1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 #include <set>
38 
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "iv-descriptors"
43 
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45                                         SmallPtrSetImpl<Instruction *> &Set) {
46   for (const Use &Use : I->operands())
47     if (!Set.count(dyn_cast<Instruction>(Use)))
48       return false;
49   return true;
50 }
51 
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
53   switch (Kind) {
54   default:
55     break;
56   case RecurKind::Add:
57   case RecurKind::Mul:
58   case RecurKind::Or:
59   case RecurKind::And:
60   case RecurKind::Xor:
61   case RecurKind::SMax:
62   case RecurKind::SMin:
63   case RecurKind::UMax:
64   case RecurKind::UMin:
65   case RecurKind::SelectICmp:
66   case RecurKind::SelectFCmp:
67     return true;
68   }
69   return false;
70 }
71 
72 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
73   return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
74 }
75 
76 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
77   switch (Kind) {
78   default:
79     break;
80   case RecurKind::Add:
81   case RecurKind::Mul:
82   case RecurKind::FAdd:
83   case RecurKind::FMul:
84   case RecurKind::FMulAdd:
85     return true;
86   }
87   return false;
88 }
89 
90 /// Determines if Phi may have been type-promoted. If Phi has a single user
91 /// that ANDs the Phi with a type mask, return the user. RT is updated to
92 /// account for the narrower bit width represented by the mask, and the AND
93 /// instruction is added to CI.
94 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
95                                    SmallPtrSetImpl<Instruction *> &Visited,
96                                    SmallPtrSetImpl<Instruction *> &CI) {
97   if (!Phi->hasOneUse())
98     return Phi;
99 
100   const APInt *M = nullptr;
101   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
102 
103   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
104   // with a new integer type of the corresponding bit width.
105   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
106     int32_t Bits = (*M + 1).exactLogBase2();
107     if (Bits > 0) {
108       RT = IntegerType::get(Phi->getContext(), Bits);
109       Visited.insert(Phi);
110       CI.insert(J);
111       return J;
112     }
113   }
114   return Phi;
115 }
116 
117 /// Compute the minimal bit width needed to represent a reduction whose exit
118 /// instruction is given by Exit.
119 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
120                                                      DemandedBits *DB,
121                                                      AssumptionCache *AC,
122                                                      DominatorTree *DT) {
123   bool IsSigned = false;
124   const DataLayout &DL = Exit->getModule()->getDataLayout();
125   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
126 
127   if (DB) {
128     // Use the demanded bits analysis to determine the bits that are live out
129     // of the exit instruction, rounding up to the nearest power of two. If the
130     // use of demanded bits results in a smaller bit width, we know the value
131     // must be positive (i.e., IsSigned = false), because if this were not the
132     // case, the sign bit would have been demanded.
133     auto Mask = DB->getDemandedBits(Exit);
134     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
135   }
136 
137   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
138     // If demanded bits wasn't able to limit the bit width, we can try to use
139     // value tracking instead. This can be the case, for example, if the value
140     // may be negative.
141     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
142     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
143     MaxBitWidth = NumTypeBits - NumSignBits;
144     KnownBits Bits = computeKnownBits(Exit, DL);
145     if (!Bits.isNonNegative()) {
146       // If the value is not known to be non-negative, we set IsSigned to true,
147       // meaning that we will use sext instructions instead of zext
148       // instructions to restore the original type.
149       IsSigned = true;
150       // Make sure at at least one sign bit is included in the result, so it
151       // will get properly sign-extended.
152       ++MaxBitWidth;
153     }
154   }
155   if (!isPowerOf2_64(MaxBitWidth))
156     MaxBitWidth = NextPowerOf2(MaxBitWidth);
157 
158   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
159                         IsSigned);
160 }
161 
162 /// Collect cast instructions that can be ignored in the vectorizer's cost
163 /// model, given a reduction exit value and the minimal type in which the
164 // reduction can be represented. Also search casts to the recurrence type
165 // to find the minimum width used by the recurrence.
166 static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
167                               Type *RecurrenceType,
168                               SmallPtrSetImpl<Instruction *> &Casts,
169                               unsigned &MinWidthCastToRecurTy) {
170 
171   SmallVector<Instruction *, 8> Worklist;
172   SmallPtrSet<Instruction *, 8> Visited;
173   Worklist.push_back(Exit);
174   MinWidthCastToRecurTy = -1U;
175 
176   while (!Worklist.empty()) {
177     Instruction *Val = Worklist.pop_back_val();
178     Visited.insert(Val);
179     if (auto *Cast = dyn_cast<CastInst>(Val)) {
180       if (Cast->getSrcTy() == RecurrenceType) {
181         // If the source type of a cast instruction is equal to the recurrence
182         // type, it will be eliminated, and should be ignored in the vectorizer
183         // cost model.
184         Casts.insert(Cast);
185         continue;
186       }
187       if (Cast->getDestTy() == RecurrenceType) {
188         // The minimum width used by the recurrence is found by checking for
189         // casts on its operands. The minimum width is used by the vectorizer
190         // when finding the widest type for in-loop reductions without any
191         // loads/stores.
192         MinWidthCastToRecurTy = std::min<unsigned>(
193             MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
194         continue;
195       }
196     }
197     // Add all operands to the work list if they are loop-varying values that
198     // we haven't yet visited.
199     for (Value *O : cast<User>(Val)->operands())
200       if (auto *I = dyn_cast<Instruction>(O))
201         if (TheLoop->contains(I) && !Visited.count(I))
202           Worklist.push_back(I);
203   }
204 }
205 
206 // Check if a given Phi node can be recognized as an ordered reduction for
207 // vectorizing floating point operations without unsafe math.
208 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
209                                   Instruction *Exit, PHINode *Phi) {
210   // Currently only FAdd and FMulAdd are supported.
