1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "iv-descriptors" 41 42 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 43 SmallPtrSetImpl<Instruction *> &Set) { 44 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 45 if (!Set.count(dyn_cast<Instruction>(*Use))) 46 return false; 47 return true; 48 } 49 50 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { 51 switch (Kind) { 52 default: 53 break; 54 case RK_IntegerAdd: 55 case RK_IntegerMult: 56 case RK_IntegerOr: 57 case RK_IntegerAnd: 58 case RK_IntegerXor: 59 case RK_IntegerMinMax: 60 return true; 61 } 62 return false; 63 } 64 65 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { 66 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); 67 } 68 69 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { 70 switch (Kind) { 71 default: 72 break; 73 case RK_IntegerAdd: 74 case RK_IntegerMult: 75 case RK_FloatAdd: 76 case RK_FloatMult: 77 return true; 78 } 79 return false; 80 } 81 82 /// Determines if Phi may have been type-promoted. If Phi has a single user 83 /// that ANDs the Phi with a type mask, return the user. RT is updated to 84 /// account for the narrower bit width represented by the mask, and the AND 85 /// instruction is added to CI. 86 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 87 SmallPtrSetImpl<Instruction *> &Visited, 88 SmallPtrSetImpl<Instruction *> &CI) { 89 if (!Phi->hasOneUse()) 90 return Phi; 91 92 const APInt *M = nullptr; 93 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 94 95 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 96 // with a new integer type of the corresponding bit width. 97 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 98 int32_t Bits = (*M + 1).exactLogBase2(); 99 if (Bits > 0) { 100 RT = IntegerType::get(Phi->getContext(), Bits); 101 Visited.insert(Phi); 102 CI.insert(J); 103 return J; 104 } 105 } 106 return Phi; 107 } 108 109 /// Compute the minimal bit width needed to represent a reduction whose exit 110 /// instruction is given by Exit. 111 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 112 DemandedBits *DB, 113 AssumptionCache *AC, 114 DominatorTree *DT) { 115 bool IsSigned = false; 116 const DataLayout &DL = Exit->getModule()->getDataLayout(); 117 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 118 119 if (DB) { 120 // Use the demanded bits analysis to determine the bits that are live out 121 // of the exit instruction, rounding up to the nearest power of two. If the 122 // use of demanded bits results in a smaller bit width, we know the value 123 // must be positive (i.e., IsSigned = false), because if this were not the 124 // case, the sign bit would have been demanded. 125 auto Mask = DB->getDemandedBits(Exit); 126 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 127 } 128 129 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 130 // If demanded bits wasn't able to limit the bit width, we can try to use 131 // value tracking instead. This can be the case, for example, if the value 132 // may be negative. 133 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 134 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 135 MaxBitWidth = NumTypeBits - NumSignBits; 136 KnownBits Bits = computeKnownBits(Exit, DL); 137 if (!Bits.isNonNegative()) { 138 // If the value is not known to be non-negative, we set IsSigned to true, 139 // meaning that we will use sext instructions instead of zext 140 // instructions to restore the original type. 141 IsSigned = true; 142 if (!Bits.isNegative()) 143 // If the value is not known to be negative, we don't known what the 144 // upper bit is, and therefore, we don't know what kind of extend we 145 // will need. In this case, just increase the bit width by one bit and 146 // use sext. 147 ++MaxBitWidth; 148 } 149 } 150 if (!isPowerOf2_64(MaxBitWidth)) 151 MaxBitWidth = NextPowerOf2(MaxBitWidth); 152 153 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 154 IsSigned); 155 } 156 157 /// Collect cast instructions that can be ignored in the vectorizer's cost 158 /// model, given a reduction exit value and the minimal type in which the 159 /// reduction can be represented. 160 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 161 Type *RecurrenceType, 162 SmallPtrSetImpl<Instruction *> &Casts) { 163 164 SmallVector<Instruction *, 8> Worklist; 165 SmallPtrSet<Instruction *, 8> Visited; 166 Worklist.push_back(Exit); 167 168 while (!Worklist.empty()) { 169 Instruction *Val = Worklist.pop_back_val(); 170 Visited.insert(Val); 171 if (auto *Cast = dyn_cast<CastInst>(Val)) 172 if (Cast->getSrcTy() == RecurrenceType) { 173 // If the source type of a cast instruction is equal to the recurrence 174 // type, it will be eliminated, and should be ignored in the vectorizer 175 // cost model. 176 Casts.insert(Cast); 177 continue; 178 } 179 180 // Add all operands to the work list if they are loop-varying values that 181 // we haven't yet visited. 182 for (Value *O : cast<User>(Val)->operands()) 183 if (auto *I = dyn_cast<Instruction>(O)) 184 if (TheLoop->contains(I) && !Visited.count(I)) 185 Worklist.push_back(I); 186 } 187 } 188 189 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, 190 Loop *TheLoop, bool HasFunNoNaNAttr, 191 RecurrenceDescriptor &RedDes, 192 DemandedBits *DB, 193 AssumptionCache *AC, 194 DominatorTree *DT) { 195 if (Phi->getNumIncomingValues() != 2) 196 return false; 197 198 // Reduction variables are only found in the loop header block. 