1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "iv-descriptors" 41 42 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 43 SmallPtrSetImpl<Instruction *> &Set) { 44 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 45 if (!Set.count(dyn_cast<Instruction>(*Use))) 46 return false; 47 return true; 48 } 49 50 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { 51 switch (Kind) { 52 default: 53 break; 54 case RecurKind::Add: 55 case RecurKind::Mul: 56 case RecurKind::Or: 57 case RecurKind::And: 58 case RecurKind::Xor: 59 case RecurKind::SMax: 60 case RecurKind::SMin: 61 case RecurKind::UMax: 62 case RecurKind::UMin: 63 return true; 64 } 65 return false; 66 } 67 68 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { 69 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); 70 } 71 72 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) { 73 switch (Kind) { 74 default: 75 break; 76 case RecurKind::Add: 77 case RecurKind::Mul: 78 case RecurKind::FAdd: 79 case RecurKind::FMul: 80 return true; 81 } 82 return false; 83 } 84 85 /// Determines if Phi may have been type-promoted. If Phi has a single user 86 /// that ANDs the Phi with a type mask, return the user. RT is updated to 87 /// account for the narrower bit width represented by the mask, and the AND 88 /// instruction is added to CI. 89 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 90 SmallPtrSetImpl<Instruction *> &Visited, 91 SmallPtrSetImpl<Instruction *> &CI) { 92 if (!Phi->hasOneUse()) 93 return Phi; 94 95 const APInt *M = nullptr; 96 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 97 98 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 99 // with a new integer type of the corresponding bit width. 100 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 101 int32_t Bits = (*M + 1).exactLogBase2(); 102 if (Bits > 0) { 103 RT = IntegerType::get(Phi->getContext(), Bits); 104 Visited.insert(Phi); 105 CI.insert(J); 106 return J; 107 } 108 } 109 return Phi; 110 } 111 112 /// Compute the minimal bit width needed to represent a reduction whose exit 113 /// instruction is given by Exit. 114 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 115 DemandedBits *DB, 116 AssumptionCache *AC, 117 DominatorTree *DT) { 118 bool IsSigned = false; 119 const DataLayout &DL = Exit->getModule()->getDataLayout(); 120 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 121 122 if (DB) { 123 // Use the demanded bits analysis to determine the bits that are live out 124 // of the exit instruction, rounding up to the nearest power of two. If the 125 // use of demanded bits results in a smaller bit width, we know the value 126 // must be positive (i.e., IsSigned = false), because if this were not the 127 // case, the sign bit would have been demanded. 128 auto Mask = DB->getDemandedBits(Exit); 129 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 130 } 131 132 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 133 // If demanded bits wasn't able to limit the bit width, we can try to use 134 // value tracking instead. This can be the case, for example, if the value 135 // may be negative. 136 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 137 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 138 MaxBitWidth = NumTypeBits - NumSignBits; 139 KnownBits Bits = computeKnownBits(Exit, DL); 140 if (!Bits.isNonNegative()) { 141 // If the value is not known to be non-negative, we set IsSigned to true, 142 // meaning that we will use sext instructions instead of zext 143 // instructions to restore the original type. 144 IsSigned = true; 145 if (!Bits.isNegative()) 146 // If the value is not known to be negative, we don't known what the 147 // upper bit is, and therefore, we don't know what kind of extend we 148 // will need. In this case, just increase the bit width by one bit and 149 // use sext. 150 ++MaxBitWidth; 151 } 152 } 153 if (!isPowerOf2_64(MaxBitWidth)) 154 MaxBitWidth = NextPowerOf2(MaxBitWidth); 155 156 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 157 IsSigned); 158 } 159 160 /// Collect cast instructions that can be ignored in the vectorizer's cost 161 /// model, given a reduction exit value and the minimal type in which the 162 /// reduction can be represented. 163 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 164 Type *RecurrenceType, 165 SmallPtrSetImpl<Instruction *> &Casts) { 166 167 SmallVector<Instruction *, 8> Worklist; 168 SmallPtrSet<Instruction *, 8> Visited; 169 Worklist.push_back(Exit); 170 171 while (!Worklist.empty()) { 172 Instruction *Val = Worklist.pop_back_val(); 173 Visited.insert(Val); 174 if (auto *Cast = dyn_cast<CastInst>(Val)) 175 if (Cast->getSrcTy() == RecurrenceType) { 176 // If the source type of a cast instruction is equal to the recurrence 177 // type, it will be eliminated, and should be ignored in the vectorizer 178 // cost model. 179 Casts.insert(Cast); 180 continue; 181 } 182 183 // Add all operands to the work list if they are loop-varying values that 184 // we haven't yet visited. 