1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 37 #include <set> 38 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 #define DEBUG_TYPE "iv-descriptors" 43 44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 45 SmallPtrSetImpl<Instruction *> &Set) { 46 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 47 if (!Set.count(dyn_cast<Instruction>(*Use))) 48 return false; 49 return true; 50 } 51 52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { 53 switch (Kind) { 54 default: 55 break; 56 case RecurKind::Add: 57 case RecurKind::Mul: 58 case RecurKind::Or: 59 case RecurKind::And: 60 case RecurKind::Xor: 61 case RecurKind::SMax: 62 case RecurKind::SMin: 63 case RecurKind::UMax: 64 case RecurKind::UMin: 65 return true; 66 } 67 return false; 68 } 69 70 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { 71 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); 72 } 73 74 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) { 75 switch (Kind) { 76 default: 77 break; 78 case RecurKind::Add: 79 case RecurKind::Mul: 80 case RecurKind::FAdd: 81 case RecurKind::FMul: 82 return true; 83 } 84 return false; 85 } 86 87 /// Determines if Phi may have been type-promoted. If Phi has a single user 88 /// that ANDs the Phi with a type mask, return the user. RT is updated to 89 /// account for the narrower bit width represented by the mask, and the AND 90 /// instruction is added to CI. 91 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 92 SmallPtrSetImpl<Instruction *> &Visited, 93 SmallPtrSetImpl<Instruction *> &CI) { 94 if (!Phi->hasOneUse()) 95 return Phi; 96 97 const APInt *M = nullptr; 98 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 99 100 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 101 // with a new integer type of the corresponding bit width. 102 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 103 int32_t Bits = (*M + 1).exactLogBase2(); 104 if (Bits > 0) { 105 RT = IntegerType::get(Phi->getContext(), Bits); 106 Visited.insert(Phi); 107 CI.insert(J); 108 return J; 109 } 110 } 111 return Phi; 112 } 113 114 /// Compute the minimal bit width needed to represent a reduction whose exit 115 /// instruction is given by Exit. 116 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 117 DemandedBits *DB, 118 AssumptionCache *AC, 119 DominatorTree *DT) { 120 bool IsSigned = false; 121 const DataLayout &DL = Exit->getModule()->getDataLayout(); 122 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 123 124 if (DB) { 125 // Use the demanded bits analysis to determine the bits that are live out 126 // of the exit instruction, rounding up to the nearest power of two. If the 127 // use of demanded bits results in a smaller bit width, we know the value 128 // must be positive (i.e., IsSigned = false), because if this were not the 129 // case, the sign bit would have been demanded. 130 auto Mask = DB->getDemandedBits(Exit); 131 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 132 } 133 134 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 135 // If demanded bits wasn't able to limit the bit width, we can try to use 136 // value tracking instead. This can be the case, for example, if the value 137 // may be negative. 138 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 139 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 140 MaxBitWidth = NumTypeBits - NumSignBits; 141 KnownBits Bits = computeKnownBits(Exit, DL); 142 if (!Bits.isNonNegative()) { 143 // If the value is not known to be non-negative, we set IsSigned to true, 144 // meaning that we will use sext instructions instead of zext 145 // instructions to restore the original type. 146 IsSigned = true; 147 if (!Bits.isNegative()) 148 // If the value is not known to be negative, we don't known what the 149 // upper bit is, and therefore, we don't know what kind of extend we 150 // will need. In this case, just increase the bit width by one bit and 151 // use sext. 152 ++MaxBitWidth; 153 } 154 } 155 if (!isPowerOf2_64(MaxBitWidth)) 156 MaxBitWidth = NextPowerOf2(MaxBitWidth); 157 158 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 159 IsSigned); 160 } 161 162 /// Collect cast instructions that can be ignored in the vectorizer's cost 163 /// model, given a reduction exit value and the minimal type in which the 164 /// reduction can be represented. 165 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 166 Type *RecurrenceType, 167 SmallPtrSetImpl<Instruction *> &Casts) { 168 169 SmallVector<Instruction *, 8> Worklist; 170 SmallPtrSet<Instruction *, 8> Visited; 171 Worklist.push_back(Exit); 172 173 while (!Worklist.empty()) { 174 Instruction *Val = Worklist.pop_back_val(); 175 Visited.insert(Val); 176 if (auto *Cast = dyn_cast<CastInst>(Val)) 177 if (Cast->getSrcTy() == RecurrenceType) { 178 // If the source type of a cast instruction is equal to the recurrence 179 // type, it will be eliminated, and should be ignored in the vectorizer 180 // cost model. 181 Casts.insert(Cast); 182 continue; 183 } 184 185 // Add all operands to the work list if they are loop-varying values that 186 // we haven't yet visited. 187 for (Value *O : cast<User>(Val)->operands()) 188 if (auto *I = dyn_cast<Instruction>(O)) 189 if (TheLoop->contains(I) && !Visited.count(I)) 190 Worklist.push_back(I); 191 } 192 } 193 194 // Check if a given Phi node can be recognized as an ordered reduction for 195 // vectorizing floating point operations without unsafe math. 196 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, 197 Instruction *Exit, PHINode *Phi) { 198 // Currently only FAdd is supported 199 if (Kind != RecurKind::FAdd) 200 return false; 201 202 if (Exit->getOpcode() != Instruction::FAdd || Exit != ExactFPMathInst) 203 return false; 204 205 // The only pattern accepted is the one in which the reduction PHI 206 // is used as one of the operands of the exit instruction 207 auto *LHS = Exit->getOperand(0); 208 auto *RHS = Exit->getOperand(1); 209 if (LHS != Phi && RHS != Phi) 210 return false; 211 212 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi 213 << ", ExitInst: " << *Exit << "\n"); 214 215 return true; 216 } 217 218 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, 219 Loop *TheLoop, FastMathFlags FuncFMF, 220 RecurrenceDescriptor &RedDes, 221 DemandedBits *DB, 222 AssumptionCache *AC, 223 DominatorTree *DT) { 224 if (Phi->getNumIncomingValues() != 2) 225 return false; 226 227 // Reduction variables are only found in the loop header block. 