199 if (Phi->getParent() != TheLoop->getHeader()) 200 return false; 201 202 // Obtain the reduction start value from the value that comes from the loop 203 // preheader. 204 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 205 206 // ExitInstruction is the single value which is used outside the loop. 207 // We only allow for a single reduction value to be used outside the loop. 208 // This includes users of the reduction, variables (which form a cycle 209 // which ends in the phi node). 210 Instruction *ExitInstruction = nullptr; 211 // Indicates that we found a reduction operation in our scan. 212 bool FoundReduxOp = false; 213 214 // We start with the PHI node and scan for all of the users of this 215 // instruction. All users must be instructions that can be used as reduction 216 // variables (such as ADD). We must have a single out-of-block user. The cycle 217 // must include the original PHI. 218 bool FoundStartPHI = false; 219 220 // To recognize min/max patterns formed by a icmp select sequence, we store 221 // the number of instruction we saw from the recognized min/max pattern, 222 // to make sure we only see exactly the two instructions. 223 unsigned NumCmpSelectPatternInst = 0; 224 InstDesc ReduxDesc(false, nullptr); 225 226 // Data used for determining if the recurrence has been type-promoted. 227 Type *RecurrenceType = Phi->getType(); 228 SmallPtrSet<Instruction *, 4> CastInsts; 229 Instruction *Start = Phi; 230 bool IsSigned = false; 231 232 SmallPtrSet<Instruction *, 8> VisitedInsts; 233 SmallVector<Instruction *, 8> Worklist; 234 235 // Return early if the recurrence kind does not match the type of Phi. If the 236 // recurrence kind is arithmetic, we attempt to look through AND operations 237 // resulting from the type promotion performed by InstCombine. Vector 238 // operations are not limited to the legal integer widths, so we may be able 239 // to evaluate the reduction in the narrower width. 240 if (RecurrenceType->isFloatingPointTy()) { 241 if (!isFloatingPointRecurrenceKind(Kind)) 242 return false; 243 } else { 244 if (!isIntegerRecurrenceKind(Kind)) 245 return false; 246 if (isArithmeticRecurrenceKind(Kind)) 247 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 248 } 249 250 Worklist.push_back(Start); 251 VisitedInsts.insert(Start); 252 253 // Start with all flags set because we will intersect this with the reduction 254 // flags from all the reduction operations. 255 FastMathFlags FMF = FastMathFlags::getFast(); 256 257 // A value in the reduction can be used: 258 // - By the reduction: 259 // - Reduction operation: 260 // - One use of reduction value (safe). 261 // - Multiple use of reduction value (not safe). 262 // - PHI: 263 // - All uses of the PHI must be the reduction (safe). 264 // - Otherwise, not safe. 265 // - By instructions outside of the loop (safe). 266 // * One value may have several outside users, but all outside 267 // uses must be of the same value. 268 // - By an instruction that is not part of the reduction (not safe). 269 // This is either: 270 // * An instruction type other than PHI or the reduction operation. 271 // * A PHI in the header other than the initial PHI. 272 while (!Worklist.empty()) { 273 Instruction *Cur = Worklist.back(); 274 Worklist.pop_back(); 275 276 // No Users. 277 // If the instruction has no users then this is a broken chain and can't be 278 // a reduction variable. 279 if (Cur->use_empty()) 280 return false; 281 282 bool IsAPhi = isa<PHINode>(Cur); 283 284 // A header PHI use other than the original PHI. 285 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 286 return false; 287 288 // Reductions of instructions such as Div, and Sub is only possible if the 289 // LHS is the reduction variable. 290 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 291 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 292 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 293 return false; 294 295 // Any reduction instruction must be of one of the allowed kinds. We ignore 296 // the starting value (the Phi or an AND instruction if the Phi has been 297 // type-promoted). 298 if (Cur != Start) { 299 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 300 if (!ReduxDesc.isRecurrence()) 301 return false; 302 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 303 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) 304 FMF &= ReduxDesc.getPatternInst()->getFastMathFlags(); 305 } 306 307 bool IsASelect = isa<SelectInst>(Cur); 308 309 // A conditional reduction operation must only have 2 or less uses in 310 // VisitedInsts. 311 if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) && 312 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 313 return false; 314 315 // A reduction operation must only have one use of the reduction value. 316 if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax && 317 Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1)) 318 return false; 319 320 // All inputs to a PHI node must be a reduction value. 321 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 322 return false; 323 324 if (Kind == RK_IntegerMinMax && 325 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 326 ++NumCmpSelectPatternInst; 327 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 328 ++NumCmpSelectPatternInst; 329 330 // Check whether we found a reduction operator. 