1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DemandedBits.h"
18 #include "llvm/Analysis/DomTreeUpdater.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MustExecute.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/KnownBits.h"
37 
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40 
41 #define DEBUG_TYPE "iv-descriptors"
42 
43 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
44                                         SmallPtrSetImpl<Instruction *> &Set) {
45   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
46     if (!Set.count(dyn_cast<Instruction>(*Use)))
47       return false;
48   return true;
49 }
50 
51 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
52   switch (Kind) {
53   default:
54     break;
55   case RK_IntegerAdd:
56   case RK_IntegerMult:
57   case RK_IntegerOr:
58   case RK_IntegerAnd:
59   case RK_IntegerXor:
60   case RK_IntegerMinMax:
61     return true;
62   }
63   return false;
64 }
65 
66 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
67   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
68 }
69 
70 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
71   switch (Kind) {
72   default:
73     break;
74   case RK_IntegerAdd:
75   case RK_IntegerMult:
76   case RK_FloatAdd:
77   case RK_FloatMult:
78     return true;
79   }
80   return false;
81 }
82 
83 /// Determines if Phi may have been type-promoted. If Phi has a single user
84 /// that ANDs the Phi with a type mask, return the user. RT is updated to
85 /// account for the narrower bit width represented by the mask, and the AND
86 /// instruction is added to CI.
87 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
88                                    SmallPtrSetImpl<Instruction *> &Visited,
89                                    SmallPtrSetImpl<Instruction *> &CI) {
90   if (!Phi->hasOneUse())
91     return Phi;
92 
93   const APInt *M = nullptr;
94   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
95 
96   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
97   // with a new integer type of the corresponding bit width.
98   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
99     int32_t Bits = (*M + 1).exactLogBase2();
100     if (Bits > 0) {
101       RT = IntegerType::get(Phi->getContext(), Bits);
102       Visited.insert(Phi);
103       CI.insert(J);
104       return J;
105     }
106   }
107   return Phi;
108 }
109 
110 /// Compute the minimal bit width needed to represent a reduction whose exit
111 /// instruction is given by Exit.
112 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
113                                                      DemandedBits *DB,
114                                                      AssumptionCache *AC,
115                                                      DominatorTree *DT) {
116   bool IsSigned = false;
117   const DataLayout &DL = Exit->getModule()->getDataLayout();
118   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
119 
120   if (DB) {
121     // Use the demanded bits analysis to determine the bits that are live out
122     // of the exit instruction, rounding up to the nearest power of two. If the
123     // use of demanded bits results in a smaller bit width, we know the value
124     // must be positive (i.e., IsSigned = false), because if this were not the
125     // case, the sign bit would have been demanded.
126     auto Mask = DB->getDemandedBits(Exit);
127     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
128   }
129 
130   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
131     // If demanded bits wasn't able to limit the bit width, we can try to use
132     // value tracking instead. This can be the case, for example, if the value
133     // may be negative.
134     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
135     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
136     MaxBitWidth = NumTypeBits - NumSignBits;
137     KnownBits Bits = computeKnownBits(Exit, DL);
138     if (!Bits.isNonNegative()) {
139       // If the value is not known to be non-negative, we set IsSigned to true,
140       // meaning that we will use sext instructions instead of zext
141       // instructions to restore the original type.
142       IsSigned = true;
143       if (!Bits.isNegative())
144         // If the value is not known to be negative, we don't known what the
145         // upper bit is, and therefore, we don't know what kind of extend we
146         // will need. In this case, just increase the bit width by one bit and
147         // use sext.
148         ++MaxBitWidth;
149     }
150   }
151   if (!isPowerOf2_64(MaxBitWidth))
152     MaxBitWidth = NextPowerOf2(MaxBitWidth);
153 
154   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
155                         IsSigned);
156 }
157 
158 /// Collect cast instructions that can be ignored in the vectorizer's cost
159 /// model, given a reduction exit value and the minimal type in which the
160 /// reduction can be represented.
161 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
162                                  Type *RecurrenceType,
163                                  SmallPtrSetImpl<Instruction *> &Casts) {
164 
165   SmallVector<Instruction *, 8> Worklist;
166   SmallPtrSet<Instruction *, 8> Visited;
167   Worklist.push_back(Exit);
168 
169   while (!Worklist.empty()) {
170     Instruction *Val = Worklist.pop_back_val();
171     Visited.insert(Val);
172     if (auto *Cast = dyn_cast<CastInst>(Val))
173       if (Cast->getSrcTy() == RecurrenceType) {
174         // If the source type of a cast instruction is equal to the recurrence
175         // type, it will be eliminated, and should be ignored in the vectorizer
176         // cost model.
177         Casts.insert(Cast);
178         continue;
179       }
180 
181     // Add all operands to the work list if they are loop-varying values that
182     // we haven't yet visited.