228 if (Phi->getParent() != TheLoop->getHeader()) 229 return false; 230 231 // Obtain the reduction start value from the value that comes from the loop 232 // preheader. 233 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 234 235 // ExitInstruction is the single value which is used outside the loop. 236 // We only allow for a single reduction value to be used outside the loop. 237 // This includes users of the reduction, variables (which form a cycle 238 // which ends in the phi node). 239 Instruction *ExitInstruction = nullptr; 240 // Indicates that we found a reduction operation in our scan. 241 bool FoundReduxOp = false; 242 243 // We start with the PHI node and scan for all of the users of this 244 // instruction. All users must be instructions that can be used as reduction 245 // variables (such as ADD). We must have a single out-of-block user. The cycle 246 // must include the original PHI. 247 bool FoundStartPHI = false; 248 249 // To recognize min/max patterns formed by a icmp select sequence, we store 250 // the number of instruction we saw from the recognized min/max pattern, 251 // to make sure we only see exactly the two instructions. 252 unsigned NumCmpSelectPatternInst = 0; 253 InstDesc ReduxDesc(false, nullptr); 254 255 // Data used for determining if the recurrence has been type-promoted. 256 Type *RecurrenceType = Phi->getType(); 257 SmallPtrSet<Instruction *, 4> CastInsts; 258 Instruction *Start = Phi; 259 bool IsSigned = false; 260 261 SmallPtrSet<Instruction *, 8> VisitedInsts; 262 SmallVector<Instruction *, 8> Worklist; 263 264 // Return early if the recurrence kind does not match the type of Phi. If the 265 // recurrence kind is arithmetic, we attempt to look through AND operations 266 // resulting from the type promotion performed by InstCombine. Vector 267 // operations are not limited to the legal integer widths, so we may be able 268 // to evaluate the reduction in the narrower width. 269 if (RecurrenceType->isFloatingPointTy()) { 270 if (!isFloatingPointRecurrenceKind(Kind)) 271 return false; 272 } else if (RecurrenceType->isIntegerTy()) { 273 if (!isIntegerRecurrenceKind(Kind)) 274 return false; 275 if (!isMinMaxRecurrenceKind(Kind)) 276 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 277 } else { 278 // Pointer min/max may exist, but it is not supported as a reduction op. 279 return false; 280 } 281 282 Worklist.push_back(Start); 283 VisitedInsts.insert(Start); 284 285 // Start with all flags set because we will intersect this with the reduction 286 // flags from all the reduction operations. 287 FastMathFlags FMF = FastMathFlags::getFast(); 288 289 // A value in the reduction can be used: 290 // - By the reduction: 291 // - Reduction operation: 292 // - One use of reduction value (safe). 293 // - Multiple use of reduction value (not safe). 294 // - PHI: 295 // - All uses of the PHI must be the reduction (safe). 296 // - Otherwise, not safe. 297 // - By instructions outside of the loop (safe). 298 // * One value may have several outside users, but all outside 299 // uses must be of the same value. 300 // - By an instruction that is not part of the reduction (not safe). 301 // This is either: 302 // * An instruction type other than PHI or the reduction operation. 303 // * A PHI in the header other than the initial PHI. 304 while (!Worklist.empty()) { 305 Instruction *Cur = Worklist.pop_back_val(); 306 307 // No Users. 308 // If the instruction has no users then this is a broken chain and can't be 309 // a reduction variable. 310 if (Cur->use_empty()) 311 return false; 312 313 bool IsAPhi = isa<PHINode>(Cur); 314 315 // A header PHI use other than the original PHI. 316 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 317 return false; 318 319 // Reductions of instructions such as Div, and Sub is only possible if the 320 // LHS is the reduction variable. 321 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 322 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 323 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 324 return false; 325 326 // Any reduction instruction must be of one of the allowed kinds. We ignore 327 // the starting value (the Phi or an AND instruction if the Phi has been 328 // type-promoted). 329 if (Cur != Start) { 330 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, FuncFMF); 331 if (!ReduxDesc.isRecurrence()) 332 return false; 333 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 334 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) { 335 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); 336 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) { 337 // Accept FMF on either fcmp or select of a min/max idiom. 338 // TODO: This is a hack to work-around the fact that FMF may not be 339 // assigned/propagated correctly. If that problem is fixed or we 340 // standardize on fmin/fmax via intrinsics, this can be removed. 341 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition())) 342 CurFMF |= FCmp->getFastMathFlags(); 343 } 344 FMF &= CurFMF; 345 } 346 // Update this reduction kind if we matched a new instruction. 347 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' 348 // state accurate while processing the worklist? 349 if (ReduxDesc.getRecKind() != RecurKind::None) 350 Kind = ReduxDesc.getRecKind(); 351 } 352 353 bool IsASelect = isa<SelectInst>(Cur); 354 355 // A conditional reduction operation must only have 2 or less uses in 356 // VisitedInsts. 