysis/CodeMetrics.h"
18 #include "llvm/Analysis/LoopPass.h"
19 #include "llvm/Analysis/LoopPassManager.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "iv-users"
35 
36 AnalysisKey IVUsersAnalysis::Key;
37 
38 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM) {
39   const auto &FAM =
40       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
41   Function *F = L.getHeader()->getParent();
42 
43   return IVUsers(&L, FAM.getCachedResult<LoopAnalysis>(*F),
44                  FAM.getCachedResult<DominatorTreeAnalysis>(*F),
45                  FAM.getCachedResult<ScalarEvolutionAnalysis>(*F));
46 }
47 
48 PreservedAnalyses IVUsersPrinterPass::run(Loop &L, LoopAnalysisManager &AM) {
49   AM.getResult<IVUsersAnalysis>(L).print(OS);
50   return PreservedAnalyses::all();
51 }
52 
53 char IVUsersWrapperPass::ID = 0;
54 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
55                       "Induction Variable Users", false, true)
56 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
57 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
58 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
59 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
60                     false, true)
61 
62 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
63 
64 /// isInteresting - Test whether the given expression is "interesting" when
65 /// used by the given expression, within the context of analyzing the
66 /// given loop.
67 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
68                           ScalarEvolution *SE, LoopInfo *LI) {
69   // An addrec is interesting if it's affine or if it has an interesting start.
70   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
71     // Keep things simple. Don't touch loop-variant strides unless they're
72     // only used outside the loop and we can simplify them.
73     if (AR->getLoop() == L)
74       return AR->isAffine() ||
75              (!L->contains(I) &&
76               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
77     // Otherwise recurse to see if the start value is interesting, and that
78     // the step value is not interesting, since we don't yet know how to
79     // do effective SCEV expansions for addrecs with interesting steps.
80     return isInteresting(AR->getStart(), I, L, SE, LI) &&
81           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
82   }
83 
84   // An add is interesting if exactly one of its operands is interesting.
85   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
86     bool AnyInterestingYet = false;
87     for (SCEVAddExpr::op_iterator OI = Add->op_begin(), OE = Add->op_end();
88          OI != OE; ++OI)
89       if (isInteresting(*OI, I, L, SE, LI)) {
90         if (AnyInterestingYet)
91           return false;
92         AnyInterestingYet = true;
93       }
94     return AnyInterestingYet;
95   }
96 
97   // Nothing else is interesting here.
98   return false;
99 }
100 
101 /// Return true if all loop headers that dominate this block are in simplified
102 /// form.
103 static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
104                                  const LoopInfo *LI,
105                                  SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
106   Loop *NearestLoop = nullptr;
107   for (DomTreeNode *Rung = DT->getNode(BB);
108        Rung; Rung = Rung->getIDom()) {
109     BasicBlock *DomBB = Rung->getBlock();
110     Loop *DomLoop = LI->getLoopFor(DomBB);
111     if (DomLoop && DomLoop->getHeader() == DomBB) {
112       // If the domtree walk reaches a loop with no preheader, return false.
113       if (!DomLoop->isLoopSimplifyForm())
114         return false;
115       // If we have already checked this loop nest, stop checking.
116       if (SimpleLoopNests.count(DomLoop))
117         break;
118       // If we have not already checked this loop nest, remember the loop
119       // header nearest to BB. The nearest loop may not contain BB.
120       if (!NearestLoop)
121         NearestLoop = DomLoop;
122     }
123   }
124   if (NearestLoop)
125     SimpleLoopNests.insert(NearestLoop);
126   return true;
127 }
128 
129 /// AddUsersImpl - Inspect the specified instruction.  If it is a
130 /// reducible SCEV, recursively add its users to the IVUsesByStride set and
131 /// return true.  Otherwise, return false.
132 bool IVUsers::AddUsersImpl(Instruction *I,
133                            SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
134   const DataLayout &DL = I->getModule()->getDataLayout();
135 
136   // Add this IV user to the Processed set before returning false to ensure that
137   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
138   if (!Processed.insert(I).second)
139     return true;    // Instruction already handled.
