1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file "describes" induction and recurrence variables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/IVDescriptors.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DomTreeUpdater.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
38 
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "iv-descriptors"
43 
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45                                         SmallPtrSetImpl<Instruction *> &Set) {
46   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
47     if (!Set.count(dyn_cast<Instruction>(*Use)))
48       return false;
49   return true;
50 }
51 
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
53   switch (Kind) {
54   default:
55     break;
56   case RK_IntegerAdd:
57   case RK_IntegerMult:
58   case RK_IntegerOr:
59   case RK_IntegerAnd:
60   case RK_IntegerXor:
61   case RK_IntegerMinMax:
62     return true;
63   }
64   return false;
65 }
66 
67 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
68   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
69 }
70 
71 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
72   switch (Kind) {
73   default:
74     break;
75   case RK_IntegerAdd:
76   case RK_IntegerMult:
77   case RK_FloatAdd:
78   case RK_FloatMult:
79     return true;
80   }
81   return false;
82 }
83 
84 /// Determines if Phi may have been type-promoted. If Phi has a single user
85 /// that ANDs the Phi with a type mask, return the user. RT is updated to
86 /// account for the narrower bit width represented by the mask, and the AND
87 /// instruction is added to CI.
88 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
89                                    SmallPtrSetImpl<Instruction *> &Visited,
90                                    SmallPtrSetImpl<Instruction *> &CI) {
91   if (!Phi->hasOneUse())
92     return Phi;
93 
94   const APInt *M = nullptr;
95   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
96 
97   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
98   // with a new integer type of the corresponding bit width.
99   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
100     int32_t Bits = (*M + 1).exactLogBase2();
101     if (Bits > 0) {
102       RT = IntegerType::get(Phi->getContext(), Bits);
103       Visited.insert(Phi);
104       CI.insert(J);
105       return J;
106     }
107   }
108   return Phi;
109 }
110 
111 /// Compute the minimal bit width needed to represent a reduction whose exit
112 /// instruction is given by Exit.
113 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
114                                                      DemandedBits *DB,
115                                                      AssumptionCache *AC,
116                                                      DominatorTree *DT) {
117   bool IsSigned = false;
118   const DataLayout &DL = Exit->getModule()->getDataLayout();
119   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
120 
121   if (DB) {
122     // Use the demanded bits analysis to determine the bits that are live out
123     // of the exit instruction, rounding up to the nearest power of two. If the
124     // use of demanded bits results in a smaller bit width, we know the value
125     // must be positive (i.e., IsSigned = false), because if this were not the
126     // case, the sign bit would have been demanded.
127     auto Mask = DB->getDemandedBits(Exit);
128     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
129   }
130 
131   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
132     // If demanded bits wasn't able to limit the bit width, we can try to use
133     // value tracking instead. This can be the case, for example, if the value
134     // may be negative.
135     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
136     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
137     MaxBitWidth = NumTypeBits - NumSignBits;
138     KnownBits Bits = computeKnownBits(Exit, DL);
139     if (!Bits.isNonNegative()) {
140       // If the value is not known to be non-negative, we set IsSigned to true,
141       // meaning that we will use sext instructions instead of zext
142       // instructions to restore the original type.
143       IsSigned = true;
144       if (!Bits.isNegative())
145         // If the value is not known to be negative, we don't known what the
146         // upper bit is, and therefore, we don't know what kind of extend we
147         // will need. In this case, just increase the bit width by one bit and
148         // use sext.
149         ++MaxBitWidth;
150     }
151   }
152   if (!isPowerOf2_64(MaxBitWidth))
153     MaxBitWidth = NextPowerOf2(MaxBitWidth);
154 
155   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
156                         IsSigned);
157 }
158 
159 /// Collect cast instructions that can be ignored in the vectorizer's cost
160 /// model, given a reduction exit value and the minimal type in which the
161 /// reduction can be represented.
