1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 #include <set>
38 
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41 
42 #define DEBUG_TYPE "iv-descriptors"
43 
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45                                         SmallPtrSetImpl<Instruction *> &Set) {
46   for (const Use &Use : I->operands())
47     if (!Set.count(dyn_cast<Instruction>(Use)))
48       return false;
49   return true;
50 }
51 
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
53   switch (Kind) {
54   default:
55     break;
56   case RecurKind::Add:
57   case RecurKind::Mul:
58   case RecurKind::Or:
59   case RecurKind::And:
60   case RecurKind::Xor:
61   case RecurKind::SMax:
62   case RecurKind::SMin:
63   case RecurKind::UMax:
64   case RecurKind::UMin:
65   case RecurKind::SelectICmp:
66   case RecurKind::SelectFCmp:
67     return true;
68   }
69   return false;
70 }
71 
72 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
73   return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
74 }
75 
76 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
77   switch (Kind) {
78   default:
79     break;
80   case RecurKind::Add:
81   case RecurKind::Mul:
82   case RecurKind::FAdd:
83   case RecurKind::FMul:
84     return true;
85   }
86   return false;
87 }
88 
89 /// Determines if Phi may have been type-promoted. If Phi has a single user
90 /// that ANDs the Phi with a type mask, return the user. RT is updated to
91 /// account for the narrower bit width represented by the mask, and the AND
92 /// instruction is added to CI.
93 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
94                                    SmallPtrSetImpl<Instruction *> &Visited,
95                                    SmallPtrSetImpl<Instruction *> &CI) {
96   if (!Phi->hasOneUse())
97     return Phi;
98 
99   const APInt *M = nullptr;
100   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
101 
102   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
103   // with a new integer type of the corresponding bit width.
104   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
105     int32_t Bits = (*M + 1).exactLogBase2();
106     if (Bits > 0) {
107       RT = IntegerType::get(Phi->getContext(), Bits);
108       Visited.insert(Phi);
109       CI.insert(J);
110       return J;
111     }
112   }
113   return Phi;
114 }
115 
116 /// Compute the minimal bit width needed to represent a reduction whose exit
117 /// instruction is given by Exit.
118 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
119                                                      DemandedBits *DB,
120                                                      AssumptionCache *AC,
121                                                      DominatorTree *DT) {
122   bool IsSigned = false;
123   const DataLayout &DL = Exit->getModule()->getDataLayout();
124   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
125 
126   if (DB) {
127     // Use the demanded bits analysis to determine the bits that are live out
128     // of the exit instruction, rounding up to the nearest power of two. If the
129     // use of demanded bits results in a smaller bit width, we know the value
130     // must be positive (i.e., IsSigned = false), because if this were not the
131     // case, the sign bit would have been demanded.
132     auto Mask = DB->getDemandedBits(Exit);
133     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
134   }
135 
136   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
137     // If demanded bits wasn't able to limit the bit width, we can try to use
138     // value tracking instead. This can be the case, for example, if the value
139     // may be negative.
140     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
141     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
142     MaxBitWidth = NumTypeBits - NumSignBits;
143     KnownBits Bits = computeKnownBits(Exit, DL);
144     if (!Bits.isNonNegative()) {
145       // If the value is not known to be non-negative, we set IsSigned to true,
146       // meaning that we will use sext instructions instead of zext
147       // instructions to restore the original type.
148       IsSigned = true;
149       // Make sure at at least one sign bit is included in the result, so it
150       // will get properly sign-extended.
151       ++MaxBitWidth;
152     }
153   }
154   if (!isPowerOf2_64(MaxBitWidth))
155     MaxBitWidth = NextPowerOf2(MaxBitWidth);
156 
157   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
158                         IsSigned);
159 }
160 
161 /// Collect cast instructions that can be ignored in the vectorizer's cost
162 /// model, given a reduction exit value and the minimal type in which the
163 /// reduction can be represented.
164 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
165                                  Type *RecurrenceType,
166                                  SmallPtrSetImpl<Instruction *> &Casts) {
167 
168   SmallVector<Instruction *, 8> Worklist;
169   SmallPtrSet<Instruction *, 8> Visited;
170   Worklist.push_back(Exit);
171 
172   while (!Worklist.empty()) {
173     Instruction *Val = Worklist.pop_back_val();
174     Visited.insert(Val);
175     if (auto *Cast = dyn_cast<CastInst>(Val))
176       if (Cast->getSrcTy() == RecurrenceType) {
177         // If the source type of a cast instruction is equal to the recurrence
178         // type, it will be eliminated, and should be ignored in the vectorizer
179         // cost model.
180         Casts.insert(Cast);
181         continue;
182       }
183 
184     // Add all operands to the work list if they are loop-varying values that
185     // we haven't yet visited.
186     for (Value *O : cast<User>(Val)->operands())
187       if (auto *I = dyn_cast<Instruction>(O))
188         if (TheLoop->contains(I) && !Visited.count(I))
189           Worklist.push_back(I);
190   }
191 }
192 
193 // Check if a given Phi node can be recognized as an ordered reduction for
194 // vectorizing floating point operations without unsafe math.
195 static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
196                                   Instruction *Exit, PHINode *Phi) {
197   // Currently only FAdd is supported
198   if (Kind != RecurKind::FAdd)
199     return false;
200 
201   if (Exit->getOpcode() != Instruction::FAdd || Exit != ExactFPMathInst)
202     return false;
203 
204   // The only pattern accepted is the one in which the reduction PHI
205   // is used as one of the operands of the exit instruction
206   auto *LHS = Exit->getOperand(0);
207   auto *RHS = Exit->getOperand(1);
208   if (LHS != Phi && RHS != Phi)
209     return false;
210 
211   LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
212                     << ", ExitInst: " << *Exit << "\n");
213 
214   return true;
215 }
216 
217 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
218                                            Loop *TheLoop, FastMathFlags FuncFMF,
219                                            RecurrenceDescriptor &RedDes,
220                                            DemandedBits *DB,
221                                            AssumptionCache *AC,
222                                            DominatorTree *DT) {
223   if (Phi->getNumIncomingValues() != 2)
224     return false;
225 
226   // Reduction variables are only found in the loop header block.
