1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "iv-descriptors" 41 42 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 43 SmallPtrSetImpl<Instruction *> &Set) { 44 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 45 if (!Set.count(dyn_cast<Instruction>(*Use))) 46 return false; 47 return true; 48 } 49 50 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { 51 switch (Kind) { 52 default: 53 break; 54 case RecurKind::Add: 55 case RecurKind::Mul: 56 case RecurKind::Or: 57 case RecurKind::And: 58 case RecurKind::Xor: 59 case RecurKind::SMax: 60 case RecurKind::SMin: 61 case RecurKind::UMax: 62 case RecurKind::UMin: 63 return true; 64 } 65 return false; 66 } 67 68 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { 69 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); 70 } 71 72 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) { 73 switch (Kind) { 74 default: 75 break; 76 case RecurKind::Add: 77 case RecurKind::Mul: 78 case RecurKind::FAdd: 79 case RecurKind::FMul: 80 return true; 81 } 82 return false; 83 } 84 85 /// Determines if Phi may have been type-promoted. If Phi has a single user 86 /// that ANDs the Phi with a type mask, return the user. RT is updated to 87 /// account for the narrower bit width represented by the mask, and the AND 88 /// instruction is added to CI. 89 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 90 SmallPtrSetImpl<Instruction *> &Visited, 91 SmallPtrSetImpl<Instruction *> &CI) { 92 if (!Phi->hasOneUse()) 93 return Phi; 94 95 const APInt *M = nullptr; 96 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 97 98 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 99 // with a new integer type of the corresponding bit width. 100 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 101 int32_t Bits = (*M + 1).exactLogBase2(); 102 if (Bits > 0) { 103 RT = IntegerType::get(Phi->getContext(), Bits); 104 Visited.insert(Phi); 105 CI.insert(J); 106 return J; 107 } 108 } 109 return Phi; 110 } 111 112 /// Compute the minimal bit width needed to represent a reduction whose exit 113 /// instruction is given by Exit. 114 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 115 DemandedBits *DB, 116 AssumptionCache *AC, 117 DominatorTree *DT) { 118 bool IsSigned = false; 119 const DataLayout &DL = Exit->getModule()->getDataLayout(); 120 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 121 122 if (DB) { 123 // Use the demanded bits analysis to determine the bits that are live out 124 // of the exit instruction, rounding up to the nearest power of two. If the 125 // use of demanded bits results in a smaller bit width, we know the value 126 // must be positive (i.e., IsSigned = false), because if this were not the 127 // case, the sign bit would have been demanded. 128 auto Mask = DB->getDemandedBits(Exit); 129 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 130 } 131 132 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 133 // If demanded bits wasn't able to limit the bit width, we can try to use 134 // value tracking instead. This can be the case, for example, if the value 135 // may be negative. 136 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 137 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 138 MaxBitWidth = NumTypeBits - NumSignBits; 139 KnownBits Bits = computeKnownBits(Exit, DL); 140 if (!Bits.isNonNegative()) { 141 // If the value is not known to be non-negative, we set IsSigned to true, 142 // meaning that we will use sext instructions instead of zext 143 // instructions to restore the original type. 144 IsSigned = true; 145 if (!Bits.isNegative()) 146 // If the value is not known to be negative, we don't known what the 147 // upper bit is, and therefore, we don't know what kind of extend we 148 // will need. In this case, just increase the bit width by one bit and 149 // use sext. 150 ++MaxBitWidth; 151 } 152 } 153 if (!isPowerOf2_64(MaxBitWidth)) 154 MaxBitWidth = NextPowerOf2(MaxBitWidth); 155 156 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 157 IsSigned); 158 } 159 160 /// Collect cast instructions that can be ignored in the vectorizer's cost 161 /// model, given a reduction exit value and the minimal type in which the 162 /// reduction can be represented. 163 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 164 Type *RecurrenceType, 165 SmallPtrSetImpl<Instruction *> &Casts) { 166 167 SmallVector<Instruction *, 8> Worklist; 168 SmallPtrSet<Instruction *, 8> Visited; 169 Worklist.push_back(Exit); 170 171 while (!Worklist.empty()) { 172 Instruction *Val = Worklist.pop_back_val(); 173 Visited.insert(Val); 174 if (auto *Cast = dyn_cast<CastInst>(Val)) 175 if (Cast->getSrcTy() == RecurrenceType) { 176 // If the source type of a cast instruction is equal to the recurrence 177 // type, it will be eliminated, and should be ignored in the vectorizer 178 // cost model. 179 Casts.insert(Cast); 180 continue; 181 } 182 183 // Add all operands to the work list if they are loop-varying values that 184 // we haven't yet visited. 185 for (Value *O : cast<User>(Val)->operands()) 186 if (auto *I = dyn_cast<Instruction>(O)) 187 if (TheLoop->contains(I) && !Visited.count(I)) 188 Worklist.push_back(I); 189 } 190 } 191 192 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, 193 Loop *TheLoop, bool HasFunNoNaNAttr, 194 RecurrenceDescriptor &RedDes, 195 DemandedBits *DB, 196 AssumptionCache *AC, 197 DominatorTree *DT) { 198 if (Phi->getNumIncomingValues() != 2) 199 return false; 200 201 // Reduction variables are only found in the loop header block. 