1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/KnownBits.h"
37 
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40 
41 #define DEBUG_TYPE "iv-descriptors"
42 
43 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
44                                         SmallPtrSetImpl<Instruction *> &Set) {
45   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
46     if (!Set.count(dyn_cast<Instruction>(*Use)))
47       return false;
48   return true;
49 }
50 
51 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
52   switch (Kind) {
53   default:
54     break;
55   case RK_IntegerAdd:
56   case RK_IntegerMult:
57   case RK_IntegerOr:
58   case RK_IntegerAnd:
59   case RK_IntegerXor:
60   case RK_IntegerMinMax:
61     return true;
62   }
63   return false;
64 }
65 
66 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
67   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
68 }
69 
70 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
71   switch (Kind) {
72   default:
73     break;
74   case RK_IntegerAdd:
75   case RK_IntegerMult:
76   case RK_FloatAdd:
77   case RK_FloatMult:
78     return true;
79   }
80   return false;
81 }
82 
83 /// Determines if Phi may have been type-promoted. If Phi has a single user
84 /// that ANDs the Phi with a type mask, return the user. RT is updated to
85 /// account for the narrower bit width represented by the mask, and the AND
86 /// instruction is added to CI.
87 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
88                                    SmallPtrSetImpl<Instruction *> &Visited,
89                                    SmallPtrSetImpl<Instruction *> &CI) {
90   if (!Phi->hasOneUse())
91     return Phi;
92 
93   const APInt *M = nullptr;
94   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
95 
96   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
97   // with a new integer type of the corresponding bit width.
98   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
99     int32_t Bits = (*M + 1).exactLogBase2();
100     if (Bits > 0) {
101       RT = IntegerType::get(Phi->getContext(), Bits);
102       Visited.insert(Phi);
103       CI.insert(J);
104       return J;
105     }
106   }
107   return Phi;
108 }
109 
110 /// Compute the minimal bit width needed to represent a reduction whose exit
111 /// instruction is given by Exit.
112 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
113                                                      DemandedBits *DB,
114                                                      AssumptionCache *AC,
115                                                      DominatorTree *DT) {
116   bool IsSigned = false;
117   const DataLayout &DL = Exit->getModule()->getDataLayout();
118   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
119 
120   if (DB) {
121     // Use the demanded bits analysis to determine the bits that are live out
122     // of the exit instruction, rounding up to the nearest power of two. If the
123     // use of demanded bits results in a smaller bit width, we know the value
124     // must be positive (i.e., IsSigned = false), because if this were not the
125     // case, the sign bit would have been demanded.
126     auto Mask = DB->getDemandedBits(Exit);
127     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
128   }
129 
130   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
131     // If demanded bits wasn't able to limit the bit width, we can try to use
132     // value tracking instead. This can be the case, for example, if the value
133     // may be negative.
134     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
135     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
136     MaxBitWidth = NumTypeBits - NumSignBits;
137     KnownBits Bits = computeKnownBits(Exit, DL);
138     if (!Bits.isNonNegative()) {
139       // If the value is not known to be non-negative, we set IsSigned to true,
140       // meaning that we will use sext instructions instead of zext
141       // instructions to restore the original type.
142       IsSigned = true;
143       if (!Bits.isNegative())
144         // If the value is not known to be negative, we don't known what the
145         // upper bit is, and therefore, we don't know what kind of extend we
146         // will need. In this case, just increase the bit width by one bit and
147         // use sext.
148         ++MaxBitWidth;
149     }
150   }
151   if (!isPowerOf2_64(MaxBitWidth))
152     MaxBitWidth = NextPowerOf2(MaxBitWidth);
153 
154   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
155                         IsSigned);
156 }
157 
158 /// Collect cast instructions that can be ignored in the vectorizer's cost
159 /// model, given a reduction exit value and the minimal type in which the
160 /// reduction can be represented.
161 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
162                                  Type *RecurrenceType,
163                                  SmallPtrSetImpl<Instruction *> &Casts) {
164 
165   SmallVector<Instruction *, 8> Worklist;
166   SmallPtrSet<Instruction *, 8> Visited;
167   Worklist.push_back(Exit);
168 
169   while (!Worklist.empty()) {
170     Instruction *Val = Worklist.pop_back_val();
171     Visited.insert(Val);
172     if (auto *Cast = dyn_cast<CastInst>(Val))
173       if (Cast->getSrcTy() == RecurrenceType) {
174         // If the source type of a cast instruction is equal to the recurrence
175         // type, it will be eliminated, and should be ignored in the vectorizer
176         // cost model.