331 FoundReduxOp |= !IsAPhi && Cur != Start; 332 333 // Process users of current instruction. Push non-PHI nodes after PHI nodes 334 // onto the stack. This way we are going to have seen all inputs to PHI 335 // nodes once we get to them. 336 SmallVector<Instruction *, 8> NonPHIs; 337 SmallVector<Instruction *, 8> PHIs; 338 for (User *U : Cur->users()) { 339 Instruction *UI = cast<Instruction>(U); 340 341 // Check if we found the exit user. 342 BasicBlock *Parent = UI->getParent(); 343 if (!TheLoop->contains(Parent)) { 344 // If we already know this instruction is used externally, move on to 345 // the next user. 346 if (ExitInstruction == Cur) 347 continue; 348 349 // Exit if you find multiple values used outside or if the header phi 350 // node is being used. In this case the user uses the value of the 351 // previous iteration, in which case we would loose "VF-1" iterations of 352 // the reduction operation if we vectorize. 353 if (ExitInstruction != nullptr || Cur == Phi) 354 return false; 355 356 // The instruction used by an outside user must be the last instruction 357 // before we feed back to the reduction phi. Otherwise, we loose VF-1 358 // operations on the value. 359 if (!is_contained(Phi->operands(), Cur)) 360 return false; 361 362 ExitInstruction = Cur; 363 continue; 364 } 365 366 // Process instructions only once (termination). Each reduction cycle 367 // value must only be used once, except by phi nodes and min/max 368 // reductions which are represented as a cmp followed by a select. 369 InstDesc IgnoredVal(false, nullptr); 370 if (VisitedInsts.insert(UI).second) { 371 if (isa<PHINode>(UI)) 372 PHIs.push_back(UI); 373 else 374 NonPHIs.push_back(UI); 375 } else if (!isa<PHINode>(UI) && 376 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 377 !isa<SelectInst>(UI)) || 378 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 379 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) 380 return false; 381 382 // Remember that we completed the cycle. 383 if (UI == Phi) 384 FoundStartPHI = true; 385 } 386 Worklist.append(PHIs.begin(), PHIs.end()); 387 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 388 } 389 390 // This means we have seen one but not the other instruction of the 391 // pattern or more than just a select and cmp. 392 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 393 NumCmpSelectPatternInst != 2) 394 return false; 395 396 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 397 return false; 398 399 if (Start != Phi) { 400 // If the starting value is not the same as the phi node, we speculatively 401 // looked through an 'and' instruction when evaluating a potential 402 // arithmetic reduction to determine if it may have been type-promoted. 403 // 404 // We now compute the minimal bit width that is required to represent the 405 // reduction. If this is the same width that was indicated by the 'and', we 406 // can represent the reduction in the smaller type. The 'and' instruction 407 // will be eliminated since it will essentially be a cast instruction that 408 // can be ignore in the cost model. If we compute a different type than we 409 // did when evaluating the 'and', the 'and' will not be eliminated, and we 410 // will end up with different kinds of operations in the recurrence 411 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is 412 // the case. 413 // 414 // The vectorizer relies on InstCombine to perform the actual 415 // type-shrinking. It does this by inserting instructions to truncate the 416 // exit value of the reduction to the width indicated by RecurrenceType and 417 // then extend this value back to the original width. If IsSigned is false, 418 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 419 // used. 420 // 421 // TODO: We should not rely on InstCombine to rewrite the reduction in the 422 // smaller type. We should just generate a correctly typed expression 423 // to begin with. 424 Type *ComputedType; 425 std::tie(ComputedType, IsSigned) = 426 computeRecurrenceType(ExitInstruction, DB, AC, DT); 427 if (ComputedType != RecurrenceType) 428 return false; 429 430 // The recurrence expression will be represented in a narrower type. If 431 // there are any cast instructions that will be unnecessary, collect them 432 // in CastInsts. Note that the 'and' instruction was already included in 433 // this list. 434 // 435 // TODO: A better way to represent this may be to tag in some way all the 436 // instructions that are a part of the reduction. The vectorizer cost 437 // model could then apply the recurrence type to these instructions, 438 // without needing a white list of instructions to ignore. 439 // This may also be useful for the inloop reductions, if it can be 440 // kept simple enough. 441 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 442 } 443 444 // We found a reduction var if we have reached the original phi node and we 445 // only have a single instruction with out-of-loop users. 446 447 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 448 // is saved as part of the RecurrenceDescriptor. 449 450 // Save the description of this reduction variable. 451 RecurrenceDescriptor RD( 452 RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(), 453 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); 454 RedDes = RD; 455 456 return true; 457 } 458 459 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 460 /// pattern corresponding to a min(X, Y) or max(X, Y). 