185 for (Value *O : cast<User>(Val)->operands()) 186 if (auto *I = dyn_cast<Instruction>(O)) 187 if (TheLoop->contains(I) && !Visited.count(I)) 188 Worklist.push_back(I); 189 } 190 } 191 192 // Check if a given Phi node can be recognized as an ordered reduction for 193 // vectorizing floating point operations without unsafe math. 194 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, 195 Instruction *Exit, PHINode *Phi) { 196 // Currently only FAdd is supported 197 if (Kind != RecurKind::FAdd) 198 return false; 199 200 bool IsOrdered = 201 Exit->getOpcode() == Instruction::FAdd && Exit == ExactFPMathInst; 202 203 // The only pattern accepted is the one in which the reduction PHI 204 // is used as one of the operands of the exit instruction 205 auto *LHS = Exit->getOperand(0); 206 auto *RHS = Exit->getOperand(1); 207 IsOrdered &= ((LHS == Phi) || (RHS == Phi)); 208 209 if (!IsOrdered) 210 return false; 211 212 LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi 213 << ", ExitInst: " << *Exit << "\n"); 214 215 return true; 216 } 217 218 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, 219 Loop *TheLoop, FastMathFlags FuncFMF, 220 RecurrenceDescriptor &RedDes, 221 DemandedBits *DB, 222 AssumptionCache *AC, 223 DominatorTree *DT) { 224 if (Phi->getNumIncomingValues() != 2) 225 return false; 226 227 // Reduction variables are only found in the loop header block. 228 if (Phi->getParent() != TheLoop->getHeader()) 229 return false; 230 231 // Obtain the reduction start value from the value that comes from the loop 232 // preheader. 233 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 234 235 // ExitInstruction is the single value which is used outside the loop. 236 // We only allow for a single reduction value to be used outside the loop. 237 // This includes users of the reduction, variables (which form a cycle 238 // which ends in the phi node). 239 Instruction *ExitInstruction = nullptr; 240 // Indicates that we found a reduction operation in our scan. 241 bool FoundReduxOp = false; 242 243 // We start with the PHI node and scan for all of the users of this 244 // instruction. All users must be instructions that can be used as reduction 245 // variables (such as ADD). We must have a single out-of-block user. The cycle 246 // must include the original PHI. 247 bool FoundStartPHI = false; 248 249 // To recognize min/max patterns formed by a icmp select sequence, we store 250 // the number of instruction we saw from the recognized min/max pattern, 251 // to make sure we only see exactly the two instructions. 252 unsigned NumCmpSelectPatternInst = 0; 253 InstDesc ReduxDesc(false, nullptr); 254 255 // Data used for determining if the recurrence has been type-promoted. 256 Type *RecurrenceType = Phi->getType(); 257 SmallPtrSet<Instruction *, 4> CastInsts; 258 Instruction *Start = Phi; 259 bool IsSigned = false; 260 261 SmallPtrSet<Instruction *, 8> VisitedInsts; 262 SmallVector<Instruction *, 8> Worklist; 263 264 // Return early if the recurrence kind does not match the type of Phi. If the 265 // recurrence kind is arithmetic, we attempt to look through AND operations 266 // resulting from the type promotion performed by InstCombine. Vector 267 // operations are not limited to the legal integer widths, so we may be able 268 // to evaluate the reduction in the narrower width. 269 if (RecurrenceType->isFloatingPointTy()) { 270 if (!isFloatingPointRecurrenceKind(Kind)) 271 return false; 272 } else if (RecurrenceType->isIntegerTy()) { 273 if (!isIntegerRecurrenceKind(Kind)) 274 return false; 275 if (isArithmeticRecurrenceKind(Kind)) 276 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 277 } else { 278 // Pointer min/max may exist, but it is not supported as a reduction op. 279 return false; 280 } 281 282 Worklist.push_back(Start); 283 VisitedInsts.insert(Start); 284 285 // Start with all flags set because we will intersect this with the reduction 286 // flags from all the reduction operations. 287 FastMathFlags FMF = FastMathFlags::getFast(); 288 289 // A value in the reduction can be used: 290 // - By the reduction: 291 // - Reduction operation: 292 // - One use of reduction value (safe). 293 // - Multiple use of reduction value (not safe). 294 // - PHI: 295 // - All uses of the PHI must be the reduction (safe). 296 // - Otherwise, not safe. 297 // - By instructions outside of the loop (safe). 298 // * One value may have several outside users, but all outside 299 // uses must be of the same value. 300 // - By an instruction that is not part of the reduction (not safe). 301 // This is either: 302 // * An instruction type other than PHI or the reduction operation. 303 // * A PHI in the header other than the initial PHI. 304 while (!Worklist.empty()) { 305 Instruction *Cur = Worklist.pop_back_val(); 306 307 // No Users. 308 // If the instruction has no users then this is a broken chain and can't be 309 // a reduction variable. 310 if (Cur->use_empty()) 311 return false; 312 313 bool IsAPhi = isa<PHINode>(Cur); 314 315 // A header PHI use other than the original PHI. 316 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 317 return false; 318 319 // Reductions of instructions such as Div, and Sub is only possible if the 320 // LHS is the reduction variable. 321 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 322 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 323 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 324 return false; 325 326 // Any reduction instruction must be of one of the allowed kinds. We ignore 327 // the starting value (the Phi or an AND instruction if the Phi has been 328 // type-promoted). 329 if (Cur != Start) { 330 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, FuncFMF); 331 if (!ReduxDesc.isRecurrence()) 332 return false; 333 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 334 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) { 335 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); 336 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) { 337 // Accept FMF on either fcmp or select of a min/max idiom. 338 // TODO: This is a hack to work-around the fact that FMF may not be 339 // assigned/propagated correctly. If that problem is fixed or we 340 // standardize on fmin/fmax via intrinsics, this can be removed. 