183     for (Value *O : cast<User>(Val)->operands())
184       if (auto *I = dyn_cast<Instruction>(O))
185         if (TheLoop->contains(I) && !Visited.count(I))
186           Worklist.push_back(I);
187   }
188 }
189 
190 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
191                                            Loop *TheLoop, bool HasFunNoNaNAttr,
192                                            RecurrenceDescriptor &RedDes,
193                                            DemandedBits *DB,
194                                            AssumptionCache *AC,
195                                            DominatorTree *DT) {
196   if (Phi->getNumIncomingValues() != 2)
197     return false;
198 
199   // Reduction variables are only found in the loop header block.
200   if (Phi->getParent() != TheLoop->getHeader())
201     return false;
202 
203   // Obtain the reduction start value from the value that comes from the loop
204   // preheader.
205   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
206 
207   // ExitInstruction is the single value which is used outside the loop.
208   // We only allow for a single reduction value to be used outside the loop.
209   // This includes users of the reduction, variables (which form a cycle
210   // which ends in the phi node).
211   Instruction *ExitInstruction = nullptr;
212   // Indicates that we found a reduction operation in our scan.
213   bool FoundReduxOp = false;
214 
215   // We start with the PHI node and scan for all of the users of this
216   // instruction. All users must be instructions that can be used as reduction
217   // variables (such as ADD). We must have a single out-of-block user. The cycle
218   // must include the original PHI.
219   bool FoundStartPHI = false;
220 
221   // To recognize min/max patterns formed by a icmp select sequence, we store
222   // the number of instruction we saw from the recognized min/max pattern,
223   //  to make sure we only see exactly the two instructions.
224   unsigned NumCmpSelectPatternInst = 0;
225   InstDesc ReduxDesc(false, nullptr);
226 
227   // Data used for determining if the recurrence has been type-promoted.
228   Type *RecurrenceType = Phi->getType();
229   SmallPtrSet<Instruction *, 4> CastInsts;
230   Instruction *Start = Phi;
231   bool IsSigned = false;
232 
233   SmallPtrSet<Instruction *, 8> VisitedInsts;
234   SmallVector<Instruction *, 8> Worklist;
235 
236   // Return early if the recurrence kind does not match the type of Phi. If the
237   // recurrence kind is arithmetic, we attempt to look through AND operations
238   // resulting from the type promotion performed by InstCombine.  Vector
239   // operations are not limited to the legal integer widths, so we may be able
240   // to evaluate the reduction in the narrower width.
241   if (RecurrenceType->isFloatingPointTy()) {
242     if (!isFloatingPointRecurrenceKind(Kind))
243       return false;
244   } else {
245     if (!isIntegerRecurrenceKind(Kind))
246       return false;
247     if (isArithmeticRecurrenceKind(Kind))
248       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
249   }
250 
251   Worklist.push_back(Start);
252   VisitedInsts.insert(Start);
253 
254   // Start with all flags set because we will intersect this with the reduction
255   // flags from all the reduction operations.
256   FastMathFlags FMF = FastMathFlags::getFast();
257 
258   // A value in the reduction can be used:
259   //  - By the reduction:
260   //      - Reduction operation:
261   //        - One use of reduction value (safe).
262   //        - Multiple use of reduction value (not safe).
263   //      - PHI:
264   //        - All uses of the PHI must be the reduction (safe).
265   //        - Otherwise, not safe.
266   //  - By instructions outside of the loop (safe).
267   //      * One value may have several outside users, but all outside
268   //        uses must be of the same value.
269   //  - By an instruction that is not part of the reduction (not safe).
270   //    This is either:
271   //      * An instruction type other than PHI or the reduction operation.
272   //      * A PHI in the header other than the initial PHI.
273   while (!Worklist.empty()) {
274     Instruction *Cur = Worklist.back();
275     Worklist.pop_back();
276 
277     // No Users.
278     // If the instruction has no users then this is a broken chain and can't be
279     // a reduction variable.
280     if (Cur->use_empty())
281       return false;
282 
283     bool IsAPhi = isa<PHINode>(Cur);
284 
285     // A header PHI use other than the original PHI.
286     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
287       return false;
288 
289     // Reductions of instructions such as Div, and Sub is only possible if the
290     // LHS is the reduction variable.
291     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
292         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
293         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
294       return false;
295 
296     // Any reduction instruction must be of one of the allowed kinds. We ignore
297     // the starting value (the Phi or an AND instruction if the Phi has been
298     // type-promoted).
299     if (Cur != Start) {
300       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
301       if (!ReduxDesc.isRecurrence())
302         return false;
303       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
304       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi)
305         FMF &= ReduxDesc.getPatternInst()->getFastMathFlags();
306     }
307 
308     bool IsASelect = isa<SelectInst>(Cur);
309 
310     // A conditional reduction operation must only have 2 or less uses in
311     // VisitedInsts.