357 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && 358 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 359 return false; 360 361 // A reduction operation must only have one use of the reduction value. 362 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && 363 hasMultipleUsesOf(Cur, VisitedInsts, 1)) 364 return false; 365 366 // All inputs to a PHI node must be a reduction value. 367 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 368 return false; 369 370 if (isIntMinMaxRecurrenceKind(Kind) && 371 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 372 ++NumCmpSelectPatternInst; 373 if (isFPMinMaxRecurrenceKind(Kind) && 374 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 375 ++NumCmpSelectPatternInst; 376 377 // Check whether we found a reduction operator. 378 FoundReduxOp |= !IsAPhi && Cur != Start; 379 380 // Process users of current instruction. Push non-PHI nodes after PHI nodes 381 // onto the stack. This way we are going to have seen all inputs to PHI 382 // nodes once we get to them. 383 SmallVector<Instruction *, 8> NonPHIs; 384 SmallVector<Instruction *, 8> PHIs; 385 for (User *U : Cur->users()) { 386 Instruction *UI = cast<Instruction>(U); 387 388 // Check if we found the exit user. 389 BasicBlock *Parent = UI->getParent(); 390 if (!TheLoop->contains(Parent)) { 391 // If we already know this instruction is used externally, move on to 392 // the next user. 393 if (ExitInstruction == Cur) 394 continue; 395 396 // Exit if you find multiple values used outside or if the header phi 397 // node is being used. In this case the user uses the value of the 398 // previous iteration, in which case we would loose "VF-1" iterations of 399 // the reduction operation if we vectorize. 400 if (ExitInstruction != nullptr || Cur == Phi) 401 return false; 402 403 // The instruction used by an outside user must be the last instruction 404 // before we feed back to the reduction phi. Otherwise, we loose VF-1 405 // operations on the value. 406 if (!is_contained(Phi->operands(), Cur)) 407 return false; 408 409 ExitInstruction = Cur; 410 continue; 411 } 412 413 // Process instructions only once (termination). Each reduction cycle 414 // value must only be used once, except by phi nodes and min/max 415 // reductions which are represented as a cmp followed by a select. 416 InstDesc IgnoredVal(false, nullptr); 417 if (VisitedInsts.insert(UI).second) { 418 if (isa<PHINode>(UI)) 419 PHIs.push_back(UI); 420 else 421 NonPHIs.push_back(UI); 422 } else if (!isa<PHINode>(UI) && 423 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 424 !isa<SelectInst>(UI)) || 425 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 426 !isMinMaxPattern(UI, Kind, IgnoredVal) 427 .isRecurrence()))) 428 return false; 429 430 // Remember that we completed the cycle. 431 if (UI == Phi) 432 FoundStartPHI = true; 433 } 434 Worklist.append(PHIs.begin(), PHIs.end()); 435 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 436 } 437 438 // This means we have seen one but not the other instruction of the 439 // pattern or more than just a select and cmp. Zero implies that we saw a 440 // llvm.min/max instrinsic, which is always OK. 441 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 && 442 NumCmpSelectPatternInst != 0) 443 return false; 444 445 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 446 return false; 447 448 const bool IsOrdered = checkOrderedReduction( 449 Kind, ReduxDesc.getExactFPMathInst(), ExitInstruction, Phi); 450 451 if (Start != Phi) { 452 // If the starting value is not the same as the phi node, we speculatively 453 // looked through an 'and' instruction when evaluating a potential 454 // arithmetic reduction to determine if it may have been type-promoted. 455 // 456 // We now compute the minimal bit width that is required to represent the 457 // reduction. If this is the same width that was indicated by the 'and', we 458 // can represent the reduction in the smaller type. The 'and' instruction 459 // will be eliminated since it will essentially be a cast instruction that 460 // can be ignore in the cost model. If we compute a different type than we 461 // did when evaluating the 'and', the 'and' will not be eliminated, and we 462 // will end up with different kinds of operations in the recurrence 463 // expression (e.g., IntegerAND, IntegerADD). We give up if this is 464 // the case. 465 // 466 // The vectorizer relies on InstCombine to perform the actual 467 // type-shrinking. It does this by inserting instructions to truncate the 468 // exit value of the reduction to the width indicated by RecurrenceType and 469 // then extend this value back to the original width. If IsSigned is false, 470 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 471 // used. 472 // 473 // TODO: We should not rely on InstCombine to rewrite the reduction in the 474 // smaller type. We should just generate a correctly typed expression 475 // to begin with. 476 Type *ComputedType; 477 std::tie(ComputedType, IsSigned) = 478 computeRecurrenceType(ExitInstruction, DB, AC, DT); 479 if (ComputedType != RecurrenceType) 480 return false; 481 482 // The recurrence expression will be represented in a narrower type. If 483 // there are any cast instructions that will be unnecessary, collect them 484 // in CastInsts. Note that the 'and' instruction was already included in 485 // this list. 486 // 487 // TODO: A better way to represent this may be to tag in some way all the 488 // instructions that are a part of the reduction. The vectorizer cost 489 // model could then apply the recurrence type to these instructions, 490 // without needing a white list of instructions to ignore. 491 // This may also be useful for the inloop reductions, if it can be 492 // kept simple enough. 493 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 494 } 495 496 // We found a reduction var if we have reached the original phi node and we 497 // only have a single instruction with out-of-loop users. 