211   if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
212     return false;
213 
214   if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
215     return false;
216 
217   if (Kind == RecurKind::FMulAdd &&
218       !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
219     return false;
220 
221   // Ensure the exit instruction has only one user other than the reduction PHI
222   if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
223     return false;
224 
225   // The only pattern accepted is the one in which the reduction PHI
226   // is used as one of the operands of the exit instruction
227   auto *Op0 = Exit->getOperand(0);
228   auto *Op1 = Exit->getOperand(1);
229   if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
230     return false;
231   if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
232     return false;
233 
234   LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
235                     << ", ExitInst: " << *Exit << "\n");
236 
237   return true;
238 }
239 
240 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
241                                            Loop *TheLoop, FastMathFlags FuncFMF,
242                                            RecurrenceDescriptor &RedDes,
243                                            DemandedBits *DB,
244                                            AssumptionCache *AC,
245                                            DominatorTree *DT) {
246   if (Phi->getNumIncomingValues() != 2)
247     return false;
248 
249   // Reduction variables are only found in the loop header block.
250   if (Phi->getParent() != TheLoop->getHeader())
251     return false;
252 
253   // Obtain the reduction start value from the value that comes from the loop
254   // preheader.
255   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
256 
257   // ExitInstruction is the single value which is used outside the loop.
258   // We only allow for a single reduction value to be used outside the loop.
259   // This includes users of the reduction, variables (which form a cycle
260   // which ends in the phi node).
261   Instruction *ExitInstruction = nullptr;
262   // Indicates that we found a reduction operation in our scan.
263   bool FoundReduxOp = false;
264 
265   // We start with the PHI node and scan for all of the users of this
266   // instruction. All users must be instructions that can be used as reduction
267   // variables (such as ADD). We must have a single out-of-block user. The cycle
268   // must include the original PHI.
269   bool FoundStartPHI = false;
270 
271   // To recognize min/max patterns formed by a icmp select sequence, we store
272   // the number of instruction we saw from the recognized min/max pattern,
273   //  to make sure we only see exactly the two instructions.
274   unsigned NumCmpSelectPatternInst = 0;
275   InstDesc ReduxDesc(false, nullptr);
276 
277   // Data used for determining if the recurrence has been type-promoted.
278   Type *RecurrenceType = Phi->getType();
279   SmallPtrSet<Instruction *, 4> CastInsts;
280   unsigned MinWidthCastToRecurrenceType;
281   Instruction *Start = Phi;
282   bool IsSigned = false;
283 
284   SmallPtrSet<Instruction *, 8> VisitedInsts;
285   SmallVector<Instruction *, 8> Worklist;
286 
287   // Return early if the recurrence kind does not match the type of Phi. If the
288   // recurrence kind is arithmetic, we attempt to look through AND operations
289   // resulting from the type promotion performed by InstCombine.  Vector
290   // operations are not limited to the legal integer widths, so we may be able
291   // to evaluate the reduction in the narrower width.
292   if (RecurrenceType->isFloatingPointTy()) {
293     if (!isFloatingPointRecurrenceKind(Kind))
294       return false;
295   } else if (RecurrenceType->isIntegerTy()) {
296     if (!isIntegerRecurrenceKind(Kind))
297       return false;
298     if (!isMinMaxRecurrenceKind(Kind))
299       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
300   } else {
301     // Pointer min/max may exist, but it is not supported as a reduction op.
302     return false;
303   }
304 
305   Worklist.push_back(Start);
306   VisitedInsts.insert(Start);
307 
308   // Start with all flags set because we will intersect this with the reduction
309   // flags from all the reduction operations.
310   FastMathFlags FMF = FastMathFlags::getFast();
311 
312   // A value in the reduction can be used:
313   //  - By the reduction:
314   //      - Reduction operation:
315   //        - One use of reduction value (safe).
316   //        - Multiple use of reduction value (not safe).
317   //      - PHI:
318   //        - All uses of the PHI must be the reduction (safe).
319   //        - Otherwise, not safe.
320   //  - By instructions outside of the loop (safe).
321   //      * One value may have several outside users, but all outside
322   //        uses must be of the same value.
323   //  - By an instruction that is not part of the reduction (not safe).
324   //    This is either:
325   //      * An instruction type other than PHI or the reduction operation.
326   //      * A PHI in the header other than the initial PHI.
327   while (!Worklist.empty()) {
328     Instruction *Cur = Worklist.pop_back_val();
329 
330     // No Users.
331     // If the instruction has no users then this is a broken chain and can't be
332     // a reduction variable.
333     if (Cur->use_empty())
334       return false;
335 
336     bool IsAPhi = isa<PHINode>(Cur);
337 
338     // A header PHI use other than the original PHI.
339     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
340       return false;
341 
342     // Reductions of instructions such as Div, and Sub is only possible if the
343     // LHS is the reduction variable.
344     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
345         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
346         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
347       return false;
348 
349     // Any reduction instruction must be of one of the allowed kinds. We ignore
350     // the starting value (the Phi or an AND instruction if the Phi has been
351     // type-promoted).
352     if (Cur != Start) {
353       ReduxDesc =
354           isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
355       if (!ReduxDesc.isRecurrence())
356         return false;
357       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
358       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
359         FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
360         if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
361           // Accept FMF on either fcmp or select of a min/max idiom.
362           // TODO: This is a hack to work-around the fact that FMF may not be
363           //       assigned/propagated correctly. If that problem is fixed or we
364           //       standardize on fmin/fmax via intrinsics, this can be removed.
365           if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
366             CurFMF |= FCmp->getFastMathFlags();
367         }
368         FMF &= CurFMF;
369       }
370       // Update this reduction kind if we matched a new instruction.
371       // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
372       //       state accurate while processing the worklist?
373       if (ReduxDesc.getRecKind() != RecurKind::None)
374         Kind = ReduxDesc.getRecKind();
375     }
376 
377     bool IsASelect = isa<SelectInst>(Cur);
378 
379     // A conditional reduction operation must only have 2 or less uses in
380     // VisitedInsts.
381     if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
382         hasMultipleUsesOf(Cur, VisitedInsts, 2))
383       return false;
384 
385     // A reduction operation must only have one use of the reduction value.
386     if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
387         !isSelectCmpRecurrenceKind(Kind) &&
388         hasMultipleUsesOf(Cur, VisitedInsts, 1))
389       return false;
390 
391     // All inputs to a PHI node must be a reduction value.