312     if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
313         hasMultipleUsesOf(Cur, VisitedInsts, 2))
314       return false;
315 
316     // A reduction operation must only have one use of the reduction value.
317     if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
318         Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
319       return false;
320 
321     // All inputs to a PHI node must be a reduction value.
322     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
323       return false;
324 
325     if (Kind == RK_IntegerMinMax &&
326         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
327       ++NumCmpSelectPatternInst;
328     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
329       ++NumCmpSelectPatternInst;
330 
331     // Check  whether we found a reduction operator.
332     FoundReduxOp |= !IsAPhi && Cur != Start;
333 
334     // Process users of current instruction. Push non-PHI nodes after PHI nodes
335     // onto the stack. This way we are going to have seen all inputs to PHI
336     // nodes once we get to them.
337     SmallVector<Instruction *, 8> NonPHIs;
338     SmallVector<Instruction *, 8> PHIs;
339     for (User *U : Cur->users()) {
340       Instruction *UI = cast<Instruction>(U);
341 
342       // Check if we found the exit user.
343       BasicBlock *Parent = UI->getParent();
344       if (!TheLoop->contains(Parent)) {
345         // If we already know this instruction is used externally, move on to
346         // the next user.
347         if (ExitInstruction == Cur)
348           continue;
349 
350         // Exit if you find multiple values used outside or if the header phi
351         // node is being used. In this case the user uses the value of the
352         // previous iteration, in which case we would loose "VF-1" iterations of
353         // the reduction operation if we vectorize.
354         if (ExitInstruction != nullptr || Cur == Phi)
355           return false;
356 
357         // The instruction used by an outside user must be the last instruction
358         // before we feed back to the reduction phi. Otherwise, we loose VF-1
359         // operations on the value.
360         if (!is_contained(Phi->operands(), Cur))
361           return false;
362 
363         ExitInstruction = Cur;
364         continue;
365       }
366 
367       // Process instructions only once (termination). Each reduction cycle
368       // value must only be used once, except by phi nodes and min/max
369       // reductions which are represented as a cmp followed by a select.
370       InstDesc IgnoredVal(false, nullptr);
371       if (VisitedInsts.insert(UI).second) {
372         if (isa<PHINode>(UI))
373           PHIs.push_back(UI);
374         else
375           NonPHIs.push_back(UI);
376       } else if (!isa<PHINode>(UI) &&
377                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
378                    !isa<SelectInst>(UI)) ||
379                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
380                    !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
381         return false;
382 
383       // Remember that we completed the cycle.
384       if (UI == Phi)
385         FoundStartPHI = true;
386     }
387     Worklist.append(PHIs.begin(), PHIs.end());
388     Worklist.append(NonPHIs.begin(), NonPHIs.end());
389   }
390 
391   // This means we have seen one but not the other instruction of the
392   // pattern or more than just a select and cmp.
393   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
394       NumCmpSelectPatternInst != 2)
395     return false;
396 
397   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
398     return false;
399 
400   if (Start != Phi) {
401     // If the starting value is not the same as the phi node, we speculatively
402     // looked through an 'and' instruction when evaluating a potential
403     // arithmetic reduction to determine if it may have been type-promoted.
404     //
405     // We now compute the minimal bit width that is required to represent the
406     // reduction. If this is the same width that was indicated by the 'and', we
407     // can represent the reduction in the smaller type. The 'and' instruction
408     // will be eliminated since it will essentially be a cast instruction that
409     // can be ignore in the cost model. If we compute a different type than we
410     // did when evaluating the 'and', the 'and' will not be eliminated, and we
411     // will end up with different kinds of operations in the recurrence
412     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
413     // the case.
414     //
415     // The vectorizer relies on InstCombine to perform the actual
416     // type-shrinking. It does this by inserting instructions to truncate the
417     // exit value of the reduction to the width indicated by RecurrenceType and
418     // then extend this value back to the original width. If IsSigned is false,
419     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
420     // used.
421     //
422     // TODO: We should not rely on InstCombine to rewrite the reduction in the
423     //       smaller type. We should just generate a correctly typed expression
424     //       to begin with.
425     Type *ComputedType;
426     std::tie(ComputedType, IsSigned) =
427         computeRecurrenceType(ExitInstruction, DB, AC, DT);
428     if (ComputedType != RecurrenceType)
429       return false;
430 
431     // The recurrence expression will be represented in a narrower type. If
432     // there are any cast instructions that will be unnecessary, collect them
433     // in CastInsts. Note that the 'and' instruction was already included in
434     // this list.
435     //
436     // TODO: A better way to represent this may be to tag in some way all the
437     //       instructions that are a part of the reduction. The vectorizer cost
438     //       model could then apply the recurrence type to these instructions,
439     //       without needing a white list of instructions to ignore.
440     //       This may also be useful for the inloop reductions, if it can be
441     //       kept simple enough.