227   if (Phi->getParent() != TheLoop->getHeader())
228     return false;
229 
230   // Obtain the reduction start value from the value that comes from the loop
231   // preheader.
232   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
233 
234   // ExitInstruction is the single value which is used outside the loop.
235   // We only allow for a single reduction value to be used outside the loop.
236   // This includes users of the reduction, variables (which form a cycle
237   // which ends in the phi node).
238   Instruction *ExitInstruction = nullptr;
239   // Indicates that we found a reduction operation in our scan.
240   bool FoundReduxOp = false;
241 
242   // We start with the PHI node and scan for all of the users of this
243   // instruction. All users must be instructions that can be used as reduction
244   // variables (such as ADD). We must have a single out-of-block user. The cycle
245   // must include the original PHI.
246   bool FoundStartPHI = false;
247 
248   // To recognize min/max patterns formed by a icmp select sequence, we store
249   // the number of instruction we saw from the recognized min/max pattern,
250   //  to make sure we only see exactly the two instructions.
251   unsigned NumCmpSelectPatternInst = 0;
252   InstDesc ReduxDesc(false, nullptr);
253 
254   // Data used for determining if the recurrence has been type-promoted.
255   Type *RecurrenceType = Phi->getType();
256   SmallPtrSet<Instruction *, 4> CastInsts;
257   Instruction *Start = Phi;
258   bool IsSigned = false;
259 
260   SmallPtrSet<Instruction *, 8> VisitedInsts;
261   SmallVector<Instruction *, 8> Worklist;
262 
263   // Return early if the recurrence kind does not match the type of Phi. If the
264   // recurrence kind is arithmetic, we attempt to look through AND operations
265   // resulting from the type promotion performed by InstCombine.  Vector
266   // operations are not limited to the legal integer widths, so we may be able
267   // to evaluate the reduction in the narrower width.
268   if (RecurrenceType->isFloatingPointTy()) {
269     if (!isFloatingPointRecurrenceKind(Kind))
270       return false;
271   } else if (RecurrenceType->isIntegerTy()) {
272     if (!isIntegerRecurrenceKind(Kind))
273       return false;
274     if (!isMinMaxRecurrenceKind(Kind))
275       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
276   } else {
277     // Pointer min/max may exist, but it is not supported as a reduction op.
278     return false;
279   }
280 
281   Worklist.push_back(Start);
282   VisitedInsts.insert(Start);
283 
284   // Start with all flags set because we will intersect this with the reduction
285   // flags from all the reduction operations.
286   FastMathFlags FMF = FastMathFlags::getFast();
287 
288   // A value in the reduction can be used:
289   //  - By the reduction:
290   //      - Reduction operation:
291   //        - One use of reduction value (safe).
292   //        - Multiple use of reduction value (not safe).
293   //      - PHI:
294   //        - All uses of the PHI must be the reduction (safe).
295   //        - Otherwise, not safe.
296   //  - By instructions outside of the loop (safe).
297   //      * One value may have several outside users, but all outside
298   //        uses must be of the same value.
299   //  - By an instruction that is not part of the reduction (not safe).
300   //    This is either:
301   //      * An instruction type other than PHI or the reduction operation.
302   //      * A PHI in the header other than the initial PHI.
303   while (!Worklist.empty()) {
304     Instruction *Cur = Worklist.pop_back_val();
305 
306     // No Users.
307     // If the instruction has no users then this is a broken chain and can't be
308     // a reduction variable.
309     if (Cur->use_empty())
310       return false;
311 
312     bool IsAPhi = isa<PHINode>(Cur);
313 
314     // A header PHI use other than the original PHI.
315     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
316       return false;
317 
318     // Reductions of instructions such as Div, and Sub is only possible if the
319     // LHS is the reduction variable.
320     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
321         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
322         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
323       return false;
324 
325     // Any reduction instruction must be of one of the allowed kinds. We ignore
326     // the starting value (the Phi or an AND instruction if the Phi has been
327     // type-promoted).
328     if (Cur != Start) {
329       ReduxDesc =
330           isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
331       if (!ReduxDesc.isRecurrence())
332         return false;
333       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
334       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
335         FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
336         if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
337           // Accept FMF on either fcmp or select of a min/max idiom.
338           // TODO: This is a hack to work-around the fact that FMF may not be
339           //       assigned/propagated correctly. If that problem is fixed or we
340           //       standardize on fmin/fmax via intrinsics, this can be removed.
341           if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
342             CurFMF |= FCmp->getFastMathFlags();
343         }
344         FMF &= CurFMF;
345       }
346       // Update this reduction kind if we matched a new instruction.
347       // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
348       //       state accurate while processing the worklist?
349       if (ReduxDesc.getRecKind() != RecurKind::None)
350         Kind = ReduxDesc.getRecKind();
351     }
352 
353     bool IsASelect = isa<SelectInst>(Cur);
354 
355     // A conditional reduction operation must only have 2 or less uses in
356     // VisitedInsts.
357     if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
358         hasMultipleUsesOf(Cur, VisitedInsts, 2))
359       return false;
360 
361     // A reduction operation must only have one use of the reduction value.
362     if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
363         !isSelectCmpRecurrenceKind(Kind) &&
364         hasMultipleUsesOf(Cur, VisitedInsts, 1))
365       return false;
366 
367     // All inputs to a PHI node must be a reduction value.
368     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
369       return false;
370 
371     if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectICmp) &&
372         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
373       ++NumCmpSelectPatternInst;
374     if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectFCmp) &&
375         (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
376       ++NumCmpSelectPatternInst;
377 
378     // Check  whether we found a reduction operator.