162 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
163                                  Type *RecurrenceType,
164                                  SmallPtrSetImpl<Instruction *> &Casts) {
165 
166   SmallVector<Instruction *, 8> Worklist;
167   SmallPtrSet<Instruction *, 8> Visited;
168   Worklist.push_back(Exit);
169 
170   while (!Worklist.empty()) {
171     Instruction *Val = Worklist.pop_back_val();
172     Visited.insert(Val);
173     if (auto *Cast = dyn_cast<CastInst>(Val))
174       if (Cast->getSrcTy() == RecurrenceType) {
175         // If the source type of a cast instruction is equal to the recurrence
176         // type, it will be eliminated, and should be ignored in the vectorizer
177         // cost model.
178         Casts.insert(Cast);
179         continue;
180       }
181 
182     // Add all operands to the work list if they are loop-varying values that
183     // we haven't yet visited.
184     for (Value *O : cast<User>(Val)->operands())
185       if (auto *I = dyn_cast<Instruction>(O))
186         if (TheLoop->contains(I) && !Visited.count(I))
187           Worklist.push_back(I);
188   }
189 }
190 
191 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
192                                            Loop *TheLoop, bool HasFunNoNaNAttr,
193                                            RecurrenceDescriptor &RedDes,
194                                            DemandedBits *DB,
195                                            AssumptionCache *AC,
196                                            DominatorTree *DT) {
197   if (Phi->getNumIncomingValues() != 2)
198     return false;
199 
200   // Reduction variables are only found in the loop header block.
201   if (Phi->getParent() != TheLoop->getHeader())
202     return false;
203 
204   // Obtain the reduction start value from the value that comes from the loop
205   // preheader.
206   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
207 
208   // ExitInstruction is the single value which is used outside the loop.
209   // We only allow for a single reduction value to be used outside the loop.
210   // This includes users of the reduction, variables (which form a cycle
211   // which ends in the phi node).
212   Instruction *ExitInstruction = nullptr;
213   // Indicates that we found a reduction operation in our scan.
214   bool FoundReduxOp = false;
215 
216   // We start with the PHI node and scan for all of the users of this
217   // instruction. All users must be instructions that can be used as reduction
218   // variables (such as ADD). We must have a single out-of-block user. The cycle
219   // must include the original PHI.
220   bool FoundStartPHI = false;
221 
222   // To recognize min/max patterns formed by a icmp select sequence, we store
223   // the number of instruction we saw from the recognized min/max pattern,
224   //  to make sure we only see exactly the two instructions.
225   unsigned NumCmpSelectPatternInst = 0;
226   InstDesc ReduxDesc(false, nullptr);
227 
228   // Data used for determining if the recurrence has been type-promoted.
229   Type *RecurrenceType = Phi->getType();
230   SmallPtrSet<Instruction *, 4> CastInsts;
231   Instruction *Start = Phi;
232   bool IsSigned = false;
233 
234   SmallPtrSet<Instruction *, 8> VisitedInsts;
235   SmallVector<Instruction *, 8> Worklist;
236 
237   // Return early if the recurrence kind does not match the type of Phi. If the
238   // recurrence kind is arithmetic, we attempt to look through AND operations
239   // resulting from the type promotion performed by InstCombine.  Vector
240   // operations are not limited to the legal integer widths, so we may be able
241   // to evaluate the reduction in the narrower width.
242   if (RecurrenceType->isFloatingPointTy()) {
243     if (!isFloatingPointRecurrenceKind(Kind))
244       return false;
245   } else {
246     if (!isIntegerRecurrenceKind(Kind))
247       return false;
248     if (isArithmeticRecurrenceKind(Kind))
249       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
250   }
251 
252   Worklist.push_back(Start);
253   VisitedInsts.insert(Start);
254 
255   // A value in the reduction can be used:
256   //  - By the reduction:
257   //      - Reduction operation:
258   //        - One use of reduction value (safe).
259   //        - Multiple use of reduction value (not safe).
260   //      - PHI:
261   //        - All uses of the PHI must be the reduction (safe).
262   //        - Otherwise, not safe.
263   //  - By instructions outside of the loop (safe).
264   //      * One value may have several outside users, but all outside
265   //        uses must be of the same value.
266   //  - By an instruction that is not part of the reduction (not safe).