202 if (Phi->getParent() != TheLoop->getHeader()) 203 return false; 204 205 // Obtain the reduction start value from the value that comes from the loop 206 // preheader. 207 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 208 209 // ExitInstruction is the single value which is used outside the loop. 210 // We only allow for a single reduction value to be used outside the loop. 211 // This includes users of the reduction, variables (which form a cycle 212 // which ends in the phi node). 213 Instruction *ExitInstruction = nullptr; 214 // Indicates that we found a reduction operation in our scan. 215 bool FoundReduxOp = false; 216 217 // We start with the PHI node and scan for all of the users of this 218 // instruction. All users must be instructions that can be used as reduction 219 // variables (such as ADD). We must have a single out-of-block user. The cycle 220 // must include the original PHI. 221 bool FoundStartPHI = false; 222 223 // To recognize min/max patterns formed by a icmp select sequence, we store 224 // the number of instruction we saw from the recognized min/max pattern, 225 // to make sure we only see exactly the two instructions. 226 unsigned NumCmpSelectPatternInst = 0; 227 InstDesc ReduxDesc(false, nullptr); 228 229 // Data used for determining if the recurrence has been type-promoted. 230 Type *RecurrenceType = Phi->getType(); 231 SmallPtrSet<Instruction *, 4> CastInsts; 232 Instruction *Start = Phi; 233 bool IsSigned = false; 234 235 SmallPtrSet<Instruction *, 8> VisitedInsts; 236 SmallVector<Instruction *, 8> Worklist; 237 238 // Return early if the recurrence kind does not match the type of Phi. If the 239 // recurrence kind is arithmetic, we attempt to look through AND operations 240 // resulting from the type promotion performed by InstCombine. Vector 241 // operations are not limited to the legal integer widths, so we may be able 242 // to evaluate the reduction in the narrower width. 243 if (RecurrenceType->isFloatingPointTy()) { 244 if (!isFloatingPointRecurrenceKind(Kind)) 245 return false; 246 } else { 247 if (!isIntegerRecurrenceKind(Kind)) 248 return false; 249 if (isArithmeticRecurrenceKind(Kind)) 250 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 251 } 252 253 Worklist.push_back(Start); 254 VisitedInsts.insert(Start); 255 256 // Start with all flags set because we will intersect this with the reduction 257 // flags from all the reduction operations. 258 FastMathFlags FMF = FastMathFlags::getFast(); 259 260 // A value in the reduction can be used: 261 // - By the reduction: 262 // - Reduction operation: 263 // - One use of reduction value (safe). 264 // - Multiple use of reduction value (not safe). 265 // - PHI: 266 // - All uses of the PHI must be the reduction (safe). 267 // - Otherwise, not safe. 268 // - By instructions outside of the loop (safe). 269 // * One value may have several outside users, but all outside 270 // uses must be of the same value. 271 // - By an instruction that is not part of the reduction (not safe). 272 // This is either: 273 // * An instruction type other than PHI or the reduction operation. 274 // * A PHI in the header other than the initial PHI. 275 while (!Worklist.empty()) { 276 Instruction *Cur = Worklist.back(); 277 Worklist.pop_back(); 278 279 // No Users. 280 // If the instruction has no users then this is a broken chain and can't be 281 // a reduction variable. 282 if (Cur->use_empty()) 283 return false; 284 285 bool IsAPhi = isa<PHINode>(Cur); 286 287 // A header PHI use other than the original PHI. 288 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 289 return false; 290 291 // Reductions of instructions such as Div, and Sub is only possible if the 292 // LHS is the reduction variable. 293 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 294 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 295 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 296 return false; 297 298 // Any reduction instruction must be of one of the allowed kinds. We ignore 299 // the starting value (the Phi or an AND instruction if the Phi has been 300 // type-promoted). 301 if (Cur != Start) { 302 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); 303 if (!ReduxDesc.isRecurrence()) 304 return false; 305 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 306 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) 307 FMF &= ReduxDesc.getPatternInst()->getFastMathFlags(); 308 // Update this reduction kind if we matched a new instruction. 309 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' 310 // state accurate while processing the worklist? 311 if (ReduxDesc.getRecKind() != RecurKind::None) 312 Kind = ReduxDesc.getRecKind(); 313 } 314 315 bool IsASelect = isa<SelectInst>(Cur); 316 317 // A conditional reduction operation must only have 2 or less uses in 318 // VisitedInsts. 319 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && 320 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 321 return false; 322 323 // A reduction operation must only have one use of the reduction value. 324 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && 325 hasMultipleUsesOf(Cur, VisitedInsts, 1)) 326 return false; 327 328 // All inputs to a PHI node must be a reduction value. 329 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 330 return false; 331 332 if (isIntMinMaxRecurrenceKind(Kind) && 333 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 334 ++NumCmpSelectPatternInst; 335 if (isFPMinMaxRecurrenceKind(Kind) && 336 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 337 ++NumCmpSelectPatternInst; 338 339 // Check whether we found a reduction operator. 