392     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
393       return false;
394 
395     if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectICmp) &&
396         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
397       ++NumCmpSelectPatternInst;
398     if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectFCmp) &&
399         (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
400       ++NumCmpSelectPatternInst;
401 
402     // Check  whether we found a reduction operator.
403     FoundReduxOp |= !IsAPhi && Cur != Start;
404 
405     // Process users of current instruction. Push non-PHI nodes after PHI nodes
406     // onto the stack. This way we are going to have seen all inputs to PHI
407     // nodes once we get to them.
408     SmallVector<Instruction *, 8> NonPHIs;
409     SmallVector<Instruction *, 8> PHIs;
410     for (User *U : Cur->users()) {
411       Instruction *UI = cast<Instruction>(U);
412 
413       // If the user is a call to llvm.fmuladd then the instruction can only be
414       // the final operand.
415       if (isFMulAddIntrinsic(UI))
416         if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
417           return false;
418 
419       // Check if we found the exit user.
420       BasicBlock *Parent = UI->getParent();
421       if (!TheLoop->contains(Parent)) {
422         // If we already know this instruction is used externally, move on to
423         // the next user.
424         if (ExitInstruction == Cur)
425           continue;
426 
427         // Exit if you find multiple values used outside or if the header phi
428         // node is being used. In this case the user uses the value of the
429         // previous iteration, in which case we would loose "VF-1" iterations of
430         // the reduction operation if we vectorize.
431         if (ExitInstruction != nullptr || Cur == Phi)
432           return false;
433 
434         // The instruction used by an outside user must be the last instruction
435         // before we feed back to the reduction phi. Otherwise, we loose VF-1
436         // operations on the value.
437         if (!is_contained(Phi->operands(), Cur))
438           return false;
439 
440         ExitInstruction = Cur;
441         continue;
442       }
443 
444       // Process instructions only once (termination). Each reduction cycle
445       // value must only be used once, except by phi nodes and min/max
446       // reductions which are represented as a cmp followed by a select.
447       InstDesc IgnoredVal(false, nullptr);
448       if (VisitedInsts.insert(UI).second) {
449         if (isa<PHINode>(UI))
450           PHIs.push_back(UI);
451         else
452           NonPHIs.push_back(UI);
453       } else if (!isa<PHINode>(UI) &&
454                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
455                    !isa<SelectInst>(UI)) ||
456                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
457                    !isSelectCmpPattern(TheLoop, Phi, UI, IgnoredVal)
458                         .isRecurrence() &&
459                    !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
460         return false;
461 
462       // Remember that we completed the cycle.
463       if (UI == Phi)
464         FoundStartPHI = true;
465     }
466     Worklist.append(PHIs.begin(), PHIs.end());
467     Worklist.append(NonPHIs.begin(), NonPHIs.end());
468   }
469 
470   // This means we have seen one but not the other instruction of the
471   // pattern or more than just a select and cmp. Zero implies that we saw a
472   // llvm.min/max instrinsic, which is always OK.
473   if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
474       NumCmpSelectPatternInst != 0)
475     return false;
476 
477   if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
478     return false;
479 
480   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
481     return false;
482 
483   const bool IsOrdered = checkOrderedReduction(
484       Kind, ReduxDesc.getExactFPMathInst(), ExitInstruction, Phi);
485 
486   if (Start != Phi) {
487     // If the starting value is not the same as the phi node, we speculatively
488     // looked through an 'and' instruction when evaluating a potential
489     // arithmetic reduction to determine if it may have been type-promoted.
490     //
491     // We now compute the minimal bit width that is required to represent the
492     // reduction. If this is the same width that was indicated by the 'and', we
493     // can represent the reduction in the smaller type. The 'and' instruction
494     // will be eliminated since it will essentially be a cast instruction that
495     // can be ignore in the cost model. If we compute a different type than we
496     // did when evaluating the 'and', the 'and' will not be eliminated, and we
497     // will end up with different kinds of operations in the recurrence
498     // expression (e.g., IntegerAND, IntegerADD). We give up if this is
499     // the case.
500     //
501     // The vectorizer relies on InstCombine to perform the actual
502     // type-shrinking. It does this by inserting instructions to truncate the
503     // exit value of the reduction to the width indicated by RecurrenceType and
504     // then extend this value back to the original width. If IsSigned is false,
505     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
506     // used.
507     //
508     // TODO: We should not rely on InstCombine to rewrite the reduction in the
509     //       smaller type. We should just generate a correctly typed expression
510     //       to begin with.
511     Type *ComputedType;
512     std::tie(ComputedType, IsSigned) =
513         computeRecurrenceType(ExitInstruction, DB, AC, DT);
514     if (ComputedType != RecurrenceType)
515       return false;
516   }
517 
518   // Collect cast instructions and the minimum width used by the recurrence.
519   // If the starting value is not the same as the phi node and the computed
520   // recurrence type is equal to the recurrence type, the recurrence expression
521   // will be represented in a narrower or wider type. If there are any cast
522   // instructions that will be unnecessary, collect them in CastsFromRecurTy.
523   // Note that the 'and' instruction was already included in this list.
524   //
525   // TODO: A better way to represent this may be to tag in some way all the
526   //       instructions that are a part of the reduction. The vectorizer cost
527   //       model could then apply the recurrence type to these instructions,
528   //       without needing a white list of instructions to ignore.
529   //       This may also be useful for the inloop reductions, if it can be
530   //       kept simple enough.
531   collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
532                     MinWidthCastToRecurrenceType);
533 
534   // We found a reduction var if we have reached the original phi node and we
535   // only have a single instruction with out-of-loop users.
536 
537   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
538   // is saved as part of the RecurrenceDescriptor.
539 
540   // Save the description of this reduction variable.