267   //    This is either:
268   //      * An instruction type other than PHI or the reduction operation.
269   //      * A PHI in the header other than the initial PHI.
270   while (!Worklist.empty()) {
271     Instruction *Cur = Worklist.back();
272     Worklist.pop_back();
273 
274     // No Users.
275     // If the instruction has no users then this is a broken chain and can't be
276     // a reduction variable.
277     if (Cur->use_empty())
278       return false;
279 
280     bool IsAPhi = isa<PHINode>(Cur);
281 
282     // A header PHI use other than the original PHI.
283     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
284       return false;
285 
286     // Reductions of instructions such as Div, and Sub is only possible if the
287     // LHS is the reduction variable.
288     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
289         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
290         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
291       return false;
292 
293     // Any reduction instruction must be of one of the allowed kinds. We ignore
294     // the starting value (the Phi or an AND instruction if the Phi has been
295     // type-promoted).
296     if (Cur != Start) {
297       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
298       if (!ReduxDesc.isRecurrence())
299         return false;
300     }
301 
302     // A reduction operation must only have one use of the reduction value.
303     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
304         hasMultipleUsesOf(Cur, VisitedInsts))
305       return false;
306 
307     // All inputs to a PHI node must be a reduction value.
308     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
309       return false;
310 
311     if (Kind == RK_IntegerMinMax &&
312         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
313       ++NumCmpSelectPatternInst;
314     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
315       ++NumCmpSelectPatternInst;
316 
317     // Check  whether we found a reduction operator.
318     FoundReduxOp |= !IsAPhi && Cur != Start;
319 
320     // Process users of current instruction. Push non-PHI nodes after PHI nodes
321     // onto the stack. This way we are going to have seen all inputs to PHI
322     // nodes once we get to them.
323     SmallVector<Instruction *, 8> NonPHIs;
324     SmallVector<Instruction *, 8> PHIs;
325     for (User *U : Cur->users()) {
326       Instruction *UI = cast<Instruction>(U);
327 
328       // Check if we found the exit user.
329       BasicBlock *Parent = UI->getParent();
330       if (!TheLoop->contains(Parent)) {
331         // If we already know this instruction is used externally, move on to
332         // the next user.
333         if (ExitInstruction == Cur)
334           continue;
335 
336         // Exit if you find multiple values used outside or if the header phi
337         // node is being used. In this case the user uses the value of the
338         // previous iteration, in which case we would loose "VF-1" iterations of
339         // the reduction operation if we vectorize.
340         if (ExitInstruction != nullptr || Cur == Phi)
341           return false;
342 
343         // The instruction used by an outside user must be the last instruction
344         // before we feed back to the reduction phi. Otherwise, we loose VF-1
345         // operations on the value.
346         if (!is_contained(Phi->operands(), Cur))
347           return false;
348 
349         ExitInstruction = Cur;
350         continue;
351       }
352 
353       // Process instructions only once (termination). Each reduction cycle
354       // value must only be used once, except by phi nodes and min/max
355       // reductions which are represented as a cmp followed by a select.
356       InstDesc IgnoredVal(false, nullptr);
357       if (VisitedInsts.insert(UI).second) {
358         if (isa<PHINode>(UI))
359           PHIs.push_back(UI);
360         else
361           NonPHIs.push_back(UI);
362       } else if (!isa<PHINode>(UI) &&
363                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
364                    !isa<SelectInst>(UI)) ||
365                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
366         return false;
367 
368       // Remember that we completed the cycle.
369       if (UI == Phi)
370         FoundStartPHI = true;
371     }
372     Worklist.append(PHIs.begin(), PHIs.end());
373     Worklist.append(NonPHIs.begin(), NonPHIs.end());
374   }
375 
376   // This means we have seen one but not the other instruction of the
377   // pattern or more than just a select and cmp.
378   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
379       NumCmpSelectPatternInst != 2)
380     return false;
381 
382   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
383     return false;
384 
385   if (Start != Phi) {
386     // If the starting value is not the same as the phi node, we speculatively
387     // looked through an 'and' instruction when evaluating a potential
388     // arithmetic reduction to determine if it may have been type-promoted.