140 
141   if (!SE->isSCEVable(I->getType()))
142     return false;   // Void and FP expressions cannot be reduced.
143 
144   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
145   // pass to SCEVExpander. Expressions are not safe to expand if they represent
146   // operations that are not safe to speculate, namely integer division.
147   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
148     return false;
149 
150   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
151   // Also avoid creating IVs of non-native types. For example, we don't want a
152   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
153   uint64_t Width = SE->getTypeSizeInBits(I->getType());
154   if (Width > 64 || !DL.isLegalInteger(Width))
155     return false;
156 
157   // Don't attempt to promote ephemeral values to indvars. They will be removed
158   // later anyway.
159   if (EphValues.count(I))
160     return false;
161 
162   // Get the symbolic expression for this instruction.
163   const SCEV *ISE = SE->getSCEV(I);
164 
165   // If we've come to an uninteresting expression, stop the traversal and
166   // call this a user.
167   if (!isInteresting(ISE, I, L, SE, LI))
168     return false;
169 
170   SmallPtrSet<Instruction *, 4> UniqueUsers;
171   for (Use &U : I->uses()) {
172     Instruction *User = cast<Instruction>(U.getUser());
173     if (!UniqueUsers.insert(User).second)
174       continue;
175 
176     // Do not infinitely recurse on PHI nodes.
177     if (isa<PHINode>(User) && Processed.count(User))
178       continue;
179 
180     // Only consider IVUsers that are dominated by simplified loop
181     // headers. Otherwise, SCEVExpander will crash.
182     BasicBlock *UseBB = User->getParent();
183     // A phi's use is live out of its predecessor block.
184     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
185       unsigned OperandNo = U.getOperandNo();
186       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
187       UseBB = PHI->getIncomingBlock(ValNo);
188     }
189     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
190       return false;
191 
192     // Descend recursively, but not into PHI nodes outside the current loop.
193     // It's important to see the entire expression outside the loop to get
194     // choices that depend on addressing mode use right, although we won't
195     // consider references outside the loop in all cases.
196     // If User is already in Processed, we don't want to recurse into it again,
197     // but do want to record a second reference in the same instruction.
198     bool AddUserToIVUsers = false;
199     if (LI->getLoopFor(User->getParent()) != L) {
200       if (isa<PHINode>(User) || Processed.count(User) ||
201           !AddUsersImpl(User, SimpleLoopNests)) {
202         DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
203                      << "   OF SCEV: " << *ISE << '\n');
204         AddUserToIVUsers = true;
205       }
206     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
207       DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
208                    << "   OF SCEV: " << *ISE << '\n');
209       AddUserToIVUsers = true;
210     }
211 
212     if (AddUserToIVUsers) {
213       // Okay, we found a user that we cannot reduce.
214       IVStrideUse &NewUse = AddUser(User, I);
215       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
216       // The regular return value here is discarded; instead of recording
217       // it, we just recompute it when we need it.
218       const SCEV *OriginalISE = ISE;
219       ISE = TransformForPostIncUse(NormalizeAutodetect,
220                                    ISE, User, I,
221                                    NewUse.PostIncLoops,
222                                    *SE, *DT);
223 
224       // PostIncNormalization effectively simplifies the expression under
225       // pre-increment assumptions. Those assumptions (no wrapping) might not
226       // hold for the post-inc value. Catch such cases by making sure the
227       // transformation is invertible.
228       if (OriginalISE != ISE) {
229         const SCEV *DenormalizedISE =
230           TransformForPostIncUse(Denormalize, ISE, User, I,
231               NewUse.PostIncLoops, *SE, *DT);
232 
233         // If we normalized the expression, but denormalization doesn't give the
234         // original one, discard this user.
235         if (OriginalISE != DenormalizedISE) {
236           DEBUG(dbgs() << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
237                        << *ISE << '\n');
238           IVUses.pop_back();
239           return false;
240         }
241       }
242       DEBUG(if (SE->getSCEV(I) != ISE)
243               dbgs() << "   NORMALIZED TO: " << *ISE << '\n');
244     }
245   }
246   return true;
247 }
248 
249 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
250   // SCEVExpander can only handle users that are dominated by simplified loop
251   // entries. Keep track of all loops that are only dominated by other simple
252   // loops so we don't traverse the domtree for each user.