177         Casts.insert(Cast);
178         continue;
179       }
180 
181     // Add all operands to the work list if they are loop-varying values that
182     // we haven't yet visited.
183     for (Value *O : cast<User>(Val)->operands())
184       if (auto *I = dyn_cast<Instruction>(O))
185         if (TheLoop->contains(I) && !Visited.count(I))
186           Worklist.push_back(I);
187   }
188 }
189 
190 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
191                                            Loop *TheLoop, bool HasFunNoNaNAttr,
192                                            RecurrenceDescriptor &RedDes,
193                                            DemandedBits *DB,
194                                            AssumptionCache *AC,
195                                            DominatorTree *DT) {
196   if (Phi->getNumIncomingValues() != 2)
197     return false;
198 
199   // Reduction variables are only found in the loop header block.
200   if (Phi->getParent() != TheLoop->getHeader())
201     return false;
202 
203   // Obtain the reduction start value from the value that comes from the loop
204   // preheader.
205   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
206 
207   // ExitInstruction is the single value which is used outside the loop.
208   // We only allow for a single reduction value to be used outside the loop.
209   // This includes users of the reduction, variables (which form a cycle
210   // which ends in the phi node).
211   Instruction *ExitInstruction = nullptr;
212   // Indicates that we found a reduction operation in our scan.
213   bool FoundReduxOp = false;
214 
215   // We start with the PHI node and scan for all of the users of this
216   // instruction. All users must be instructions that can be used as reduction
217   // variables (such as ADD). We must have a single out-of-block user. The cycle
218   // must include the original PHI.
219   bool FoundStartPHI = false;
220 
221   // To recognize min/max patterns formed by a icmp select sequence, we store
222   // the number of instruction we saw from the recognized min/max pattern,
223   //  to make sure we only see exactly the two instructions.
224   unsigned NumCmpSelectPatternInst = 0;
225   InstDesc ReduxDesc(false, nullptr);
226 
227   // Data used for determining if the recurrence has been type-promoted.
228   Type *RecurrenceType = Phi->getType();
229   SmallPtrSet<Instruction *, 4> CastInsts;
230   Instruction *Start = Phi;
231   bool IsSigned = false;
232 
233   SmallPtrSet<Instruction *, 8> VisitedInsts;
234   SmallVector<Instruction *, 8> Worklist;
235 
236   // Return early if the recurrence kind does not match the type of Phi. If the
237   // recurrence kind is arithmetic, we attempt to look through AND operations
238   // resulting from the type promotion performed by InstCombine.  Vector
239   // operations are not limited to the legal integer widths, so we may be able
240   // to evaluate the reduction in the narrower width.
241   if (RecurrenceType->isFloatingPointTy()) {
242     if (!isFloatingPointRecurrenceKind(Kind))
243       return false;
244   } else {
245     if (!isIntegerRecurrenceKind(Kind))
246       return false;
247     if (isArithmeticRecurrenceKind(Kind))
248       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
249   }
250 
251   Worklist.push_back(Start);
252   VisitedInsts.insert(Start);
253 
254   // A value in the reduction can be used:
255   //  - By the reduction:
256   //      - Reduction operation:
257   //        - One use of reduction value (safe).
258   //        - Multiple use of reduction value (not safe).
259   //      - PHI:
260   //        - All uses of the PHI must be the reduction (safe).
261   //        - Otherwise, not safe.
262   //  - By instructions outside of the loop (safe).
263   //      * One value may have several outside users, but all outside
264   //        uses must be of the same value.
265   //  - By an instruction that is not part of the reduction (not safe).
266   //    This is either:
267   //      * An instruction type other than PHI or the reduction operation.
268   //      * A PHI in the header other than the initial PHI.
269   while (!Worklist.empty()) {
270     Instruction *Cur = Worklist.back();
271     Worklist.pop_back();
272 
273     // No Users.
274     // If the instruction has no users then this is a broken chain and can't be
275     // a reduction variable.
276     if (Cur->use_empty())
277       return false;
278 
279     bool IsAPhi = isa<PHINode>(Cur);
280 
281     // A header PHI use other than the original PHI.