461 RecurrenceDescriptor::InstDesc 462 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { 463 464 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 465 "Expect a select instruction"); 466 Instruction *Cmp = nullptr; 467 SelectInst *Select = nullptr; 468 469 // We must handle the select(cmp()) as a single instruction. Advance to the 470 // select. 471 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 472 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 473 return InstDesc(false, I); 474 return InstDesc(Select, Prev.getMinMaxKind()); 475 } 476 477 // Only handle single use cases for now. 478 if (!(Select = dyn_cast<SelectInst>(I))) 479 return InstDesc(false, I); 480 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 481 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 482 return InstDesc(false, I); 483 if (!Cmp->hasOneUse()) 484 return InstDesc(false, I); 485 486 Value *CmpLeft; 487 Value *CmpRight; 488 489 // Look for a min/max pattern. 490 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 491 return InstDesc(Select, MRK_UIntMin); 492 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 493 return InstDesc(Select, MRK_UIntMax); 494 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 495 return InstDesc(Select, MRK_SIntMax); 496 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 497 return InstDesc(Select, MRK_SIntMin); 498 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 499 return InstDesc(Select, MRK_FloatMin); 500 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 501 return InstDesc(Select, MRK_FloatMax); 502 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 503 return InstDesc(Select, MRK_FloatMin); 504 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 505 return InstDesc(Select, MRK_FloatMax); 506 507 return InstDesc(false, I); 508 } 509 510 /// Returns true if the select instruction has users in the compare-and-add 511 /// reduction pattern below. The select instruction argument is the last one 512 /// in the sequence. 513 /// 514 /// %sum.1 = phi ... 515 /// ... 516 /// %cmp = fcmp pred %0, %CFP 517 /// %add = fadd %0, %sum.1 518 /// %sum.2 = select %cmp, %add, %sum.1 519 RecurrenceDescriptor::InstDesc 520 RecurrenceDescriptor::isConditionalRdxPattern( 521 RecurrenceKind Kind, Instruction *I) { 522 SelectInst *SI = dyn_cast<SelectInst>(I); 523 if (!SI) 524 return InstDesc(false, I); 525 526 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 527 // Only handle single use cases for now. 528 if (!CI || !CI->hasOneUse()) 529 return InstDesc(false, I); 530 531 Value *TrueVal = SI->getTrueValue(); 532 Value *FalseVal = SI->getFalseValue(); 533 // Handle only when either of operands of select instruction is a PHI 534 // node for now. 535 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 536 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 537 return InstDesc(false, I); 538 539 Instruction *I1 = 540 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 541 : dyn_cast<Instruction>(TrueVal); 542 if (!I1 || !I1->isBinaryOp()) 543 return InstDesc(false, I); 544 545 Value *Op1, *Op2; 546 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 547 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 548 I1->isFast()) 549 return InstDesc(Kind == RK_FloatAdd, SI); 550 551 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 552 return InstDesc(Kind == RK_FloatMult, SI); 553 554 return InstDesc(false, I); 555 } 556 557 RecurrenceDescriptor::InstDesc 558 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, 559 InstDesc &Prev, bool HasFunNoNaNAttr) { 560 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 561 if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc()) 562 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 563 564 switch (I->getOpcode()) { 565 default: 566 return InstDesc(false, I); 567 case Instruction::PHI: 568 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); 569 case Instruction::Sub: 570 case Instruction::Add: 571 return InstDesc(Kind == RK_IntegerAdd, I); 572 case Instruction::Mul: 573 return InstDesc(Kind == RK_IntegerMult, I); 574 case Instruction::And: 575 return InstDesc(Kind == RK_IntegerAnd, I); 576 case Instruction::Or: 577 return InstDesc(Kind == RK_IntegerOr, I); 578 case Instruction::Xor: 579 return InstDesc(Kind == RK_IntegerXor, I); 580 case Instruction::FDiv: 581 case Instruction::FMul: 582 return InstDesc(Kind == RK_FloatMult, I, UAI); 583 case Instruction::FSub: 584 case Instruction::FAdd: 585 return InstDesc(Kind == RK_FloatAdd, I, UAI); 586 case Instruction::Select: 587 if (Kind == RK_FloatAdd || Kind == RK_FloatMult) 588 return isConditionalRdxPattern(Kind, I); 589 LLVM_FALLTHROUGH; 590 case Instruction::FCmp: 591 case Instruction::ICmp: 592 if (Kind != RK_IntegerMinMax && 593 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 594 return InstDesc(false, I); 595 return isMinMaxSelectCmpPattern(I, Prev); 596 } 597 } 598 599 bool RecurrenceDescriptor::hasMultipleUsesOf( 600 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 601 unsigned MaxNumUses) { 602 unsigned NumUses = 0; 603 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 604 ++Use) { 605 if (Insts.count(dyn_cast<Instruction>(*Use))) 606 ++NumUses; 607 if (NumUses > MaxNumUses) 608 return true; 609 } 610 611 return false; 612 } 613 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 614 RecurrenceDescriptor &RedDes, 615 DemandedBits *DB, AssumptionCache *AC, 616 DominatorTree *DT) { 617 618 BasicBlock *Header = TheLoop->getHeader(); 