379     FoundReduxOp |= !IsAPhi && Cur != Start;
380 
381     // Process users of current instruction. Push non-PHI nodes after PHI nodes
382     // onto the stack. This way we are going to have seen all inputs to PHI
383     // nodes once we get to them.
384     SmallVector<Instruction *, 8> NonPHIs;
385     SmallVector<Instruction *, 8> PHIs;
386     for (User *U : Cur->users()) {
387       Instruction *UI = cast<Instruction>(U);
388 
389       // Check if we found the exit user.
390       BasicBlock *Parent = UI->getParent();
391       if (!TheLoop->contains(Parent)) {
392         // If we already know this instruction is used externally, move on to
393         // the next user.
394         if (ExitInstruction == Cur)
395           continue;
396 
397         // Exit if you find multiple values used outside or if the header phi
398         // node is being used. In this case the user uses the value of the
399         // previous iteration, in which case we would loose "VF-1" iterations of
400         // the reduction operation if we vectorize.
401         if (ExitInstruction != nullptr || Cur == Phi)
402           return false;
403 
404         // The instruction used by an outside user must be the last instruction
405         // before we feed back to the reduction phi. Otherwise, we loose VF-1
406         // operations on the value.
407         if (!is_contained(Phi->operands(), Cur))
408           return false;
409 
410         ExitInstruction = Cur;
411         continue;
412       }
413 
414       // Process instructions only once (termination). Each reduction cycle
415       // value must only be used once, except by phi nodes and min/max
416       // reductions which are represented as a cmp followed by a select.
417       InstDesc IgnoredVal(false, nullptr);
418       if (VisitedInsts.insert(UI).second) {
419         if (isa<PHINode>(UI))
420           PHIs.push_back(UI);
421         else
422           NonPHIs.push_back(UI);
423       } else if (!isa<PHINode>(UI) &&
424                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
425                    !isa<SelectInst>(UI)) ||
426                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
427                    !isSelectCmpPattern(TheLoop, Phi, UI, IgnoredVal)
428                         .isRecurrence() &&
429                    !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
430         return false;
431 
432       // Remember that we completed the cycle.
433       if (UI == Phi)
434         FoundStartPHI = true;
435     }
436     Worklist.append(PHIs.begin(), PHIs.end());
437     Worklist.append(NonPHIs.begin(), NonPHIs.end());
438   }
439 
440   // This means we have seen one but not the other instruction of the
441   // pattern or more than just a select and cmp. Zero implies that we saw a
442   // llvm.min/max instrinsic, which is always OK.
443   if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
444       NumCmpSelectPatternInst != 0)
445     return false;
446 
447   if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
448     return false;
449 
450   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
451     return false;
452 
453   const bool IsOrdered = checkOrderedReduction(
454       Kind, ReduxDesc.getExactFPMathInst(), ExitInstruction, Phi);
455 
456   if (Start != Phi) {
457     // If the starting value is not the same as the phi node, we speculatively
458     // looked through an 'and' instruction when evaluating a potential
459     // arithmetic reduction to determine if it may have been type-promoted.
460     //
461     // We now compute the minimal bit width that is required to represent the
462     // reduction. If this is the same width that was indicated by the 'and', we
463     // can represent the reduction in the smaller type. The 'and' instruction
464     // will be eliminated since it will essentially be a cast instruction that
465     // can be ignore in the cost model. If we compute a different type than we
466     // did when evaluating the 'and', the 'and' will not be eliminated, and we
467     // will end up with different kinds of operations in the recurrence
468     // expression (e.g., IntegerAND, IntegerADD). We give up if this is
469     // the case.
470     //
471     // The vectorizer relies on InstCombine to perform the actual
472     // type-shrinking. It does this by inserting instructions to truncate the
473     // exit value of the reduction to the width indicated by RecurrenceType and
474     // then extend this value back to the original width. If IsSigned is false,
475     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
476     // used.
477     //
478     // TODO: We should not rely on InstCombine to rewrite the reduction in the
479     //       smaller type. We should just generate a correctly typed expression
480     //       to begin with.
481     Type *ComputedType;
482     std::tie(ComputedType, IsSigned) =
483         computeRecurrenceType(ExitInstruction, DB, AC, DT);
484     if (ComputedType != RecurrenceType)
485       return false;
486 
487     // The recurrence expression will be represented in a narrower type. If
488     // there are any cast instructions that will be unnecessary, collect them
489     // in CastInsts. Note that the 'and' instruction was already included in
490     // this list.
491     //
492     // TODO: A better way to represent this may be to tag in some way all the
493     //       instructions that are a part of the reduction. The vectorizer cost
494     //       model could then apply the recurrence type to these instructions,
495     //       without needing a white list of instructions to ignore.
496     //       This may also be useful for the inloop reductions, if it can be
497     //       kept simple enough.
498     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
499   }
500 
501   // We found a reduction var if we have reached the original phi node and we
502   // only have a single instruction with out-of-loop users.
503 
504   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
505   // is saved as part of the RecurrenceDescriptor.
506 
507   // Save the description of this reduction variable.
508   RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF,
509                           ReduxDesc.getExactFPMathInst(), RecurrenceType,
510                           IsSigned, IsOrdered, CastInsts);
511   RedDes = RD;
512 
513   return true;
514 }
515 
516 // We are looking for loops that do something like this:
517 //   int r = 0;
518 //   for (int i = 0; i < n; i++) {
519 //     if (src[i] > 3)
520 //       r = 3;
521 //   }
522 // where the reduction value (r) only has two states, in this example 0 or 3.
523 // The generated LLVM IR for this type of loop will be like this:
524 //   for.body:
525 //     %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
526 //     ...
527 //     %cmp = icmp sgt i32 %5, 3
528 //     %spec.select = select i1 %cmp, i32 3, i32 %r
529 //     ...