498 499 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 500 // is saved as part of the RecurrenceDescriptor. 501 502 // Save the description of this reduction variable. 503 RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, 504 ReduxDesc.getExactFPMathInst(), RecurrenceType, 505 IsSigned, IsOrdered, CastInsts); 506 RedDes = RD; 507 508 return true; 509 } 510 511 RecurrenceDescriptor::InstDesc 512 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind, 513 const InstDesc &Prev) { 514 assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) && 515 "Expected a cmp or select or call instruction"); 516 if (!isMinMaxRecurrenceKind(Kind)) 517 return InstDesc(false, I); 518 519 // We must handle the select(cmp()) as a single instruction. Advance to the 520 // select. 521 CmpInst::Predicate Pred; 522 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 523 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 524 return InstDesc(Select, Prev.getRecKind()); 525 } 526 527 // Only match select with single use cmp condition, or a min/max intrinsic. 528 if (!isa<IntrinsicInst>(I) && 529 !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 530 m_Value()))) 531 return InstDesc(false, I); 532 533 // Look for a min/max pattern. 534 if (match(I, m_UMin(m_Value(), m_Value()))) 535 return InstDesc(Kind == RecurKind::UMin, I); 536 if (match(I, m_UMax(m_Value(), m_Value()))) 537 return InstDesc(Kind == RecurKind::UMax, I); 538 if (match(I, m_SMax(m_Value(), m_Value()))) 539 return InstDesc(Kind == RecurKind::SMax, I); 540 if (match(I, m_SMin(m_Value(), m_Value()))) 541 return InstDesc(Kind == RecurKind::SMin, I); 542 if (match(I, m_OrdFMin(m_Value(), m_Value()))) 543 return InstDesc(Kind == RecurKind::FMin, I); 544 if (match(I, m_OrdFMax(m_Value(), m_Value()))) 545 return InstDesc(Kind == RecurKind::FMax, I); 546 if (match(I, m_UnordFMin(m_Value(), m_Value()))) 547 return InstDesc(Kind == RecurKind::FMin, I); 548 if (match(I, m_UnordFMax(m_Value(), m_Value()))) 549 return InstDesc(Kind == RecurKind::FMax, I); 550 if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value()))) 551 return InstDesc(Kind == RecurKind::FMin, I); 552 if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value()))) 553 return InstDesc(Kind == RecurKind::FMax, I); 554 555 return InstDesc(false, I); 556 } 557 558 /// Returns true if the select instruction has users in the compare-and-add 559 /// reduction pattern below. The select instruction argument is the last one 560 /// in the sequence. 561 /// 562 /// %sum.1 = phi ... 563 /// ... 564 /// %cmp = fcmp pred %0, %CFP 565 /// %add = fadd %0, %sum.1 566 /// %sum.2 = select %cmp, %add, %sum.1 567 RecurrenceDescriptor::InstDesc 568 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { 569 SelectInst *SI = dyn_cast<SelectInst>(I); 570 if (!SI) 571 return InstDesc(false, I); 572 573 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 574 // Only handle single use cases for now. 575 if (!CI || !CI->hasOneUse()) 576 return InstDesc(false, I); 577 578 Value *TrueVal = SI->getTrueValue(); 579 Value *FalseVal = SI->getFalseValue(); 580 // Handle only when either of operands of select instruction is a PHI 581 // node for now. 582 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 583 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 584 return InstDesc(false, I); 585 586 Instruction *I1 = 587 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 588 : dyn_cast<Instruction>(TrueVal); 589 if (!I1 || !I1->isBinaryOp()) 590 return InstDesc(false, I); 591 592 Value *Op1, *Op2; 593 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 594 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 595 I1->isFast()) 596 return InstDesc(Kind == RecurKind::FAdd, SI); 597 598 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 599 return InstDesc(Kind == RecurKind::FMul, SI); 600 601 return InstDesc(false, I); 602 } 603 604 RecurrenceDescriptor::InstDesc 605 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind, 606 InstDesc &Prev, FastMathFlags FuncFMF) { 607 assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind); 608 switch (I->getOpcode()) { 609 default: 610 return InstDesc(false, I); 611 case Instruction::PHI: 612 return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst()); 613 case Instruction::Sub: 614 case Instruction::Add: 615 return InstDesc(Kind == RecurKind::Add, I); 616 case Instruction::Mul: 617 return InstDesc(Kind == RecurKind::Mul, I); 618 case Instruction::And: 619 return InstDesc(Kind == RecurKind::And, I); 620 case Instruction::Or: 621 return InstDesc(Kind == RecurKind::Or, I); 622 case Instruction::Xor: 623 return InstDesc(Kind == RecurKind::Xor, I); 624 case Instruction::FDiv: 625 case Instruction::FMul: 626 return InstDesc(Kind == RecurKind::FMul, I, 627 I->hasAllowReassoc() ? nullptr : I); 628 case Instruction::FSub: 629 case Instruction::FAdd: 630 return InstDesc(Kind == RecurKind::FAdd, I, 631 I->hasAllowReassoc() ? nullptr : I); 632 case Instruction::Select: 633 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) 634 return isConditionalRdxPattern(Kind, I); 635 LLVM_FALLTHROUGH; 636 case Instruction::FCmp: 637 case Instruction::ICmp: 638 case Instruction::Call: 639 if (isIntMinMaxRecurrenceKind(Kind) || 640 (((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) || 641 (isa<FPMathOperator>(I) && I->hasNoNaNs() && 642 I->hasNoSignedZeros())) && 643 isFPMinMaxRecurrenceKind(Kind))) 644 return isMinMaxPattern(I, Kind, Prev); 645 return InstDesc(false, I); 646 } 647 } 648 649 bool RecurrenceDescriptor::hasMultipleUsesOf( 650 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 651 unsigned MaxNumUses) { 652 unsigned NumUses = 0; 653 for (const Use &U : I->operands()) { 654 if (Insts.count(dyn_cast<Instruction>(U))) 655 ++NumUses; 656 if (NumUses > MaxNumUses) 657 return true; 658 } 659 660 return false; 661 } 662 663 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 664 RecurrenceDescriptor &RedDes, 665 DemandedBits *DB, AssumptionCache *AC, 666 DominatorTree *DT) { 667 668 BasicBlock *Header = TheLoop->getHeader(); 669 Function &F = *Header->getParent(); 670 FastMathFlags FMF; 671 FMF.setNoNaNs( 672 F.getFnAttribute("no-nans-fp-math").getValueAsBool()); 673 FMF.setNoSignedZeros( 674 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool()); 675 676 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) { 677 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 678 return true; 679 } 680 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) { 681 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 682 return true; 683 } 684 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) { 685 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 686 return true; 687 } 688 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) { 689 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 690 return true; 691 } 692 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) { 693 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 694 return true; 695 } 696 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 697 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); 698 return true; 699 } 700 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 701 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); 702 return true; 703 } 704 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 705 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); 706 return true; 707 } 708 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 709 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); 710 return true; 711 } 712 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) { 713 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 714 return true; 715 } 716 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) { 717 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 718 return true; 719 } 720 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 721 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); 722 return true; 723 } 724 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 725 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); 726 return true; 727 } 728 // Not a reduction of known type. 729 return false; 730 } 731 732 bool RecurrenceDescriptor::isFirstOrderRecurrence( 733 PHINode *Phi, Loop *TheLoop, 734 MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 735 736 // Ensure the phi node is in the loop header and has two incoming values. 737 if (Phi->getParent() != TheLoop->getHeader() || 738 Phi->getNumIncomingValues() != 2) 739 return false; 740 741 // Ensure the loop has a preheader and a single latch block. The loop 742 // vectorizer will need the latch to set up the next iteration of the loop. 743 auto *Preheader = TheLoop->getLoopPreheader(); 744 auto *Latch = TheLoop->getLoopLatch(); 745 if (!Preheader || !Latch) 746 return false; 747 748 // Ensure the phi node's incoming blocks are the loop preheader and latch. 749 if (Phi->getBasicBlockIndex(Preheader) < 0 || 750 Phi->getBasicBlockIndex(Latch) < 0) 751 return false; 752 753 // Get the previous value. The previous value comes from the latch edge while 754 // the initial value comes form the preheader edge. 755 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 756 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 757 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 758 return false; 759 760 // Ensure every user of the phi node (recursively) is dominated by the 761 // previous value. The dominance requirement ensures the loop vectorizer will 762 // not need to vectorize the initial value prior to the first iteration of the 763 // loop. 764 // TODO: Consider extending this sinking to handle memory instructions. 765 766 // We optimistically assume we can sink all users after Previous. Keep a set 767 // of instructions to sink after Previous ordered by dominance in the common 768 // basic block. It will be applied to SinkAfter if all users can be sunk. 769 auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) { 770 return A->comesBefore(B); 771 }; 772 std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink( 773 CompareByComesBefore); 774 775 BasicBlock *PhiBB = Phi->getParent(); 776 SmallVector<Instruction *, 8> WorkList; 777 auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) { 778 // Already sunk SinkCandidate. 779 if (SinkCandidate->getParent() == PhiBB && 780 InstrsToSink.find(SinkCandidate) != InstrsToSink.end()) 781 return true; 782 783 // Cyclic dependence. 784 if (Previous == SinkCandidate) 785 return false; 786 787 if (DT->dominates(Previous, 788 SinkCandidate)) // We already are good w/o sinking. 789 return true; 790 791 if (SinkCandidate->getParent() != PhiBB || 792 SinkCandidate->mayHaveSideEffects() || 793 SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator()) 794 return false; 795 796 // Do not try to sink an instruction multiple times (if multiple operands 797 // are first order recurrences). 798 // TODO: We can support this case, by sinking the instruction after the 799 // 'deepest' previous instruction. 800 if (SinkAfter.find(SinkCandidate) != SinkAfter.end()) 801 return false; 802 803 // If we reach a PHI node that is not dominated by Previous, we reached a 804 // header PHI. No need for sinking. 805 if (isa<PHINode>(SinkCandidate)) 806 return true; 807 808 // Sink User tentatively and check its users 809 InstrsToSink.insert(SinkCandidate); 810 WorkList.push_back(SinkCandidate); 811 return true; 812 }; 813 814 WorkList.push_back(Phi); 815 // Try to recursively sink instructions and their users after Previous. 816 while (!WorkList.empty()) { 817 Instruction *Current = WorkList.pop_back_val(); 818 for (User *User : Current->users()) { 819 if (!TryToPushSinkCandidate(cast<Instruction>(User))) 820 return false; 821 } 822 } 823 824 // We can sink all users of Phi. Update the mapping. 