1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 37 #include <set> 38 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 #define DEBUG_TYPE "iv-descriptors" 43 44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 45 SmallPtrSetImpl<Instruction *> &Set) { 46 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 47 if (!Set.count(dyn_cast<Instruction>(*Use))) 48 return false; 49 return true; 50 } 51 52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { 53 switch (Kind) { 54 default: 55 break; 56 case RecurKind::Add: 57 case RecurKind::Mul: 58 case RecurKind::Or: 59 case RecurKind::And: 60 case RecurKind::Xor: 61 case RecurKind::SMax: 62 case RecurKind::SMin: 63 case RecurKind::UMax: 64 case RecurKind::UMin: 65 return true; 66 } 67 return false; 68 } 69 70 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { 71 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); 72 } 73 74 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) { 75 switch (Kind) { 76 default: 77 break; 78 case RecurKind::Add: 79 case RecurKind::Mul: 80 case RecurKind::FAdd: 81 case RecurKind::FMul: 82 return true; 83 } 84 return false; 85 } 86 87 /// Determines if Phi may have been type-promoted. If Phi has a single user 88 /// that ANDs the Phi with a type mask, return the user. RT is updated to 89 /// account for the narrower bit width represented by the mask, and the AND 90 /// instruction is added to CI. 91 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 92 SmallPtrSetImpl<Instruction *> &Visited, 93 SmallPtrSetImpl<Instruction *> &CI) { 94 if (!Phi->hasOneUse()) 95 return Phi; 96 97 const APInt *M = nullptr; 98 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 99 100 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 101 // with a new integer type of the corresponding bit width. 102 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 103 int32_t Bits = (*M + 1).exactLogBase2(); 104 if (Bits > 0) { 105 RT = IntegerType::get(Phi->getContext(), Bits); 106 Visited.insert(Phi); 107 CI.insert(J); 108 return J; 109 } 110 } 111 return Phi; 112 } 113 114 /// Compute the minimal bit width needed to represent a reduction whose exit 115 /// instruction is given by Exit. 116 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 117 DemandedBits *DB, 118 AssumptionCache *AC, 119 DominatorTree *DT) { 120 bool IsSigned = false; 121 const DataLayout &DL = Exit->getModule()->getDataLayout(); 122 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 123 124 if (DB) { 125 // Use the demanded bits analysis to determine the bits that are live out 126 // of the exit instruction, rounding up to the nearest power of two. If the 127 // use of demanded bits results in a smaller bit width, we know the value 128 // must be positive (i.e., IsSigned = false), because if this were not the 129 // case, the sign bit would have been demanded. 130 auto Mask = DB->getDemandedBits(Exit); 131 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 132 } 133 134 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 135 // If demanded bits wasn't able to limit the bit width, we can try to use 136 // value tracking instead. This can be the case, for example, if the value 137 // may be negative. 138 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 139 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 140 MaxBitWidth = NumTypeBits - NumSignBits; 141 KnownBits Bits = computeKnownBits(Exit, DL); 142 if (!Bits.isNonNegative()) { 143 // If the value is not known to be non-negative, we set IsSigned to true, 144 // meaning that we will use sext instructions instead of zext 145 // instructions to restore the original type. 146 IsSigned = true; 147 if (!Bits.isNegative()) 148 // If the value is not known to be negative, we don't known what the 149 // upper bit is, and therefore, we don't know what kind of extend we 150 // will need. In this case, just increase the bit width by one bit and 151 // use sext. 152 ++MaxBitWidth; 153 } 154 } 155 if (!isPowerOf2_64(MaxBitWidth)) 156 MaxBitWidth = NextPowerOf2(MaxBitWidth); 157 158 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 159 IsSigned); 160 } 161 162 /// Collect cast instructions that can be ignored in the vectorizer's cost 163 /// model, given a reduction exit value and the minimal type in which the 164 /// reduction can be represented. 165 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 166 Type *RecurrenceType, 167 SmallPtrSetImpl<Instruction *> &Casts) { 168 169 SmallVector<Instruction *, 8> Worklist; 170 SmallPtrSet<Instruction *, 8> Visited; 171 Worklist.push_back(Exit); 172 173 while (!Worklist.empty()) { 174 Instruction *Val = Worklist.pop_back_val(); 175 Visited.insert(Val); 176 if (auto *Cast = dyn_cast<CastInst>(Val)) 177 if (Cast->getSrcTy() == RecurrenceType) { 178 // If the source type of a cast instruction is equal to the recurrence 179 // type, it will be eliminated, and should be ignored in the vectorizer 180 // cost model. 181 Casts.insert(Cast); 182 continue; 183 } 184 185 // Add all operands to the work list if they are loop-varying values that 186 // we haven't yet visited. 187 for (Value *O : cast<User>(Val)->operands()) 188 if (auto *I = dyn_cast<Instruction>(O)) 189 if (TheLoop->contains(I) && !Visited.count(I)) 190 Worklist.push_back(I); 191 } 192 } 193 194 // Check if a given Phi node can be recognized as an ordered reduction for 195 // vectorizing floating point operations without unsafe math. 196 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, 197 Instruction *Exit, PHINode *Phi) { 198 // Currently only FAdd is supported 199 if (Kind != RecurKind::FAdd) 200 return false; 201 202 bool IsOrdered = 203 Exit->getOpcode() == Instruction::FAdd && Exit == ExactFPMathInst; 204 205 // The only pattern accepted is the one in which the reduction PHI 206 // is used as one of the operands of the exit instruction 207 auto *LHS = Exit->getOperand(0); 208 auto *RHS = Exit->getOperand(1); 209 IsOrdered &= ((LHS == Phi) || (RHS == Phi)); 210 211 if (!IsOrdered) 212 return false; 213 214 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi 215 << ", ExitInst: " << *Exit << "\n"); 216 217 return true; 218 } 219 220 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, 221 Loop *TheLoop, FastMathFlags FuncFMF, 222 RecurrenceDescriptor &RedDes, 223 DemandedBits *DB, 224 AssumptionCache *AC, 225 DominatorTree *DT) { 226 if (Phi->getNumIncomingValues() != 2) 227 return false; 228 229 // Reduction variables are only found in the loop header block. 