442     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
443   }
444 
445   // We found a reduction var if we have reached the original phi node and we
446   // only have a single instruction with out-of-loop users.
447 
448   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
449   // is saved as part of the RecurrenceDescriptor.
450 
451   // Save the description of this reduction variable.
452   RecurrenceDescriptor RD(
453       RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(),
454       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
455   RedDes = RD;
456 
457   return true;
458 }
459 
460 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
461 /// pattern corresponding to a min(X, Y) or max(X, Y).
462 RecurrenceDescriptor::InstDesc
463 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
464 
465   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
466          "Expect a select instruction");
467   Instruction *Cmp = nullptr;
468   SelectInst *Select = nullptr;
469 
470   // We must handle the select(cmp()) as a single instruction. Advance to the
471   // select.
472   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
473     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
474       return InstDesc(false, I);
475     return InstDesc(Select, Prev.getMinMaxKind());
476   }
477 
478   // Only handle single use cases for now.
479   if (!(Select = dyn_cast<SelectInst>(I)))
480     return InstDesc(false, I);
481   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
482       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
483     return InstDesc(false, I);
484   if (!Cmp->hasOneUse())
485     return InstDesc(false, I);
486 
487   Value *CmpLeft;
488   Value *CmpRight;
489 
490   // Look for a min/max pattern.
491   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
492     return InstDesc(Select, MRK_UIntMin);
493   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
494     return InstDesc(Select, MRK_UIntMax);
495   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
496     return InstDesc(Select, MRK_SIntMax);
497   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
498     return InstDesc(Select, MRK_SIntMin);
499   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
500     return InstDesc(Select, MRK_FloatMin);
501   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
502     return InstDesc(Select, MRK_FloatMax);
503   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
504     return InstDesc(Select, MRK_FloatMin);
505   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
506     return InstDesc(Select, MRK_FloatMax);
507 
508   return InstDesc(false, I);
509 }
510 
511 /// Returns true if the select instruction has users in the compare-and-add
512 /// reduction pattern below. The select instruction argument is the last one
513 /// in the sequence.
514 ///
515 /// %sum.1 = phi ...
516 /// ...
517 /// %cmp = fcmp pred %0, %CFP
518 /// %add = fadd %0, %sum.1
519 /// %sum.2 = select %cmp, %add, %sum.1
520 RecurrenceDescriptor::InstDesc
521 RecurrenceDescriptor::isConditionalRdxPattern(
522     RecurrenceKind Kind, Instruction *I) {
523   SelectInst *SI = dyn_cast<SelectInst>(I);
524   if (!SI)
525     return InstDesc(false, I);
526 
527   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
528   // Only handle single use cases for now.
529   if (!CI || !CI->hasOneUse())
530     return InstDesc(false, I);
531 
532   Value *TrueVal = SI->getTrueValue();
533   Value *FalseVal = SI->getFalseValue();
534   // Handle only when either of operands of select instruction is a PHI
535   // node for now.
536   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
537       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
538     return InstDesc(false, I);
539 
540   Instruction *I1 =
541       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
542                              : dyn_cast<Instruction>(TrueVal);
543   if (!I1 || !I1->isBinaryOp())
544     return InstDesc(false, I);
545 
546   Value *Op1, *Op2;
547   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
548        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
549       I1->isFast())
550     return InstDesc(Kind == RK_FloatAdd, SI);
551 
552   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
553     return InstDesc(Kind == RK_FloatMult, SI);
554 
555   return InstDesc(false, I);
556 }
557 
558 RecurrenceDescriptor::InstDesc
559 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
560                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
561   Instruction *UAI = Prev.getUnsafeAlgebraInst();
562   if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc())
563     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
564 
565   switch (I->getOpcode()) {
566   default:
567     return InstDesc(false, I);
568   case Instruction::PHI:
569     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
570   case Instruction::Sub:
571   case Instruction::Add:
572     return InstDesc(Kind == RK_IntegerAdd, I);
573   case Instruction::Mul:
574     return InstDesc(Kind == RK_IntegerMult, I);
575   case Instruction::And:
576     return InstDesc(Kind == RK_IntegerAnd, I);
577   case Instruction::Or:
578     return InstDesc(Kind == RK_IntegerOr, I);
579   case Instruction::Xor:
580     return InstDesc(Kind == RK_IntegerXor, I);
581   case Instruction::FMul:
582     return InstDesc(Kind == RK_FloatMult, I, UAI);
583   case Instruction::FSub:
584   case Instruction::FAdd:
585     return InstDesc(Kind == RK_FloatAdd, I, UAI);
586   case Instruction::Select:
587     if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
588       return isConditionalRdxPattern(Kind, I);
589     LLVM_FALLTHROUGH;
590   case Instruction::FCmp:
591   case Instruction::ICmp:
592     if (Kind != RK_IntegerMinMax &&
593         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
594       return InstDesc(false, I);
595     return isMinMaxSelectCmpPattern(I, Prev);
596   }
597 }
598 
599 bool RecurrenceDescriptor::hasMultipleUsesOf(
600     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
601     unsigned MaxNumUses) {
602   unsigned NumUses = 0;
603   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