541   RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF,
542                           ReduxDesc.getExactFPMathInst(), RecurrenceType,
543                           IsSigned, IsOrdered, CastInsts,
544                           MinWidthCastToRecurrenceType);
545   RedDes = RD;
546 
547   return true;
548 }
549 
550 // We are looking for loops that do something like this:
551 //   int r = 0;
552 //   for (int i = 0; i < n; i++) {
553 //     if (src[i] > 3)
554 //       r = 3;
555 //   }
556 // where the reduction value (r) only has two states, in this example 0 or 3.
557 // The generated LLVM IR for this type of loop will be like this:
558 //   for.body:
559 //     %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
560 //     ...
561 //     %cmp = icmp sgt i32 %5, 3
562 //     %spec.select = select i1 %cmp, i32 3, i32 %r
563 //     ...
564 // In general we can support vectorization of loops where 'r' flips between
565 // any two non-constants, provided they are loop invariant. The only thing
566 // we actually care about at the end of the loop is whether or not any lane
567 // in the selected vector is different from the start value. The final
568 // across-vector reduction after the loop simply involves choosing the start
569 // value if nothing changed (0 in the example above) or the other selected
570 // value (3 in the example above).
571 RecurrenceDescriptor::InstDesc
572 RecurrenceDescriptor::isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
573                                          Instruction *I, InstDesc &Prev) {
574   // We must handle the select(cmp(),x,y) as a single instruction. Advance to
575   // the select.
576   CmpInst::Predicate Pred;
577   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
578     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
579       return InstDesc(Select, Prev.getRecKind());
580   }
581 
582   // Only match select with single use cmp condition.
583   if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
584                          m_Value())))
585     return InstDesc(false, I);
586 
587   SelectInst *SI = cast<SelectInst>(I);
588   Value *NonPhi = nullptr;
589 
590   if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
591     NonPhi = SI->getFalseValue();
592   else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
593     NonPhi = SI->getTrueValue();
594   else
595     return InstDesc(false, I);
596 
597   // We are looking for selects of the form:
598   //   select(cmp(), phi, loop_invariant) or
599   //   select(cmp(), loop_invariant, phi)
600   if (!Loop->isLoopInvariant(NonPhi))
601     return InstDesc(false, I);
602 
603   return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::SelectICmp
604                                                      : RecurKind::SelectFCmp);
605 }
606 
607 RecurrenceDescriptor::InstDesc
608 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
609                                       const InstDesc &Prev) {
610   assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
611          "Expected a cmp or select or call instruction");
612   if (!isMinMaxRecurrenceKind(Kind))
613     return InstDesc(false, I);
614 
615   // We must handle the select(cmp()) as a single instruction. Advance to the
616   // select.
617   CmpInst::Predicate Pred;
618   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
619     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
620       return InstDesc(Select, Prev.getRecKind());
621   }
622 
623   // Only match select with single use cmp condition, or a min/max intrinsic.
624   if (!isa<IntrinsicInst>(I) &&
625       !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
626                          m_Value())))
627     return InstDesc(false, I);
628 
629   // Look for a min/max pattern.
630   if (match(I, m_UMin(m_Value(), m_Value())))
631     return InstDesc(Kind == RecurKind::UMin, I);
632   if (match(I, m_UMax(m_Value(), m_Value())))
633     return InstDesc(Kind == RecurKind::UMax, I);
634   if (match(I, m_SMax(m_Value(), m_Value())))
635     return InstDesc(Kind == RecurKind::SMax, I);
636   if (match(I, m_SMin(m_Value(), m_Value())))
637     return InstDesc(Kind == RecurKind::SMin, I);
638   if (match(I, m_OrdFMin(m_Value(), m_Value())))
639     return InstDesc(Kind == RecurKind::FMin, I);
640   if (match(I, m_OrdFMax(m_Value(), m_Value())))
641     return InstDesc(Kind == RecurKind::FMax, I);
642   if (match(I, m_UnordFMin(m_Value(), m_Value())))
643     return InstDesc(Kind == RecurKind::FMin, I);
644   if (match(I, m_UnordFMax(m_Value(), m_Value())))
645     return InstDesc(Kind == RecurKind::FMax, I);
646   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
647     return InstDesc(Kind == RecurKind::FMin, I);
648   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
649     return InstDesc(Kind == RecurKind::FMax, I);
650 
651   return InstDesc(false, I);
652 }
653 
654 /// Returns true if the select instruction has users in the compare-and-add
655 /// reduction pattern below. The select instruction argument is the last one
656 /// in the sequence.
657 ///
658 /// %sum.1 = phi ...
659 /// ...
660 /// %cmp = fcmp pred %0, %CFP
661 /// %add = fadd %0, %sum.1
662 /// %sum.2 = select %cmp, %add, %sum.1
663 RecurrenceDescriptor::InstDesc
664 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
665   SelectInst *SI = dyn_cast<SelectInst>(I);
666   if (!SI)
667     return InstDesc(false, I);
668 
669   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
670   // Only handle single use cases for now.
671   if (!CI || !CI->hasOneUse())
672     return InstDesc(false, I);
673 
674   Value *TrueVal = SI->getTrueValue();
675   Value *FalseVal = SI->getFalseValue();
676   // Handle only when either of operands of select instruction is a PHI
677   // node for now.