230 if (Phi->getParent() != TheLoop->getHeader()) 231 return false; 232 233 // Obtain the reduction start value from the value that comes from the loop 234 // preheader. 235 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 236 237 // ExitInstruction is the single value which is used outside the loop. 238 // We only allow for a single reduction value to be used outside the loop. 239 // This includes users of the reduction, variables (which form a cycle 240 // which ends in the phi node). 241 Instruction *ExitInstruction = nullptr; 242 // Indicates that we found a reduction operation in our scan. 243 bool FoundReduxOp = false; 244 245 // We start with the PHI node and scan for all of the users of this 246 // instruction. All users must be instructions that can be used as reduction 247 // variables (such as ADD). We must have a single out-of-block user. The cycle 248 // must include the original PHI. 249 bool FoundStartPHI = false; 250 251 // To recognize min/max patterns formed by a icmp select sequence, we store 252 // the number of instruction we saw from the recognized min/max pattern, 253 // to make sure we only see exactly the two instructions. 254 unsigned NumCmpSelectPatternInst = 0; 255 InstDesc ReduxDesc(false, nullptr); 256 257 // Data used for determining if the recurrence has been type-promoted. 258 Type *RecurrenceType = Phi->getType(); 259 SmallPtrSet<Instruction *, 4> CastInsts; 260 Instruction *Start = Phi; 261 bool IsSigned = false; 262 263 SmallPtrSet<Instruction *, 8> VisitedInsts; 264 SmallVector<Instruction *, 8> Worklist; 265 266 // Return early if the recurrence kind does not match the type of Phi. If the 267 // recurrence kind is arithmetic, we attempt to look through AND operations 268 // resulting from the type promotion performed by InstCombine. Vector 269 // operations are not limited to the legal integer widths, so we may be able 270 // to evaluate the reduction in the narrower width. 271 if (RecurrenceType->isFloatingPointTy()) { 272 if (!isFloatingPointRecurrenceKind(Kind)) 273 return false; 274 } else if (RecurrenceType->isIntegerTy()) { 275 if (!isIntegerRecurrenceKind(Kind)) 276 return false; 277 if (isArithmeticRecurrenceKind(Kind)) 278 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 279 } else { 280 // Pointer min/max may exist, but it is not supported as a reduction op. 281 return false; 282 } 283 284 Worklist.push_back(Start); 285 VisitedInsts.insert(Start); 286 287 // Start with all flags set because we will intersect this with the reduction 288 // flags from all the reduction operations. 289 FastMathFlags FMF = FastMathFlags::getFast(); 290 291 // A value in the reduction can be used: 292 // - By the reduction: 293 // - Reduction operation: 294 // - One use of reduction value (safe). 295 // - Multiple use of reduction value (not safe). 296 // - PHI: 297 // - All uses of the PHI must be the reduction (safe). 298 // - Otherwise, not safe. 299 // - By instructions outside of the loop (safe). 300 // * One value may have several outside users, but all outside 301 // uses must be of the same value. 302 // - By an instruction that is not part of the reduction (not safe). 303 // This is either: 304 // * An instruction type other than PHI or the reduction operation. 305 // * A PHI in the header other than the initial PHI. 306 while (!Worklist.empty()) { 307 Instruction *Cur = Worklist.pop_back_val(); 308 309 // No Users. 310 // If the instruction has no users then this is a broken chain and can't be 311 // a reduction variable. 312 if (Cur->use_empty()) 313 return false; 314 315 bool IsAPhi = isa<PHINode>(Cur); 316 317 // A header PHI use other than the original PHI. 318 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 319 return false; 320 321 // Reductions of instructions such as Div, and Sub is only possible if the 322 // LHS is the reduction variable. 323 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 324 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 325 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 326 return false; 327 328 // Any reduction instruction must be of one of the allowed kinds. We ignore 329 // the starting value (the Phi or an AND instruction if the Phi has been 330 // type-promoted). 331 if (Cur != Start) { 332 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, FuncFMF); 333 if (!ReduxDesc.isRecurrence()) 334 return false; 335 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 336 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) { 337 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); 338 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) { 339 // Accept FMF on either fcmp or select of a min/max idiom. 340 // TODO: This is a hack to work-around the fact that FMF may not be 341 // assigned/propagated correctly. If that problem is fixed or we 342 // standardize on fmin/fmax via intrinsics, this can be removed. 343 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition())) 344 CurFMF |= FCmp->getFastMathFlags(); 345 } 346 FMF &= CurFMF; 347 } 348 // Update this reduction kind if we matched a new instruction. 