340 FoundReduxOp |= !IsAPhi && Cur != Start; 341 342 // Process users of current instruction. Push non-PHI nodes after PHI nodes 343 // onto the stack. This way we are going to have seen all inputs to PHI 344 // nodes once we get to them. 345 SmallVector<Instruction *, 8> NonPHIs; 346 SmallVector<Instruction *, 8> PHIs; 347 for (User *U : Cur->users()) { 348 Instruction *UI = cast<Instruction>(U); 349 350 // Check if we found the exit user. 351 BasicBlock *Parent = UI->getParent(); 352 if (!TheLoop->contains(Parent)) { 353 // If we already know this instruction is used externally, move on to 354 // the next user. 355 if (ExitInstruction == Cur) 356 continue; 357 358 // Exit if you find multiple values used outside or if the header phi 359 // node is being used. In this case the user uses the value of the 360 // previous iteration, in which case we would loose "VF-1" iterations of 361 // the reduction operation if we vectorize. 362 if (ExitInstruction != nullptr || Cur == Phi) 363 return false; 364 365 // The instruction used by an outside user must be the last instruction 366 // before we feed back to the reduction phi. Otherwise, we loose VF-1 367 // operations on the value. 368 if (!is_contained(Phi->operands(), Cur)) 369 return false; 370 371 ExitInstruction = Cur; 372 continue; 373 } 374 375 // Process instructions only once (termination). Each reduction cycle 376 // value must only be used once, except by phi nodes and min/max 377 // reductions which are represented as a cmp followed by a select. 378 InstDesc IgnoredVal(false, nullptr); 379 if (VisitedInsts.insert(UI).second) { 380 if (isa<PHINode>(UI)) 381 PHIs.push_back(UI); 382 else 383 NonPHIs.push_back(UI); 384 } else if (!isa<PHINode>(UI) && 385 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 386 !isa<SelectInst>(UI)) || 387 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 388 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) 389 return false; 390 391 // Remember that we completed the cycle. 392 if (UI == Phi) 393 FoundStartPHI = true; 394 } 395 Worklist.append(PHIs.begin(), PHIs.end()); 396 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 397 } 398 399 // This means we have seen one but not the other instruction of the 400 // pattern or more than just a select and cmp. 401 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2) 402 return false; 403 404 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 405 return false; 406 407 if (Start != Phi) { 408 // If the starting value is not the same as the phi node, we speculatively 409 // looked through an 'and' instruction when evaluating a potential 410 // arithmetic reduction to determine if it may have been type-promoted. 411 // 412 // We now compute the minimal bit width that is required to represent the 413 // reduction. If this is the same width that was indicated by the 'and', we 414 // can represent the reduction in the smaller type. The 'and' instruction 415 // will be eliminated since it will essentially be a cast instruction that 416 // can be ignore in the cost model. If we compute a different type than we 417 // did when evaluating the 'and', the 'and' will not be eliminated, and we 418 // will end up with different kinds of operations in the recurrence 419 // expression (e.g., IntegerAND, IntegerADD). We give up if this is 420 // the case. 421 // 422 // The vectorizer relies on InstCombine to perform the actual 423 // type-shrinking. It does this by inserting instructions to truncate the 424 // exit value of the reduction to the width indicated by RecurrenceType and 425 // then extend this value back to the original width. If IsSigned is false, 426 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 427 // used. 428 // 429 // TODO: We should not rely on InstCombine to rewrite the reduction in the 430 // smaller type. We should just generate a correctly typed expression 431 // to begin with. 432 Type *ComputedType; 433 std::tie(ComputedType, IsSigned) = 434 computeRecurrenceType(ExitInstruction, DB, AC, DT); 435 if (ComputedType != RecurrenceType) 436 return false; 437 438 // The recurrence expression will be represented in a narrower type. If 439 // there are any cast instructions that will be unnecessary, collect them 440 // in CastInsts. Note that the 'and' instruction was already included in 441 // this list. 442 // 443 // TODO: A better way to represent this may be to tag in some way all the 444 // instructions that are a part of the reduction. The vectorizer cost 445 // model could then apply the recurrence type to these instructions, 446 // without needing a white list of instructions to ignore. 447 // This may also be useful for the inloop reductions, if it can be 448 // kept simple enough. 449 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 450 } 451 452 // We found a reduction var if we have reached the original phi node and we 453 // only have a single instruction with out-of-loop users. 454 455 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 456 // is saved as part of the RecurrenceDescriptor. 457 458 // Save the description of this reduction variable. 