678   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
679       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
680     return InstDesc(false, I);
681 
682   Instruction *I1 =
683       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
684                              : dyn_cast<Instruction>(TrueVal);
685   if (!I1 || !I1->isBinaryOp())
686     return InstDesc(false, I);
687 
688   Value *Op1, *Op2;
689   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
690        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
691       I1->isFast())
692     return InstDesc(Kind == RecurKind::FAdd, SI);
693 
694   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
695     return InstDesc(Kind == RecurKind::FMul, SI);
696 
697   return InstDesc(false, I);
698 }
699 
700 RecurrenceDescriptor::InstDesc
701 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
702                                         Instruction *I, RecurKind Kind,
703                                         InstDesc &Prev, FastMathFlags FuncFMF) {
704   assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
705   switch (I->getOpcode()) {
706   default:
707     return InstDesc(false, I);
708   case Instruction::PHI:
709     return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
710   case Instruction::Sub:
711   case Instruction::Add:
712     return InstDesc(Kind == RecurKind::Add, I);
713   case Instruction::Mul:
714     return InstDesc(Kind == RecurKind::Mul, I);
715   case Instruction::And:
716     return InstDesc(Kind == RecurKind::And, I);
717   case Instruction::Or:
718     return InstDesc(Kind == RecurKind::Or, I);
719   case Instruction::Xor:
720     return InstDesc(Kind == RecurKind::Xor, I);
721   case Instruction::FDiv:
722   case Instruction::FMul:
723     return InstDesc(Kind == RecurKind::FMul, I,
724                     I->hasAllowReassoc() ? nullptr : I);
725   case Instruction::FSub:
726   case Instruction::FAdd:
727     return InstDesc(Kind == RecurKind::FAdd, I,
728                     I->hasAllowReassoc() ? nullptr : I);
729   case Instruction::Select:
730     if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
731       return isConditionalRdxPattern(Kind, I);
732     LLVM_FALLTHROUGH;
733   case Instruction::FCmp:
734   case Instruction::ICmp:
735   case Instruction::Call:
736     if (isSelectCmpRecurrenceKind(Kind))
737       return isSelectCmpPattern(L, OrigPhi, I, Prev);
738     if (isIntMinMaxRecurrenceKind(Kind) ||
739         (((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) ||
740           (isa<FPMathOperator>(I) && I->hasNoNaNs() &&
741            I->hasNoSignedZeros())) &&
742          isFPMinMaxRecurrenceKind(Kind)))
743       return isMinMaxPattern(I, Kind, Prev);
744     else if (isFMulAddIntrinsic(I))
745       return InstDesc(Kind == RecurKind::FMulAdd, I,
746                       I->hasAllowReassoc() ? nullptr : I);
747     return InstDesc(false, I);
748   }
749 }
750 
751 bool RecurrenceDescriptor::hasMultipleUsesOf(
752     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
753     unsigned MaxNumUses) {
754   unsigned NumUses = 0;
755   for (const Use &U : I->operands()) {
756     if (Insts.count(dyn_cast<Instruction>(U)))
757       ++NumUses;
758     if (NumUses > MaxNumUses)
759       return true;
760   }
761 
762   return false;
763 }
764 
765 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
766                                           RecurrenceDescriptor &RedDes,
767                                           DemandedBits *DB, AssumptionCache *AC,
768                                           DominatorTree *DT) {
769   BasicBlock *Header = TheLoop->getHeader();
770   Function &F = *Header->getParent();
771   FastMathFlags FMF;
772   FMF.setNoNaNs(
773       F.getFnAttribute("no-nans-fp-math").getValueAsBool());
774   FMF.setNoSignedZeros(
775       F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
776 
777   if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) {
778     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
779     return true;
780   }
781   if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) {
782     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
783     return true;
784   }
785   if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) {
786     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
787     return true;
788   }
789   if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) {
790     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
791     return true;
792   }
793   if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) {
794     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
795     return true;
796   }
797   if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
798     LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
799     return true;
800   }
801   if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
802     LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
803     return true;
804   }
805   if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
806     LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
807     return true;
808   }
809   if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
810     LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
811     return true;
812   }
813   if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC,
814                       DT)) {
815     LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
816                       << *Phi << "\n");
817     return true;
818   }
819   if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) {
820     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
821     return true;
822   }
823   if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) {
824     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
825     return true;
826   }
827   if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
828     LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
829     return true;
830   }
831   if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
832     LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
833     return true;
834   }
835   if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC,
836                       DT)) {
837     LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
838                       << " PHI." << *Phi << "\n");
839     return true;
840   }
841   if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC,
842                       DT)) {
843     LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
844     return true;
845   }
846   // Not a reduction of known type.
847   return false;
848 }
849 
850 bool RecurrenceDescriptor::isFirstOrderRecurrence(
851     PHINode *Phi, Loop *TheLoop,
852     MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
853 
854   // Ensure the phi node is in the loop header and has two incoming values.
855   if (Phi->getParent() != TheLoop->getHeader() ||
856       Phi->getNumIncomingValues() != 2)
857     return false;
858 
859   // Ensure the loop has a preheader and a single latch block. The loop
860   // vectorizer will need the latch to set up the next iteration of the loop.
861   auto *Preheader = TheLoop->getLoopPreheader();
862   auto *Latch = TheLoop->getLoopLatch();
863   if (!Preheader || !Latch)
864     return false;
865 
866   // Ensure the phi node's incoming blocks are the loop preheader and latch.
867   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
868       Phi->getBasicBlockIndex(Latch) < 0)
869     return false;
870 
871   // Get the previous value. The previous value comes from the latch edge while
872   // the initial value comes form the preheader edge.
873   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
874   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
875       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
876     return false;
877 
878   // Ensure every user of the phi node (recursively) is dominated by the
879   // previous value. The dominance requirement ensures the loop vectorizer will
880   // not need to vectorize the initial value prior to the first iteration of the
881   // loop.
882   // TODO: Consider extending this sinking to handle memory instructions.
883 
884   // We optimistically assume we can sink all users after Previous. Keep a set
885   // of instructions to sink after Previous ordered by dominance in the common
886   // basic block. It will be applied to SinkAfter if all users can be sunk.
887   auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
888     return A->comesBefore(B);
889   };
890   std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
891       CompareByComesBefore);
892 
893   BasicBlock *PhiBB = Phi->getParent();
894   SmallVector<Instruction *, 8> WorkList;
895   auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
896     // Already sunk SinkCandidate.
897     if (SinkCandidate->getParent() == PhiBB &&
898         InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
899       return true;
900 
901     // Cyclic dependence.
902     if (Previous == SinkCandidate)
903       return false;
904 
905     if (DT->dominates(Previous,
906                       SinkCandidate)) // We already are good w/o sinking.
907       return true;
908 
909     if (SinkCandidate->getParent() != PhiBB ||
910         SinkCandidate->mayHaveSideEffects() ||
911         SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
912       return false;
913 
914     // Do not try to sink an instruction multiple times (if multiple operands
915     // are first order recurrences).
916     // TODO: We can support this case, by sinking the instruction after the
917     // 'deepest' previous instruction.