282     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
283       return false;
284 
285     // Reductions of instructions such as Div, and Sub is only possible if the
286     // LHS is the reduction variable.
287     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
288         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
289         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
290       return false;
291 
292     // Any reduction instruction must be of one of the allowed kinds. We ignore
293     // the starting value (the Phi or an AND instruction if the Phi has been
294     // type-promoted).
295     if (Cur != Start) {
296       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
297       if (!ReduxDesc.isRecurrence())
298         return false;
299     }
300 
301     bool IsASelect = isa<SelectInst>(Cur);
302 
303     // A conditional reduction operation must only have 2 or less uses in
304     // VisitedInsts.
305     if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
306         hasMultipleUsesOf(Cur, VisitedInsts, 2))
307       return false;
308 
309     // A reduction operation must only have one use of the reduction value.
310     if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
311         Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
312       return false;
313 
314     // All inputs to a PHI node must be a reduction value.
315     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
316       return false;
317 
318     if (Kind == RK_IntegerMinMax &&
319         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
320       ++NumCmpSelectPatternInst;
321     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
322       ++NumCmpSelectPatternInst;
323 
324     // Check  whether we found a reduction operator.
325     FoundReduxOp |= !IsAPhi && Cur != Start;
326 
327     // Process users of current instruction. Push non-PHI nodes after PHI nodes
328     // onto the stack. This way we are going to have seen all inputs to PHI
329     // nodes once we get to them.
330     SmallVector<Instruction *, 8> NonPHIs;
331     SmallVector<Instruction *, 8> PHIs;
332     for (User *U : Cur->users()) {
333       Instruction *UI = cast<Instruction>(U);
334 
335       // Check if we found the exit user.
336       BasicBlock *Parent = UI->getParent();
337       if (!TheLoop->contains(Parent)) {
338         // If we already know this instruction is used externally, move on to
339         // the next user.
340         if (ExitInstruction == Cur)
341           continue;
342 
343         // Exit if you find multiple values used outside or if the header phi
344         // node is being used. In this case the user uses the value of the
345         // previous iteration, in which case we would loose "VF-1" iterations of
346         // the reduction operation if we vectorize.
347         if (ExitInstruction != nullptr || Cur == Phi)
348           return false;
349 
350         // The instruction used by an outside user must be the last instruction
351         // before we feed back to the reduction phi. Otherwise, we loose VF-1
352         // operations on the value.
353         if (!is_contained(Phi->operands(), Cur))
354           return false;
355 
356         ExitInstruction = Cur;
357         continue;
358       }
359 
360       // Process instructions only once (termination). Each reduction cycle
361       // value must only be used once, except by phi nodes and min/max
362       // reductions which are represented as a cmp followed by a select.
363       InstDesc IgnoredVal(false, nullptr);
364       if (VisitedInsts.insert(UI).second) {
365         if (isa<PHINode>(UI))
366           PHIs.push_back(UI);
367         else
368           NonPHIs.push_back(UI);
369       } else if (!isa<PHINode>(UI) &&
370                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
371                    !isa<SelectInst>(UI)) ||
372                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
373                    !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
374         return false;
375 
376       // Remember that we completed the cycle.
377       if (UI == Phi)
378         FoundStartPHI = true;
379     }
380     Worklist.append(PHIs.begin(), PHIs.end());
381     Worklist.append(NonPHIs.begin(), NonPHIs.end());
382   }
383 
384   // This means we have seen one but not the other instruction of the
385   // pattern or more than just a select and cmp.
386   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
387       NumCmpSelectPatternInst != 2)
388     return false;
389 
390   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
391     return false;
392 
393   if (Start != Phi) {
394     // If the starting value is not the same as the phi node, we speculatively
395     // looked through an 'and' instruction when evaluating a potential
396     // arithmetic reduction to determine if it may have been type-promoted.
397     //
398     // We now compute the minimal bit width that is required to represent the
399     // reduction. If this is the same width that was indicated by the 'and', we
400     // can represent the reduction in the smaller type. The 'and' instruction
401     // will be eliminated since it will essentially be a cast instruction that
402     // can be ignore in the cost model. If we compute a different type than we
403     // did when evaluating the 'and', the 'and' will not be eliminated, and we
404     // will end up with different kinds of operations in the recurrence
405     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
406     // the case.