825 for (Instruction *I : InstrsToSink) { 826 SinkAfter[I] = Previous; 827 Previous = I; 828 } 829 return true; 830 } 831 832 /// This function returns the identity element (or neutral element) for 833 /// the operation K. 834 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp, 835 FastMathFlags FMF) { 836 switch (K) { 837 case RecurKind::Xor: 838 case RecurKind::Add: 839 case RecurKind::Or: 840 // Adding, Xoring, Oring zero to a number does not change it. 841 return ConstantInt::get(Tp, 0); 842 case RecurKind::Mul: 843 // Multiplying a number by 1 does not change it. 844 return ConstantInt::get(Tp, 1); 845 case RecurKind::And: 846 // AND-ing a number with an all-1 value does not change it. 847 return ConstantInt::get(Tp, -1, true); 848 case RecurKind::FMul: 849 // Multiplying a number by 1 does not change it. 850 return ConstantFP::get(Tp, 1.0L); 851 case RecurKind::FAdd: 852 // Adding zero to a number does not change it. 853 // FIXME: Ideally we should not need to check FMF for FAdd and should always 854 // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0. 855 // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI 856 // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would 857 // mean we can then remove the check for noSignedZeros() below (see D98963). 858 if (FMF.noSignedZeros()) 859 return ConstantFP::get(Tp, 0.0L); 860 return ConstantFP::get(Tp, -0.0L); 861 case RecurKind::UMin: 862 return ConstantInt::get(Tp, -1); 863 case RecurKind::UMax: 864 return ConstantInt::get(Tp, 0); 865 case RecurKind::SMin: 866 return ConstantInt::get(Tp, 867 APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); 868 case RecurKind::SMax: 869 return ConstantInt::get(Tp, 870 APInt::getSignedMinValue(Tp->getIntegerBitWidth())); 871 case RecurKind::FMin: 872 return ConstantFP::getInfinity(Tp, true); 873 case RecurKind::FMax: 874 return ConstantFP::getInfinity(Tp, false); 875 default: 876 llvm_unreachable("Unknown recurrence kind"); 877 } 878 } 879 880 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { 881 switch (Kind) { 882 case RecurKind::Add: 883 return Instruction::Add; 884 case RecurKind::Mul: 885 return Instruction::Mul; 886 case RecurKind::Or: 887 return Instruction::Or; 888 case RecurKind::And: 889 return Instruction::And; 890 case RecurKind::Xor: 891 return Instruction::Xor; 892 case RecurKind::FMul: 893 return Instruction::FMul; 894 case RecurKind::FAdd: 895 return Instruction::FAdd; 896 case RecurKind::SMax: 897 case RecurKind::SMin: 898 case RecurKind::UMax: 899 case RecurKind::UMin: 900 return Instruction::ICmp; 901 case RecurKind::FMax: 902 case RecurKind::FMin: 903 return Instruction::FCmp; 904 default: 905 llvm_unreachable("Unknown recurrence operation"); 906 } 907 } 908 909 SmallVector<Instruction *, 4> 910 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 911 SmallVector<Instruction *, 4> ReductionOperations; 912 unsigned RedOp = getOpcode(Kind); 913 914 // Search down from the Phi to the LoopExitInstr, looking for instructions 915 // with a single user of the correct type for the reduction. 916 917 // Note that we check that the type of the operand is correct for each item in 918 // the chain, including the last (the loop exit value). This can come up from 919 // sub, which would otherwise be treated as an add reduction. MinMax also need 920 // to check for a pair of icmp/select, for which we use getNextInstruction and 921 // isCorrectOpcode functions to step the right number of instruction, and 922 // check the icmp/select pair. 923 // FIXME: We also do not attempt to look through Phi/Select's yet, which might 924 // be part of the reduction chain, or attempt to looks through And's to find a 925 // smaller bitwidth. Subs are also currently not allowed (which are usually 926 // treated as part of a add reduction) as they are expected to generally be 927 // more expensive than out-of-loop reductions, and need to be costed more 928 // carefully. 929 unsigned ExpectedUses = 1; 930 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 931 ExpectedUses = 2; 932 933 auto getNextInstruction = [&](Instruction *Cur) { 934 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 935 // We are expecting a icmp/select pair, which we go to the next select 936 // instruction if we can. We already know that Cur has 2 uses. 937 if (isa<SelectInst>(*Cur->user_begin())) 938 return cast<Instruction>(*Cur->user_begin()); 939 else 940 return cast<Instruction>(*std::next(Cur->user_begin())); 941 } 942 return cast<Instruction>(*Cur->user_begin()); 943 }; 944 auto isCorrectOpcode = [&](Instruction *Cur) { 945 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 946 Value *LHS, *RHS; 947 return SelectPatternResult::isMinOrMax( 948 matchSelectPattern(Cur, LHS, RHS).Flavor); 949 } 950 return Cur->getOpcode() == RedOp; 951 }; 952 953 // The loop exit instruction we check first (as a quick test) but add last. We 954 // check the opcode is correct (and dont allow them to be Subs) and that they 955 // have expected to have the expected number of uses. They will have one use 956 // from the phi and one from a LCSSA value, no matter the type. 957 if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2)) 958 return {}; 959 960 // Check that the Phi has one (or two for min/max) uses. 961 if (!Phi->hasNUses(ExpectedUses)) 962 return {}; 963 Instruction *Cur = getNextInstruction(Phi); 964 965 // Each other instruction in the chain should have the expected number of uses 966 // and be the correct opcode. 