459 RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, 460 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, 461 IsSigned, CastInsts); 462 RedDes = RD; 463 464 return true; 465 } 466 467 RecurrenceDescriptor::InstDesc 468 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, 469 const InstDesc &Prev) { 470 assert((isa<CmpInst>(I) || isa<SelectInst>(I)) && 471 "Expected a cmp or select instruction"); 472 473 // We must handle the select(cmp()) as a single instruction. Advance to the 474 // select. 475 CmpInst::Predicate Pred; 476 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 477 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 478 return InstDesc(Select, Prev.getRecKind()); 479 } 480 481 // Only match select with single use cmp condition. 482 if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 483 m_Value()))) 484 return InstDesc(false, I); 485 486 // Look for a min/max pattern. 487 if (match(I, m_UMin(m_Value(), m_Value()))) 488 return InstDesc(I, RecurKind::UMin); 489 if (match(I, m_UMax(m_Value(), m_Value()))) 490 return InstDesc(I, RecurKind::UMax); 491 if (match(I, m_SMax(m_Value(), m_Value()))) 492 return InstDesc(I, RecurKind::SMax); 493 if (match(I, m_SMin(m_Value(), m_Value()))) 494 return InstDesc(I, RecurKind::SMin); 495 if (match(I, m_OrdFMin(m_Value(), m_Value()))) 496 return InstDesc(I, RecurKind::FMin); 497 if (match(I, m_OrdFMax(m_Value(), m_Value()))) 498 return InstDesc(I, RecurKind::FMax); 499 if (match(I, m_UnordFMin(m_Value(), m_Value()))) 500 return InstDesc(I, RecurKind::FMin); 501 if (match(I, m_UnordFMax(m_Value(), m_Value()))) 502 return InstDesc(I, RecurKind::FMax); 503 504 return InstDesc(false, I); 505 } 506 507 /// Returns true if the select instruction has users in the compare-and-add 508 /// reduction pattern below. The select instruction argument is the last one 509 /// in the sequence. 510 /// 511 /// %sum.1 = phi ... 512 /// ... 513 /// %cmp = fcmp pred %0, %CFP 514 /// %add = fadd %0, %sum.1 515 /// %sum.2 = select %cmp, %add, %sum.1 516 RecurrenceDescriptor::InstDesc 517 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { 518 SelectInst *SI = dyn_cast<SelectInst>(I); 519 if (!SI) 520 return InstDesc(false, I); 521 522 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 523 // Only handle single use cases for now. 524 if (!CI || !CI->hasOneUse()) 525 return InstDesc(false, I); 526 527 Value *TrueVal = SI->getTrueValue(); 528 Value *FalseVal = SI->getFalseValue(); 529 // Handle only when either of operands of select instruction is a PHI 530 // node for now. 531 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 532 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 533 return InstDesc(false, I); 534 535 Instruction *I1 = 536 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 537 : dyn_cast<Instruction>(TrueVal); 538 if (!I1 || !I1->isBinaryOp()) 539 return InstDesc(false, I); 540 541 Value *Op1, *Op2; 542 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 543 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 544 I1->isFast()) 545 return InstDesc(Kind == RecurKind::FAdd, SI); 546 547 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 548 return InstDesc(Kind == RecurKind::FMul, SI); 549 550 return InstDesc(false, I); 551 } 552 553 RecurrenceDescriptor::InstDesc 554 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind, 555 InstDesc &Prev, bool HasFunNoNaNAttr) { 556 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 557 if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc()) 558 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 559 560 switch (I->getOpcode()) { 561 default: 562 return InstDesc(false, I); 563 case Instruction::PHI: 564 return InstDesc(I, Prev.getRecKind(), Prev.getUnsafeAlgebraInst()); 565 case Instruction::Sub: 566 case Instruction::Add: 567 return InstDesc(Kind == RecurKind::Add, I); 568 case Instruction::Mul: 569 return InstDesc(Kind == RecurKind::Mul, I); 570 case Instruction::And: 571 return InstDesc(Kind == RecurKind::And, I); 572 case Instruction::Or: 573 return InstDesc(Kind == RecurKind::Or, I); 574 case Instruction::Xor: 575 return InstDesc(Kind == RecurKind::Xor, I); 576 case Instruction::FDiv: 577 case Instruction::FMul: 578 return InstDesc(Kind == RecurKind::FMul, I, UAI); 579 case Instruction::FSub: 580 case Instruction::FAdd: 581 return InstDesc(Kind == RecurKind::FAdd, I, UAI); 582 case Instruction::Select: 583 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) 584 return isConditionalRdxPattern(Kind, I); 585 LLVM_FALLTHROUGH; 586 case Instruction::FCmp: 587 case Instruction::ICmp: 588 if (!isIntMinMaxRecurrenceKind(Kind) && 589 (!HasFunNoNaNAttr || !isFPMinMaxRecurrenceKind(Kind))) 590 return InstDesc(false, I); 591 return isMinMaxSelectCmpPattern(I, Prev); 592 } 593 } 594 595 bool RecurrenceDescriptor::hasMultipleUsesOf( 596 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 597 unsigned MaxNumUses) { 598 unsigned NumUses = 0; 599 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 600 ++Use) { 601 if (Insts.count(dyn_cast<Instruction>(*Use))) 602 ++NumUses; 603 if (NumUses > MaxNumUses) 604 return true; 605 } 606 607 return false; 608 } 609 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 610 RecurrenceDescriptor &RedDes, 611 DemandedBits *DB, AssumptionCache *AC, 612 DominatorTree *DT) { 613 614 BasicBlock *Header = TheLoop->getHeader(); 615 Function &F = *Header->getParent(); 616 bool HasFunNoNaNAttr = 617 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 618 619 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, HasFunNoNaNAttr, RedDes, DB, 620 AC, DT)) { 621 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 622 return true; 623 } 624 