389     //
390     // We now compute the minimal bit width that is required to represent the
391     // reduction. If this is the same width that was indicated by the 'and', we
392     // can represent the reduction in the smaller type. The 'and' instruction
393     // will be eliminated since it will essentially be a cast instruction that
394     // can be ignore in the cost model. If we compute a different type than we
395     // did when evaluating the 'and', the 'and' will not be eliminated, and we
396     // will end up with different kinds of operations in the recurrence
397     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
398     // the case.
399     //
400     // The vectorizer relies on InstCombine to perform the actual
401     // type-shrinking. It does this by inserting instructions to truncate the
402     // exit value of the reduction to the width indicated by RecurrenceType and
403     // then extend this value back to the original width. If IsSigned is false,
404     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
405     // used.
406     //
407     // TODO: We should not rely on InstCombine to rewrite the reduction in the
408     //       smaller type. We should just generate a correctly typed expression
409     //       to begin with.
410     Type *ComputedType;
411     std::tie(ComputedType, IsSigned) =
412         computeRecurrenceType(ExitInstruction, DB, AC, DT);
413     if (ComputedType != RecurrenceType)
414       return false;
415 
416     // The recurrence expression will be represented in a narrower type. If
417     // there are any cast instructions that will be unnecessary, collect them
418     // in CastInsts. Note that the 'and' instruction was already included in
419     // this list.
420     //
421     // TODO: A better way to represent this may be to tag in some way all the
422     //       instructions that are a part of the reduction. The vectorizer cost
423     //       model could then apply the recurrence type to these instructions,
424     //       without needing a white list of instructions to ignore.
425     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
426   }
427 
428   // We found a reduction var if we have reached the original phi node and we
429   // only have a single instruction with out-of-loop users.
430 
431   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
432   // is saved as part of the RecurrenceDescriptor.
433 
434   // Save the description of this reduction variable.
435   RecurrenceDescriptor RD(
436       RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
437       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
438   RedDes = RD;
439 
440   return true;
441 }
442 
443 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
444 /// pattern corresponding to a min(X, Y) or max(X, Y).
445 RecurrenceDescriptor::InstDesc
446 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
447 
448   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
449          "Expect a select instruction");
450   Instruction *Cmp = nullptr;
451   SelectInst *Select = nullptr;
452 
453   // We must handle the select(cmp()) as a single instruction. Advance to the
454   // select.
455   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
456     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
457       return InstDesc(false, I);
458     return InstDesc(Select, Prev.getMinMaxKind());
459   }
460 
461   // Only handle single use cases for now.
462   if (!(Select = dyn_cast<SelectInst>(I)))
463     return InstDesc(false, I);
464   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
465       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
466     return InstDesc(false, I);
467   if (!Cmp->hasOneUse())
468     return InstDesc(false, I);
469 
470   Value *CmpLeft;
471   Value *CmpRight;
472 
473   // Look for a min/max pattern.