253   SmallPtrSet<Loop*,16> SimpleLoopNests;
254 
255   return AddUsersImpl(I, SimpleLoopNests);
256 }
257 
258 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
259   IVUses.push_back(new IVStrideUse(this, User, Operand));
260   return IVUses.back();
261 }
262 
263 IVUsers::IVUsers(Loop *L, LoopInfo *LI, DominatorTree *DT, ScalarEvolution *SE)
264     : L(L), LI(LI), DT(DT), SE(SE), IVUses() {
265   // Collect ephemeral values so that AddUsersIfInteresting skips them.
266   EphValues.clear();
267   CodeMetrics::collectEphemeralValues(L, EphValues);
268 
269   // Find all uses of induction variables in this loop, and categorize
270   // them by stride.  Start by finding all of the PHI nodes in the header for
271   // this loop.  If they are induction variables, inspect their uses.
272   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
273     (void)AddUsersIfInteresting(&*I);
274 }
275 
276 void IVUsers::print(raw_ostream &OS, const Module *M) const {
277   OS << "IV Users for loop ";
278   L->getHeader()->printAsOperand(OS, false);
279   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
280     OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
281   }
282   OS << ":\n";
283 
284   for (const IVStrideUse &IVUse : IVUses) {
285     OS << "  ";
286     IVUse.getOperandValToReplace()->printAsOperand(OS, false);
287     OS << " = " << *getReplacementExpr(IVUse);
288     for (auto PostIncLoop : IVUse.PostIncLoops) {
289       OS << " (post-inc with loop ";
290       PostIncLoop->getHeader()->printAsOperand(OS, false);
291       OS << ")";
292     }
293     OS << " in  ";
294     if (IVUse.getUser())
295       IVUse.getUser()->print(OS);
296     else
297       OS << "Printing <null> User";
298     OS << '\n';
299   }
300 }
301 
302 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
303 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
304 #endif
305 
306 void IVUsers::releaseMemory() {
307   Processed.clear();
308   IVUses.clear();
309 }
310 
311 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
312   initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
313 }
314 
315 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
316   AU.addRequired<LoopInfoWrapperPass>();
317   AU.addRequired<DominatorTreeWrapperPass>();
318   AU.addRequired<ScalarEvolutionWrapperPass>();
319   AU.setPreservesAll();
320 }
321 
322 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
323   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
324   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
325   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
326 
327   IU.reset(new IVUsers(L, LI, DT, SE));
328   return false;
329 }
330 
331 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
332   IU->print(OS, M);
333 }
334 
335 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
336 
337 /// getReplacementExpr - Return a SCEV expression which computes the
338 /// value of the OperandValToReplace.
339 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
340   return SE->getSCEV(IU.getOperandValToReplace());
341 }
342 
343 /// getExpr - Return the expression for the use.
344 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
345   return
346     TransformForPostIncUse(Normalize, getReplacementExpr(IU),
347                            IU.getUser(), IU.getOperandValToReplace(),
348                            const_cast<PostIncLoopSet &>(IU.getPostIncLoops()),
349                            *SE, *DT);
350 }
351 
352 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
353   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
354     if (AR->getLoop() == L)
355       return AR;
356     return findAddRecForLoop(AR->getStart(), L);
357   }
358 
359   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
360     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
361          I != E; ++I)
362       if (const SCEVAddRecExpr *AR = findAddRecForLoop(*I, L))
363         return AR;
364     return nullptr;
365   }
366 
367   return nullptr;
368 }
369 
370 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
371   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
372     return AR->getStepRecurrence(*SE);
373   return nullptr;
374 }
375 
376 void IVStrideUse::transformToPostInc(const Loop *L) {
377   PostIncLoops.insert(L);
378 }
379 
380 void IVStrideUse::deleted() {
381   // Remove this user from the list.
382   Parent->Processed.erase(this->getUser());
383   Parent->IVUses.erase(this);
384   // this now dangles!
385 }
386