407     //
408     // The vectorizer relies on InstCombine to perform the actual
409     // type-shrinking. It does this by inserting instructions to truncate the
410     // exit value of the reduction to the width indicated by RecurrenceType and
411     // then extend this value back to the original width. If IsSigned is false,
412     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
413     // used.
414     //
415     // TODO: We should not rely on InstCombine to rewrite the reduction in the
416     //       smaller type. We should just generate a correctly typed expression
417     //       to begin with.
418     Type *ComputedType;
419     std::tie(ComputedType, IsSigned) =
420         computeRecurrenceType(ExitInstruction, DB, AC, DT);
421     if (ComputedType != RecurrenceType)
422       return false;
423 
424     // The recurrence expression will be represented in a narrower type. If
425     // there are any cast instructions that will be unnecessary, collect them
426     // in CastInsts. Note that the 'and' instruction was already included in
427     // this list.
428     //
429     // TODO: A better way to represent this may be to tag in some way all the
430     //       instructions that are a part of the reduction. The vectorizer cost
431     //       model could then apply the recurrence type to these instructions,
432     //       without needing a white list of instructions to ignore.
433     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
434   }
435 
436   // We found a reduction var if we have reached the original phi node and we
437   // only have a single instruction with out-of-loop users.
438 
439   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
440   // is saved as part of the RecurrenceDescriptor.
441 
442   // Save the description of this reduction variable.
443   RecurrenceDescriptor RD(
444       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
445       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
446   RedDes = RD;
447 
448   return true;
449 }
450 
451 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
452 /// pattern corresponding to a min(X, Y) or max(X, Y).
453 RecurrenceDescriptor::InstDesc
454 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
455 
456   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
457          "Expect a select instruction");
458   Instruction *Cmp = nullptr;
459   SelectInst *Select = nullptr;
460 
461   // We must handle the select(cmp()) as a single instruction. Advance to the
462   // select.
463   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
464     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
465       return InstDesc(false, I);
466     return InstDesc(Select, Prev.getMinMaxKind());
467   }
468 
469   // Only handle single use cases for now.
470   if (!(Select = dyn_cast<SelectInst>(I)))
471     return InstDesc(false, I);
472   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
473       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
474     return InstDesc(false, I);
475   if (!Cmp->hasOneUse())
476     return InstDesc(false, I);
477 
478   Value *CmpLeft;
479   Value *CmpRight;
480 
481   // Look for a min/max pattern.
482   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
483     return InstDesc(Select, MRK_UIntMin);
484   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
485     return InstDesc(Select, MRK_UIntMax);
486   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
487     return InstDesc(Select, MRK_SIntMax);
488   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
489     return InstDesc(Select, MRK_SIntMin);
490   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
491     return InstDesc(Select, MRK_FloatMin);
492   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
493     return InstDesc(Select, MRK_FloatMax);
494   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
495     return InstDesc(Select, MRK_FloatMin);
496   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
497     return InstDesc(Select, MRK_FloatMax);
498 
499   return InstDesc(false, I);
500 }
501 
502 /// Returns true if the select instruction has users in the compare-and-add
503 /// reduction pattern below. The select instruction argument is the last one
504 /// in the sequence.
505 ///
506 /// %sum.1 = phi ...
507 /// ...
508 /// %cmp = fcmp pred %0, %CFP
509 /// %add = fadd %0, %sum.1
510 /// %sum.2 = select %cmp, %add, %sum.1
511 RecurrenceDescriptor::InstDesc
512 RecurrenceDescriptor::isConditionalRdxPattern(
513     RecurrenceKind Kind, Instruction *I) {
514   SelectInst *SI = dyn_cast<SelectInst>(I);
515   if (!SI)
516     return InstDesc(false, I);
517 
518   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
519   // Only handle single use cases for now.
520   if (!CI || !CI->hasOneUse())
521     return InstDesc(false, I);
522 
523   Value *TrueVal = SI->getTrueValue();
524   Value *FalseVal = SI->getFalseValue();
525   // Handle only when either of operands of select instruction is a PHI
526   // node for now.