349 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' 350 // state accurate while processing the worklist? 351 if (ReduxDesc.getRecKind() != RecurKind::None) 352 Kind = ReduxDesc.getRecKind(); 353 } 354 355 bool IsASelect = isa<SelectInst>(Cur); 356 357 // A conditional reduction operation must only have 2 or less uses in 358 // VisitedInsts. 359 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && 360 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 361 return false; 362 363 // A reduction operation must only have one use of the reduction value. 364 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && 365 hasMultipleUsesOf(Cur, VisitedInsts, 1)) 366 return false; 367 368 // All inputs to a PHI node must be a reduction value. 369 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 370 return false; 371 372 if (isIntMinMaxRecurrenceKind(Kind) && 373 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 374 ++NumCmpSelectPatternInst; 375 if (isFPMinMaxRecurrenceKind(Kind) && 376 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 377 ++NumCmpSelectPatternInst; 378 379 // Check whether we found a reduction operator. 380 FoundReduxOp |= !IsAPhi && Cur != Start; 381 382 // Process users of current instruction. Push non-PHI nodes after PHI nodes 383 // onto the stack. This way we are going to have seen all inputs to PHI 384 // nodes once we get to them. 385 SmallVector<Instruction *, 8> NonPHIs; 386 SmallVector<Instruction *, 8> PHIs; 387 for (User *U : Cur->users()) { 388 Instruction *UI = cast<Instruction>(U); 389 390 // Check if we found the exit user. 391 BasicBlock *Parent = UI->getParent(); 392 if (!TheLoop->contains(Parent)) { 393 // If we already know this instruction is used externally, move on to 394 // the next user. 395 if (ExitInstruction == Cur) 396 continue; 397 398 // Exit if you find multiple values used outside or if the header phi 399 // node is being used. In this case the user uses the value of the 400 // previous iteration, in which case we would loose "VF-1" iterations of 401 // the reduction operation if we vectorize. 402 if (ExitInstruction != nullptr || Cur == Phi) 403 return false; 404 405 // The instruction used by an outside user must be the last instruction 406 // before we feed back to the reduction phi. Otherwise, we loose VF-1 407 // operations on the value. 408 if (!is_contained(Phi->operands(), Cur)) 409 return false; 410 411 ExitInstruction = Cur; 412 continue; 413 } 414 415 // Process instructions only once (termination). Each reduction cycle 416 // value must only be used once, except by phi nodes and min/max 417 // reductions which are represented as a cmp followed by a select. 418 InstDesc IgnoredVal(false, nullptr); 419 if (VisitedInsts.insert(UI).second) { 420 if (isa<PHINode>(UI)) 421 PHIs.push_back(UI); 422 else 423 NonPHIs.push_back(UI); 424 } else if (!isa<PHINode>(UI) && 425 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 426 !isa<SelectInst>(UI)) || 427 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 428 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) 429 return false; 430 431 // Remember that we completed the cycle. 432 if (UI == Phi) 433 FoundStartPHI = true; 434 } 435 Worklist.append(PHIs.begin(), PHIs.end()); 436 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 437 } 438 439 // This means we have seen one but not the other instruction of the 440 // pattern or more than just a select and cmp. 441 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2) 442 return false; 443 444 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 445 return false; 446 447 const bool IsOrdered = checkOrderedReduction( 448 Kind, ReduxDesc.getExactFPMathInst(), ExitInstruction, Phi); 449 450 if (Start != Phi) { 451 // If the starting value is not the same as the phi node, we speculatively 452 // looked through an 'and' instruction when evaluating a potential 453 // arithmetic reduction to determine if it may have been type-promoted. 454 // 455 // We now compute the minimal bit width that is required to represent the 456 // reduction. If this is the same width that was indicated by the 'and', we 457 // can represent the reduction in the smaller type. The 'and' instruction 458 // will be eliminated since it will essentially be a cast instruction that 459 // can be ignore in the cost model. If we compute a different type than we 460 // did when evaluating the 'and', the 'and' will not be eliminated, and we 461 // will end up with different kinds of operations in the recurrence 462 // expression (e.g., IntegerAND, IntegerADD). We give up if this is 463 // the case. 464 // 465 // The vectorizer relies on InstCombine to perform the actual 466 // type-shrinking. It does this by inserting instructions to truncate the 467 // exit value of the reduction to the width indicated by RecurrenceType and 468 // then extend this value back to the original width. If IsSigned is false, 469 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 470 // used. 471 // 472 // TODO: We should not rely on InstCombine to rewrite the reduction in the 473 // smaller type. We should just generate a correctly typed expression 474 // to begin with. 475 Type *ComputedType; 476 std::tie(ComputedType, IsSigned) = 477 computeRecurrenceType(ExitInstruction, DB, AC, DT); 478 if (ComputedType != RecurrenceType) 479 return false; 480 481 // The recurrence expression will be represented in a narrower type. If 482 // there are any cast instructions that will be unnecessary, collect them 483 // in CastInsts. Note that the 'and' instruction was already included in 484 // this list. 485 // 486 // TODO: A better way to represent this may be to tag in some way all the 487 // instructions that are a part of the reduction. The vectorizer cost 488 // model could then apply the recurrence type to these instructions, 489 // without needing a white list of instructions to ignore. 