604        ++Use) {
605     if (Insts.count(dyn_cast<Instruction>(*Use)))
606       ++NumUses;
607     if (NumUses > MaxNumUses)
608       return true;
609   }
610 
611   return false;
612 }
613 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
614                                           RecurrenceDescriptor &RedDes,
615                                           DemandedBits *DB, AssumptionCache *AC,
616                                           DominatorTree *DT) {
617 
618   BasicBlock *Header = TheLoop->getHeader();
619   Function &F = *Header->getParent();
620   bool HasFunNoNaNAttr =
621       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
622 
623   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
624                       AC, DT)) {
625     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
626     return true;
627   }
628   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
629                       AC, DT)) {
630     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
631     return true;
632   }
633   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
634                       AC, DT)) {
635     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
636     return true;
637   }
638   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
639                       AC, DT)) {
640     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
641     return true;
642   }
643   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
644                       AC, DT)) {
645     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
646     return true;
647   }
648   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
649                       DB, AC, DT)) {
650     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
651     return true;
652   }
653   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
654                       AC, DT)) {
655     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
656     return true;
657   }
658   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
659                       AC, DT)) {
660     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
661     return true;
662   }
663   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
664                       AC, DT)) {
665     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
666                       << "\n");
667     return true;
668   }
669   // Not a reduction of known type.
670   return false;
671 }
672 
673 bool RecurrenceDescriptor::isFirstOrderRecurrence(
674     PHINode *Phi, Loop *TheLoop,
675     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
676 
677   // Ensure the phi node is in the loop header and has two incoming values.
678   if (Phi->getParent() != TheLoop->getHeader() ||
679       Phi->getNumIncomingValues() != 2)
680     return false;
681 
682   // Ensure the loop has a preheader and a single latch block. The loop
683   // vectorizer will need the latch to set up the next iteration of the loop.
684   auto *Preheader = TheLoop->getLoopPreheader();
685   auto *Latch = TheLoop->getLoopLatch();
686   if (!Preheader || !Latch)
687     return false;
688 
689   // Ensure the phi node's incoming blocks are the loop preheader and latch.
690   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
691       Phi->getBasicBlockIndex(Latch) < 0)
692     return false;
693 
694   // Get the previous value. The previous value comes from the latch edge while
695   // the initial value comes form the preheader edge.
696   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
697   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
698       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
699     return false;
700 
701   // Ensure every user of the phi node is dominated by the previous value.
702   // The dominance requirement ensures the loop vectorizer will not need to
703   // vectorize the initial value prior to the first iteration of the loop.
704   // TODO: Consider extending this sinking to handle memory instructions and
705   // phis with multiple users.
706 
707   // Returns true, if all users of I are dominated by DominatedBy.
708   auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) {
709     return all_of(I->uses(), [DT, DominatedBy](Use &U) {
710       return DT->dominates(DominatedBy, U);
711     });
712   };
713 
714   if (Phi->hasOneUse()) {
715     Instruction *I = Phi->user_back();
716 
717     // If the user of the PHI is also the incoming value, we potentially have a
718     // reduction and which cannot be handled by sinking.
719     if (Previous == I)
720       return false;
721 
722     // We cannot sink terminator instructions.
723     if (I->getParent()->getTerminator() == I)
724       return false;
725 
726     // Do not try to sink an instruction multiple times (if multiple operands
727     // are first order recurrences).
728     // TODO: We can support this case, by sinking the instruction after the
729     // 'deepest' previous instruction.
730     if (SinkAfter.find(I) != SinkAfter.end())
731       return false;
732 
733     if (DT->dominates(Previous, I)) // We already are good w/o sinking.
734       return true;
735 
736     // We can sink any instruction without side effects, as long as all users
737     // are dominated by the instruction we are sinking after.
738     if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() &&
739         allUsesDominatedBy(I, Previous)) {
740       SinkAfter[I] = Previous;
741       return true;
742     }
743   }
744 
745   return allUsesDominatedBy(Phi, Previous);
746 }
747 
748 /// This function returns the identity element (or neutral element) for
749 /// the operation K.
750 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
751                                                       Type *Tp) {
752   switch (K) {
753   case RK_IntegerXor:
754   case RK_IntegerAdd:
755   case RK_IntegerOr:
756     // Adding, Xoring, Oring zero to a number does not change it.
757     return ConstantInt::get(Tp, 0);
758   case RK_IntegerMult:
759     // Multiplying a number by 1 does not change it.
760     return ConstantInt::get(Tp, 1);
761   case RK_IntegerAnd:
762     // AND-ing a number with an all-1 value does not change it.