527   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
528       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
529     return InstDesc(false, I);
530 
531   Instruction *I1 =
532       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
533                              : dyn_cast<Instruction>(TrueVal);
534   if (!I1 || !I1->isBinaryOp())
535     return InstDesc(false, I);
536 
537   Value *Op1, *Op2;
538   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
539        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
540       I1->isFast())
541     return InstDesc(Kind == RK_FloatAdd, SI);
542 
543   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
544     return InstDesc(Kind == RK_FloatMult, SI);
545 
546   return InstDesc(false, I);
547 }
548 
549 RecurrenceDescriptor::InstDesc
550 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
551                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
552   Instruction *UAI = Prev.getUnsafeAlgebraInst();
553   if (!UAI && isa<FPMathOperator>(I) && !I->isFast())
554     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
555 
556   switch (I->getOpcode()) {
557   default:
558     return InstDesc(false, I);
559   case Instruction::PHI:
560     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
561   case Instruction::Sub:
562   case Instruction::Add:
563     return InstDesc(Kind == RK_IntegerAdd, I);
564   case Instruction::Mul:
565     return InstDesc(Kind == RK_IntegerMult, I);
566   case Instruction::And:
567     return InstDesc(Kind == RK_IntegerAnd, I);
568   case Instruction::Or:
569     return InstDesc(Kind == RK_IntegerOr, I);
570   case Instruction::Xor:
571     return InstDesc(Kind == RK_IntegerXor, I);
572   case Instruction::FMul:
573     return InstDesc(Kind == RK_FloatMult, I, UAI);
574   case Instruction::FSub:
575   case Instruction::FAdd:
576     return InstDesc(Kind == RK_FloatAdd, I, UAI);
577   case Instruction::Select:
578     if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
579       return isConditionalRdxPattern(Kind, I);
580     LLVM_FALLTHROUGH;
581   case Instruction::FCmp:
582   case Instruction::ICmp:
583     if (Kind != RK_IntegerMinMax &&
584         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
585       return InstDesc(false, I);
586     return isMinMaxSelectCmpPattern(I, Prev);
587   }
588 }
589 
590 bool RecurrenceDescriptor::hasMultipleUsesOf(
591     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
592     unsigned MaxNumUses) {
593   unsigned NumUses = 0;
594   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
595        ++Use) {
596     if (Insts.count(dyn_cast<Instruction>(*Use)))
597       ++NumUses;
598     if (NumUses > MaxNumUses)
599       return true;
600   }
601 
602   return false;
603 }
604 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
605                                           RecurrenceDescriptor &RedDes,
606                                           DemandedBits *DB, AssumptionCache *AC,
607                                           DominatorTree *DT) {
608 
609   BasicBlock *Header = TheLoop->getHeader();
610   Function &F = *Header->getParent();
611   bool HasFunNoNaNAttr =
612       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
613 
614   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
615                       AC, DT)) {
616     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
617     return true;
618   }
619   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
620                       AC, DT)) {
621     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
622     return true;
623   }
624   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
625                       AC, DT)) {
626     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
627     return true;
628   }
629   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
630                       AC, DT)) {
631     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
632     return true;
633   }
634   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
635                       AC, DT)) {
636     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
637     return true;
638   }
639   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
640                       DB, AC, DT)) {
641     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
642     return true;
643   }
644   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
645                       AC, DT)) {
646     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
647     return true;
648   }
649   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
650                       AC, DT)) {
651     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
652     return true;
653   }
654   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
655                       AC, DT)) {
656     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
657                       << "\n");
658     return true;
659   }
660   // Not a reduction of known type.
661   return false;
662 }
663 
664 bool RecurrenceDescriptor::isFirstOrderRecurrence(
665     PHINode *Phi, Loop *TheLoop,
666     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
667 
668   // Ensure the phi node is in the loop header and has two incoming values.
669   if (Phi->getParent() != TheLoop->getHeader() ||
670       Phi->getNumIncomingValues() != 2)
671     return false;
672 
673   // Ensure the loop has a preheader and a single latch block. The loop
674   // vectorizer will need the latch to set up the next iteration of the loop.
675   auto *Preheader = TheLoop->getLoopPreheader();
676   auto *Latch = TheLoop->getLoopLatch();
677   if (!Preheader || !Latch)
678     return false;
679 
680   // Ensure the phi node's incoming blocks are the loop preheader and latch.