490 // This may also be useful for the inloop reductions, if it can be 491 // kept simple enough. 492 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 493 } 494 495 // We found a reduction var if we have reached the original phi node and we 496 // only have a single instruction with out-of-loop users. 497 498 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 499 // is saved as part of the RecurrenceDescriptor. 500 501 // Save the description of this reduction variable. 502 RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, 503 ReduxDesc.getExactFPMathInst(), RecurrenceType, 504 IsSigned, IsOrdered, CastInsts); 505 RedDes = RD; 506 507 return true; 508 } 509 510 RecurrenceDescriptor::InstDesc 511 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, 512 const InstDesc &Prev) { 513 assert((isa<CmpInst>(I) || isa<SelectInst>(I)) && 514 "Expected a cmp or select instruction"); 515 516 // We must handle the select(cmp()) as a single instruction. Advance to the 517 // select. 518 CmpInst::Predicate Pred; 519 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 520 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 521 return InstDesc(Select, Prev.getRecKind()); 522 } 523 524 // Only match select with single use cmp condition. 525 if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 526 m_Value()))) 527 return InstDesc(false, I); 528 529 // Look for a min/max pattern. 530 if (match(I, m_UMin(m_Value(), m_Value()))) 531 return InstDesc(I, RecurKind::UMin); 532 if (match(I, m_UMax(m_Value(), m_Value()))) 533 return InstDesc(I, RecurKind::UMax); 534 if (match(I, m_SMax(m_Value(), m_Value()))) 535 return InstDesc(I, RecurKind::SMax); 536 if (match(I, m_SMin(m_Value(), m_Value()))) 537 return InstDesc(I, RecurKind::SMin); 538 if (match(I, m_OrdFMin(m_Value(), m_Value()))) 539 return InstDesc(I, RecurKind::FMin); 540 if (match(I, m_OrdFMax(m_Value(), m_Value()))) 541 return InstDesc(I, RecurKind::FMax); 542 if (match(I, m_UnordFMin(m_Value(), m_Value()))) 543 return InstDesc(I, RecurKind::FMin); 544 if (match(I, m_UnordFMax(m_Value(), m_Value()))) 545 return InstDesc(I, RecurKind::FMax); 546 547 return InstDesc(false, I); 548 } 549 550 /// Returns true if the select instruction has users in the compare-and-add 551 /// reduction pattern below. The select instruction argument is the last one 552 /// in the sequence. 553 /// 554 /// %sum.1 = phi ... 555 /// ... 556 /// %cmp = fcmp pred %0, %CFP 557 /// %add = fadd %0, %sum.1 558 /// %sum.2 = select %cmp, %add, %sum.1 559 RecurrenceDescriptor::InstDesc 560 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { 561 SelectInst *SI = dyn_cast<SelectInst>(I); 562 if (!SI) 563 return InstDesc(false, I); 564 565 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 566 // Only handle single use cases for now. 567 if (!CI || !CI->hasOneUse()) 568 return InstDesc(false, I); 569 570 Value *TrueVal = SI->getTrueValue(); 571 Value *FalseVal = SI->getFalseValue(); 572 // Handle only when either of operands of select instruction is a PHI 573 // node for now. 574 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 575 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 576 return InstDesc(false, I); 577 578 Instruction *I1 = 579 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 580 : dyn_cast<Instruction>(TrueVal); 581 if (!I1 || !I1->isBinaryOp()) 582 return InstDesc(false, I); 583 584 Value *Op1, *Op2; 585 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 586 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 587 I1->isFast()) 588 return InstDesc(Kind == RecurKind::FAdd, SI); 589 590 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 591 return InstDesc(Kind == RecurKind::FMul, SI); 592 593 return InstDesc(false, I); 594 } 595 596 RecurrenceDescriptor::InstDesc 597 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind, 598 InstDesc &Prev, FastMathFlags FMF) { 599 switch (I->getOpcode()) { 600 default: 601 return InstDesc(false, I); 602 case Instruction::PHI: 603 return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst()); 604 case Instruction::Sub: 605 case Instruction::Add: 606 return InstDesc(Kind == RecurKind::Add, I); 607 case Instruction::Mul: 608 return InstDesc(Kind == RecurKind::Mul, I); 609 case Instruction::And: 610 return InstDesc(Kind == RecurKind::And, I); 611 case Instruction::Or: 612 return InstDesc(Kind == RecurKind::Or, I); 613 case Instruction::Xor: 614 return InstDesc(Kind == RecurKind::Xor, I); 615 case Instruction::FDiv: 616 case Instruction::FMul: 617 return InstDesc(Kind == RecurKind::FMul, I, 618 I->hasAllowReassoc() ? nullptr : I); 619 case Instruction::FSub: 620 case Instruction::FAdd: 621 return InstDesc(Kind == RecurKind::FAdd, I, 622 I->hasAllowReassoc() ? nullptr : I); 623 case Instruction::Select: 624 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) 625 return isConditionalRdxPattern(Kind, I); 626 LLVM_FALLTHROUGH; 627 case Instruction::FCmp: 628 case Instruction::ICmp: 629 if (isIntMinMaxRecurrenceKind(Kind) || 630 (FMF.noNaNs() && FMF.noSignedZeros() && isFPMinMaxRecurrenceKind(Kind))) 631 return isMinMaxSelectCmpPattern(I, Prev); 632 return InstDesc(false, I); 633 } 634 } 635 636 bool RecurrenceDescriptor::hasMultipleUsesOf( 637 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 638 unsigned MaxNumUses) { 639 unsigned NumUses = 0; 640 for (const Use &U : I->operands()) { 641 if (Insts.count(dyn_cast<Instruction>(U))) 642 ++NumUses; 643 if (NumUses > MaxNumUses) 644 return true; 645 } 646 647 return false; 648 } 649 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 650 RecurrenceDescriptor &RedDes, 651 DemandedBits *DB, AssumptionCache *AC, 652 DominatorTree *DT) { 653 654 BasicBlock *Header = TheLoop->getHeader(); 655 Function &F = *Header->getParent(); 