341 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition())) 342 CurFMF |= FCmp->getFastMathFlags(); 343 } 344 FMF &= CurFMF; 345 } 346 // Update this reduction kind if we matched a new instruction. 347 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' 348 // state accurate while processing the worklist? 349 if (ReduxDesc.getRecKind() != RecurKind::None) 350 Kind = ReduxDesc.getRecKind(); 351 } 352 353 bool IsASelect = isa<SelectInst>(Cur); 354 355 // A conditional reduction operation must only have 2 or less uses in 356 // VisitedInsts. 357 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && 358 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 359 return false; 360 361 // A reduction operation must only have one use of the reduction value. 362 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && 363 hasMultipleUsesOf(Cur, VisitedInsts, 1)) 364 return false; 365 366 // All inputs to a PHI node must be a reduction value. 367 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 368 return false; 369 370 if (isIntMinMaxRecurrenceKind(Kind) && 371 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 372 ++NumCmpSelectPatternInst; 373 if (isFPMinMaxRecurrenceKind(Kind) && 374 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 375 ++NumCmpSelectPatternInst; 376 377 // Check whether we found a reduction operator. 378 FoundReduxOp |= !IsAPhi && Cur != Start; 379 380 // Process users of current instruction. Push non-PHI nodes after PHI nodes 381 // onto the stack. This way we are going to have seen all inputs to PHI 382 // nodes once we get to them. 383 SmallVector<Instruction *, 8> NonPHIs; 384 SmallVector<Instruction *, 8> PHIs; 385 for (User *U : Cur->users()) { 386 Instruction *UI = cast<Instruction>(U); 387 388 // Check if we found the exit user. 389 BasicBlock *Parent = UI->getParent(); 390 if (!TheLoop->contains(Parent)) { 391 // If we already know this instruction is used externally, move on to 392 // the next user. 393 if (ExitInstruction == Cur) 394 continue; 395 396 // Exit if you find multiple values used outside or if the header phi 397 // node is being used. In this case the user uses the value of the 398 // previous iteration, in which case we would loose "VF-1" iterations of 399 // the reduction operation if we vectorize. 400 if (ExitInstruction != nullptr || Cur == Phi) 401 return false; 402 403 // The instruction used by an outside user must be the last instruction 404 // before we feed back to the reduction phi. Otherwise, we loose VF-1 405 // operations on the value. 406 if (!is_contained(Phi->operands(), Cur)) 407 return false; 408 409 ExitInstruction = Cur; 410 continue; 411 } 412 413 // Process instructions only once (termination). Each reduction cycle 414 // value must only be used once, except by phi nodes and min/max 415 // reductions which are represented as a cmp followed by a select. 416 InstDesc IgnoredVal(false, nullptr); 417 if (VisitedInsts.insert(UI).second) { 418 if (isa<PHINode>(UI)) 419 PHIs.push_back(UI); 420 else 421 NonPHIs.push_back(UI); 422 } else if (!isa<PHINode>(UI) && 423 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 424 !isa<SelectInst>(UI)) || 425 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 426 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) 427 return false; 428 429 // Remember that we completed the cycle. 430 if (UI == Phi) 431 FoundStartPHI = true; 432 } 433 Worklist.append(PHIs.begin(), PHIs.end()); 434 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 435 } 436 437 // This means we have seen one but not the other instruction of the 438 // pattern or more than just a select and cmp. 439 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2) 440 return false; 441 442 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 443 return false; 444 445 const bool IsOrdered = checkOrderedReduction( 446 Kind, ReduxDesc.getExactFPMathInst(), ExitInstruction, Phi); 447 448 if (Start != Phi) { 449 // If the starting value is not the same as the phi node, we speculatively 450 // looked through an 'and' instruction when evaluating a potential 451 // arithmetic reduction to determine if it may have been type-promoted. 452 // 453 // We now compute the minimal bit width that is required to represent the 454 // reduction. If this is the same width that was indicated by the 'and', we 455 // can represent the reduction in the smaller type. The 'and' instruction 456 // will be eliminated since it will essentially be a cast instruction that 457 // can be ignore in the cost model. If we compute a different type than we 458 // did when evaluating the 'and', the 'and' will not be eliminated, and we 459 // will end up with different kinds of operations in the recurrence 460 // expression (e.g., IntegerAND, IntegerADD). We give up if this is 461 // the case. 462 // 463 // The vectorizer relies on InstCombine to perform the actual 464 // type-shrinking. It does this by inserting instructions to truncate the 465 // exit value of the reduction to the width indicated by RecurrenceType and 466 // then extend this value back to the original width. If IsSigned is false, 467 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 468 // used. 469 // 470 // TODO: We should not rely on InstCombine to rewrite the reduction in the 471 // smaller type. We should just generate a correctly typed expression 472 // to begin with. 473 Type *ComputedType; 474 std::tie(ComputedType, IsSigned) = 475 computeRecurrenceType(ExitInstruction, DB, AC, DT); 476 if (ComputedType != RecurrenceType) 477 return false; 478 479 // The recurrence expression will be represented in a narrower type. If 480 // there are any cast instructions that will be unnecessary, collect them 481 // in CastInsts. Note that the 'and' instruction was already included in 482 // this list. 483 // 484 // TODO: A better way to represent this may be to tag in some way all the 485 // instructions that are a part of the reduction. The vectorizer cost 486 // model could then apply the recurrence type to these instructions, 487 // without needing a white list of instructions to ignore. 