681   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
682       Phi->getBasicBlockIndex(Latch) < 0)
683     return false;
684 
685   // Get the previous value. The previous value comes from the latch edge while
686   // the initial value comes form the preheader edge.
687   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
688   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
689       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
690     return false;
691 
692   // Ensure every user of the phi node is dominated by the previous value.
693   // The dominance requirement ensures the loop vectorizer will not need to
694   // vectorize the initial value prior to the first iteration of the loop.
695   // TODO: Consider extending this sinking to handle other kinds of instructions
696   // and expressions, beyond sinking a single cast past Previous.
697   if (Phi->hasOneUse()) {
698     auto *I = Phi->user_back();
699     if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
700         DT->dominates(Previous, I->user_back())) {
701       if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
702         SinkAfter[I] = Previous;
703       return true;
704     }
705   }
706 
707   for (User *U : Phi->users())
708     if (auto *I = dyn_cast<Instruction>(U)) {
709       if (!DT->dominates(Previous, I))
710         return false;
711     }
712 
713   return true;
714 }
715 
716 /// This function returns the identity element (or neutral element) for
717 /// the operation K.
718 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
719                                                       Type *Tp) {
720   switch (K) {
721   case RK_IntegerXor:
722   case RK_IntegerAdd:
723   case RK_IntegerOr:
724     // Adding, Xoring, Oring zero to a number does not change it.
725     return ConstantInt::get(Tp, 0);
726   case RK_IntegerMult:
727     // Multiplying a number by 1 does not change it.
728     return ConstantInt::get(Tp, 1);
729   case RK_IntegerAnd:
730     // AND-ing a number with an all-1 value does not change it.
731     return ConstantInt::get(Tp, -1, true);
732   case RK_FloatMult:
733     // Multiplying a number by 1 does not change it.
734     return ConstantFP::get(Tp, 1.0L);
735   case RK_FloatAdd:
736     // Adding zero to a number does not change it.
737     return ConstantFP::get(Tp, 0.0L);
738   default:
739     llvm_unreachable("Unknown recurrence kind");
740   }
741 }
742 
743 /// This function translates the recurrence kind to an LLVM binary operator.
744 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
745   switch (Kind) {
746   case RK_IntegerAdd:
747     return Instruction::Add;
748   case RK_IntegerMult:
749     return Instruction::Mul;
750   case RK_IntegerOr:
751     return Instruction::Or;
752   case RK_IntegerAnd:
753     return Instruction::And;
754   case RK_IntegerXor:
755     return Instruction::Xor;
756   case RK_FloatMult:
757     return Instruction::FMul;
758   case RK_FloatAdd:
759     return Instruction::FAdd;
760   case RK_IntegerMinMax:
761     return Instruction::ICmp;
762   case RK_FloatMinMax:
763     return Instruction::FCmp;
764   default:
765     llvm_unreachable("Unknown recurrence operation");
766   }
767 }
768 
769 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
770                                          const SCEV *Step, BinaryOperator *BOp,
771                                          SmallVectorImpl<Instruction *> *Casts)
772     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
773   assert(IK != IK_NoInduction && "Not an induction");
774 
775   // Start value type should match the induction kind and the value
776   // itself should not be null.
777   assert(StartValue && "StartValue is null");
778   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
779          "StartValue is not a pointer for pointer induction");
780   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
781          "StartValue is not an integer for integer induction");
782 
783   // Check the Step Value. It should be non-zero integer value.
784   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
785          "Step value is zero");
786 
787   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
788          "Step value should be constant for pointer induction");
789   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
790          "StepValue is not an integer");
791 
792   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
793          "StepValue is not FP for FpInduction");
794   assert((IK != IK_FpInduction ||
795           (InductionBinOp &&
796            (InductionBinOp->getOpcode() == Instruction::FAdd ||
797             InductionBinOp->getOpcode() == Instruction::FSub))) &&
798          "Binary opcode should be specified for FP induction");
799 
800   if (Casts) {
801     for (auto &Inst : *Casts) {
802       RedundantCasts.push_back(Inst);
803     }
804   }
805 }
806 
807 int InductionDescriptor::getConsecutiveDirection() const {
808   ConstantInt *ConstStep = getConstIntStepValue();
809   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
810     return ConstStep->getSExtValue();
811   return 0;
812 }
813 
814 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
815   if (isa<SCEVConstant>(Step))
816     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
817   return nullptr;
818 }
819 
820 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
821                                            ScalarEvolution *SE,
822                                            InductionDescriptor &D) {
823 
824   // Here we only handle FP induction variables.