474   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
475     return InstDesc(Select, MRK_UIntMin);
476   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
477     return InstDesc(Select, MRK_UIntMax);
478   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
479     return InstDesc(Select, MRK_SIntMax);
480   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
481     return InstDesc(Select, MRK_SIntMin);
482   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
483     return InstDesc(Select, MRK_FloatMin);
484   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
485     return InstDesc(Select, MRK_FloatMax);
486   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
487     return InstDesc(Select, MRK_FloatMin);
488   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
489     return InstDesc(Select, MRK_FloatMax);
490 
491   return InstDesc(false, I);
492 }
493 
494 RecurrenceDescriptor::InstDesc
495 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
496                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
497   bool FP = I->getType()->isFloatingPointTy();
498   Instruction *UAI = Prev.getUnsafeAlgebraInst();
499   if (!UAI && FP && !I->isFast())
500     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
501 
502   switch (I->getOpcode()) {
503   default:
504     return InstDesc(false, I);
505   case Instruction::PHI:
506     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
507   case Instruction::Sub:
508   case Instruction::Add:
509     return InstDesc(Kind == RK_IntegerAdd, I);
510   case Instruction::Mul:
511     return InstDesc(Kind == RK_IntegerMult, I);
512   case Instruction::And:
513     return InstDesc(Kind == RK_IntegerAnd, I);
514   case Instruction::Or:
515     return InstDesc(Kind == RK_IntegerOr, I);
516   case Instruction::Xor:
517     return InstDesc(Kind == RK_IntegerXor, I);
518   case Instruction::FMul:
519     return InstDesc(Kind == RK_FloatMult, I, UAI);
520   case Instruction::FSub:
521   case Instruction::FAdd:
522     return InstDesc(Kind == RK_FloatAdd, I, UAI);
523   case Instruction::FCmp:
524   case Instruction::ICmp:
525   case Instruction::Select:
526     if (Kind != RK_IntegerMinMax &&
527         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
528       return InstDesc(false, I);
529     return isMinMaxSelectCmpPattern(I, Prev);
530   }
531 }
532 
533 bool RecurrenceDescriptor::hasMultipleUsesOf(
534     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
535   unsigned NumUses = 0;
536   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
537        ++Use) {
538     if (Insts.count(dyn_cast<Instruction>(*Use)))
539       ++NumUses;
540     if (NumUses > 1)
541       return true;
542   }
543 
544   return false;
545 }
546 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
547                                           RecurrenceDescriptor &RedDes,
548                                           DemandedBits *DB, AssumptionCache *AC,
549                                           DominatorTree *DT) {
550 
551   BasicBlock *Header = TheLoop->getHeader();
552   Function &F = *Header->getParent();
553   bool HasFunNoNaNAttr =
554       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
555 
556   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
557                       AC, DT)) {
558     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
559     return true;
560   }
561   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
562                       AC, DT)) {
563     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
564     return true;
565   }
566   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
567                       AC, DT)) {
568     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
569     return true;
570   }
571   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
572                       AC, DT)) {
573     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
574     return true;
575   }
576   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
577                       AC, DT)) {
578     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
579     return true;
580   }
581   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
582                       DB, AC, DT)) {
583     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
584     return true;
585   }
586   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
587                       AC, DT)) {
588     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
589     return true;
590   }
591   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
592                       AC, DT)) {
593     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
594     return true;
595   }
596   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
597                       AC, DT)) {
598     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
599                       << "\n");
600     return true;
601   }
602   // Not a reduction of known type.
603   return false;
604 }
605 
606 bool RecurrenceDescriptor::isFirstOrderRecurrence(
607     PHINode *Phi, Loop *TheLoop,
608     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
609 
610   // Ensure the phi node is in the loop header and has two incoming values.
611   if (Phi->getParent() != TheLoop->getHeader() ||
612       Phi->getNumIncomingValues() != 2)
613     return false;
614 
615   // Ensure the loop has a preheader and a single latch block. The loop
616   // vectorizer will need the latch to set up the next iteration of the loop.
617   auto *Preheader = TheLoop->getLoopPreheader();
618   auto *Latch = TheLoop->getLoopLatch();
619   if (!Preheader || !Latch)
620     return false;
621 
622   // Ensure the phi node's incoming blocks are the loop preheader and latch.
623   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
624       Phi->getBasicBlockIndex(Latch) < 0)
625     return false;
626 
627   // Get the previous value. The previous value comes from the latch edge while
628   // the initial value comes form the preheader edge.
629   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
630   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
631       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
632     return false;
633 
634   // Ensure every user of the phi node is dominated by the previous value.
635   // The dominance requirement ensures the loop vectorizer will not need to
636   // vectorize the initial value prior to the first iteration of the loop.
637   // TODO: Consider extending this sinking to handle other kinds of instructions
638   // and expressions, beyond sinking a single cast past Previous.