656 FastMathFlags FMF; 657 FMF.setNoNaNs( 658 F.getFnAttribute("no-nans-fp-math").getValueAsBool()); 659 FMF.setNoSignedZeros( 660 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool()); 661 662 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) { 663 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 664 return true; 665 } 666 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) { 667 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 668 return true; 669 } 670 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) { 671 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 672 return true; 673 } 674 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) { 675 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 676 return true; 677 } 678 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) { 679 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 680 return true; 681 } 682 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 683 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); 684 return true; 685 } 686 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 687 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); 688 return true; 689 } 690 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 691 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); 692 return true; 693 } 694 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 695 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); 696 return true; 697 } 698 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) { 699 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 700 return true; 701 } 702 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) { 703 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 704 return true; 705 } 706 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 707 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); 708 return true; 709 } 710 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 711 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); 712 return true; 713 } 714 // Not a reduction of known type. 715 return false; 716 } 717 718 bool RecurrenceDescriptor::isFirstOrderRecurrence( 719 PHINode *Phi, Loop *TheLoop, 720 MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 721 722 // Ensure the phi node is in the loop header and has two incoming values. 723 if (Phi->getParent() != TheLoop->getHeader() || 724 Phi->getNumIncomingValues() != 2) 725 return false; 726 727 // Ensure the loop has a preheader and a single latch block. The loop 728 // vectorizer will need the latch to set up the next iteration of the loop. 729 auto *Preheader = TheLoop->getLoopPreheader(); 730 auto *Latch = TheLoop->getLoopLatch(); 731 if (!Preheader || !Latch) 732 return false; 733 734 // Ensure the phi node's incoming blocks are the loop preheader and latch. 735 if (Phi->getBasicBlockIndex(Preheader) < 0 || 736 Phi->getBasicBlockIndex(Latch) < 0) 737 return false; 738 739 // Get the previous value. The previous value comes from the latch edge while 740 // the initial value comes form the preheader edge. 741 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 742 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 743 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 744 return false; 745 746 // Ensure every user of the phi node (recursively) is dominated by the 747 // previous value. The dominance requirement ensures the loop vectorizer will 748 // not need to vectorize the initial value prior to the first iteration of the 749 // loop. 750 // TODO: Consider extending this sinking to handle memory instructions. 751 752 // We optimistically assume we can sink all users after Previous. Keep a set 753 // of instructions to sink after Previous ordered by dominance in the common 754 // basic block. It will be applied to SinkAfter if all users can be sunk. 755 auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) { 756 return A->comesBefore(B); 757 }; 758 std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink( 759 CompareByComesBefore); 760 761 BasicBlock *PhiBB = Phi->getParent(); 762 SmallVector<Instruction *, 8> WorkList; 763 auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) { 764 // Already sunk SinkCandidate. 765 if (SinkCandidate->getParent() == PhiBB && 766 InstrsToSink.find(SinkCandidate) != InstrsToSink.end()) 767 return true; 768 769 // Cyclic dependence. 770 if (Previous == SinkCandidate) 771 return false; 772 773 if (DT->dominates(Previous, 774 SinkCandidate)) // We already are good w/o sinking. 775 return true; 776 777 if (SinkCandidate->getParent() != PhiBB || 778 SinkCandidate->mayHaveSideEffects() || 779 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator()) 780 return false; 781 782 // Do not try to sink an instruction multiple times (if multiple operands 783 // are first order recurrences). 784 // TODO: We can support this case, by sinking the instruction after the 785 // 'deepest' previous instruction. 786 if (SinkAfter.find(SinkCandidate) != SinkAfter.end()) 787 return false; 788 789 // If we reach a PHI node that is not dominated by Previous, we reached a 790 // header PHI. No need for sinking. 791 if (isa<PHINode>(SinkCandidate)) 792 return true; 793 794 // Sink User tentatively and check its users 795 InstrsToSink.insert(SinkCandidate); 796 WorkList.push_back(SinkCandidate); 797 return true; 798 }; 799 800 WorkList.push_back(Phi); 801 // Try to recursively sink instructions and their users after Previous. 802 while (!WorkList.empty()) { 803 Instruction *Current = WorkList.pop_back_val(); 804 for (User *User : Current->users()) { 805 if (!TryToPushSinkCandidate(cast<Instruction>(User))) 806 return false; 807 } 808 } 809 810 // We can sink all users of Phi. Update the mapping. 