488 // This may also be useful for the inloop reductions, if it can be 489 // kept simple enough. 490 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 491 } 492 493 // We found a reduction var if we have reached the original phi node and we 494 // only have a single instruction with out-of-loop users. 495 496 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 497 // is saved as part of the RecurrenceDescriptor. 498 499 // Save the description of this reduction variable. 500 RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, 501 ReduxDesc.getExactFPMathInst(), RecurrenceType, 502 IsSigned, IsOrdered, CastInsts); 503 RedDes = RD; 504 505 return true; 506 } 507 508 RecurrenceDescriptor::InstDesc 509 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, 510 const InstDesc &Prev) { 511 assert((isa<CmpInst>(I) || isa<SelectInst>(I)) && 512 "Expected a cmp or select instruction"); 513 514 // We must handle the select(cmp()) as a single instruction. Advance to the 515 // select. 516 CmpInst::Predicate Pred; 517 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 518 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 519 return InstDesc(Select, Prev.getRecKind()); 520 } 521 522 // Only match select with single use cmp condition. 523 if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 524 m_Value()))) 525 return InstDesc(false, I); 526 527 // Look for a min/max pattern. 528 if (match(I, m_UMin(m_Value(), m_Value()))) 529 return InstDesc(I, RecurKind::UMin); 530 if (match(I, m_UMax(m_Value(), m_Value()))) 531 return InstDesc(I, RecurKind::UMax); 532 if (match(I, m_SMax(m_Value(), m_Value()))) 533 return InstDesc(I, RecurKind::SMax); 534 if (match(I, m_SMin(m_Value(), m_Value()))) 535 return InstDesc(I, RecurKind::SMin); 536 if (match(I, m_OrdFMin(m_Value(), m_Value()))) 537 return InstDesc(I, RecurKind::FMin); 538 if (match(I, m_OrdFMax(m_Value(), m_Value()))) 539 return InstDesc(I, RecurKind::FMax); 540 if (match(I, m_UnordFMin(m_Value(), m_Value()))) 541 return InstDesc(I, RecurKind::FMin); 542 if (match(I, m_UnordFMax(m_Value(), m_Value()))) 543 return InstDesc(I, RecurKind::FMax); 544 545 return InstDesc(false, I); 546 } 547 548 /// Returns true if the select instruction has users in the compare-and-add 549 /// reduction pattern below. The select instruction argument is the last one 550 /// in the sequence. 551 /// 552 /// %sum.1 = phi ... 553 /// ... 554 /// %cmp = fcmp pred %0, %CFP 555 /// %add = fadd %0, %sum.1 556 /// %sum.2 = select %cmp, %add, %sum.1 557 RecurrenceDescriptor::InstDesc 558 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { 559 SelectInst *SI = dyn_cast<SelectInst>(I); 560 if (!SI) 561 return InstDesc(false, I); 562 563 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 564 // Only handle single use cases for now. 565 if (!CI || !CI->hasOneUse()) 566 return InstDesc(false, I); 567 568 Value *TrueVal = SI->getTrueValue(); 569 Value *FalseVal = SI->getFalseValue(); 570 // Handle only when either of operands of select instruction is a PHI 571 // node for now. 572 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 573 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 574 return InstDesc(false, I); 575 576 Instruction *I1 = 577 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 578 : dyn_cast<Instruction>(TrueVal); 579 if (!I1 || !I1->isBinaryOp()) 580 return InstDesc(false, I); 581 582 Value *Op1, *Op2; 583 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 584 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 585 I1->isFast()) 586 return InstDesc(Kind == RecurKind::FAdd, SI); 587 588 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 589 return InstDesc(Kind == RecurKind::FMul, SI); 590 591 return InstDesc(false, I); 592 } 593 594 RecurrenceDescriptor::InstDesc 595 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind, 596 InstDesc &Prev, FastMathFlags FMF) { 597 switch (I->getOpcode()) { 598 default: 599 return InstDesc(false, I); 600 case Instruction::PHI: 601 return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst()); 602 case Instruction::Sub: 603 case Instruction::Add: 604 return InstDesc(Kind == RecurKind::Add, I); 605 case Instruction::Mul: 606 return InstDesc(Kind == RecurKind::Mul, I); 607 case Instruction::And: 608 return InstDesc(Kind == RecurKind::And, I); 609 case Instruction::Or: 610 return InstDesc(Kind == RecurKind::Or, I); 611 case Instruction::Xor: 612 return InstDesc(Kind == RecurKind::Xor, I); 613 case Instruction::FDiv: 614 case Instruction::FMul: 615 return InstDesc(Kind == RecurKind::FMul, I, 616 I->hasAllowReassoc() ? nullptr : I); 617 case Instruction::FSub: 618 case Instruction::FAdd: 619 return InstDesc(Kind == RecurKind::FAdd, I, 620 I->hasAllowReassoc() ? nullptr : I); 621 case Instruction::Select: 622 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) 623 return isConditionalRdxPattern(Kind, I); 624 LLVM_FALLTHROUGH; 625 case Instruction::FCmp: 626 case Instruction::ICmp: 627 if (isIntMinMaxRecurrenceKind(Kind) || 628 (FMF.noNaNs() && FMF.noSignedZeros() && isFPMinMaxRecurrenceKind(Kind))) 629 return isMinMaxSelectCmpPattern(I, Prev); 630 return InstDesc(false, I); 631 } 632 } 633 634 bool RecurrenceDescriptor::hasMultipleUsesOf( 635 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 636 unsigned MaxNumUses) { 637 unsigned NumUses = 0; 638 for (const Use &U : I->operands()) { 639 if (Insts.count(dyn_cast<Instruction>(U))) 640 ++NumUses; 641 if (NumUses > MaxNumUses) 642 return true; 643 } 644 645 return false; 646 } 647 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 648 RecurrenceDescriptor &RedDes, 649 DemandedBits *DB, AssumptionCache *AC, 650 DominatorTree *DT) { 651 652 BasicBlock *Header = TheLoop->getHeader(); 653 Function &F = *Header->getParent(); 654 FastMathFlags FMF; 655 FMF.setNoNaNs( 656 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"); 657 FMF.setNoSignedZeros( 658 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsString() == "true"); 659 660 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) { 661 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 662 return true; 663 } 664 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) { 665 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 666 return true; 667 } 668 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) { 669 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 670 return true; 671 } 672 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) { 673 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 674 return true; 675 } 676 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) { 677 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 678 return true; 679 } 680 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 681 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); 682 return true; 683 } 684 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 685 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); 686 return true; 687 } 688 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 689 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); 690 return true; 691 } 692 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 693 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); 694 return true; 695 } 696 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) { 697 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 698 return true; 699 } 700 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) { 701 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 702 return true; 703 } 704 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 705 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); 706 return true; 707 } 708 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 709 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); 710 return true; 711 } 712 // Not a reduction of known type. 713 return false; 714 } 715 716 bool RecurrenceDescriptor::isFirstOrderRecurrence( 717 PHINode *Phi, Loop *TheLoop, 718 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 719 720 // Ensure the phi node is in the loop header and has two incoming values. 721 if (Phi->getParent() != TheLoop->getHeader() || 722 Phi->getNumIncomingValues() != 2) 723 return false; 724 725 // Ensure the loop has a preheader and a single latch block. The loop 726 // vectorizer will need the latch to set up the next iteration of the loop. 727 auto *Preheader = TheLoop->getLoopPreheader(); 728 auto *Latch = TheLoop->getLoopLatch(); 729 if (!Preheader || !Latch) 730 return false; 731 732 // Ensure the phi node's incoming blocks are the loop preheader and latch. 733 if (Phi->getBasicBlockIndex(Preheader) < 0 || 734 Phi->getBasicBlockIndex(Latch) < 0) 735 return false; 736 737 // Get the previous value. The previous value comes from the latch edge while 738 // the initial value comes form the preheader edge. 739 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 740 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 741 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 742 return false; 743 744 // Ensure every user of the phi node is dominated by the previous value. 745 // The dominance requirement ensures the loop vectorizer will not need to 746 // vectorize the initial value prior to the first iteration of the loop. 747 // TODO: Consider extending this sinking to handle memory instructions and 748 // phis with multiple users. 749 750 // Returns true, if all users of I are dominated by DominatedBy. 751 auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) { 752 return all_of(I->uses(), [DT, DominatedBy](Use &U) { 753 return DT->dominates(DominatedBy, U); 754 }); 755 }; 756 757 if (Phi->hasOneUse()) { 758 Instruction *I = Phi->user_back(); 759 760 // If the user of the PHI is also the incoming value, we potentially have a 761 // reduction and which cannot be handled by sinking. 762 if (Previous == I) 763 return false; 764 765 // We cannot sink terminator instructions. 766 if (I->getParent()->getTerminator() == I) 767 return false; 768 769 // Do not try to sink an instruction multiple times (if multiple operands 770 // are first order recurrences). 771 // TODO: We can support this case, by sinking the instruction after the 772 // 'deepest' previous instruction. 773 if (SinkAfter.find(I) != SinkAfter.end()) 774 return false; 775 776 if (DT->dominates(Previous, I)) // We already are good w/o sinking. 777 return true; 778 779 // We can sink any instruction without side effects, as long as all users 780 // are dominated by the instruction we are sinking after. 