763     return ConstantInt::get(Tp, -1, true);
764   case RK_FloatMult:
765     // Multiplying a number by 1 does not change it.
766     return ConstantFP::get(Tp, 1.0L);
767   case RK_FloatAdd:
768     // Adding zero to a number does not change it.
769     return ConstantFP::get(Tp, 0.0L);
770   default:
771     llvm_unreachable("Unknown recurrence kind");
772   }
773 }
774 
775 /// This function translates the recurrence kind to an LLVM binary operator.
776 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
777   switch (Kind) {
778   case RK_IntegerAdd:
779     return Instruction::Add;
780   case RK_IntegerMult:
781     return Instruction::Mul;
782   case RK_IntegerOr:
783     return Instruction::Or;
784   case RK_IntegerAnd:
785     return Instruction::And;
786   case RK_IntegerXor:
787     return Instruction::Xor;
788   case RK_FloatMult:
789     return Instruction::FMul;
790   case RK_FloatAdd:
791     return Instruction::FAdd;
792   case RK_IntegerMinMax:
793     return Instruction::ICmp;
794   case RK_FloatMinMax:
795     return Instruction::FCmp;
796   default:
797     llvm_unreachable("Unknown recurrence operation");
798   }
799 }
800 
801 SmallVector<Instruction *, 4>
802 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
803   SmallVector<Instruction *, 4> ReductionOperations;
804   unsigned RedOp = getRecurrenceBinOp(Kind);
805 
806   // Search down from the Phi to the LoopExitInstr, looking for instructions
807   // with a single user of the correct type for the reduction.
808 
809   // Note that we check that the type of the operand is correct for each item in
810   // the chain, including the last (the loop exit value). This can come up from
811   // sub, which would otherwise be treated as an add reduction. MinMax also need
812   // to check for a pair of icmp/select, for which we use getNextInstruction and
813   // isCorrectOpcode functions to step the right number of instruction, and
814   // check the icmp/select pair.
815   // FIXME: We also do not attempt to look through Phi/Select's yet, which might
816   // be part of the reduction chain, or attempt to looks through And's to find a
817   // smaller bitwidth. Subs are also currently not allowed (which are usually
818   // treated as part of a add reduction) as they are expected to generally be
819   // more expensive than out-of-loop reductions, and need to be costed more
820   // carefully.
821   unsigned ExpectedUses = 1;
822   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
823     ExpectedUses = 2;
824 
825   auto getNextInstruction = [&](Instruction *Cur) {
826     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
827       // We are expecting a icmp/select pair, which we go to the next select
828       // instruction if we can. We already know that Cur has 2 uses.
829       if (isa<SelectInst>(*Cur->user_begin()))
830         return cast<Instruction>(*Cur->user_begin());
831       else
832         return cast<Instruction>(*std::next(Cur->user_begin()));
833     }
834     return cast<Instruction>(*Cur->user_begin());
835   };
836   auto isCorrectOpcode = [&](Instruction *Cur) {
837     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
838       Value *LHS, *RHS;
839       return SelectPatternResult::isMinOrMax(
840           matchSelectPattern(Cur, LHS, RHS).Flavor);
841     }
842     return Cur->getOpcode() == RedOp;
843   };
844 
845   // The loop exit instruction we check first (as a quick test) but add last. We
846   // check the opcode is correct (and dont allow them to be Subs) and that they
847   // have expected to have the expected number of uses. They will have one use
848   // from the phi and one from a LCSSA value, no matter the type.
849   if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
850     return {};
851 
852   // Check that the Phi has one (or two for min/max) uses.
853   if (!Phi->hasNUses(ExpectedUses))
854     return {};
855   Instruction *Cur = getNextInstruction(Phi);
856 
857   // Each other instruction in the chain should have the expected number of uses
858   // and be the correct opcode.
859   while (Cur != LoopExitInstr) {
860     if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
861       return {};
862 
863     ReductionOperations.push_back(Cur);
864     Cur = getNextInstruction(Cur);
865   }
866 
867   ReductionOperations.push_back(Cur);
868   return ReductionOperations;
869 }
870 
871 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
872                                          const SCEV *Step, BinaryOperator *BOp,
873                                          SmallVectorImpl<Instruction *> *Casts)
874     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
875   assert(IK != IK_NoInduction && "Not an induction");
876 
877   // Start value type should match the induction kind and the value
878   // itself should not be null.
879   assert(StartValue && "StartValue is null");
880   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
881          "StartValue is not a pointer for pointer induction");
882   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
883          "StartValue is not an integer for integer induction");
884 
885   // Check the Step Value. It should be non-zero integer value.