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, HasFunNoNaNAttr, RedDes, DB, 625 AC, DT)) { 626 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 627 return true; 628 } 629 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, HasFunNoNaNAttr, RedDes, DB, 630 AC, DT)) { 631 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 632 return true; 633 } 634 if (AddReductionVar(Phi, RecurKind::And, TheLoop, HasFunNoNaNAttr, RedDes, DB, 635 AC, DT)) { 636 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 637 return true; 638 } 639 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, HasFunNoNaNAttr, RedDes, DB, 640 AC, DT)) { 641 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 642 return true; 643 } 644 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, HasFunNoNaNAttr, RedDes, 645 DB, AC, DT)) { 646 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); 647 return true; 648 } 649 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, HasFunNoNaNAttr, RedDes, 650 DB, AC, DT)) { 651 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); 652 return true; 653 } 654 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, HasFunNoNaNAttr, RedDes, 655 DB, AC, DT)) { 656 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); 657 return true; 658 } 659 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, HasFunNoNaNAttr, RedDes, 660 DB, AC, DT)) { 661 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); 662 return true; 663 } 664 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, HasFunNoNaNAttr, RedDes, 665 DB, AC, DT)) { 666 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 667 return true; 668 } 669 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, HasFunNoNaNAttr, RedDes, 670 DB, AC, DT)) { 671 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 672 return true; 673 } 674 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, HasFunNoNaNAttr, RedDes, 675 DB, AC, DT)) { 676 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); 677 return true; 678 } 679 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, HasFunNoNaNAttr, RedDes, 680 DB, AC, DT)) { 681 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); 682 return true; 683 } 684 // Not a reduction of known type. 685 return false; 686 } 687 688 bool RecurrenceDescriptor::isFirstOrderRecurrence( 689 PHINode *Phi, Loop *TheLoop, 690 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 691 692 // Ensure the phi node is in the loop header and has two incoming values. 693 if (Phi->getParent() != TheLoop->getHeader() || 694 Phi->getNumIncomingValues() != 2) 695 return false; 696 697 // Ensure the loop has a preheader and a single latch block. The loop 698 // vectorizer will need the latch to set up the next iteration of the loop. 699 auto *Preheader = TheLoop->getLoopPreheader(); 700 auto *Latch = TheLoop->getLoopLatch(); 701 if (!Preheader || !Latch) 702 return false; 703 704 // Ensure the phi node's incoming blocks are the loop preheader and latch. 705 if (Phi->getBasicBlockIndex(Preheader) < 0 || 706 Phi->getBasicBlockIndex(Latch) < 0) 707 return false; 708 709 // Get the previous value. The previous value comes from the latch edge while 710 // the initial value comes form the preheader edge. 711 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 712 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 713 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 714 return false; 715 716 // Ensure every user of the phi node is dominated by the previous value. 717 // The dominance requirement ensures the loop vectorizer will not need to 718 // vectorize the initial value prior to the first iteration of the loop. 719 // TODO: Consider extending this sinking to handle memory instructions and 720 // phis with multiple users. 721 722 // Returns true, if all users of I are dominated by DominatedBy. 723 auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) { 724 return all_of(I->uses(), [DT, DominatedBy](Use &U) { 725 return DT->dominates(DominatedBy, U); 726 }); 727 }; 728 729 if (Phi->hasOneUse()) { 730 Instruction *I = Phi->user_back(); 731 732 // If the user of the PHI is also the incoming value, we potentially have a 733 // reduction and which cannot be handled by sinking. 734 if (Previous == I) 735 return false; 736 737 // We cannot sink terminator instructions. 738 if (I->getParent()->getTerminator() == I) 739 return false; 740 741 // Do not try to sink an instruction multiple times (if multiple operands 742 // are first order recurrences). 743 // TODO: We can support this case, by sinking the instruction after the 744 // 'deepest' previous instruction. 745 if (SinkAfter.find(I) != SinkAfter.end()) 746 return false; 747 748 if (DT->dominates(Previous, I)) // We already are good w/o sinking. 749 return true; 750 751 // We can sink any instruction without side effects, as long as all users 752 // are dominated by the instruction we are sinking after. 