530 // In general we can support vectorization of loops where 'r' flips between
531 // any two non-constants, provided they are loop invariant. The only thing
532 // we actually care about at the end of the loop is whether or not any lane
533 // in the selected vector is different from the start value. The final
534 // across-vector reduction after the loop simply involves choosing the start
535 // value if nothing changed (0 in the example above) or the other selected
536 // value (3 in the example above).
537 RecurrenceDescriptor::InstDesc
538 RecurrenceDescriptor::isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
539                                          Instruction *I, InstDesc &Prev) {
540   // We must handle the select(cmp(),x,y) as a single instruction. Advance to
541   // the select.
542   CmpInst::Predicate Pred;
543   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
544     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
545       return InstDesc(Select, Prev.getRecKind());
546   }
547 
548   // Only match select with single use cmp condition.
549   if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
550                          m_Value())))
551     return InstDesc(false, I);
552 
553   SelectInst *SI = cast<SelectInst>(I);
554   Value *NonPhi = nullptr;
555 
556   if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
557     NonPhi = SI->getFalseValue();
558   else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
559     NonPhi = SI->getTrueValue();
560   else
561     return InstDesc(false, I);
562 
563   // We are looking for selects of the form:
564   //   select(cmp(), phi, loop_invariant) or
565   //   select(cmp(), loop_invariant, phi)
566   if (!Loop->isLoopInvariant(NonPhi))
567     return InstDesc(false, I);
568 
569   return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::SelectICmp
570                                                      : RecurKind::SelectFCmp);
571 }
572 
573 RecurrenceDescriptor::InstDesc
574 RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
575                                       const InstDesc &Prev) {
576   assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
577          "Expected a cmp or select or call instruction");
578   if (!isMinMaxRecurrenceKind(Kind))
579     return InstDesc(false, I);
580 
581   // We must handle the select(cmp()) as a single instruction. Advance to the
582   // select.
583   CmpInst::Predicate Pred;
584   if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
585     if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
586       return InstDesc(Select, Prev.getRecKind());
587   }
588 
589   // Only match select with single use cmp condition, or a min/max intrinsic.
590   if (!isa<IntrinsicInst>(I) &&
591       !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
592                          m_Value())))
593     return InstDesc(false, I);
594 
595   // Look for a min/max pattern.
596   if (match(I, m_UMin(m_Value(), m_Value())))
597     return InstDesc(Kind == RecurKind::UMin, I);
598   if (match(I, m_UMax(m_Value(), m_Value())))
599     return InstDesc(Kind == RecurKind::UMax, I);
600   if (match(I, m_SMax(m_Value(), m_Value())))
601     return InstDesc(Kind == RecurKind::SMax, I);
602   if (match(I, m_SMin(m_Value(), m_Value())))
603     return InstDesc(Kind == RecurKind::SMin, I);
604   if (match(I, m_OrdFMin(m_Value(), m_Value())))
605     return InstDesc(Kind == RecurKind::FMin, I);
606   if (match(I, m_OrdFMax(m_Value(), m_Value())))
607     return InstDesc(Kind == RecurKind::FMax, I);
608   if (match(I, m_UnordFMin(m_Value(), m_Value())))
609     return InstDesc(Kind == RecurKind::FMin, I);
610   if (match(I, m_UnordFMax(m_Value(), m_Value())))
611     return InstDesc(Kind == RecurKind::FMax, I);
612   if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
613     return InstDesc(Kind == RecurKind::FMin, I);
614   if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
615     return InstDesc(Kind == RecurKind::FMax, I);
616 
617   return InstDesc(false, I);
618 }
619 
620 /// Returns true if the select instruction has users in the compare-and-add
621 /// reduction pattern below. The select instruction argument is the last one
622 /// in the sequence.
623 ///
624 /// %sum.1 = phi ...
625 /// ...
626 /// %cmp = fcmp pred %0, %CFP
627 /// %add = fadd %0, %sum.1
628 /// %sum.2 = select %cmp, %add, %sum.1
629 RecurrenceDescriptor::InstDesc
630 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
631   SelectInst *SI = dyn_cast<SelectInst>(I);
632   if (!SI)
633     return InstDesc(false, I);
634 
635   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
636   // Only handle single use cases for now.
637   if (!CI || !CI->hasOneUse())
638     return InstDesc(false, I);
639 
640   Value *TrueVal = SI->getTrueValue();
641   Value *FalseVal = SI->getFalseValue();
642   // Handle only when either of operands of select instruction is a PHI
643   // node for now.