639   if (Phi->hasOneUse()) {
640     auto *I = Phi->user_back();
641     if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
642         DT->dominates(Previous, I->user_back())) {
643       if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
644         SinkAfter[I] = Previous;
645       return true;
646     }
647   }
648 
649   for (User *U : Phi->users())
650     if (auto *I = dyn_cast<Instruction>(U)) {
651       if (!DT->dominates(Previous, I))
652         return false;
653     }
654 
655   return true;
656 }
657 
658 /// This function returns the identity element (or neutral element) for
659 /// the operation K.
660 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
661                                                       Type *Tp) {
662   switch (K) {
663   case RK_IntegerXor:
664   case RK_IntegerAdd:
665   case RK_IntegerOr:
666     // Adding, Xoring, Oring zero to a number does not change it.
667     return ConstantInt::get(Tp, 0);
668   case RK_IntegerMult:
669     // Multiplying a number by 1 does not change it.
670     return ConstantInt::get(Tp, 1);
671   case RK_IntegerAnd:
672     // AND-ing a number with an all-1 value does not change it.
673     return ConstantInt::get(Tp, -1, true);
674   case RK_FloatMult:
675     // Multiplying a number by 1 does not change it.
676     return ConstantFP::get(Tp, 1.0L);
677   case RK_FloatAdd:
678     // Adding zero to a number does not change it.
679     return ConstantFP::get(Tp, 0.0L);
680   default:
681     llvm_unreachable("Unknown recurrence kind");
682   }
683 }
684 
685 /// This function translates the recurrence kind to an LLVM binary operator.
686 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
687   switch (Kind) {
688   case RK_IntegerAdd:
689     return Instruction::Add;
690   case RK_IntegerMult:
691     return Instruction::Mul;
692   case RK_IntegerOr:
693     return Instruction::Or;
694   case RK_IntegerAnd:
695     return Instruction::And;
696   case RK_IntegerXor:
697     return Instruction::Xor;
698   case RK_FloatMult:
699     return Instruction::FMul;
700   case RK_FloatAdd:
701     return Instruction::FAdd;
702   case RK_IntegerMinMax:
703     return Instruction::ICmp;
704   case RK_FloatMinMax:
705     return Instruction::FCmp;
706   default:
707     llvm_unreachable("Unknown recurrence operation");
708   }
709 }
710 
711 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
712                                          const SCEV *Step, BinaryOperator *BOp,
713                                          SmallVectorImpl<Instruction *> *Casts)
714     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
715   assert(IK != IK_NoInduction && "Not an induction");
716 
717   // Start value type should match the induction kind and the value
718   // itself should not be null.
719   assert(StartValue && "StartValue is null");
720   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
721          "StartValue is not a pointer for pointer induction");
722   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
723          "StartValue is not an integer for integer induction");
724 
725   // Check the Step Value. It should be non-zero integer value.
726   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
727          "Step value is zero");
728 
729   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
730          "Step value should be constant for pointer induction");
731   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
732          "StepValue is not an integer");
733 
734   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
735          "StepValue is not FP for FpInduction");
736   assert((IK != IK_FpInduction ||
737           (InductionBinOp &&
738            (InductionBinOp->getOpcode() == Instruction::FAdd ||
739             InductionBinOp->getOpcode() == Instruction::FSub))) &&
740          "Binary opcode should be specified for FP induction");
741 
742   if (Casts) {
743     for (auto &Inst : *Casts) {
744       RedundantCasts.push_back(Inst);
745     }
746   }
747 }
748 
749 int InductionDescriptor::getConsecutiveDirection() const {
750   ConstantInt *ConstStep = getConstIntStepValue();
751   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
752     return ConstStep->getSExtValue();
753   return 0;
754 }
755 
756 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
757   if (isa<SCEVConstant>(Step))
758     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
759   return nullptr;
760 }
761 
762 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
763                                            ScalarEvolution *SE,
764                                            InductionDescriptor &D) {
765 
766   // Here we only handle FP induction variables.
767   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
768 
769   if (TheLoop->getHeader() != Phi->getParent())
770     return false;
771 
772   // The loop may have multiple entrances or multiple exits; we can analyze
773   // this phi if it has a unique entry value and a unique backedge value.