753 if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() && 754 allUsesDominatedBy(I, Previous)) { 755 SinkAfter[I] = Previous; 756 return true; 757 } 758 } 759 760 return allUsesDominatedBy(Phi, Previous); 761 } 762 763 /// This function returns the identity element (or neutral element) for 764 /// the operation K. 765 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp) { 766 switch (K) { 767 case RecurKind::Xor: 768 case RecurKind::Add: 769 case RecurKind::Or: 770 // Adding, Xoring, Oring zero to a number does not change it. 771 return ConstantInt::get(Tp, 0); 772 case RecurKind::Mul: 773 // Multiplying a number by 1 does not change it. 774 return ConstantInt::get(Tp, 1); 775 case RecurKind::And: 776 // AND-ing a number with an all-1 value does not change it. 777 return ConstantInt::get(Tp, -1, true); 778 case RecurKind::FMul: 779 // Multiplying a number by 1 does not change it. 780 return ConstantFP::get(Tp, 1.0L); 781 case RecurKind::FAdd: 782 // Adding zero to a number does not change it. 783 return ConstantFP::get(Tp, 0.0L); 784 case RecurKind::UMin: 785 return ConstantInt::get(Tp, -1); 786 case RecurKind::UMax: 787 return ConstantInt::get(Tp, 0); 788 case RecurKind::SMin: 789 return ConstantInt::get(Tp, 790 APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); 791 case RecurKind::SMax: 792 return ConstantInt::get(Tp, 793 APInt::getSignedMinValue(Tp->getIntegerBitWidth())); 794 case RecurKind::FMin: 795 return ConstantFP::getInfinity(Tp, true); 796 case RecurKind::FMax: 797 return ConstantFP::getInfinity(Tp, false); 798 default: 799 llvm_unreachable("Unknown recurrence kind"); 800 } 801 } 802 803 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { 804 switch (Kind) { 805 case RecurKind::Add: 806 return Instruction::Add; 807 case RecurKind::Mul: 808 return Instruction::Mul; 809 case RecurKind::Or: 810 return Instruction::Or; 811 case RecurKind::And: 812 return Instruction::And; 813 case RecurKind::Xor: 814 return Instruction::Xor; 815 case RecurKind::FMul: 816 return Instruction::FMul; 817 case RecurKind::FAdd: 818 return Instruction::FAdd; 819 case RecurKind::SMax: 820 case RecurKind::SMin: 821 case RecurKind::UMax: 822 case RecurKind::UMin: 823 return Instruction::ICmp; 824 case RecurKind::FMax: 825 case RecurKind::FMin: 826 return Instruction::FCmp; 827 default: 828 llvm_unreachable("Unknown recurrence operation"); 829 } 830 } 831 832 SmallVector<Instruction *, 4> 833 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 834 SmallVector<Instruction *, 4> ReductionOperations; 835 unsigned RedOp = getOpcode(Kind); 836 837 // Search down from the Phi to the LoopExitInstr, looking for instructions 838 // with a single user of the correct type for the reduction. 839 840 // Note that we check that the type of the operand is correct for each item in 841 // the chain, including the last (the loop exit value). This can come up from 842 // sub, which would otherwise be treated as an add reduction. MinMax also need 843 // to check for a pair of icmp/select, for which we use getNextInstruction and 844 // isCorrectOpcode functions to step the right number of instruction, and 845 // check the icmp/select pair. 846 // FIXME: We also do not attempt to look through Phi/Select's yet, which might 847 // be part of the reduction chain, or attempt to looks through And's to find a 848 // smaller bitwidth. Subs are also currently not allowed (which are usually 849 // treated as part of a add reduction) as they are expected to generally be 850 // more expensive than out-of-loop reductions, and need to be costed more 851 // carefully. 852 unsigned ExpectedUses = 1; 853 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 854 ExpectedUses = 2; 855 856 auto getNextInstruction = [&](Instruction *Cur) { 857 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 858 // We are expecting a icmp/select pair, which we go to the next select 859 // instruction if we can. We already know that Cur has 2 uses. 860 if (isa<SelectInst>(*Cur->user_begin())) 861 return cast<Instruction>(*Cur->user_begin()); 862 else 863 return cast<Instruction>(*std::next(Cur->user_begin())); 864 } 865 return cast<Instruction>(*Cur->user_begin()); 866 }; 867 auto isCorrectOpcode = [&](Instruction *Cur) { 868 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 869 Value *LHS, *RHS; 870 return SelectPatternResult::isMinOrMax( 871 matchSelectPattern(Cur, LHS, RHS).Flavor); 872 } 873 return Cur->getOpcode() == RedOp; 874 }; 875 876 // The loop exit instruction we check first (as a quick test) but add last. We 877 // check the opcode is correct (and dont allow them to be Subs) and that they 878 // have expected to have the expected number of uses. They will have one use 879 // from the phi and one from a LCSSA value, no matter the type. 880 if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2)) 881 return {}; 882 883 // Check that the Phi has one (or two for min/max) uses. 884 if (!Phi->hasNUses(ExpectedUses)) 885 return {}; 886 Instruction *Cur = getNextInstruction(Phi); 887 888 // Each other instruction in the chain should have the expected number of uses 889 // and be the correct opcode. 890 while (Cur != LoopExitInstr) { 891 if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 892 return {}; 893 894 ReductionOperations.push_back(Cur); 895 Cur = getNextInstruction(Cur); 896 } 897 898 ReductionOperations.push_back(Cur); 899 return ReductionOperations; 900 } 901 902 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 903 const SCEV *Step, BinaryOperator *BOp, 904 SmallVectorImpl<Instruction *> *Casts) 905 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 906 assert(IK != IK_NoInduction && "Not an induction"); 907 908 // Start value type should match the induction kind and the value 909 // itself should not be null. 910 assert(StartValue && "StartValue is null"); 911 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 912 "StartValue is not a pointer for pointer induction"); 913 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 914 "StartValue is not an integer for integer induction"); 915 916 // Check the Step Value. It should be non-zero integer value. 