825   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
826 
827   if (TheLoop->getHeader() != Phi->getParent())
828     return false;
829 
830   // The loop may have multiple entrances or multiple exits; we can analyze
831   // this phi if it has a unique entry value and a unique backedge value.
832   if (Phi->getNumIncomingValues() != 2)
833     return false;
834   Value *BEValue = nullptr, *StartValue = nullptr;
835   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
836     BEValue = Phi->getIncomingValue(0);
837     StartValue = Phi->getIncomingValue(1);
838   } else {
839     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
840            "Unexpected Phi node in the loop");
841     BEValue = Phi->getIncomingValue(1);
842     StartValue = Phi->getIncomingValue(0);
843   }
844 
845   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
846   if (!BOp)
847     return false;
848 
849   Value *Addend = nullptr;
850   if (BOp->getOpcode() == Instruction::FAdd) {
851     if (BOp->getOperand(0) == Phi)
852       Addend = BOp->getOperand(1);
853     else if (BOp->getOperand(1) == Phi)
854       Addend = BOp->getOperand(0);
855   } else if (BOp->getOpcode() == Instruction::FSub)
856     if (BOp->getOperand(0) == Phi)
857       Addend = BOp->getOperand(1);
858 
859   if (!Addend)
860     return false;
861 
862   // The addend should be loop invariant
863   if (auto *I = dyn_cast<Instruction>(Addend))
864     if (TheLoop->contains(I))
865       return false;
866 
867   // FP Step has unknown SCEV
868   const SCEV *Step = SE->getUnknown(Addend);
869   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
870   return true;
871 }
872 
873 /// This function is called when we suspect that the update-chain of a phi node
874 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
875 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
876 /// predicate P under which the SCEV expression for the phi can be the
877 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
878 /// cast instructions that are involved in the update-chain of this induction.
879 /// A caller that adds the required runtime predicate can be free to drop these
880 /// cast instructions, and compute the phi using \p AR (instead of some scev
881 /// expression with casts).
882 ///
883 /// For example, without a predicate the scev expression can take the following
884 /// form:
885 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
886 ///
887 /// It corresponds to the following IR sequence:
888 /// %for.body:
889 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
890 ///   %casted_phi = "ExtTrunc i64 %x"
891 ///   %add = add i64 %casted_phi, %step
892 ///
893 /// where %x is given in \p PN,
894 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
895 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
896 /// several forms, for example, such as:
897 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
898 /// or:
899 ///   ExtTrunc2:    %t = shl %x, m
900 ///                 %casted_phi = ashr %t, m
901 ///
902 /// If we are able to find such sequence, we return the instructions
903 /// we found, namely %casted_phi and the instructions on its use-def chain up
904 /// to the phi (not including the phi).
905 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
906                                     const SCEVUnknown *PhiScev,
907                                     const SCEVAddRecExpr *AR,
908                                     SmallVectorImpl<Instruction *> &CastInsts) {
909 
910   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
911   auto *PN = cast<PHINode>(PhiScev->getValue());
912   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
913   const Loop *L = AR->getLoop();
914 
915   // Find any cast instructions that participate in the def-use chain of
916   // PhiScev in the loop.
917   // FORNOW/TODO: We currently expect the def-use chain to include only
918   // two-operand instructions, where one of the operands is an invariant.
919   // createAddRecFromPHIWithCasts() currently does not support anything more
920   // involved than that, so we keep the search simple. This can be
921   // extended/generalized as needed.
922 
923   auto getDef = [&](const Value *Val) -> Value * {
924     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
925     if (!BinOp)
926       return nullptr;
927     Value *Op0 = BinOp->getOperand(0);
928     Value *Op1 = BinOp->getOperand(1);
929     Value *Def = nullptr;
930     if (L->isLoopInvariant(Op0))
931       Def = Op1;
932     else if (L->isLoopInvariant(Op1))
933       Def = Op0;
934     return Def;
935   };
936 
937   // Look for the instruction that defines the induction via the
938   // loop backedge.