644   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
645       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
646     return InstDesc(false, I);
647 
648   Instruction *I1 =
649       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
650                              : dyn_cast<Instruction>(TrueVal);
651   if (!I1 || !I1->isBinaryOp())
652     return InstDesc(false, I);
653 
654   Value *Op1, *Op2;
655   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
656        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
657       I1->isFast())
658     return InstDesc(Kind == RecurKind::FAdd, SI);
659 
660   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
661     return InstDesc(Kind == RecurKind::FMul, SI);
662 
663   return InstDesc(false, I);
664 }
665 
666 RecurrenceDescriptor::InstDesc
667 RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
668                                         Instruction *I, RecurKind Kind,
669                                         InstDesc &Prev, FastMathFlags FuncFMF) {
670   assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
671   switch (I->getOpcode()) {
672   default:
673     return InstDesc(false, I);
674   case Instruction::PHI:
675     return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
676   case Instruction::Sub:
677   case Instruction::Add:
678     return InstDesc(Kind == RecurKind::Add, I);
679   case Instruction::Mul:
680     return InstDesc(Kind == RecurKind::Mul, I);
681   case Instruction::And:
682     return InstDesc(Kind == RecurKind::And, I);
683   case Instruction::Or:
684     return InstDesc(Kind == RecurKind::Or, I);
685   case Instruction::Xor:
686     return InstDesc(Kind == RecurKind::Xor, I);
687   case Instruction::FDiv:
688   case Instruction::FMul:
689     return InstDesc(Kind == RecurKind::FMul, I,
690                     I->hasAllowReassoc() ? nullptr : I);
691   case Instruction::FSub:
692   case Instruction::FAdd:
693     return InstDesc(Kind == RecurKind::FAdd, I,
694                     I->hasAllowReassoc() ? nullptr : I);
695   case Instruction::Select:
696     if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
697       return isConditionalRdxPattern(Kind, I);
698     LLVM_FALLTHROUGH;
699   case Instruction::FCmp:
700   case Instruction::ICmp:
701   case Instruction::Call:
702     if (isSelectCmpRecurrenceKind(Kind))
703       return isSelectCmpPattern(L, OrigPhi, I, Prev);
704     if (isIntMinMaxRecurrenceKind(Kind) ||
705         (((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) ||
706           (isa<FPMathOperator>(I) && I->hasNoNaNs() &&
707            I->hasNoSignedZeros())) &&
708          isFPMinMaxRecurrenceKind(Kind)))
709       return isMinMaxPattern(I, Kind, Prev);
710     return InstDesc(false, I);
711   }
712 }
713 
714 bool RecurrenceDescriptor::hasMultipleUsesOf(
715     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
716     unsigned MaxNumUses) {
717   unsigned NumUses = 0;
718   for (const Use &U : I->operands()) {
719     if (Insts.count(dyn_cast<Instruction>(U)))
720       ++NumUses;
721     if (NumUses > MaxNumUses)
722       return true;
723   }
724 
725   return false;
726 }
727 
728 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
729                                           RecurrenceDescriptor &RedDes,
730                                           DemandedBits *DB, AssumptionCache *AC,
731                                           DominatorTree *DT) {
732   BasicBlock *Header = TheLoop->getHeader();
733   Function &F = *Header->getParent();
734   FastMathFlags FMF;
735   FMF.setNoNaNs(
736       F.getFnAttribute("no-nans-fp-math").getValueAsBool());
737   FMF.setNoSignedZeros(
738       F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
739 
740   if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) {
741     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
742     return true;
743   }
744   if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) {
745     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
746     return true;
747   }
748   if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) {
749     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
750     return true;
751   }
752   if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) {
753     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
754     return true;
755   }
756   if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) {
757     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
758     return true;
759   }
760   if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
761     LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
762     return true;
763   }
764   if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
765     LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
766     return true;
767   }
768   if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
769     LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
770     return true;
771   }
772   if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
773     LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
774     return true;
775   }
776   if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC,
777                       DT)) {
778     LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
779                       << *Phi << "\n");
780     return true;
781   }
782   if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) {
783     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
784     return true;
785   }
786   if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) {
787     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
788     return true;
789   }
790   if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
791     LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
792     return true;
793   }
794   if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
795     LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
796     return true;
797   }
798   if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC,
799                       DT)) {
800     LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
801                       << " PHI." << *Phi << "\n");
802     return true;
803   }
804   // Not a reduction of known type.
805   return false;
806 }
807 
808 bool RecurrenceDescriptor::isFirstOrderRecurrence(
809     PHINode *Phi, Loop *TheLoop,
810     MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
811 
812   // Ensure the phi node is in the loop header and has two incoming values.
813   if (Phi->getParent() != TheLoop->getHeader() ||
814       Phi->getNumIncomingValues() != 2)
815     return false;
816 
817   // Ensure the loop has a preheader and a single latch block. The loop
818   // vectorizer will need the latch to set up the next iteration of the loop.
819   auto *Preheader = TheLoop->getLoopPreheader();
820   auto *Latch = TheLoop->getLoopLatch();
821   if (!Preheader || !Latch)
822     return false;
823 
824   // Ensure the phi node's incoming blocks are the loop preheader and latch.
825   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
826       Phi->getBasicBlockIndex(Latch) < 0)
827     return false;
828 
829   // Get the previous value. The previous value comes from the latch edge while
830   // the initial value comes form the preheader edge.
831   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
832   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
833       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
834     return false;
835 
836   // Ensure every user of the phi node (recursively) is dominated by the
837   // previous value. The dominance requirement ensures the loop vectorizer will
838   // not need to vectorize the initial value prior to the first iteration of the
839   // loop.
840   // TODO: Consider extending this sinking to handle memory instructions.
841 
842   // We optimistically assume we can sink all users after Previous. Keep a set
843   // of instructions to sink after Previous ordered by dominance in the common
844   // basic block. It will be applied to SinkAfter if all users can be sunk.
845   auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
846     return A->comesBefore(B);
847   };
848   std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
849       CompareByComesBefore);
850 
851   BasicBlock *PhiBB = Phi->getParent();
852   SmallVector<Instruction *, 8> WorkList;
853   auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
854     // Already sunk SinkCandidate.
855     if (SinkCandidate->getParent() == PhiBB &&
856         InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
857       return true;
858 
859     // Cyclic dependence.
860     if (Previous == SinkCandidate)
861       return false;
862 
863     if (DT->dominates(Previous,
864                       SinkCandidate)) // We already are good w/o sinking.
865       return true;
866 
867     if (SinkCandidate->getParent() != PhiBB ||
868         SinkCandidate->mayHaveSideEffects() ||
869         SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
870       return false;
871 
872     // Do not try to sink an instruction multiple times (if multiple operands
873     // are first order recurrences).
874     // TODO: We can support this case, by sinking the instruction after the
875     // 'deepest' previous instruction.
876     if (SinkAfter.find(SinkCandidate) != SinkAfter.end())
877       return false;
878 
879     // If we reach a PHI node that is not dominated by Previous, we reached a
880     // header PHI. No need for sinking.