917 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 918 "Step value is zero"); 919 920 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 921 "Step value should be constant for pointer induction"); 922 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 923 "StepValue is not an integer"); 924 925 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 926 "StepValue is not FP for FpInduction"); 927 assert((IK != IK_FpInduction || 928 (InductionBinOp && 929 (InductionBinOp->getOpcode() == Instruction::FAdd || 930 InductionBinOp->getOpcode() == Instruction::FSub))) && 931 "Binary opcode should be specified for FP induction"); 932 933 if (Casts) { 934 for (auto &Inst : *Casts) { 935 RedundantCasts.push_back(Inst); 936 } 937 } 938 } 939 940 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 941 if (isa<SCEVConstant>(Step)) 942 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 943 return nullptr; 944 } 945 946 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 947 ScalarEvolution *SE, 948 InductionDescriptor &D) { 949 950 // Here we only handle FP induction variables. 951 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 952 953 if (TheLoop->getHeader() != Phi->getParent()) 954 return false; 955 956 // The loop may have multiple entrances or multiple exits; we can analyze 957 // this phi if it has a unique entry value and a unique backedge value. 958 if (Phi->getNumIncomingValues() != 2) 959 return false; 960 Value *BEValue = nullptr, *StartValue = nullptr; 961 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 962 BEValue = Phi->getIncomingValue(0); 963 StartValue = Phi->getIncomingValue(1); 964 } else { 965 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 966 "Unexpected Phi node in the loop"); 967 BEValue = Phi->getIncomingValue(1); 968 StartValue = Phi->getIncomingValue(0); 969 } 970 971 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 972 if (!BOp) 973 return false; 974 975 Value *Addend = nullptr; 976 if (BOp->getOpcode() == Instruction::FAdd) { 977 if (BOp->getOperand(0) == Phi) 978 Addend = BOp->getOperand(1); 979 else if (BOp->getOperand(1) == Phi) 980 Addend = BOp->getOperand(0); 981 } else if (BOp->getOpcode() == Instruction::FSub) 982 if (BOp->getOperand(0) == Phi) 983 Addend = BOp->getOperand(1); 984 985 if (!Addend) 986 return false; 987 988 // The addend should be loop invariant 989 if (auto *I = dyn_cast<Instruction>(Addend)) 990 if (TheLoop->contains(I)) 991 return false; 992 993 // FP Step has unknown SCEV 994 const SCEV *Step = SE->getUnknown(Addend); 995 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 996 return true; 997 } 998 999 /// This function is called when we suspect that the update-chain of a phi node 1000 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 1001 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 1002 /// predicate P under which the SCEV expression for the phi can be the 1003 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1004 /// cast instructions that are involved in the update-chain of this induction. 1005 /// A caller that adds the required runtime predicate can be free to drop these 1006 /// cast instructions, and compute the phi using \p AR (instead of some scev 1007 /// expression with casts). 1008 /// 1009 /// For example, without a predicate the scev expression can take the following 1010 /// form: 1011 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1012 /// 1013 /// It corresponds to the following IR sequence: 1014 /// %for.body: 1015 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1016 /// %casted_phi = "ExtTrunc i64 %x" 1017 /// %add = add i64 %casted_phi, %step 1018 /// 1019 /// where %x is given in \p PN, 1020 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1021 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1022 /// several forms, for example, such as: 1023 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1024 /// or: 1025 /// ExtTrunc2: %t = shl %x, m 1026 /// %casted_phi = ashr %t, m 1027 /// 1028 /// If we are able to find such sequence, we return the instructions 1029 /// we found, namely %casted_phi and the instructions on its use-def chain up 1030 /// to the phi (not including the phi). 1031 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1032 const SCEVUnknown *PhiScev, 1033 const SCEVAddRecExpr *AR, 1034 SmallVectorImpl<Instruction *> &CastInsts) { 1035 1036 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1037 auto *PN = cast<PHINode>(PhiScev->getValue()); 1038 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1039 const Loop *L = AR->getLoop(); 1040 1041 // Find any cast instructions that participate in the def-use chain of 1042 // PhiScev in the loop. 1043 // FORNOW/TODO: We currently expect the def-use chain to include only 1044 // two-operand instructions, where one of the operands is an invariant. 1045 // createAddRecFromPHIWithCasts() currently does not support anything more 1046 // involved than that, so we keep the search simple. This can be 1047 // extended/generalized as needed. 1048 1049 auto getDef = [&](const Value *Val) -> Value * { 1050 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1051 if (!BinOp) 1052 return nullptr; 1053 Value *Op0 = BinOp->getOperand(0); 1054 Value *Op1 = BinOp->getOperand(1); 1055 Value *Def = nullptr; 1056 if (L->isLoopInvariant(Op0)) 1057 Def = Op1; 1058 else if (L->isLoopInvariant(Op1)) 1059 Def = Op0; 1060 return Def; 1061 }; 1062 1063 // Look for the instruction that defines the induction via the 1064 // loop backedge. 