811 for (Instruction *I : InstrsToSink) { 812 SinkAfter[I] = Previous; 813 Previous = I; 814 } 815 return true; 816 } 817 818 /// This function returns the identity element (or neutral element) for 819 /// the operation K. 820 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp, 821 FastMathFlags FMF) { 822 switch (K) { 823 case RecurKind::Xor: 824 case RecurKind::Add: 825 case RecurKind::Or: 826 // Adding, Xoring, Oring zero to a number does not change it. 827 return ConstantInt::get(Tp, 0); 828 case RecurKind::Mul: 829 // Multiplying a number by 1 does not change it. 830 return ConstantInt::get(Tp, 1); 831 case RecurKind::And: 832 // AND-ing a number with an all-1 value does not change it. 833 return ConstantInt::get(Tp, -1, true); 834 case RecurKind::FMul: 835 // Multiplying a number by 1 does not change it. 836 return ConstantFP::get(Tp, 1.0L); 837 case RecurKind::FAdd: 838 // Adding zero to a number does not change it. 839 // FIXME: Ideally we should not need to check FMF for FAdd and should always 840 // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0. 841 // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI 842 // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would 843 // mean we can then remove the check for noSignedZeros() below (see D98963). 844 if (FMF.noSignedZeros()) 845 return ConstantFP::get(Tp, 0.0L); 846 return ConstantFP::get(Tp, -0.0L); 847 case RecurKind::UMin: 848 return ConstantInt::get(Tp, -1); 849 case RecurKind::UMax: 850 return ConstantInt::get(Tp, 0); 851 case RecurKind::SMin: 852 return ConstantInt::get(Tp, 853 APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); 854 case RecurKind::SMax: 855 return ConstantInt::get(Tp, 856 APInt::getSignedMinValue(Tp->getIntegerBitWidth())); 857 case RecurKind::FMin: 858 return ConstantFP::getInfinity(Tp, true); 859 case RecurKind::FMax: 860 return ConstantFP::getInfinity(Tp, false); 861 default: 862 llvm_unreachable("Unknown recurrence kind"); 863 } 864 } 865 866 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { 867 switch (Kind) { 868 case RecurKind::Add: 869 return Instruction::Add; 870 case RecurKind::Mul: 871 return Instruction::Mul; 872 case RecurKind::Or: 873 return Instruction::Or; 874 case RecurKind::And: 875 return Instruction::And; 876 case RecurKind::Xor: 877 return Instruction::Xor; 878 case RecurKind::FMul: 879 return Instruction::FMul; 880 case RecurKind::FAdd: 881 return Instruction::FAdd; 882 case RecurKind::SMax: 883 case RecurKind::SMin: 884 case RecurKind::UMax: 885 case RecurKind::UMin: 886 return Instruction::ICmp; 887 case RecurKind::FMax: 888 case RecurKind::FMin: 889 return Instruction::FCmp; 890 default: 891 llvm_unreachable("Unknown recurrence operation"); 892 } 893 } 894 895 SmallVector<Instruction *, 4> 896 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 897 SmallVector<Instruction *, 4> ReductionOperations; 898 unsigned RedOp = getOpcode(Kind); 899 900 // Search down from the Phi to the LoopExitInstr, looking for instructions 901 // with a single user of the correct type for the reduction. 902 903 // Note that we check that the type of the operand is correct for each item in 904 // the chain, including the last (the loop exit value). This can come up from 905 // sub, which would otherwise be treated as an add reduction. MinMax also need 906 // to check for a pair of icmp/select, for which we use getNextInstruction and 907 // isCorrectOpcode functions to step the right number of instruction, and 908 // check the icmp/select pair. 909 // FIXME: We also do not attempt to look through Phi/Select's yet, which might 910 // be part of the reduction chain, or attempt to looks through And's to find a 911 // smaller bitwidth. Subs are also currently not allowed (which are usually 912 // treated as part of a add reduction) as they are expected to generally be 913 // more expensive than out-of-loop reductions, and need to be costed more 914 // carefully. 915 unsigned ExpectedUses = 1; 916 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 917 ExpectedUses = 2; 918 919 auto getNextInstruction = [&](Instruction *Cur) { 920 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 921 // We are expecting a icmp/select pair, which we go to the next select 922 // instruction if we can. We already know that Cur has 2 uses. 923 if (isa<SelectInst>(*Cur->user_begin())) 924 return cast<Instruction>(*Cur->user_begin()); 925 else 926 return cast<Instruction>(*std::next(Cur->user_begin())); 927 } 928 return cast<Instruction>(*Cur->user_begin()); 929 }; 930 auto isCorrectOpcode = [&](Instruction *Cur) { 931 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 932 Value *LHS, *RHS; 933 return SelectPatternResult::isMinOrMax( 934 matchSelectPattern(Cur, LHS, RHS).Flavor); 935 } 936 return Cur->getOpcode() == RedOp; 937 }; 938 939 // The loop exit instruction we check first (as a quick test) but add last. We 940 // check the opcode is correct (and dont allow them to be Subs) and that they 941 // have expected to have the expected number of uses. They will have one use 942 // from the phi and one from a LCSSA value, no matter the type. 943 if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2)) 944 return {}; 945 946 // Check that the Phi has one (or two for min/max) uses. 947 if (!Phi->hasNUses(ExpectedUses)) 948 return {}; 949 Instruction *Cur = getNextInstruction(Phi); 950 951 // Each other instruction in the chain should have the expected number of uses 952 // and be the correct opcode. 