781 if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() && 782 allUsesDominatedBy(I, Previous)) { 783 SinkAfter[I] = Previous; 784 return true; 785 } 786 } 787 788 return allUsesDominatedBy(Phi, Previous); 789 } 790 791 /// This function returns the identity element (or neutral element) for 792 /// the operation K. 793 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp, 794 FastMathFlags FMF) { 795 switch (K) { 796 case RecurKind::Xor: 797 case RecurKind::Add: 798 case RecurKind::Or: 799 // Adding, Xoring, Oring zero to a number does not change it. 800 return ConstantInt::get(Tp, 0); 801 case RecurKind::Mul: 802 // Multiplying a number by 1 does not change it. 803 return ConstantInt::get(Tp, 1); 804 case RecurKind::And: 805 // AND-ing a number with an all-1 value does not change it. 806 return ConstantInt::get(Tp, -1, true); 807 case RecurKind::FMul: 808 // Multiplying a number by 1 does not change it. 809 return ConstantFP::get(Tp, 1.0L); 810 case RecurKind::FAdd: 811 // Adding zero to a number does not change it. 812 // FIXME: Ideally we should not need to check FMF for FAdd and should always 813 // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0. 814 // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI 815 // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would 816 // mean we can then remove the check for noSignedZeros() below (see D98963). 817 if (FMF.noSignedZeros()) 818 return ConstantFP::get(Tp, 0.0L); 819 return ConstantFP::get(Tp, -0.0L); 820 case RecurKind::UMin: 821 return ConstantInt::get(Tp, -1); 822 case RecurKind::UMax: 823 return ConstantInt::get(Tp, 0); 824 case RecurKind::SMin: 825 return ConstantInt::get(Tp, 826 APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); 827 case RecurKind::SMax: 828 return ConstantInt::get(Tp, 829 APInt::getSignedMinValue(Tp->getIntegerBitWidth())); 830 case RecurKind::FMin: 831 return ConstantFP::getInfinity(Tp, true); 832 case RecurKind::FMax: 833 return ConstantFP::getInfinity(Tp, false); 834 default: 835 llvm_unreachable("Unknown recurrence kind"); 836 } 837 } 838 839 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { 840 switch (Kind) { 841 case RecurKind::Add: 842 return Instruction::Add; 843 case RecurKind::Mul: 844 return Instruction::Mul; 845 case RecurKind::Or: 846 return Instruction::Or; 847 case RecurKind::And: 848 return Instruction::And; 849 case RecurKind::Xor: 850 return Instruction::Xor; 851 case RecurKind::FMul: 852 return Instruction::FMul; 853 case RecurKind::FAdd: 854 return Instruction::FAdd; 855 case RecurKind::SMax: 856 case RecurKind::SMin: 857 case RecurKind::UMax: 858 case RecurKind::UMin: 859 return Instruction::ICmp; 860 case RecurKind::FMax: 861 case RecurKind::FMin: 862 return Instruction::FCmp; 863 default: 864 llvm_unreachable("Unknown recurrence operation"); 865 } 866 } 867 868 SmallVector<Instruction *, 4> 869 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 870 SmallVector<Instruction *, 4> ReductionOperations; 871 unsigned RedOp = getOpcode(Kind); 872 873 // Search down from the Phi to the LoopExitInstr, looking for instructions 874 // with a single user of the correct type for the reduction. 875 876 // Note that we check that the type of the operand is correct for each item in 877 // the chain, including the last (the loop exit value). This can come up from 878 // sub, which would otherwise be treated as an add reduction. MinMax also need 879 // to check for a pair of icmp/select, for which we use getNextInstruction and 880 // isCorrectOpcode functions to step the right number of instruction, and 881 // check the icmp/select pair. 882 // FIXME: We also do not attempt to look through Phi/Select's yet, which might 883 // be part of the reduction chain, or attempt to looks through And's to find a 884 // smaller bitwidth. Subs are also currently not allowed (which are usually 885 // treated as part of a add reduction) as they are expected to generally be 886 // more expensive than out-of-loop reductions, and need to be costed more 887 // carefully. 888 unsigned ExpectedUses = 1; 889 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 890 ExpectedUses = 2; 891 892 auto getNextInstruction = [&](Instruction *Cur) { 893 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 894 // We are expecting a icmp/select pair, which we go to the next select 895 // instruction if we can. We already know that Cur has 2 uses. 896 if (isa<SelectInst>(*Cur->user_begin())) 897 return cast<Instruction>(*Cur->user_begin()); 898 else 899 return cast<Instruction>(*std::next(Cur->user_begin())); 900 } 901 return cast<Instruction>(*Cur->user_begin()); 902 }; 903 auto isCorrectOpcode = [&](Instruction *Cur) { 904 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 905 Value *LHS, *RHS; 906 return SelectPatternResult::isMinOrMax( 907 matchSelectPattern(Cur, LHS, RHS).Flavor); 908 } 909 return Cur->getOpcode() == RedOp; 910 }; 911 912 // The loop exit instruction we check first (as a quick test) but add last. We 913 // check the opcode is correct (and dont allow them to be Subs) and that they 914 // have expected to have the expected number of uses. They will have one use 915 // from the phi and one from a LCSSA value, no matter the type. 916 if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2)) 917 return {}; 918 919 // Check that the Phi has one (or two for min/max) uses. 920 if (!Phi->hasNUses(ExpectedUses)) 921 return {}; 922 Instruction *Cur = getNextInstruction(Phi); 923 924 // Each other instruction in the chain should have the expected number of uses 925 // and be the correct opcode. 926 while (Cur != LoopExitInstr) { 927 if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 928 return {}; 929 930 ReductionOperations.push_back(Cur); 931 Cur = getNextInstruction(Cur); 932 } 933 934 ReductionOperations.push_back(Cur); 935 return ReductionOperations; 936 } 937 938 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 939 const SCEV *Step, BinaryOperator *BOp, 940 SmallVectorImpl<Instruction *> *Casts) 941 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 942 assert(IK != IK_NoInduction && "Not an induction"); 943 944 // Start value type should match the induction kind and the value 945 // itself should not be null. 946 assert(StartValue && "StartValue is null"); 947 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 948 "StartValue is not a pointer for pointer induction"); 949 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 950 "StartValue is not an integer for integer induction"); 951 952 // Check the Step Value. It should be non-zero integer value. 