619 Function &F = *Header->getParent(); 620 bool HasFunNoNaNAttr = 621 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 622 623 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 624 AC, DT)) { 625 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 626 return true; 627 } 628 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 629 AC, DT)) { 630 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 631 return true; 632 } 633 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB, 634 AC, DT)) { 635 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 636 return true; 637 } 638 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 639 AC, DT)) { 640 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 641 return true; 642 } 643 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB, 644 AC, DT)) { 645 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 646 return true; 647 } 648 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes, 649 DB, AC, DT)) { 650 LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); 651 return true; 652 } 653 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB, 654 AC, DT)) { 655 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 656 return true; 657 } 658 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB, 659 AC, DT)) { 660 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 661 return true; 662 } 663 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB, 664 AC, DT)) { 665 LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi 666 << "\n"); 667 return true; 668 } 669 // Not a reduction of known type. 670 return false; 671 } 672 673 bool RecurrenceDescriptor::isFirstOrderRecurrence( 674 PHINode *Phi, Loop *TheLoop, 675 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 676 677 // Ensure the phi node is in the loop header and has two incoming values. 678 if (Phi->getParent() != TheLoop->getHeader() || 679 Phi->getNumIncomingValues() != 2) 680 return false; 681 682 // Ensure the loop has a preheader and a single latch block. The loop 683 // vectorizer will need the latch to set up the next iteration of the loop. 684 auto *Preheader = TheLoop->getLoopPreheader(); 685 auto *Latch = TheLoop->getLoopLatch(); 686 if (!Preheader || !Latch) 687 return false; 688 689 // Ensure the phi node's incoming blocks are the loop preheader and latch. 690 if (Phi->getBasicBlockIndex(Preheader) < 0 || 691 Phi->getBasicBlockIndex(Latch) < 0) 692 return false; 693 694 // Get the previous value. The previous value comes from the latch edge while 695 // the initial value comes form the preheader edge. 696 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 697 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 698 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 699 return false; 700 701 // Ensure every user of the phi node is dominated by the previous value. 702 // The dominance requirement ensures the loop vectorizer will not need to 703 // vectorize the initial value prior to the first iteration of the loop. 704 // TODO: Consider extending this sinking to handle memory instructions and 705 // phis with multiple users. 706 707 // Returns true, if all users of I are dominated by DominatedBy. 708 auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) { 709 return all_of(I->uses(), [DT, DominatedBy](Use &U) { 710 return DT->dominates(DominatedBy, U); 711 }); 712 }; 713 714 if (Phi->hasOneUse()) { 715 Instruction *I = Phi->user_back(); 716 717 // If the user of the PHI is also the incoming value, we potentially have a 718 // reduction and which cannot be handled by sinking. 719 if (Previous == I) 720 return false; 721 722 // We cannot sink terminator instructions. 723 if (I->getParent()->getTerminator() == I) 724 return false; 725 726 // Do not try to sink an instruction multiple times (if multiple operands 727 // are first order recurrences). 728 // TODO: We can support this case, by sinking the instruction after the 729 // 'deepest' previous instruction. 730 if (SinkAfter.find(I) != SinkAfter.end()) 731 return false; 732 733 if (DT->dominates(Previous, I)) // We already are good w/o sinking. 734 return true; 735 736 // We can sink any instruction without side effects, as long as all users 737 // are dominated by the instruction we are sinking after. 738 if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() && 739 allUsesDominatedBy(I, Previous)) { 740 SinkAfter[I] = Previous; 741 return true; 742 } 743 } 744 745 return allUsesDominatedBy(Phi, Previous); 746 } 747 748 /// This function returns the identity element (or neutral element) for 749 /// the operation K. 750 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, 751 MinMaxRecurrenceKind MK, 752 Type *Tp) { 753 switch (K) { 754 case RK_IntegerXor: 755 case RK_IntegerAdd: 756 case RK_IntegerOr: 757 // Adding, Xoring, Oring zero to a number does not change it. 758 return ConstantInt::get(Tp, 0); 759 case RK_IntegerMult: 760 // Multiplying a number by 1 does not change it. 761 return ConstantInt::get(Tp, 1); 762 case RK_IntegerAnd: 763 // AND-ing a number with an all-1 value does not change it. 764 return ConstantInt::get(Tp, -1, true); 765 case RK_FloatMult: 766 // Multiplying a number by 1 does not change it. 767 return ConstantFP::get(Tp, 1.0L); 768 case RK_FloatAdd: 769 // Adding zero to a number does not change it. 770 return ConstantFP::get(Tp, 0.0L); 771 case RK_IntegerMinMax: 772 case RK_FloatMinMax: 773 switch (MK) { 774 case MRK_UIntMin: 775 return ConstantInt::get(Tp, -1); 776 case MRK_UIntMax: 777 return ConstantInt::get(Tp, 0); 778 case MRK_SIntMin: 779 return ConstantInt::get( 780 Tp, APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); 781 case MRK_SIntMax: 782 return ConstantInt::get( 783 Tp, APInt::getSignedMinValue(Tp->getIntegerBitWidth())); 784 case MRK_FloatMin: 785 return ConstantFP::getInfinity(Tp, true); 786 case MRK_FloatMax: 787 return ConstantFP::getInfinity(Tp, false); 788 default: 789 llvm_unreachable("Unknown recurrence kind"); 790 } 791 default: 792 llvm_unreachable("Unknown recurrence kind"); 793 } 794 } 795 796 /// This function translates the recurrence kind to an LLVM binary operator. 