953 while (Cur != LoopExitInstr) { 954 if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 955 return {}; 956 957 ReductionOperations.push_back(Cur); 958 Cur = getNextInstruction(Cur); 959 } 960 961 ReductionOperations.push_back(Cur); 962 return ReductionOperations; 963 } 964 965 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 966 const SCEV *Step, BinaryOperator *BOp, 967 SmallVectorImpl<Instruction *> *Casts) 968 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 969 assert(IK != IK_NoInduction && "Not an induction"); 970 971 // Start value type should match the induction kind and the value 972 // itself should not be null. 973 assert(StartValue && "StartValue is null"); 974 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 975 "StartValue is not a pointer for pointer induction"); 976 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 977 "StartValue is not an integer for integer induction"); 978 979 // Check the Step Value. It should be non-zero integer value. 980 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 981 "Step value is zero"); 982 983 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 984 "Step value should be constant for pointer induction"); 985 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 986 "StepValue is not an integer"); 987 988 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 989 "StepValue is not FP for FpInduction"); 990 assert((IK != IK_FpInduction || 991 (InductionBinOp && 992 (InductionBinOp->getOpcode() == Instruction::FAdd || 993 InductionBinOp->getOpcode() == Instruction::FSub))) && 994 "Binary opcode should be specified for FP induction"); 995 996 if (Casts) { 997 for (auto &Inst : *Casts) { 998 RedundantCasts.push_back(Inst); 999 } 1000 } 1001 } 1002 1003 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 1004 if (isa<SCEVConstant>(Step)) 1005 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 1006 return nullptr; 1007 } 1008 1009 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 1010 ScalarEvolution *SE, 1011 InductionDescriptor &D) { 1012 1013 // Here we only handle FP induction variables. 1014 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 1015 1016 if (TheLoop->getHeader() != Phi->getParent()) 1017 return false; 1018 1019 // The loop may have multiple entrances or multiple exits; we can analyze 1020 // this phi if it has a unique entry value and a unique backedge value. 1021 if (Phi->getNumIncomingValues() != 2) 1022 return false; 1023 Value *BEValue = nullptr, *StartValue = nullptr; 1024 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 1025 BEValue = Phi->getIncomingValue(0); 1026 StartValue = Phi->getIncomingValue(1); 1027 } else { 1028 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 1029 "Unexpected Phi node in the loop"); 1030 BEValue = Phi->getIncomingValue(1); 1031 StartValue = Phi->getIncomingValue(0); 1032 } 1033 1034 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 1035 if (!BOp) 1036 return false; 1037 1038 Value *Addend = nullptr; 1039 if (BOp->getOpcode() == Instruction::FAdd) { 1040 if (BOp->getOperand(0) == Phi) 1041 Addend = BOp->getOperand(1); 1042 else if (BOp->getOperand(1) == Phi) 1043 Addend = BOp->getOperand(0); 1044 } else if (BOp->getOpcode() == Instruction::FSub) 1045 if (BOp->getOperand(0) == Phi) 1046 Addend = BOp->getOperand(1); 1047 1048 if (!Addend) 1049 return false; 1050 1051 // The addend should be loop invariant 1052 if (auto *I = dyn_cast<Instruction>(Addend)) 1053 if (TheLoop->contains(I)) 1054 return false; 1055 1056 // FP Step has unknown SCEV 1057 const SCEV *Step = SE->getUnknown(Addend); 1058 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 1059 return true; 1060 } 1061 1062 /// This function is called when we suspect that the update-chain of a phi node 1063 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 1064 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 1065 /// predicate P under which the SCEV expression for the phi can be the 1066 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1067 /// cast instructions that are involved in the update-chain of this induction. 1068 /// A caller that adds the required runtime predicate can be free to drop these 1069 /// cast instructions, and compute the phi using \p AR (instead of some scev 1070 /// expression with casts). 1071 /// 1072 /// For example, without a predicate the scev expression can take the following 1073 /// form: 1074 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1075 /// 1076 /// It corresponds to the following IR sequence: 1077 /// %for.body: 1078 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1079 /// %casted_phi = "ExtTrunc i64 %x" 1080 /// %add = add i64 %casted_phi, %step 1081 /// 1082 /// where %x is given in \p PN, 1083 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1084 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1085 /// several forms, for example, such as: 1086 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1087 /// or: 1088 /// ExtTrunc2: %t = shl %x, m 1089 /// %casted_phi = ashr %t, m 1090 /// 1091 /// If we are able to find such sequence, we return the instructions 1092 /// we found, namely %casted_phi and the instructions on its use-def chain up 1093 /// to the phi (not including the phi). 1094 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1095 const SCEVUnknown *PhiScev, 1096 const SCEVAddRecExpr *AR, 1097 SmallVectorImpl<Instruction *> &CastInsts) { 1098 1099 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1100 auto *PN = cast<PHINode>(PhiScev->getValue()); 1101 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1102 const Loop *L = AR->getLoop(); 1103 1104 // Find any cast instructions that participate in the def-use chain of 1105 // PhiScev in the loop. 1106 // FORNOW/TODO: We currently expect the def-use chain to include only 1107 // two-operand instructions, where one of the operands is an invariant. 1108 // createAddRecFromPHIWithCasts() currently does not support anything more 1109 // involved than that, so we keep the search simple. This can be 1110 // extended/generalized as needed. 