774   if (Phi->getNumIncomingValues() != 2)
775     return false;
776   Value *BEValue = nullptr, *StartValue = nullptr;
777   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
778     BEValue = Phi->getIncomingValue(0);
779     StartValue = Phi->getIncomingValue(1);
780   } else {
781     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
782            "Unexpected Phi node in the loop");
783     BEValue = Phi->getIncomingValue(1);
784     StartValue = Phi->getIncomingValue(0);
785   }
786 
787   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
788   if (!BOp)
789     return false;
790 
791   Value *Addend = nullptr;
792   if (BOp->getOpcode() == Instruction::FAdd) {
793     if (BOp->getOperand(0) == Phi)
794       Addend = BOp->getOperand(1);
795     else if (BOp->getOperand(1) == Phi)
796       Addend = BOp->getOperand(0);
797   } else if (BOp->getOpcode() == Instruction::FSub)
798     if (BOp->getOperand(0) == Phi)
799       Addend = BOp->getOperand(1);
800 
801   if (!Addend)
802     return false;
803 
804   // The addend should be loop invariant
805   if (auto *I = dyn_cast<Instruction>(Addend))
806     if (TheLoop->contains(I))
807       return false;
808 
809   // FP Step has unknown SCEV
810   const SCEV *Step = SE->getUnknown(Addend);
811   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
812   return true;
813 }
814 
815 /// This function is called when we suspect that the update-chain of a phi node
816 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
817 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
818 /// predicate P under which the SCEV expression for the phi can be the
819 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
820 /// cast instructions that are involved in the update-chain of this induction.
821 /// A caller that adds the required runtime predicate can be free to drop these
822 /// cast instructions, and compute the phi using \p AR (instead of some scev
823 /// expression with casts).
824 ///
825 /// For example, without a predicate the scev expression can take the following
826 /// form:
827 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
828 ///
829 /// It corresponds to the following IR sequence:
830 /// %for.body:
831 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
832 ///   %casted_phi = "ExtTrunc i64 %x"
833 ///   %add = add i64 %casted_phi, %step
834 ///
835 /// where %x is given in \p PN,
836 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
837 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
838 /// several forms, for example, such as:
839 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
840 /// or:
841 ///   ExtTrunc2:    %t = shl %x, m
842 ///                 %casted_phi = ashr %t, m
843 ///
844 /// If we are able to find such sequence, we return the instructions
845 /// we found, namely %casted_phi and the instructions on its use-def chain up
846 /// to the phi (not including the phi).
847 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
848                                     const SCEVUnknown *PhiScev,
849                                     const SCEVAddRecExpr *AR,
850                                     SmallVectorImpl<Instruction *> &CastInsts) {
851 
852   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
853   auto *PN = cast<PHINode>(PhiScev->getValue());
854   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
855   const Loop *L = AR->getLoop();
856 
857   // Find any cast instructions that participate in the def-use chain of
858   // PhiScev in the loop.
859   // FORNOW/TODO: We currently expect the def-use chain to include only
860   // two-operand instructions, where one of the operands is an invariant.
861   // createAddRecFromPHIWithCasts() currently does not support anything more
862   // involved than that, so we keep the search simple. This can be
863   // extended/generalized as needed.
864 
865   auto getDef = [&](const Value *Val) -> Value * {
866     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
867     if (!BinOp)
868       return nullptr;
869     Value *Op0 = BinOp->getOperand(0);
870     Value *Op1 = BinOp->getOperand(1);
871     Value *Def = nullptr;
872     if (L->isLoopInvariant(Op0))
873       Def = Op1;
874     else if (L->isLoopInvariant(Op1))
875       Def = Op0;
876     return Def;
877   };
878 
879   // Look for the instruction that defines the induction via the
880   // loop backedge.
881   BasicBlock *Latch = L->getLoopLatch();
882   if (!Latch)
883     return false;
884   Value *Val = PN->getIncomingValueForBlock(Latch);
885   if (!Val)
886     return false;
887 
888   // Follow the def-use chain until the induction phi is reached.
889   // If on the way we encounter a Value that has the same SCEV Expr as the
890   // phi node, we can consider the instructions we visit from that point
891   // as part of the cast-sequence that can be ignored.