918     if (SinkAfter.find(SinkCandidate) != SinkAfter.end())
919       return false;
920 
921     // If we reach a PHI node that is not dominated by Previous, we reached a
922     // header PHI. No need for sinking.
923     if (isa<PHINode>(SinkCandidate))
924       return true;
925 
926     // Sink User tentatively and check its users
927     InstrsToSink.insert(SinkCandidate);
928     WorkList.push_back(SinkCandidate);
929     return true;
930   };
931 
932   WorkList.push_back(Phi);
933   // Try to recursively sink instructions and their users after Previous.
934   while (!WorkList.empty()) {
935     Instruction *Current = WorkList.pop_back_val();
936     for (User *User : Current->users()) {
937       if (!TryToPushSinkCandidate(cast<Instruction>(User)))
938         return false;
939     }
940   }
941 
942   // We can sink all users of Phi. Update the mapping.
943   for (Instruction *I : InstrsToSink) {
944     SinkAfter[I] = Previous;
945     Previous = I;
946   }
947   return true;
948 }
949 
950 /// This function returns the identity element (or neutral element) for
951 /// the operation K.
952 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
953                                                    FastMathFlags FMF) const {
954   switch (K) {
955   case RecurKind::Xor:
956   case RecurKind::Add:
957   case RecurKind::Or:
958     // Adding, Xoring, Oring zero to a number does not change it.
959     return ConstantInt::get(Tp, 0);
960   case RecurKind::Mul:
961     // Multiplying a number by 1 does not change it.
962     return ConstantInt::get(Tp, 1);
963   case RecurKind::And:
964     // AND-ing a number with an all-1 value does not change it.
965     return ConstantInt::get(Tp, -1, true);
966   case RecurKind::FMul:
967     // Multiplying a number by 1 does not change it.
968     return ConstantFP::get(Tp, 1.0L);
969   case RecurKind::FMulAdd:
970   case RecurKind::FAdd:
971     // Adding zero to a number does not change it.
972     // FIXME: Ideally we should not need to check FMF for FAdd and should always
973     // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
974     // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
975     // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
976     // mean we can then remove the check for noSignedZeros() below (see D98963).
977     if (FMF.noSignedZeros())
978       return ConstantFP::get(Tp, 0.0L);
979     return ConstantFP::get(Tp, -0.0L);
980   case RecurKind::UMin:
981     return ConstantInt::get(Tp, -1);
982   case RecurKind::UMax:
983     return ConstantInt::get(Tp, 0);
984   case RecurKind::SMin:
985     return ConstantInt::get(Tp,
986                             APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
987   case RecurKind::SMax:
988     return ConstantInt::get(Tp,
989                             APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
990   case RecurKind::FMin:
991     return ConstantFP::getInfinity(Tp, true);
992   case RecurKind::FMax:
993     return ConstantFP::getInfinity(Tp, false);
994   case RecurKind::SelectICmp:
995   case RecurKind::SelectFCmp:
996     return getRecurrenceStartValue();
997     break;
998   default:
999     llvm_unreachable("Unknown recurrence kind");
1000   }
1001 }
1002 
1003 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
1004   switch (Kind) {
1005   case RecurKind::Add:
1006     return Instruction::Add;
1007   case RecurKind::Mul:
1008     return Instruction::Mul;
1009   case RecurKind::Or:
1010     return Instruction::Or;
1011   case RecurKind::And:
1012     return Instruction::And;
1013   case RecurKind::Xor:
1014     return Instruction::Xor;
1015   case RecurKind::FMul:
1016     return Instruction::FMul;
1017   case RecurKind::FMulAdd:
1018   case RecurKind::FAdd:
1019     return Instruction::FAdd;
1020   case RecurKind::SMax:
1021   case RecurKind::SMin:
1022   case RecurKind::UMax:
1023   case RecurKind::UMin:
1024   case RecurKind::SelectICmp:
1025     return Instruction::ICmp;
1026   case RecurKind::FMax:
1027   case RecurKind::FMin:
1028   case RecurKind::SelectFCmp:
1029     return Instruction::FCmp;
1030   default:
1031     llvm_unreachable("Unknown recurrence operation");
1032   }
1033 }
1034 
1035 SmallVector<Instruction *, 4>
1036 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
1037   SmallVector<Instruction *, 4> ReductionOperations;
1038   unsigned RedOp = getOpcode(Kind);
1039 
1040   // Search down from the Phi to the LoopExitInstr, looking for instructions
1041   // with a single user of the correct type for the reduction.
1042 
1043   // Note that we check that the type of the operand is correct for each item in
1044   // the chain, including the last (the loop exit value). This can come up from
1045   // sub, which would otherwise be treated as an add reduction. MinMax also need
1046   // to check for a pair of icmp/select, for which we use getNextInstruction and
1047   // isCorrectOpcode functions to step the right number of instruction, and
1048   // check the icmp/select pair.
1049   // FIXME: We also do not attempt to look through Phi/Select's yet, which might
1050   // be part of the reduction chain, or attempt to looks through And's to find a
1051   // smaller bitwidth. Subs are also currently not allowed (which are usually
1052   // treated as part of a add reduction) as they are expected to generally be
1053   // more expensive than out-of-loop reductions, and need to be costed more
1054   // carefully.
1055   unsigned ExpectedUses = 1;
1056   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1057     ExpectedUses = 2;
1058 
1059   auto getNextInstruction = [&](Instruction *Cur) {
1060     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1061       // We are expecting a icmp/select pair, which we go to the next select
1062       // instruction if we can. We already know that Cur has 2 uses.
1063       if (isa<SelectInst>(*Cur->user_begin()))
1064         return cast<Instruction>(*Cur->user_begin());
1065       else
1066         return cast<Instruction>(*std::next(Cur->user_begin()));
1067     }
1068     return cast<Instruction>(*Cur->user_begin());
1069   };
1070   auto isCorrectOpcode = [&](Instruction *Cur) {
1071     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1072       Value *LHS, *RHS;
1073       return SelectPatternResult::isMinOrMax(
1074           matchSelectPattern(Cur, LHS, RHS).Flavor);
1075     }
1076     // Recognize a call to the llvm.fmuladd intrinsic.