797 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { 798 switch (Kind) { 799 case RK_IntegerAdd: 800 return Instruction::Add; 801 case RK_IntegerMult: 802 return Instruction::Mul; 803 case RK_IntegerOr: 804 return Instruction::Or; 805 case RK_IntegerAnd: 806 return Instruction::And; 807 case RK_IntegerXor: 808 return Instruction::Xor; 809 case RK_FloatMult: 810 return Instruction::FMul; 811 case RK_FloatAdd: 812 return Instruction::FAdd; 813 case RK_IntegerMinMax: 814 return Instruction::ICmp; 815 case RK_FloatMinMax: 816 return Instruction::FCmp; 817 default: 818 llvm_unreachable("Unknown recurrence operation"); 819 } 820 } 821 822 SmallVector<Instruction *, 4> 823 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 824 SmallVector<Instruction *, 4> ReductionOperations; 825 unsigned RedOp = getRecurrenceBinOp(Kind); 826 827 // Search down from the Phi to the LoopExitInstr, looking for instructions 828 // with a single user of the correct type for the reduction. 829 830 // Note that we check that the type of the operand is correct for each item in 831 // the chain, including the last (the loop exit value). This can come up from 832 // sub, which would otherwise be treated as an add reduction. MinMax also need 833 // to check for a pair of icmp/select, for which we use getNextInstruction and 834 // isCorrectOpcode functions to step the right number of instruction, and 835 // check the icmp/select pair. 836 // FIXME: We also do not attempt to look through Phi/Select's yet, which might 837 // be part of the reduction chain, or attempt to looks through And's to find a 838 // smaller bitwidth. Subs are also currently not allowed (which are usually 839 // treated as part of a add reduction) as they are expected to generally be 840 // more expensive than out-of-loop reductions, and need to be costed more 841 // carefully. 842 unsigned ExpectedUses = 1; 843 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 844 ExpectedUses = 2; 845 846 auto getNextInstruction = [&](Instruction *Cur) { 847 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 848 // We are expecting a icmp/select pair, which we go to the next select 849 // instruction if we can. We already know that Cur has 2 uses. 850 if (isa<SelectInst>(*Cur->user_begin())) 851 return cast<Instruction>(*Cur->user_begin()); 852 else 853 return cast<Instruction>(*std::next(Cur->user_begin())); 854 } 855 return cast<Instruction>(*Cur->user_begin()); 856 }; 857 auto isCorrectOpcode = [&](Instruction *Cur) { 858 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 859 Value *LHS, *RHS; 860 return SelectPatternResult::isMinOrMax( 861 matchSelectPattern(Cur, LHS, RHS).Flavor); 862 } 863 return Cur->getOpcode() == RedOp; 864 }; 865 866 // The loop exit instruction we check first (as a quick test) but add last. We 867 // check the opcode is correct (and dont allow them to be Subs) and that they 868 // have expected to have the expected number of uses. They will have one use 869 // from the phi and one from a LCSSA value, no matter the type. 870 if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2)) 871 return {}; 872 873 // Check that the Phi has one (or two for min/max) uses. 874 if (!Phi->hasNUses(ExpectedUses)) 875 return {}; 876 Instruction *Cur = getNextInstruction(Phi); 877 878 // Each other instruction in the chain should have the expected number of uses 879 // and be the correct opcode. 880 while (Cur != LoopExitInstr) { 881 if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 882 return {}; 883 884 ReductionOperations.push_back(Cur); 885 Cur = getNextInstruction(Cur); 886 } 887 888 ReductionOperations.push_back(Cur); 889 return ReductionOperations; 890 } 891 892 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 893 const SCEV *Step, BinaryOperator *BOp, 894 SmallVectorImpl<Instruction *> *Casts) 895 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 896 assert(IK != IK_NoInduction && "Not an induction"); 897 898 // Start value type should match the induction kind and the value 899 // itself should not be null. 900 assert(StartValue && "StartValue is null"); 901 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 902 "StartValue is not a pointer for pointer induction"); 903 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 904 "StartValue is not an integer for integer induction"); 905 906 // Check the Step Value. It should be non-zero integer value. 