886   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
887          "Step value is zero");
888 
889   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
890          "Step value should be constant for pointer induction");
891   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
892          "StepValue is not an integer");
893 
894   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
895          "StepValue is not FP for FpInduction");
896   assert((IK != IK_FpInduction ||
897           (InductionBinOp &&
898            (InductionBinOp->getOpcode() == Instruction::FAdd ||
899             InductionBinOp->getOpcode() == Instruction::FSub))) &&
900          "Binary opcode should be specified for FP induction");
901 
902   if (Casts) {
903     for (auto &Inst : *Casts) {
904       RedundantCasts.push_back(Inst);
905     }
906   }
907 }
908 
909 int InductionDescriptor::getConsecutiveDirection() const {
910   ConstantInt *ConstStep = getConstIntStepValue();
911   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
912     return ConstStep->getSExtValue();
913   return 0;
914 }
915 
916 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
917   if (isa<SCEVConstant>(Step))
918     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
919   return nullptr;
920 }
921 
922 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
923                                            ScalarEvolution *SE,
924                                            InductionDescriptor &D) {
925 
926   // Here we only handle FP induction variables.
927   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
928 
929   if (TheLoop->getHeader() != Phi->getParent())
930     return false;
931 
932   // The loop may have multiple entrances or multiple exits; we can analyze
933   // this phi if it has a unique entry value and a unique backedge value.
934   if (Phi->getNumIncomingValues() != 2)
935     return false;
936   Value *BEValue = nullptr, *StartValue = nullptr;
937   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
938     BEValue = Phi->getIncomingValue(0);
939     StartValue = Phi->getIncomingValue(1);
940   } else {
941     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
942            "Unexpected Phi node in the loop");
943     BEValue = Phi->getIncomingValue(1);
944     StartValue = Phi->getIncomingValue(0);
945   }
946 
947   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
948   if (!BOp)
949     return false;
950 
951   Value *Addend = nullptr;
952   if (BOp->getOpcode() == Instruction::FAdd) {
953     if (BOp->getOperand(0) == Phi)
954       Addend = BOp->getOperand(1);
955     else if (BOp->getOperand(1) == Phi)
956       Addend = BOp->getOperand(0);
957   } else if (BOp->getOpcode() == Instruction::FSub)
958     if (BOp->getOperand(0) == Phi)
959       Addend = BOp->getOperand(1);
960 
961   if (!Addend)
962     return false;
963 
964   // The addend should be loop invariant
965   if (auto *I = dyn_cast<Instruction>(Addend))
966     if (TheLoop->contains(I))
967       return false;
968 
969   // FP Step has unknown SCEV
970   const SCEV *Step = SE->getUnknown(Addend);
971   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
972   return true;
973 }
974 
975 /// This function is called when we suspect that the update-chain of a phi node
976 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
977 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
978 /// predicate P under which the SCEV expression for the phi can be the
979 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
980 /// cast instructions that are involved in the update-chain of this induction.
981 /// A caller that adds the required runtime predicate can be free to drop these
982 /// cast instructions, and compute the phi using \p AR (instead of some scev
983 /// expression with casts).
984 ///
985 /// For example, without a predicate the scev expression can take the following
986 /// form:
987 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
988 ///
989 /// It corresponds to the following IR sequence:
990 /// %for.body:
991 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
992 ///   %casted_phi = "ExtTrunc i64 %x"
993 ///   %add = add i64 %casted_phi, %step
994 ///
995 /// where %x is given in \p PN,
996 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
997 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
998 /// several forms, for example, such as:
999 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1000 /// or:
1001 ///   ExtTrunc2:    %t = shl %x, m
1002 ///                 %casted_phi = ashr %t, m
1003 ///
1004 /// If we are able to find such sequence, we return the instructions
1005 /// we found, namely %casted_phi and the instructions on its use-def chain up
1006 /// to the phi (not including the phi).
1007 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1008                                     const SCEVUnknown *PhiScev,
1009                                     const SCEVAddRecExpr *AR,
1010                                     SmallVectorImpl<Instruction *> &CastInsts) {
1011 
1012   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1013   auto *PN = cast<PHINode>(PhiScev->getValue());
1014   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1015   const Loop *L = AR->getLoop();
1016 
1017   // Find any cast instructions that participate in the def-use chain of
1018   // PhiScev in the loop.
1019   // FORNOW/TODO: We currently expect the def-use chain to include only
1020   // two-operand instructions, where one of the operands is an invariant.
1021   // createAddRecFromPHIWithCasts() currently does not support anything more
1022   // involved than that, so we keep the search simple. This can be
1023   // extended/generalized as needed.
1024 
1025   auto getDef = [&](const Value *Val) -> Value * {
1026     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1027     if (!BinOp)
1028       return nullptr;
1029     Value *Op0 = BinOp->getOperand(0);
1030     Value *Op1 = BinOp->getOperand(1);
1031     Value *Def = nullptr;
1032     if (L->isLoopInvariant(Op0))
1033       Def = Op1;
1034     else if (L->isLoopInvariant(Op1))
1035       Def = Op0;
1036     return Def;
1037   };
1038 
1039   // Look for the instruction that defines the induction via the
1040   // loop backedge.