892   bool InCastSequence = false;
893   auto *Inst = dyn_cast<Instruction>(Val);
894   while (Val != PN) {
895     // If we encountered a phi node other than PN, or if we left the loop,
896     // we bail out.
897     if (!Inst || !L->contains(Inst)) {
898       return false;
899     }
900     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
901     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
902       InCastSequence = true;
903     if (InCastSequence) {
904       // Only the last instruction in the cast sequence is expected to have
905       // uses outside the induction def-use chain.
906       if (!CastInsts.empty())
907         if (!Inst->hasOneUse())
908           return false;
909       CastInsts.push_back(Inst);
910     }
911     Val = getDef(Val);
912     if (!Val)
913       return false;
914     Inst = dyn_cast<Instruction>(Val);
915   }
916 
917   return InCastSequence;
918 }
919 
920 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
921                                          PredicatedScalarEvolution &PSE,
922                                          InductionDescriptor &D, bool Assume) {
923   Type *PhiTy = Phi->getType();
924 
925   // Handle integer and pointer inductions variables.
926   // Now we handle also FP induction but not trying to make a
927   // recurrent expression from the PHI node in-place.
928 
929   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
930       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
931     return false;
932 
933   if (PhiTy->isFloatingPointTy())
934     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
935 
936   const SCEV *PhiScev = PSE.getSCEV(Phi);
937   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
938 
939   // We need this expression to be an AddRecExpr.
940   if (Assume && !AR)
941     AR = PSE.getAsAddRec(Phi);
942 
943   if (!AR) {
944     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
945     return false;
946   }
947 
948   // Record any Cast instructions that participate in the induction update
949   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
950   // If we started from an UnknownSCEV, and managed to build an addRecurrence
951   // only after enabling Assume with PSCEV, this means we may have encountered
952   // cast instructions that required adding a runtime check in order to
953   // guarantee the correctness of the AddRecurence respresentation of the
954   // induction.
955   if (PhiScev != AR && SymbolicPhi) {
956     SmallVector<Instruction *, 2> Casts;
957     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
958       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
959   }
960 
961   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
962 }
963 
964 bool InductionDescriptor::isInductionPHI(
965     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
966     InductionDescriptor &D, const SCEV *Expr,
967     SmallVectorImpl<Instruction *> *CastsToIgnore) {
968   Type *PhiTy = Phi->getType();
969   // We only handle integer and pointer inductions variables.
970   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
971     return false;
972 
973   // Check that the PHI is consecutive.
974   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
975   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
976 
977   if (!AR) {
978     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
979     return false;
980   }
981 
982   if (AR->getLoop() != TheLoop) {
983     // FIXME: We should treat this as a uniform. Unfortunately, we
984     // don't currently know how to handled uniform PHIs.
985     LLVM_DEBUG(
986         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
987     return false;
988   }
989 
990   Value *StartValue =
991       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
992   const SCEV *Step = AR->getStepRecurrence(*SE);
993   // Calculate the pointer stride and check if it is consecutive.
994   // The stride may be a constant or a loop invariant integer value.
995   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
996   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
997     return false;
998 
999   if (PhiTy->isIntegerTy()) {
1000     D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/nullptr,
1001                             CastsToIgnore);
1002     return true;
1003   }
1004 
1005   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1006   // Pointer induction should be a constant.
1007   if (!ConstStep)
1008     return false;
1009 
1010   ConstantInt *CV = ConstStep->getValue();
1011   Type *PointerElementType = PhiTy->getPointerElementType();
1012   // The pointer stride cannot be determined if the pointer element type is not
1013   // sized.
1014   if (!PointerElementType->isSized())
1015     return false;
1016 
1017   const DataLayout &DL = Phi->getModule()->getDataLayout();
1018   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1019   if (!Size)
1020     return false;
1021 
1022   int64_t CVSize = CV->getSExtValue();
1023   if (CVSize % Size)
1024     return false;
1025   auto *StepValue =
1026       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1027   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
1028   return true;
1029 }
1030