1111 1112 auto getDef = [&](const Value *Val) -> Value * { 1113 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1114 if (!BinOp) 1115 return nullptr; 1116 Value *Op0 = BinOp->getOperand(0); 1117 Value *Op1 = BinOp->getOperand(1); 1118 Value *Def = nullptr; 1119 if (L->isLoopInvariant(Op0)) 1120 Def = Op1; 1121 else if (L->isLoopInvariant(Op1)) 1122 Def = Op0; 1123 return Def; 1124 }; 1125 1126 // Look for the instruction that defines the induction via the 1127 // loop backedge. 1128 BasicBlock *Latch = L->getLoopLatch(); 1129 if (!Latch) 1130 return false; 1131 Value *Val = PN->getIncomingValueForBlock(Latch); 1132 if (!Val) 1133 return false; 1134 1135 // Follow the def-use chain until the induction phi is reached. 1136 // If on the way we encounter a Value that has the same SCEV Expr as the 1137 // phi node, we can consider the instructions we visit from that point 1138 // as part of the cast-sequence that can be ignored. 1139 bool InCastSequence = false; 1140 auto *Inst = dyn_cast<Instruction>(Val); 1141 while (Val != PN) { 1142 // If we encountered a phi node other than PN, or if we left the loop, 1143 // we bail out. 1144 if (!Inst || !L->contains(Inst)) { 1145 return false; 1146 } 1147 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1148 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1149 InCastSequence = true; 1150 if (InCastSequence) { 1151 // Only the last instruction in the cast sequence is expected to have 1152 // uses outside the induction def-use chain. 1153 if (!CastInsts.empty()) 1154 if (!Inst->hasOneUse()) 1155 return false; 1156 CastInsts.push_back(Inst); 1157 } 1158 Val = getDef(Val); 1159 if (!Val) 1160 return false; 1161 Inst = dyn_cast<Instruction>(Val); 1162 } 1163 1164 return InCastSequence; 1165 } 1166 1167 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1168 PredicatedScalarEvolution &PSE, 1169 InductionDescriptor &D, bool Assume) { 1170 Type *PhiTy = Phi->getType(); 1171 1172 // Handle integer and pointer inductions variables. 1173 // Now we handle also FP induction but not trying to make a 1174 // recurrent expression from the PHI node in-place. 1175 1176 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1177 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1178 return false; 1179 1180 if (PhiTy->isFloatingPointTy()) 1181 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1182 1183 const SCEV *PhiScev = PSE.getSCEV(Phi); 1184 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1185 1186 // We need this expression to be an AddRecExpr. 1187 if (Assume && !AR) 1188 AR = PSE.getAsAddRec(Phi); 1189 1190 if (!AR) { 1191 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1192 return false; 1193 } 1194 1195 // Record any Cast instructions that participate in the induction update 1196 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1197 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1198 // only after enabling Assume with PSCEV, this means we may have encountered 1199 // cast instructions that required adding a runtime check in order to 1200 // guarantee the correctness of the AddRecurrence respresentation of the 1201 // induction. 1202 if (PhiScev != AR && SymbolicPhi) { 1203 SmallVector<Instruction *, 2> Casts; 1204 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1205 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1206 } 1207 1208 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1209 } 1210 1211 bool InductionDescriptor::isInductionPHI( 1212 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1213 InductionDescriptor &D, const SCEV *Expr, 1214 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1215 Type *PhiTy = Phi->getType(); 1216 // We only handle integer and pointer inductions variables. 1217 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1218 return false; 1219 1220 // Check that the PHI is consecutive. 1221 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1222 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1223 1224 if (!AR) { 1225 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1226 return false; 1227 } 1228 1229 if (AR->getLoop() != TheLoop) { 1230 // FIXME: We should treat this as a uniform. Unfortunately, we 1231 // don't currently know how to handled uniform PHIs. 1232 LLVM_DEBUG( 1233 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1234 return false; 1235 } 1236 1237 Value *StartValue = 1238 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1239 1240 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1241 if (!Latch) 1242 return false; 1243 BinaryOperator *BOp = 1244 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1245 1246 const SCEV *Step = AR->getStepRecurrence(*SE); 1247 // Calculate the pointer stride and check if it is consecutive. 1248 // The stride may be a constant or a loop invariant integer value. 1249 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1250 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1251 return false; 1252 1253 if (PhiTy->isIntegerTy()) { 1254 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1255 CastsToIgnore); 1256 return true; 1257 } 1258 1259 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1260 // Pointer induction should be a constant. 1261 if (!ConstStep) 1262 return false; 1263 1264 ConstantInt *CV = ConstStep->getValue(); 1265 Type *PointerElementType = PhiTy->getPointerElementType(); 1266 // The pointer stride cannot be determined if the pointer element type is not 1267 // sized. 1268 if (!PointerElementType->isSized()) 1269 return false; 1270 1271 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1272 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1273 if (!Size) 1274 return false; 1275 1276 int64_t CVSize = CV->getSExtValue(); 1277 if (CVSize % Size) 1278 return false; 1279 auto *StepValue = 1280 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1281 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); 1282 return true; 1283 } 1284