1041   BasicBlock *Latch = L->getLoopLatch();
1042   if (!Latch)
1043     return false;
1044   Value *Val = PN->getIncomingValueForBlock(Latch);
1045   if (!Val)
1046     return false;
1047 
1048   // Follow the def-use chain until the induction phi is reached.
1049   // If on the way we encounter a Value that has the same SCEV Expr as the
1050   // phi node, we can consider the instructions we visit from that point
1051   // as part of the cast-sequence that can be ignored.
1052   bool InCastSequence = false;
1053   auto *Inst = dyn_cast<Instruction>(Val);
1054   while (Val != PN) {
1055     // If we encountered a phi node other than PN, or if we left the loop,
1056     // we bail out.
1057     if (!Inst || !L->contains(Inst)) {
1058       return false;
1059     }
1060     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1061     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1062       InCastSequence = true;
1063     if (InCastSequence) {
1064       // Only the last instruction in the cast sequence is expected to have
1065       // uses outside the induction def-use chain.
1066       if (!CastInsts.empty())
1067         if (!Inst->hasOneUse())
1068           return false;
1069       CastInsts.push_back(Inst);
1070     }
1071     Val = getDef(Val);
1072     if (!Val)
1073       return false;
1074     Inst = dyn_cast<Instruction>(Val);
1075   }
1076 
1077   return InCastSequence;
1078 }
1079 
1080 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1081                                          PredicatedScalarEvolution &PSE,
1082                                          InductionDescriptor &D, bool Assume) {
1083   Type *PhiTy = Phi->getType();
1084 
1085   // Handle integer and pointer inductions variables.
1086   // Now we handle also FP induction but not trying to make a
1087   // recurrent expression from the PHI node in-place.
1088 
1089   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1090       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1091     return false;
1092 
1093   if (PhiTy->isFloatingPointTy())
1094     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1095 
1096   const SCEV *PhiScev = PSE.getSCEV(Phi);
1097   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1098 
1099   // We need this expression to be an AddRecExpr.
1100   if (Assume && !AR)
1101     AR = PSE.getAsAddRec(Phi);
1102 
1103   if (!AR) {
1104     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1105     return false;
1106   }
1107 
1108   // Record any Cast instructions that participate in the induction update
1109   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1110   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1111   // only after enabling Assume with PSCEV, this means we may have encountered
1112   // cast instructions that required adding a runtime check in order to
1113   // guarantee the correctness of the AddRecurrence respresentation of the
1114   // induction.
1115   if (PhiScev != AR && SymbolicPhi) {
1116     SmallVector<Instruction *, 2> Casts;
1117     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1118       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1119   }
1120 
1121   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1122 }
1123 
1124 bool InductionDescriptor::isInductionPHI(
1125     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1126     InductionDescriptor &D, const SCEV *Expr,
1127     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1128   Type *PhiTy = Phi->getType();
1129   // We only handle integer and pointer inductions variables.
1130   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1131     return false;
1132 
1133   // Check that the PHI is consecutive.
1134   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1135   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1136 
1137   if (!AR) {
1138     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1139     return false;
1140   }
1141 
1142   if (AR->getLoop() != TheLoop) {
1143     // FIXME: We should treat this as a uniform. Unfortunately, we
1144     // don't currently know how to handled uniform PHIs.
1145     LLVM_DEBUG(
1146         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1147     return false;
1148   }
1149 
1150   Value *StartValue =
1151       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1152 
1153   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1154   if (!Latch)
1155     return false;
1156   BinaryOperator *BOp =
1157       dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1158 
1159   const SCEV *Step = AR->getStepRecurrence(*SE);
1160   // Calculate the pointer stride and check if it is consecutive.
1161   // The stride may be a constant or a loop invariant integer value.
1162   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1163   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1164     return false;
1165 
1166   if (PhiTy->isIntegerTy()) {
1167     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1168                             CastsToIgnore);
1169     return true;
1170   }
1171 
1172   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1173   // Pointer induction should be a constant.
1174   if (!ConstStep)
1175     return false;
1176 
1177   ConstantInt *CV = ConstStep->getValue();
1178   Type *PointerElementType = PhiTy->getPointerElementType();
1179   // The pointer stride cannot be determined if the pointer element type is not
1180   // sized.
1181   if (!PointerElementType->isSized())
1182     return false;
1183 
1184   const DataLayout &DL = Phi->getModule()->getDataLayout();
1185   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1186   if (!Size)
1187     return false;
1188 
1189   int64_t CVSize = CV->getSExtValue();
1190   if (CVSize % Size)
1191     return false;
1192   auto *StepValue =
1193       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1194   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
1195   return true;
1196 }
1197