967 while (Cur != LoopExitInstr) { 968 if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 969 return {}; 970 971 ReductionOperations.push_back(Cur); 972 Cur = getNextInstruction(Cur); 973 } 974 975 ReductionOperations.push_back(Cur); 976 return ReductionOperations; 977 } 978 979 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 980 const SCEV *Step, BinaryOperator *BOp, 981 Type *ElementType, 982 SmallVectorImpl<Instruction *> *Casts) 983 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp), 984 ElementType(ElementType) { 985 assert(IK != IK_NoInduction && "Not an induction"); 986 987 // Start value type should match the induction kind and the value 988 // itself should not be null. 989 assert(StartValue && "StartValue is null"); 990 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 991 "StartValue is not a pointer for pointer induction"); 992 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 993 "StartValue is not an integer for integer induction"); 994 995 // Check the Step Value. It should be non-zero integer value. 996 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 997 "Step value is zero"); 998 999 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 1000 "Step value should be constant for pointer induction"); 1001 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 1002 "StepValue is not an integer"); 1003 1004 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 1005 "StepValue is not FP for FpInduction"); 1006 assert((IK != IK_FpInduction || 1007 (InductionBinOp && 1008 (InductionBinOp->getOpcode() == Instruction::FAdd || 1009 InductionBinOp->getOpcode() == Instruction::FSub))) && 1010 "Binary opcode should be specified for FP induction"); 1011 1012 if (IK == IK_PtrInduction) 1013 assert(ElementType && "Pointer induction must have element type"); 1014 else 1015 assert(!ElementType && "Non-pointer induction cannot have element type"); 1016 1017 if (Casts) { 1018 for (auto &Inst : *Casts) { 1019 RedundantCasts.push_back(Inst); 1020 } 1021 } 1022 } 1023 1024 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 1025 if (isa<SCEVConstant>(Step)) 1026 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 1027 return nullptr; 1028 } 1029 1030 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 1031 ScalarEvolution *SE, 1032 InductionDescriptor &D) { 1033 1034 // Here we only handle FP induction variables. 1035 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 1036 1037 if (TheLoop->getHeader() != Phi->getParent()) 1038 return false; 1039 1040 // The loop may have multiple entrances or multiple exits; we can analyze 1041 // this phi if it has a unique entry value and a unique backedge value. 1042 if (Phi->getNumIncomingValues() != 2) 1043 return false; 1044 Value *BEValue = nullptr, *StartValue = nullptr; 1045 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 1046 BEValue = Phi->getIncomingValue(0); 1047 StartValue = Phi->getIncomingValue(1); 1048 } else { 1049 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 1050 "Unexpected Phi node in the loop"); 1051 BEValue = Phi->getIncomingValue(1); 1052 StartValue = Phi->getIncomingValue(0); 1053 } 1054 1055 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 1056 if (!BOp) 1057 return false; 1058 1059 Value *Addend = nullptr; 1060 if (BOp->getOpcode() == Instruction::FAdd) { 1061 if (BOp->getOperand(0) == Phi) 1062 Addend = BOp->getOperand(1); 1063 else if (BOp->getOperand(1) == Phi) 1064 Addend = BOp->getOperand(0); 1065 } else if (BOp->getOpcode() == Instruction::FSub) 1066 if (BOp->getOperand(0) == Phi) 1067 Addend = BOp->getOperand(1); 1068 1069 if (!Addend) 1070 return false; 1071 1072 // The addend should be loop invariant 1073 if (auto *I = dyn_cast<Instruction>(Addend)) 1074 if (TheLoop->contains(I)) 1075 return false; 1076 1077 // FP Step has unknown SCEV 1078 const SCEV *Step = SE->getUnknown(Addend); 1079 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 1080 return true; 1081 } 1082 1083 /// This function is called when we suspect that the update-chain of a phi node 1084 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 1085 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 1086 /// predicate P under which the SCEV expression for the phi can be the 1087 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1088 /// cast instructions that are involved in the update-chain of this induction. 1089 /// A caller that adds the required runtime predicate can be free to drop these 1090 /// cast instructions, and compute the phi using \p AR (instead of some scev 1091 /// expression with casts). 1092 /// 1093 /// For example, without a predicate the scev expression can take the following 1094 /// form: 1095 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1096 /// 1097 /// It corresponds to the following IR sequence: 1098 /// %for.body: 1099 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1100 /// %casted_phi = "ExtTrunc i64 %x" 1101 /// %add = add i64 %casted_phi, %step 1102 /// 1103 /// where %x is given in \p PN, 1104 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1105 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1106 /// several forms, for example, such as: 1107 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1108 /// or: 1109 /// ExtTrunc2: %t = shl %x, m 1110 /// %casted_phi = ashr %t, m 1111 /// 1112 /// If we are able to find such sequence, we return the instructions 1113 /// we found, namely %casted_phi and the instructions on its use-def chain up 1114 /// to the phi (not including the phi). 1115 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1116 const SCEVUnknown *PhiScev, 1117 const SCEVAddRecExpr *AR, 1118 SmallVectorImpl<Instruction *> &CastInsts) { 1119 1120 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1121 auto *PN = cast<PHINode>(PhiScev->getValue()); 1122 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1123 const Loop *L = AR->getLoop(); 1124 1125 // Find any cast instructions that participate in the def-use chain of 1126 // PhiScev in the loop. 1127 // FORNOW/TODO: We currently expect the def-use chain to include only 1128 // two-operand instructions, where one of the operands is an invariant. 1129 // createAddRecFromPHIWithCasts() currently does not support anything more 1130 // involved than that, so we keep the search simple. This can be 1131 // extended/generalized as needed. 