881     if (isa<PHINode>(SinkCandidate))
882       return true;
883 
884     // Sink User tentatively and check its users
885     InstrsToSink.insert(SinkCandidate);
886     WorkList.push_back(SinkCandidate);
887     return true;
888   };
889 
890   WorkList.push_back(Phi);
891   // Try to recursively sink instructions and their users after Previous.
892   while (!WorkList.empty()) {
893     Instruction *Current = WorkList.pop_back_val();
894     for (User *User : Current->users()) {
895       if (!TryToPushSinkCandidate(cast<Instruction>(User)))
896         return false;
897     }
898   }
899 
900   // We can sink all users of Phi. Update the mapping.
901   for (Instruction *I : InstrsToSink) {
902     SinkAfter[I] = Previous;
903     Previous = I;
904   }
905   return true;
906 }
907 
908 /// This function returns the identity element (or neutral element) for
909 /// the operation K.
910 Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
911                                                    FastMathFlags FMF) {
912   switch (K) {
913   case RecurKind::Xor:
914   case RecurKind::Add:
915   case RecurKind::Or:
916     // Adding, Xoring, Oring zero to a number does not change it.
917     return ConstantInt::get(Tp, 0);
918   case RecurKind::Mul:
919     // Multiplying a number by 1 does not change it.
920     return ConstantInt::get(Tp, 1);
921   case RecurKind::And:
922     // AND-ing a number with an all-1 value does not change it.
923     return ConstantInt::get(Tp, -1, true);
924   case RecurKind::FMul:
925     // Multiplying a number by 1 does not change it.
926     return ConstantFP::get(Tp, 1.0L);
927   case RecurKind::FAdd:
928     // Adding zero to a number does not change it.
929     // FIXME: Ideally we should not need to check FMF for FAdd and should always
930     // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
931     // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
932     // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
933     // mean we can then remove the check for noSignedZeros() below (see D98963).
934     if (FMF.noSignedZeros())
935       return ConstantFP::get(Tp, 0.0L);
936     return ConstantFP::get(Tp, -0.0L);
937   case RecurKind::UMin:
938     return ConstantInt::get(Tp, -1);
939   case RecurKind::UMax:
940     return ConstantInt::get(Tp, 0);
941   case RecurKind::SMin:
942     return ConstantInt::get(Tp,
943                             APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
944   case RecurKind::SMax:
945     return ConstantInt::get(Tp,
946                             APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
947   case RecurKind::FMin:
948     return ConstantFP::getInfinity(Tp, true);
949   case RecurKind::FMax:
950     return ConstantFP::getInfinity(Tp, false);
951   case RecurKind::SelectICmp:
952   case RecurKind::SelectFCmp:
953     return getRecurrenceStartValue();
954     break;
955   default:
956     llvm_unreachable("Unknown recurrence kind");
957   }
958 }
959 
960 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
961   switch (Kind) {
962   case RecurKind::Add:
963     return Instruction::Add;
964   case RecurKind::Mul:
965     return Instruction::Mul;
966   case RecurKind::Or:
967     return Instruction::Or;
968   case RecurKind::And:
969     return Instruction::And;
970   case RecurKind::Xor:
971     return Instruction::Xor;
972   case RecurKind::FMul:
973     return Instruction::FMul;
974   case RecurKind::FAdd:
975     return Instruction::FAdd;
976   case RecurKind::SMax:
977   case RecurKind::SMin:
978   case RecurKind::UMax:
979   case RecurKind::UMin:
980   case RecurKind::SelectICmp:
981     return Instruction::ICmp;
982   case RecurKind::FMax:
983   case RecurKind::FMin:
984   case RecurKind::SelectFCmp:
985     return Instruction::FCmp;
986   default:
987     llvm_unreachable("Unknown recurrence operation");
988   }
989 }
990 
991 SmallVector<Instruction *, 4>
992 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
993   SmallVector<Instruction *, 4> ReductionOperations;
994   unsigned RedOp = getOpcode(Kind);
995 
996   // Search down from the Phi to the LoopExitInstr, looking for instructions
997   // with a single user of the correct type for the reduction.
998 
999   // Note that we check that the type of the operand is correct for each item in
1000   // the chain, including the last (the loop exit value). This can come up from
1001   // sub, which would otherwise be treated as an add reduction. MinMax also need
1002   // to check for a pair of icmp/select, for which we use getNextInstruction and
1003   // isCorrectOpcode functions to step the right number of instruction, and
1004   // check the icmp/select pair.
1005   // FIXME: We also do not attempt to look through Phi/Select's yet, which might
1006   // be part of the reduction chain, or attempt to looks through And's to find a
1007   // smaller bitwidth. Subs are also currently not allowed (which are usually
1008   // treated as part of a add reduction) as they are expected to generally be
1009   // more expensive than out-of-loop reductions, and need to be costed more
1010   // carefully.
1011   unsigned ExpectedUses = 1;
1012   if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
1013     ExpectedUses = 2;
1014 
1015   auto getNextInstruction = [&](Instruction *Cur) {
1016     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1017       // We are expecting a icmp/select pair, which we go to the next select
1018       // instruction if we can. We already know that Cur has 2 uses.
1019       if (isa<SelectInst>(*Cur->user_begin()))
1020         return cast<Instruction>(*Cur->user_begin());
1021       else
1022         return cast<Instruction>(*std::next(Cur->user_begin()));
1023     }
1024     return cast<Instruction>(*Cur->user_begin());
1025   };
1026   auto isCorrectOpcode = [&](Instruction *Cur) {
1027     if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
1028       Value *LHS, *RHS;
1029       return SelectPatternResult::isMinOrMax(
1030           matchSelectPattern(Cur, LHS, RHS).Flavor);
1031     }
1032     return Cur->getOpcode() == RedOp;
1033   };
1034 
1035   // The loop exit instruction we check first (as a quick test) but add last. We
1036   // check the opcode is correct (and dont allow them to be Subs) and that they
1037   // have expected to have the expected number of uses. They will have one use
1038   // from the phi and one from a LCSSA value, no matter the type.