1077     if (isFMulAddIntrinsic(Cur))
1078       return true;
1079 
1080     return Cur->getOpcode() == RedOp;
1081   };
1082 
1083   // The loop exit instruction we check first (as a quick test) but add last. We
1084   // check the opcode is correct (and dont allow them to be Subs) and that they
1085   // have expected to have the expected number of uses. They will have one use
1086   // from the phi and one from a LCSSA value, no matter the type.
1087   if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
1088     return {};
1089 
1090   // Check that the Phi has one (or two for min/max) uses.
1091   if (!Phi->hasNUses(ExpectedUses))
1092     return {};
1093   Instruction *Cur = getNextInstruction(Phi);
1094 
1095   // Each other instruction in the chain should have the expected number of uses
1096   // and be the correct opcode.
1097   while (Cur != LoopExitInstr) {
1098     if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1099       return {};
1100 
1101     ReductionOperations.push_back(Cur);
1102     Cur = getNextInstruction(Cur);
1103   }
1104 
1105   ReductionOperations.push_back(Cur);
1106   return ReductionOperations;
1107 }
1108 
1109 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1110                                          const SCEV *Step, BinaryOperator *BOp,
1111                                          Type *ElementType,
1112                                          SmallVectorImpl<Instruction *> *Casts)
1113     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp),
1114       ElementType(ElementType) {
1115   assert(IK != IK_NoInduction && "Not an induction");
1116 
1117   // Start value type should match the induction kind and the value
1118   // itself should not be null.
1119   assert(StartValue && "StartValue is null");
1120   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1121          "StartValue is not a pointer for pointer induction");
1122   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1123          "StartValue is not an integer for integer induction");
1124 
1125   // Check the Step Value. It should be non-zero integer value.
1126   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1127          "Step value is zero");
1128 
1129   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
1130          "Step value should be constant for pointer induction");
1131   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1132          "StepValue is not an integer");
1133 
1134   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1135          "StepValue is not FP for FpInduction");
1136   assert((IK != IK_FpInduction ||
1137           (InductionBinOp &&
1138            (InductionBinOp->getOpcode() == Instruction::FAdd ||
1139             InductionBinOp->getOpcode() == Instruction::FSub))) &&
1140          "Binary opcode should be specified for FP induction");
1141 
1142   if (IK == IK_PtrInduction)
1143     assert(ElementType && "Pointer induction must have element type");
1144   else
1145     assert(!ElementType && "Non-pointer induction cannot have element type");
1146 
1147   if (Casts) {
1148     for (auto &Inst : *Casts) {
1149       RedundantCasts.push_back(Inst);
1150     }
1151   }
1152 }
1153 
1154 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1155   if (isa<SCEVConstant>(Step))
1156     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1157   return nullptr;
1158 }
1159 
1160 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1161                                            ScalarEvolution *SE,
1162                                            InductionDescriptor &D) {
1163 
1164   // Here we only handle FP induction variables.
1165   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1166 
1167   if (TheLoop->getHeader() != Phi->getParent())
1168     return false;
1169 
1170   // The loop may have multiple entrances or multiple exits; we can analyze
1171   // this phi if it has a unique entry value and a unique backedge value.
1172   if (Phi->getNumIncomingValues() != 2)
1173     return false;
1174   Value *BEValue = nullptr, *StartValue = nullptr;
1175   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1176     BEValue = Phi->getIncomingValue(0);
1177     StartValue = Phi->getIncomingValue(1);
1178   } else {
1179     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1180            "Unexpected Phi node in the loop");
1181     BEValue = Phi->getIncomingValue(1);
1182     StartValue = Phi->getIncomingValue(0);
1183   }
1184 
1185   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1186   if (!BOp)
1187     return false;
1188 
1189   Value *Addend = nullptr;
1190   if (BOp->getOpcode() == Instruction::FAdd) {
1191     if (BOp->getOperand(0) == Phi)
1192       Addend = BOp->getOperand(1);
1193     else if (BOp->getOperand(1) == Phi)
1194       Addend = BOp->getOperand(0);
1195   } else if (BOp->getOpcode() == Instruction::FSub)
1196     if (BOp->getOperand(0) == Phi)
1197       Addend = BOp->getOperand(1);
1198 
1199   if (!Addend)
1200     return false;
1201 
1202   // The addend should be loop invariant
1203   if (auto *I = dyn_cast<Instruction>(Addend))
1204     if (TheLoop->contains(I))
1205       return false;
1206 
1207   // FP Step has unknown SCEV
1208   const SCEV *Step = SE->getUnknown(Addend);
1209   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1210   return true;
1211 }
1212 
1213 /// This function is called when we suspect that the update-chain of a phi node
1214 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1215 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1216 /// predicate P under which the SCEV expression for the phi can be the
1217 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1218 /// cast instructions that are involved in the update-chain of this induction.
1219 /// A caller that adds the required runtime predicate can be free to drop these
1220 /// cast instructions, and compute the phi using \p AR (instead of some scev
1221 /// expression with casts).
1222 ///
1223 /// For example, without a predicate the scev expression can take the following
1224 /// form:
1225 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1226 ///
1227 /// It corresponds to the following IR sequence:
1228 /// %for.body:
1229 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1230 ///   %casted_phi = "ExtTrunc i64 %x"
1231 ///   %add = add i64 %casted_phi, %step
1232 ///
1233 /// where %x is given in \p PN,
1234 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1235 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1236 /// several forms, for example, such as:
1237 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1238 /// or:
1239 ///   ExtTrunc2:    %t = shl %x, m
1240 ///                 %casted_phi = ashr %t, m
1241 ///
1242 /// If we are able to find such sequence, we return the instructions
1243 /// we found, namely %casted_phi and the instructions on its use-def chain up
1244 /// to the phi (not including the phi).