939   BasicBlock *Latch = L->getLoopLatch();
940   if (!Latch)
941     return false;
942   Value *Val = PN->getIncomingValueForBlock(Latch);
943   if (!Val)
944     return false;
945 
946   // Follow the def-use chain until the induction phi is reached.
947   // If on the way we encounter a Value that has the same SCEV Expr as the
948   // phi node, we can consider the instructions we visit from that point
949   // as part of the cast-sequence that can be ignored.
950   bool InCastSequence = false;
951   auto *Inst = dyn_cast<Instruction>(Val);
952   while (Val != PN) {
953     // If we encountered a phi node other than PN, or if we left the loop,
954     // we bail out.
955     if (!Inst || !L->contains(Inst)) {
956       return false;
957     }
958     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
959     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
960       InCastSequence = true;
961     if (InCastSequence) {
962       // Only the last instruction in the cast sequence is expected to have
963       // uses outside the induction def-use chain.
964       if (!CastInsts.empty())
965         if (!Inst->hasOneUse())
966           return false;
967       CastInsts.push_back(Inst);
968     }
969     Val = getDef(Val);
970     if (!Val)
971       return false;
972     Inst = dyn_cast<Instruction>(Val);
973   }
974 
975   return InCastSequence;
976 }
977 
978 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
979                                          PredicatedScalarEvolution &PSE,
980                                          InductionDescriptor &D, bool Assume) {
981   Type *PhiTy = Phi->getType();
982 
983   // Handle integer and pointer inductions variables.
984   // Now we handle also FP induction but not trying to make a
985   // recurrent expression from the PHI node in-place.
986 
987   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
988       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
989     return false;
990 
991   if (PhiTy->isFloatingPointTy())
992     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
993 
994   const SCEV *PhiScev = PSE.getSCEV(Phi);
995   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
996 
997   // We need this expression to be an AddRecExpr.
998   if (Assume && !AR)
999     AR = PSE.getAsAddRec(Phi);
1000 
1001   if (!AR) {
1002     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1003     return false;
1004   }
1005 
1006   // Record any Cast instructions that participate in the induction update
1007   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1008   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1009   // only after enabling Assume with PSCEV, this means we may have encountered
1010   // cast instructions that required adding a runtime check in order to
1011   // guarantee the correctness of the AddRecurrence respresentation of the
1012   // induction.
1013   if (PhiScev != AR && SymbolicPhi) {
1014     SmallVector<Instruction *, 2> Casts;
1015     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1016       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1017   }
1018 
1019   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1020 }
1021 
1022 bool InductionDescriptor::isInductionPHI(
1023     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1024     InductionDescriptor &D, const SCEV *Expr,
1025     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1026   Type *PhiTy = Phi->getType();
1027   // We only handle integer and pointer inductions variables.
1028   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1029     return false;
1030 
1031   // Check that the PHI is consecutive.
1032   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1033   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1034 
1035   if (!AR) {
1036     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1037     return false;
1038   }
1039 
1040   if (AR->getLoop() != TheLoop) {
1041     // FIXME: We should treat this as a uniform. Unfortunately, we
1042     // don't currently know how to handled uniform PHIs.
1043     LLVM_DEBUG(
1044         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1045     return false;
1046   }
1047 
1048   Value *StartValue =
1049       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1050   const SCEV *Step = AR->getStepRecurrence(*SE);
1051   // Calculate the pointer stride and check if it is consecutive.
1052   // The stride may be a constant or a loop invariant integer value.
1053   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1054   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1055     return false;
1056 
1057   if (PhiTy->isIntegerTy()) {
1058     D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/nullptr,
1059                             CastsToIgnore);
1060     return true;
1061   }
1062 
1063   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1064   // Pointer induction should be a constant.
1065   if (!ConstStep)
1066     return false;
1067 
1068   ConstantInt *CV = ConstStep->getValue();
1069   Type *PointerElementType = PhiTy->getPointerElementType();
1070   // The pointer stride cannot be determined if the pointer element type is not
1071   // sized.
1072   if (!PointerElementType->isSized())
1073     return false;
1074 
1075   const DataLayout &DL = Phi->getModule()->getDataLayout();
1076   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1077   if (!Size)
1078     return false;
1079 
1080   int64_t CVSize = CV->getSExtValue();
1081   if (CVSize % Size)
1082     return false;
1083   auto *StepValue =
1084       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1085   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
1086   return true;
1087 }
1088