1039   if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
1040     return {};
1041 
1042   // Check that the Phi has one (or two for min/max) uses.
1043   if (!Phi->hasNUses(ExpectedUses))
1044     return {};
1045   Instruction *Cur = getNextInstruction(Phi);
1046 
1047   // Each other instruction in the chain should have the expected number of uses
1048   // and be the correct opcode.
1049   while (Cur != LoopExitInstr) {
1050     if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
1051       return {};
1052 
1053     ReductionOperations.push_back(Cur);
1054     Cur = getNextInstruction(Cur);
1055   }
1056 
1057   ReductionOperations.push_back(Cur);
1058   return ReductionOperations;
1059 }
1060 
1061 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
1062                                          const SCEV *Step, BinaryOperator *BOp,
1063                                          Type *ElementType,
1064                                          SmallVectorImpl<Instruction *> *Casts)
1065     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp),
1066       ElementType(ElementType) {
1067   assert(IK != IK_NoInduction && "Not an induction");
1068 
1069   // Start value type should match the induction kind and the value
1070   // itself should not be null.
1071   assert(StartValue && "StartValue is null");
1072   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
1073          "StartValue is not a pointer for pointer induction");
1074   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
1075          "StartValue is not an integer for integer induction");
1076 
1077   // Check the Step Value. It should be non-zero integer value.
1078   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
1079          "Step value is zero");
1080 
1081   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
1082          "Step value should be constant for pointer induction");
1083   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
1084          "StepValue is not an integer");
1085 
1086   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
1087          "StepValue is not FP for FpInduction");
1088   assert((IK != IK_FpInduction ||
1089           (InductionBinOp &&
1090            (InductionBinOp->getOpcode() == Instruction::FAdd ||
1091             InductionBinOp->getOpcode() == Instruction::FSub))) &&
1092          "Binary opcode should be specified for FP induction");
1093 
1094   if (IK == IK_PtrInduction)
1095     assert(ElementType && "Pointer induction must have element type");
1096   else
1097     assert(!ElementType && "Non-pointer induction cannot have element type");
1098 
1099   if (Casts) {
1100     for (auto &Inst : *Casts) {
1101       RedundantCasts.push_back(Inst);
1102     }
1103   }
1104 }
1105 
1106 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
1107   if (isa<SCEVConstant>(Step))
1108     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
1109   return nullptr;
1110 }
1111 
1112 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
1113                                            ScalarEvolution *SE,
1114                                            InductionDescriptor &D) {
1115 
1116   // Here we only handle FP induction variables.
1117   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
1118 
1119   if (TheLoop->getHeader() != Phi->getParent())
1120     return false;
1121 
1122   // The loop may have multiple entrances or multiple exits; we can analyze
1123   // this phi if it has a unique entry value and a unique backedge value.
1124   if (Phi->getNumIncomingValues() != 2)
1125     return false;
1126   Value *BEValue = nullptr, *StartValue = nullptr;
1127   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
1128     BEValue = Phi->getIncomingValue(0);
1129     StartValue = Phi->getIncomingValue(1);
1130   } else {
1131     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
1132            "Unexpected Phi node in the loop");
1133     BEValue = Phi->getIncomingValue(1);
1134     StartValue = Phi->getIncomingValue(0);
1135   }
1136 
1137   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
1138   if (!BOp)
1139     return false;
1140 
1141   Value *Addend = nullptr;
1142   if (BOp->getOpcode() == Instruction::FAdd) {
1143     if (BOp->getOperand(0) == Phi)
1144       Addend = BOp->getOperand(1);
1145     else if (BOp->getOperand(1) == Phi)
1146       Addend = BOp->getOperand(0);
1147   } else if (BOp->getOpcode() == Instruction::FSub)
1148     if (BOp->getOperand(0) == Phi)
1149       Addend = BOp->getOperand(1);
1150 
1151   if (!Addend)
1152     return false;
1153 
1154   // The addend should be loop invariant
1155   if (auto *I = dyn_cast<Instruction>(Addend))
1156     if (TheLoop->contains(I))
1157       return false;
1158 
1159   // FP Step has unknown SCEV
1160   const SCEV *Step = SE->getUnknown(Addend);
1161   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
1162   return true;
1163 }
1164 
1165 /// This function is called when we suspect that the update-chain of a phi node
1166 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
1167 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
1168 /// predicate P under which the SCEV expression for the phi can be the
1169 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
1170 /// cast instructions that are involved in the update-chain of this induction.
1171 /// A caller that adds the required runtime predicate can be free to drop these
1172 /// cast instructions, and compute the phi using \p AR (instead of some scev
1173 /// expression with casts).
1174 ///
1175 /// For example, without a predicate the scev expression can take the following
1176 /// form:
1177 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
1178 ///
1179 /// It corresponds to the following IR sequence:
1180 /// %for.body:
1181 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
1182 ///   %casted_phi = "ExtTrunc i64 %x"
1183 ///   %add = add i64 %casted_phi, %step
1184 ///
1185 /// where %x is given in \p PN,
1186 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
1187 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
1188 /// several forms, for example, such as:
1189 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
1190 /// or:
1191 ///   ExtTrunc2:    %t = shl %x, m
1192 ///                 %casted_phi = ashr %t, m
1193 ///
1194 /// If we are able to find such sequence, we return the instructions
1195 /// we found, namely %casted_phi and the instructions on its use-def chain up
1196 /// to the phi (not including the phi).
1197 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
1198                                     const SCEVUnknown *PhiScev,
1199                                     const SCEVAddRecExpr *AR,
1200                                     SmallVectorImpl<Instruction *> &CastInsts) {
1201 
1202   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
1203   auto *PN = cast<PHINode>(PhiScev->getValue());
1204   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
1205   const Loop *L = AR->getLoop();
1206 
1207   // Find any cast instructions that participate in the def-use chain of
1208   // PhiScev in the loop.