907 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 908 "Step value is zero"); 909 910 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 911 "Step value should be constant for pointer induction"); 912 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 913 "StepValue is not an integer"); 914 915 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 916 "StepValue is not FP for FpInduction"); 917 assert((IK != IK_FpInduction || 918 (InductionBinOp && 919 (InductionBinOp->getOpcode() == Instruction::FAdd || 920 InductionBinOp->getOpcode() == Instruction::FSub))) && 921 "Binary opcode should be specified for FP induction"); 922 923 if (Casts) { 924 for (auto &Inst : *Casts) { 925 RedundantCasts.push_back(Inst); 926 } 927 } 928 } 929 930 int InductionDescriptor::getConsecutiveDirection() const { 931 ConstantInt *ConstStep = getConstIntStepValue(); 932 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) 933 return ConstStep->getSExtValue(); 934 return 0; 935 } 936 937 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 938 if (isa<SCEVConstant>(Step)) 939 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 940 return nullptr; 941 } 942 943 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 944 ScalarEvolution *SE, 945 InductionDescriptor &D) { 946 947 // Here we only handle FP induction variables. 948 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 949 950 if (TheLoop->getHeader() != Phi->getParent()) 951 return false; 952 953 // The loop may have multiple entrances or multiple exits; we can analyze 954 // this phi if it has a unique entry value and a unique backedge value. 955 if (Phi->getNumIncomingValues() != 2) 956 return false; 957 Value *BEValue = nullptr, *StartValue = nullptr; 958 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 959 BEValue = Phi->getIncomingValue(0); 960 StartValue = Phi->getIncomingValue(1); 961 } else { 962 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 963 "Unexpected Phi node in the loop"); 964 BEValue = Phi->getIncomingValue(1); 965 StartValue = Phi->getIncomingValue(0); 966 } 967 968 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 969 if (!BOp) 970 return false; 971 972 Value *Addend = nullptr; 973 if (BOp->getOpcode() == Instruction::FAdd) { 974 if (BOp->getOperand(0) == Phi) 975 Addend = BOp->getOperand(1); 976 else if (BOp->getOperand(1) == Phi) 977 Addend = BOp->getOperand(0); 978 } else if (BOp->getOpcode() == Instruction::FSub) 979 if (BOp->getOperand(0) == Phi) 980 Addend = BOp->getOperand(1); 981 982 if (!Addend) 983 return false; 984 985 // The addend should be loop invariant 986 if (auto *I = dyn_cast<Instruction>(Addend)) 987 if (TheLoop->contains(I)) 988 return false; 989 990 // FP Step has unknown SCEV 991 const SCEV *Step = SE->getUnknown(Addend); 992 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 993 return true; 994 } 995 996 /// This function is called when we suspect that the update-chain of a phi node 997 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 998 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 999 /// predicate P under which the SCEV expression for the phi can be the 1000 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1001 /// cast instructions that are involved in the update-chain of this induction. 1002 /// A caller that adds the required runtime predicate can be free to drop these 1003 /// cast instructions, and compute the phi using \p AR (instead of some scev 1004 /// expression with casts). 1005 /// 1006 /// For example, without a predicate the scev expression can take the following 1007 /// form: 1008 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1009 /// 1010 /// It corresponds to the following IR sequence: 1011 /// %for.body: 1012 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1013 /// %casted_phi = "ExtTrunc i64 %x" 1014 /// %add = add i64 %casted_phi, %step 1015 /// 1016 /// where %x is given in \p PN, 1017 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1018 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1019 /// several forms, for example, such as: 1020 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1021 /// or: 1022 /// ExtTrunc2: %t = shl %x, m 1023 /// %casted_phi = ashr %t, m 1024 /// 1025 /// If we are able to find such sequence, we return the instructions 1026 /// we found, namely %casted_phi and the instructions on its use-def chain up 1027 /// to the phi (not including the phi). 1028 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1029 const SCEVUnknown *PhiScev, 1030 const SCEVAddRecExpr *AR, 1031 SmallVectorImpl<Instruction *> &CastInsts) { 1032 1033 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1034 auto *PN = cast<PHINode>(PhiScev->getValue()); 1035 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1036 const Loop *L = AR->getLoop(); 1037 1038 // Find any cast instructions that participate in the def-use chain of 1039 // PhiScev in the loop. 1040 // FORNOW/TODO: We currently expect the def-use chain to include only 1041 // two-operand instructions, where one of the operands is an invariant. 1042 // createAddRecFromPHIWithCasts() currently does not support anything more 1043 // involved than that, so we keep the search simple. This can be 1044 // extended/generalized as needed. 1045 1046 auto getDef = [&](const Value *Val) -> Value * { 1047 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1048 if (!BinOp) 1049 return nullptr; 1050 Value *Op0 = BinOp->getOperand(0); 1051 Value *Op1 = BinOp->getOperand(1); 1052 Value *Def = nullptr; 1053 if (L->isLoopInvariant(Op0)) 1054 Def = Op1; 1055 else if (L->isLoopInvariant(Op1)) 1056 Def = Op0; 1057 return Def; 1058 }; 1059 1060 // Look for the instruction that defines the induction via the 1061 // loop backedge. 