953 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 954 "Step value is zero"); 955 956 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 957 "Step value should be constant for pointer induction"); 958 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 959 "StepValue is not an integer"); 960 961 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 962 "StepValue is not FP for FpInduction"); 963 assert((IK != IK_FpInduction || 964 (InductionBinOp && 965 (InductionBinOp->getOpcode() == Instruction::FAdd || 966 InductionBinOp->getOpcode() == Instruction::FSub))) && 967 "Binary opcode should be specified for FP induction"); 968 969 if (Casts) { 970 for (auto &Inst : *Casts) { 971 RedundantCasts.push_back(Inst); 972 } 973 } 974 } 975 976 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 977 if (isa<SCEVConstant>(Step)) 978 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 979 return nullptr; 980 } 981 982 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 983 ScalarEvolution *SE, 984 InductionDescriptor &D) { 985 986 // Here we only handle FP induction variables. 987 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 988 989 if (TheLoop->getHeader() != Phi->getParent()) 990 return false; 991 992 // The loop may have multiple entrances or multiple exits; we can analyze 993 // this phi if it has a unique entry value and a unique backedge value. 994 if (Phi->getNumIncomingValues() != 2) 995 return false; 996 Value *BEValue = nullptr, *StartValue = nullptr; 997 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 998 BEValue = Phi->getIncomingValue(0); 999 StartValue = Phi->getIncomingValue(1); 1000 } else { 1001 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 1002 "Unexpected Phi node in the loop"); 1003 BEValue = Phi->getIncomingValue(1); 1004 StartValue = Phi->getIncomingValue(0); 1005 } 1006 1007 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 1008 if (!BOp) 1009 return false; 1010 1011 Value *Addend = nullptr; 1012 if (BOp->getOpcode() == Instruction::FAdd) { 1013 if (BOp->getOperand(0) == Phi) 1014 Addend = BOp->getOperand(1); 1015 else if (BOp->getOperand(1) == Phi) 1016 Addend = BOp->getOperand(0); 1017 } else if (BOp->getOpcode() == Instruction::FSub) 1018 if (BOp->getOperand(0) == Phi) 1019 Addend = BOp->getOperand(1); 1020 1021 if (!Addend) 1022 return false; 1023 1024 // The addend should be loop invariant 1025 if (auto *I = dyn_cast<Instruction>(Addend)) 1026 if (TheLoop->contains(I)) 1027 return false; 1028 1029 // FP Step has unknown SCEV 1030 const SCEV *Step = SE->getUnknown(Addend); 1031 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 1032 return true; 1033 } 1034 1035 /// This function is called when we suspect that the update-chain of a phi node 1036 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 1037 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 1038 /// predicate P under which the SCEV expression for the phi can be the 1039 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1040 /// cast instructions that are involved in the update-chain of this induction. 1041 /// A caller that adds the required runtime predicate can be free to drop these 1042 /// cast instructions, and compute the phi using \p AR (instead of some scev 1043 /// expression with casts). 1044 /// 1045 /// For example, without a predicate the scev expression can take the following 1046 /// form: 1047 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1048 /// 1049 /// It corresponds to the following IR sequence: 1050 /// %for.body: 1051 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1052 /// %casted_phi = "ExtTrunc i64 %x" 1053 /// %add = add i64 %casted_phi, %step 1054 /// 1055 /// where %x is given in \p PN, 1056 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1057 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1058 /// several forms, for example, such as: 1059 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1060 /// or: 1061 /// ExtTrunc2: %t = shl %x, m 1062 /// %casted_phi = ashr %t, m 1063 /// 1064 /// If we are able to find such sequence, we return the instructions 1065 /// we found, namely %casted_phi and the instructions on its use-def chain up 1066 /// to the phi (not including the phi). 1067 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1068 const SCEVUnknown *PhiScev, 1069 const SCEVAddRecExpr *AR, 1070 SmallVectorImpl<Instruction *> &CastInsts) { 1071 1072 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1073 auto *PN = cast<PHINode>(PhiScev->getValue()); 1074 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1075 const Loop *L = AR->getLoop(); 1076 1077 // Find any cast instructions that participate in the def-use chain of 1078 // PhiScev in the loop. 1079 // FORNOW/TODO: We currently expect the def-use chain to include only 1080 // two-operand instructions, where one of the operands is an invariant. 1081 // createAddRecFromPHIWithCasts() currently does not support anything more 1082 // involved than that, so we keep the search simple. This can be 1083 // extended/generalized as needed. 1084 1085 auto getDef = [&](const Value *Val) -> Value * { 1086 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1087 if (!BinOp) 1088 return nullptr; 1089 Value *Op0 = BinOp->getOperand(0); 1090 Value *Op1 = BinOp->getOperand(1); 1091 Value *Def = nullptr; 1092 if (L->isLoopInvariant(Op0)) 1093 Def = Op1; 1094 else if (L->isLoopInvariant(Op1)) 1095 Def = Op0; 1096 return Def; 1097 }; 1098 1099 // Look for the instruction that defines the induction via the 1100 // loop backedge. 