1132 1133 auto getDef = [&](const Value *Val) -> Value * { 1134 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1135 if (!BinOp) 1136 return nullptr; 1137 Value *Op0 = BinOp->getOperand(0); 1138 Value *Op1 = BinOp->getOperand(1); 1139 Value *Def = nullptr; 1140 if (L->isLoopInvariant(Op0)) 1141 Def = Op1; 1142 else if (L->isLoopInvariant(Op1)) 1143 Def = Op0; 1144 return Def; 1145 }; 1146 1147 // Look for the instruction that defines the induction via the 1148 // loop backedge. 1149 BasicBlock *Latch = L->getLoopLatch(); 1150 if (!Latch) 1151 return false; 1152 Value *Val = PN->getIncomingValueForBlock(Latch); 1153 if (!Val) 1154 return false; 1155 1156 // Follow the def-use chain until the induction phi is reached. 1157 // If on the way we encounter a Value that has the same SCEV Expr as the 1158 // phi node, we can consider the instructions we visit from that point 1159 // as part of the cast-sequence that can be ignored. 1160 bool InCastSequence = false; 1161 auto *Inst = dyn_cast<Instruction>(Val); 1162 while (Val != PN) { 1163 // If we encountered a phi node other than PN, or if we left the loop, 1164 // we bail out. 1165 if (!Inst || !L->contains(Inst)) { 1166 return false; 1167 } 1168 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1169 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1170 InCastSequence = true; 1171 if (InCastSequence) { 1172 // Only the last instruction in the cast sequence is expected to have 1173 // uses outside the induction def-use chain. 1174 if (!CastInsts.empty()) 1175 if (!Inst->hasOneUse()) 1176 return false; 1177 CastInsts.push_back(Inst); 1178 } 1179 Val = getDef(Val); 1180 if (!Val) 1181 return false; 1182 Inst = dyn_cast<Instruction>(Val); 1183 } 1184 1185 return InCastSequence; 1186 } 1187 1188 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1189 PredicatedScalarEvolution &PSE, 1190 InductionDescriptor &D, bool Assume) { 1191 Type *PhiTy = Phi->getType(); 1192 1193 // Handle integer and pointer inductions variables. 1194 // Now we handle also FP induction but not trying to make a 1195 // recurrent expression from the PHI node in-place. 1196 1197 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1198 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1199 return false; 1200 1201 if (PhiTy->isFloatingPointTy()) 1202 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1203 1204 const SCEV *PhiScev = PSE.getSCEV(Phi); 1205 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1206 1207 // We need this expression to be an AddRecExpr. 1208 if (Assume && !AR) 1209 AR = PSE.getAsAddRec(Phi); 1210 1211 if (!AR) { 1212 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1213 return false; 1214 } 1215 1216 // Record any Cast instructions that participate in the induction update 1217 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1218 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1219 // only after enabling Assume with PSCEV, this means we may have encountered 1220 // cast instructions that required adding a runtime check in order to 1221 // guarantee the correctness of the AddRecurrence respresentation of the 1222 // induction. 1223 if (PhiScev != AR && SymbolicPhi) { 1224 SmallVector<Instruction *, 2> Casts; 1225 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1226 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1227 } 1228 1229 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1230 } 1231 1232 bool InductionDescriptor::isInductionPHI( 1233 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1234 InductionDescriptor &D, const SCEV *Expr, 1235 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1236 Type *PhiTy = Phi->getType(); 1237 // We only handle integer and pointer inductions variables. 1238 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1239 return false; 1240 1241 // Check that the PHI is consecutive. 1242 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1243 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1244 1245 if (!AR) { 1246 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1247 return false; 1248 } 1249 1250 if (AR->getLoop() != TheLoop) { 1251 // FIXME: We should treat this as a uniform. Unfortunately, we 1252 // don't currently know how to handled uniform PHIs. 1253 LLVM_DEBUG( 1254 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1255 return false; 1256 } 1257 1258 Value *StartValue = 1259 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1260 1261 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1262 if (!Latch) 1263 return false; 1264 1265 const SCEV *Step = AR->getStepRecurrence(*SE); 1266 // Calculate the pointer stride and check if it is consecutive. 1267 // The stride may be a constant or a loop invariant integer value. 1268 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1269 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1270 return false; 1271 1272 if (PhiTy->isIntegerTy()) { 1273 BinaryOperator *BOp = 1274 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1275 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1276 /* ElementType */ nullptr, CastsToIgnore); 1277 return true; 1278 } 1279 1280 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1281 // Pointer induction should be a constant. 1282 if (!ConstStep) 1283 return false; 1284 1285 // Always use i8 element type for opaque pointer inductions. 1286 PointerType *PtrTy = cast<PointerType>(PhiTy); 1287 Type *ElementType = PtrTy->isOpaque() ? Type::getInt8Ty(PtrTy->getContext()) 1288 : PtrTy->getElementType(); 1289 if (!ElementType->isSized()) 1290 return false; 1291 1292 ConstantInt *CV = ConstStep->getValue(); 1293 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1294 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(ElementType)); 1295 if (!Size) 1296 return false; 1297 1298 int64_t CVSize = CV->getSExtValue(); 1299 if (CVSize % Size) 1300 return false; 1301 auto *StepValue = 1302 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1303 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, 1304 /* BinOp */ nullptr, ElementType); 1305 return true; 1306 } 1307