1209   // FORNOW/TODO: We currently expect the def-use chain to include only
1210   // two-operand instructions, where one of the operands is an invariant.
1211   // createAddRecFromPHIWithCasts() currently does not support anything more
1212   // involved than that, so we keep the search simple. This can be
1213   // extended/generalized as needed.
1214 
1215   auto getDef = [&](const Value *Val) -> Value * {
1216     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
1217     if (!BinOp)
1218       return nullptr;
1219     Value *Op0 = BinOp->getOperand(0);
1220     Value *Op1 = BinOp->getOperand(1);
1221     Value *Def = nullptr;
1222     if (L->isLoopInvariant(Op0))
1223       Def = Op1;
1224     else if (L->isLoopInvariant(Op1))
1225       Def = Op0;
1226     return Def;
1227   };
1228 
1229   // Look for the instruction that defines the induction via the
1230   // loop backedge.
1231   BasicBlock *Latch = L->getLoopLatch();
1232   if (!Latch)
1233     return false;
1234   Value *Val = PN->getIncomingValueForBlock(Latch);
1235   if (!Val)
1236     return false;
1237 
1238   // Follow the def-use chain until the induction phi is reached.
1239   // If on the way we encounter a Value that has the same SCEV Expr as the
1240   // phi node, we can consider the instructions we visit from that point
1241   // as part of the cast-sequence that can be ignored.
1242   bool InCastSequence = false;
1243   auto *Inst = dyn_cast<Instruction>(Val);
1244   while (Val != PN) {
1245     // If we encountered a phi node other than PN, or if we left the loop,
1246     // we bail out.
1247     if (!Inst || !L->contains(Inst)) {
1248       return false;
1249     }
1250     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1251     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1252       InCastSequence = true;
1253     if (InCastSequence) {
1254       // Only the last instruction in the cast sequence is expected to have
1255       // uses outside the induction def-use chain.
1256       if (!CastInsts.empty())
1257         if (!Inst->hasOneUse())
1258           return false;
1259       CastInsts.push_back(Inst);
1260     }
1261     Val = getDef(Val);
1262     if (!Val)
1263       return false;
1264     Inst = dyn_cast<Instruction>(Val);
1265   }
1266 
1267   return InCastSequence;
1268 }
1269 
1270 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1271                                          PredicatedScalarEvolution &PSE,
1272                                          InductionDescriptor &D, bool Assume) {
1273   Type *PhiTy = Phi->getType();
1274 
1275   // Handle integer and pointer inductions variables.
1276   // Now we handle also FP induction but not trying to make a
1277   // recurrent expression from the PHI node in-place.
1278 
1279   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1280       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1281     return false;
1282 
1283   if (PhiTy->isFloatingPointTy())
1284     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1285 
1286   const SCEV *PhiScev = PSE.getSCEV(Phi);
1287   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1288 
1289   // We need this expression to be an AddRecExpr.
1290   if (Assume && !AR)
1291     AR = PSE.getAsAddRec(Phi);
1292 
1293   if (!AR) {
1294     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1295     return false;
1296   }
1297 
1298   // Record any Cast instructions that participate in the induction update
1299   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1300   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1301   // only after enabling Assume with PSCEV, this means we may have encountered
1302   // cast instructions that required adding a runtime check in order to
1303   // guarantee the correctness of the AddRecurrence respresentation of the
1304   // induction.
1305   if (PhiScev != AR && SymbolicPhi) {
1306     SmallVector<Instruction *, 2> Casts;
1307     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1308       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1309   }
1310 
1311   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1312 }
1313 
1314 bool InductionDescriptor::isInductionPHI(
1315     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1316     InductionDescriptor &D, const SCEV *Expr,
1317     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1318   Type *PhiTy = Phi->getType();
1319   // We only handle integer and pointer inductions variables.
1320   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1321     return false;
1322 
1323   // Check that the PHI is consecutive.
1324   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1325   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1326 
1327   if (!AR) {
1328     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1329     return false;
1330   }
1331 
1332   if (AR->getLoop() != TheLoop) {
1333     // FIXME: We should treat this as a uniform. Unfortunately, we
1334     // don't currently know how to handled uniform PHIs.
1335     LLVM_DEBUG(
1336         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1337     return false;
1338   }
1339 
1340   Value *StartValue =
1341       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1342 
1343   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1344   if (!Latch)
1345     return false;
1346 
1347   const SCEV *Step = AR->getStepRecurrence(*SE);
1348   // Calculate the pointer stride and check if it is consecutive.
1349   // The stride may be a constant or a loop invariant integer value.
1350   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1351   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1352     return false;
1353 
1354   if (PhiTy->isIntegerTy()) {
1355     BinaryOperator *BOp =
1356         dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1357     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1358                             /* ElementType */ nullptr, CastsToIgnore);
1359     return true;
1360   }
1361 
1362   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1363   // Pointer induction should be a constant.
1364   if (!ConstStep)
1365     return false;
1366 
1367   // Always use i8 element type for opaque pointer inductions.
1368   PointerType *PtrTy = cast<PointerType>(PhiTy);
1369   Type *ElementType = PtrTy->isOpaque() ? Type::getInt8Ty(PtrTy->getContext())
1370                                         : PtrTy->getElementType();
1371   if (!ElementType->isSized())
1372     return false;
1373 
1374   ConstantInt *CV = ConstStep->getValue();
1375   const DataLayout &DL = Phi->getModule()->getDataLayout();
1376   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(ElementType));
1377   if (!Size)
1378     return false;
1379 
1380   int64_t CVSize = CV->getSExtValue();
1381   if (CVSize % Size)
1382     return false;
1383   auto *StepValue =
1384       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1385   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue,
1386                           /* BinOp */ nullptr, ElementType);
1387   return true;
1388 }
1389