1062 BasicBlock *Latch = L->getLoopLatch(); 1063 if (!Latch) 1064 return false; 1065 Value *Val = PN->getIncomingValueForBlock(Latch); 1066 if (!Val) 1067 return false; 1068 1069 // Follow the def-use chain until the induction phi is reached. 1070 // If on the way we encounter a Value that has the same SCEV Expr as the 1071 // phi node, we can consider the instructions we visit from that point 1072 // as part of the cast-sequence that can be ignored. 1073 bool InCastSequence = false; 1074 auto *Inst = dyn_cast<Instruction>(Val); 1075 while (Val != PN) { 1076 // If we encountered a phi node other than PN, or if we left the loop, 1077 // we bail out. 1078 if (!Inst || !L->contains(Inst)) { 1079 return false; 1080 } 1081 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1082 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1083 InCastSequence = true; 1084 if (InCastSequence) { 1085 // Only the last instruction in the cast sequence is expected to have 1086 // uses outside the induction def-use chain. 1087 if (!CastInsts.empty()) 1088 if (!Inst->hasOneUse()) 1089 return false; 1090 CastInsts.push_back(Inst); 1091 } 1092 Val = getDef(Val); 1093 if (!Val) 1094 return false; 1095 Inst = dyn_cast<Instruction>(Val); 1096 } 1097 1098 return InCastSequence; 1099 } 1100 1101 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1102 PredicatedScalarEvolution &PSE, 1103 InductionDescriptor &D, bool Assume) { 1104 Type *PhiTy = Phi->getType(); 1105 1106 // Handle integer and pointer inductions variables. 1107 // Now we handle also FP induction but not trying to make a 1108 // recurrent expression from the PHI node in-place. 1109 1110 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1111 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1112 return false; 1113 1114 if (PhiTy->isFloatingPointTy()) 1115 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1116 1117 const SCEV *PhiScev = PSE.getSCEV(Phi); 1118 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1119 1120 // We need this expression to be an AddRecExpr. 1121 if (Assume && !AR) 1122 AR = PSE.getAsAddRec(Phi); 1123 1124 if (!AR) { 1125 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1126 return false; 1127 } 1128 1129 // Record any Cast instructions that participate in the induction update 1130 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1131 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1132 // only after enabling Assume with PSCEV, this means we may have encountered 1133 // cast instructions that required adding a runtime check in order to 1134 // guarantee the correctness of the AddRecurrence respresentation of the 1135 // induction. 1136 if (PhiScev != AR && SymbolicPhi) { 1137 SmallVector<Instruction *, 2> Casts; 1138 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1139 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1140 } 1141 1142 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1143 } 1144 1145 bool InductionDescriptor::isInductionPHI( 1146 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1147 InductionDescriptor &D, const SCEV *Expr, 1148 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1149 Type *PhiTy = Phi->getType(); 1150 // We only handle integer and pointer inductions variables. 1151 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1152 return false; 1153 1154 // Check that the PHI is consecutive. 1155 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1156 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1157 1158 if (!AR) { 1159 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1160 return false; 1161 } 1162 1163 if (AR->getLoop() != TheLoop) { 1164 // FIXME: We should treat this as a uniform. Unfortunately, we 1165 // don't currently know how to handled uniform PHIs. 1166 LLVM_DEBUG( 1167 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1168 return false; 1169 } 1170 1171 Value *StartValue = 1172 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1173 1174 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1175 if (!Latch) 1176 return false; 1177 BinaryOperator *BOp = 1178 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1179 1180 const SCEV *Step = AR->getStepRecurrence(*SE); 1181 // Calculate the pointer stride and check if it is consecutive. 1182 // The stride may be a constant or a loop invariant integer value. 1183 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1184 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1185 return false; 1186 1187 if (PhiTy->isIntegerTy()) { 1188 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1189 CastsToIgnore); 1190 return true; 1191 } 1192 1193 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1194 // Pointer induction should be a constant. 1195 if (!ConstStep) 1196 return false; 1197 1198 ConstantInt *CV = ConstStep->getValue(); 1199 Type *PointerElementType = PhiTy->getPointerElementType(); 1200 // The pointer stride cannot be determined if the pointer element type is not 1201 // sized. 1202 if (!PointerElementType->isSized()) 1203 return false; 1204 1205 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1206 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1207 if (!Size) 1208 return false; 1209 1210 int64_t CVSize = CV->getSExtValue(); 1211 if (CVSize % Size) 1212 return false; 1213 auto *StepValue = 1214 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1215 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); 1216 return true; 1217 } 1218