1065 BasicBlock *Latch = L->getLoopLatch(); 1066 if (!Latch) 1067 return false; 1068 Value *Val = PN->getIncomingValueForBlock(Latch); 1069 if (!Val) 1070 return false; 1071 1072 // Follow the def-use chain until the induction phi is reached. 1073 // If on the way we encounter a Value that has the same SCEV Expr as the 1074 // phi node, we can consider the instructions we visit from that point 1075 // as part of the cast-sequence that can be ignored. 1076 bool InCastSequence = false; 1077 auto *Inst = dyn_cast<Instruction>(Val); 1078 while (Val != PN) { 1079 // If we encountered a phi node other than PN, or if we left the loop, 1080 // we bail out. 1081 if (!Inst || !L->contains(Inst)) { 1082 return false; 1083 } 1084 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1085 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1086 InCastSequence = true; 1087 if (InCastSequence) { 1088 // Only the last instruction in the cast sequence is expected to have 1089 // uses outside the induction def-use chain. 1090 if (!CastInsts.empty()) 1091 if (!Inst->hasOneUse()) 1092 return false; 1093 CastInsts.push_back(Inst); 1094 } 1095 Val = getDef(Val); 1096 if (!Val) 1097 return false; 1098 Inst = dyn_cast<Instruction>(Val); 1099 } 1100 1101 return InCastSequence; 1102 } 1103 1104 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1105 PredicatedScalarEvolution &PSE, 1106 InductionDescriptor &D, bool Assume) { 1107 Type *PhiTy = Phi->getType(); 1108 1109 // Handle integer and pointer inductions variables. 1110 // Now we handle also FP induction but not trying to make a 1111 // recurrent expression from the PHI node in-place. 1112 1113 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1114 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1115 return false; 1116 1117 if (PhiTy->isFloatingPointTy()) 1118 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1119 1120 const SCEV *PhiScev = PSE.getSCEV(Phi); 1121 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1122 1123 // We need this expression to be an AddRecExpr. 1124 if (Assume && !AR) 1125 AR = PSE.getAsAddRec(Phi); 1126 1127 if (!AR) { 1128 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1129 return false; 1130 } 1131 1132 // Record any Cast instructions that participate in the induction update 1133 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1134 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1135 // only after enabling Assume with PSCEV, this means we may have encountered 1136 // cast instructions that required adding a runtime check in order to 1137 // guarantee the correctness of the AddRecurrence respresentation of the 1138 // induction. 1139 if (PhiScev != AR && SymbolicPhi) { 1140 SmallVector<Instruction *, 2> Casts; 1141 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1142 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1143 } 1144 1145 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1146 } 1147 1148 bool InductionDescriptor::isInductionPHI( 1149 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1150 InductionDescriptor &D, const SCEV *Expr, 1151 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1152 Type *PhiTy = Phi->getType(); 1153 // We only handle integer and pointer inductions variables. 1154 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1155 return false; 1156 1157 // Check that the PHI is consecutive. 1158 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1159 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1160 1161 if (!AR) { 1162 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1163 return false; 1164 } 1165 1166 if (AR->getLoop() != TheLoop) { 1167 // FIXME: We should treat this as a uniform. Unfortunately, we 1168 // don't currently know how to handled uniform PHIs. 1169 LLVM_DEBUG( 1170 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1171 return false; 1172 } 1173 1174 Value *StartValue = 1175 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1176 1177 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1178 if (!Latch) 1179 return false; 1180 BinaryOperator *BOp = 1181 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1182 1183 const SCEV *Step = AR->getStepRecurrence(*SE); 1184 // Calculate the pointer stride and check if it is consecutive. 1185 // The stride may be a constant or a loop invariant integer value. 1186 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1187 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1188 return false; 1189 1190 if (PhiTy->isIntegerTy()) { 1191 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1192 CastsToIgnore); 1193 return true; 1194 } 1195 1196 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1197 // Pointer induction should be a constant. 1198 if (!ConstStep) 1199 return false; 1200 1201 ConstantInt *CV = ConstStep->getValue(); 1202 Type *PointerElementType = PhiTy->getPointerElementType(); 1203 // The pointer stride cannot be determined if the pointer element type is not 1204 // sized. 1205 if (!PointerElementType->isSized()) 1206 return false; 1207 1208 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1209 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1210 if (!Size) 1211 return false; 1212 1213 int64_t CVSize = CV->getSExtValue(); 1214 if (CVSize % Size) 1215 return false; 1216 auto *StepValue = 1217 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1218 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); 1219 return true; 1220 } 1221