1101 BasicBlock *Latch = L->getLoopLatch(); 1102 if (!Latch) 1103 return false; 1104 Value *Val = PN->getIncomingValueForBlock(Latch); 1105 if (!Val) 1106 return false; 1107 1108 // Follow the def-use chain until the induction phi is reached. 1109 // If on the way we encounter a Value that has the same SCEV Expr as the 1110 // phi node, we can consider the instructions we visit from that point 1111 // as part of the cast-sequence that can be ignored. 1112 bool InCastSequence = false; 1113 auto *Inst = dyn_cast<Instruction>(Val); 1114 while (Val != PN) { 1115 // If we encountered a phi node other than PN, or if we left the loop, 1116 // we bail out. 1117 if (!Inst || !L->contains(Inst)) { 1118 return false; 1119 } 1120 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1121 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1122 InCastSequence = true; 1123 if (InCastSequence) { 1124 // Only the last instruction in the cast sequence is expected to have 1125 // uses outside the induction def-use chain. 1126 if (!CastInsts.empty()) 1127 if (!Inst->hasOneUse()) 1128 return false; 1129 CastInsts.push_back(Inst); 1130 } 1131 Val = getDef(Val); 1132 if (!Val) 1133 return false; 1134 Inst = dyn_cast<Instruction>(Val); 1135 } 1136 1137 return InCastSequence; 1138 } 1139 1140 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1141 PredicatedScalarEvolution &PSE, 1142 InductionDescriptor &D, bool Assume) { 1143 Type *PhiTy = Phi->getType(); 1144 1145 // Handle integer and pointer inductions variables. 1146 // Now we handle also FP induction but not trying to make a 1147 // recurrent expression from the PHI node in-place. 1148 1149 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1150 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1151 return false; 1152 1153 if (PhiTy->isFloatingPointTy()) 1154 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1155 1156 const SCEV *PhiScev = PSE.getSCEV(Phi); 1157 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1158 1159 // We need this expression to be an AddRecExpr. 1160 if (Assume && !AR) 1161 AR = PSE.getAsAddRec(Phi); 1162 1163 if (!AR) { 1164 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1165 return false; 1166 } 1167 1168 // Record any Cast instructions that participate in the induction update 1169 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1170 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1171 // only after enabling Assume with PSCEV, this means we may have encountered 1172 // cast instructions that required adding a runtime check in order to 1173 // guarantee the correctness of the AddRecurrence respresentation of the 1174 // induction. 1175 if (PhiScev != AR && SymbolicPhi) { 1176 SmallVector<Instruction *, 2> Casts; 1177 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1178 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1179 } 1180 1181 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1182 } 1183 1184 bool InductionDescriptor::isInductionPHI( 1185 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1186 InductionDescriptor &D, const SCEV *Expr, 1187 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1188 Type *PhiTy = Phi->getType(); 1189 // We only handle integer and pointer inductions variables. 1190 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1191 return false; 1192 1193 // Check that the PHI is consecutive. 1194 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1195 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1196 1197 if (!AR) { 1198 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1199 return false; 1200 } 1201 1202 if (AR->getLoop() != TheLoop) { 1203 // FIXME: We should treat this as a uniform. Unfortunately, we 1204 // don't currently know how to handled uniform PHIs. 1205 LLVM_DEBUG( 1206 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1207 return false; 1208 } 1209 1210 Value *StartValue = 1211 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1212 1213 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1214 if (!Latch) 1215 return false; 1216 BinaryOperator *BOp = 1217 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1218 1219 const SCEV *Step = AR->getStepRecurrence(*SE); 1220 // Calculate the pointer stride and check if it is consecutive. 1221 // The stride may be a constant or a loop invariant integer value. 1222 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1223 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1224 return false; 1225 1226 if (PhiTy->isIntegerTy()) { 1227 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1228 CastsToIgnore); 1229 return true; 1230 } 1231 1232 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1233 // Pointer induction should be a constant. 1234 if (!ConstStep) 1235 return false; 1236 1237 ConstantInt *CV = ConstStep->getValue(); 1238 Type *PointerElementType = PhiTy->getPointerElementType(); 1239 // The pointer stride cannot be determined if the pointer element type is not 1240 // sized. 1241 if (!PointerElementType->isSized()) 1242 return false; 1243 1244 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1245 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1246 if (!Size) 1247 return false; 1248 1249 int64_t CVSize = CV->getSExtValue(); 1250 if (CVSize % Size) 1251 return false; 1252 auto *StepValue = 1253 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1254 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); 1255 return true; 1256 } 1257