1245 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1246                                     const SCEVUnknown *PhiScev,
1247                                     const SCEVAddRecExpr *AR,
1248                                     SmallVectorImpl<Instruction *> &CastInsts) {
1249 
1250   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1251   auto *PN = cast<PHINode>(PhiScev->getValue());
1252   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1253   const Loop *L = AR->getLoop();
1254 
1255   // Find any cast instructions that participate in the def-use chain of
1256   // PhiScev in the loop.
1257   // FORNOW/TODO: We currently expect the def-use chain to include only
1258   // two-operand instructions, where one of the operands is an invariant.
1259   // createAddRecFromPHIWithCasts() currently does not support anything more
1260   // involved than that, so we keep the search simple. This can be
1261   // extended/generalized as needed.
1262 
1263   auto getDef = [&](const Value *Val) -> Value * {
1264     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1265     if (!BinOp)
1266       return nullptr;
1267     Value *Op0 = BinOp->getOperand(0);
1268     Value *Op1 = BinOp->getOperand(1);
1269     Value *Def = nullptr;
1270     if (L->isLoopInvariant(Op0))
1271       Def = Op1;
1272     else if (L->isLoopInvariant(Op1))
1273       Def = Op0;
1274     return Def;
1275   };
1276 
1277   // Look for the instruction that defines the induction via the
1278   // loop backedge.
1279   BasicBlock *Latch = L->getLoopLatch();
1280   if (!Latch)
1281     return false;
1282   Value *Val = PN->getIncomingValueForBlock(Latch);
1283   if (!Val)
1284     return false;
1285 
1286   // Follow the def-use chain until the induction phi is reached.
1287   // If on the way we encounter a Value that has the same SCEV Expr as the
1288   // phi node, we can consider the instructions we visit from that point
1289   // as part of the cast-sequence that can be ignored.
1290   bool InCastSequence = false;
1291   auto *Inst = dyn_cast<Instruction>(Val);
1292   while (Val != PN) {
1293     // If we encountered a phi node other than PN, or if we left the loop,
1294     // we bail out.
1295     if (!Inst || !L->contains(Inst)) {
1296       return false;
1297     }
1298     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1299     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1300       InCastSequence = true;
1301     if (InCastSequence) {
1302       // Only the last instruction in the cast sequence is expected to have
1303       // uses outside the induction def-use chain.
1304       if (!CastInsts.empty())
1305         if (!Inst->hasOneUse())
1306           return false;
1307       CastInsts.push_back(Inst);
1308     }
1309     Val = getDef(Val);
1310     if (!Val)
1311       return false;
1312     Inst = dyn_cast<Instruction>(Val);
1313   }
1314 
1315   return InCastSequence;
1316 }
1317 
1318 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1319                                          PredicatedScalarEvolution &PSE,
1320                                          InductionDescriptor &D, bool Assume) {
1321   Type *PhiTy = Phi->getType();
1322 
1323   // Handle integer and pointer inductions variables.
1324   // Now we handle also FP induction but not trying to make a
1325   // recurrent expression from the PHI node in-place.
1326 
1327   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1328       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1329     return false;
1330 
1331   if (PhiTy->isFloatingPointTy())
1332     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1333 
1334   const SCEV *PhiScev = PSE.getSCEV(Phi);
1335   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1336 
1337   // We need this expression to be an AddRecExpr.
1338   if (Assume && !AR)
1339     AR = PSE.getAsAddRec(Phi);
1340 
1341   if (!AR) {
1342     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1343     return false;
1344   }
1345 
1346   // Record any Cast instructions that participate in the induction update
1347   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1348   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1349   // only after enabling Assume with PSCEV, this means we may have encountered
1350   // cast instructions that required adding a runtime check in order to
1351   // guarantee the correctness of the AddRecurrence respresentation of the
1352   // induction.
1353   if (PhiScev != AR && SymbolicPhi) {
1354     SmallVector<Instruction *, 2> Casts;
1355     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1356       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1357   }
1358 
1359   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1360 }
1361 
1362 bool InductionDescriptor::isInductionPHI(
1363     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1364     InductionDescriptor &D, const SCEV *Expr,
1365     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1366   Type *PhiTy = Phi->getType();
1367   // We only handle integer and pointer inductions variables.
1368   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1369     return false;
1370 
1371   // Check that the PHI is consecutive.
1372   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1373   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1374 
1375   if (!AR) {
1376     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1377     return false;
1378   }
1379 
1380   if (AR->getLoop() != TheLoop) {
1381     // FIXME: We should treat this as a uniform. Unfortunately, we
1382     // don't currently know how to handled uniform PHIs.
1383     LLVM_DEBUG(
1384         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1385     return false;
1386   }
1387 
1388   Value *StartValue =
1389       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1390 
1391   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1392   if (!Latch)
1393     return false;
1394 
1395   const SCEV *Step = AR->getStepRecurrence(*SE);
1396   // Calculate the pointer stride and check if it is consecutive.
1397   // The stride may be a constant or a loop invariant integer value.
1398   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1399   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1400     return false;
1401 
1402   if (PhiTy->isIntegerTy()) {
1403     BinaryOperator *BOp =
1404         dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1405     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1406                             /* ElementType */ nullptr, CastsToIgnore);
1407     return true;
1408   }
1409 
1410   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1411   // Pointer induction should be a constant.
1412   if (!ConstStep)
1413     return false;
1414 
1415   // Always use i8 element type for opaque pointer inductions.
1416   PointerType *PtrTy = cast<PointerType>(PhiTy);
1417   Type *ElementType = PtrTy->isOpaque() ? Type::getInt8Ty(PtrTy->getContext())
1418                                         : PtrTy->getElementType();
1419   if (!ElementType->isSized())
1420     return false;
1421 
1422   ConstantInt *CV = ConstStep->getValue();
1423   const DataLayout &DL = Phi->getModule()->getDataLayout();
1424   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(ElementType));
1425   if (!Size)
1426     return false;
1427 
1428   int64_t CVSize = CV->getSExtValue();
1429   if (CVSize % Size)
1430     return false;
1431   auto *StepValue =
1432       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1433   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue,
1434                           /* BinOp */ nullptr, ElementType);
1435   return true;
1436 }
1437