1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file "describes" induction and recurrence variables. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Analysis/IVDescriptors.h" 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/Analysis/DemandedBits.h" 17 #include "llvm/Analysis/DomTreeUpdater.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/MustExecute.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/IR/ValueHandle.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/KnownBits.h" 36 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "iv-descriptors" 41 42 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, 43 SmallPtrSetImpl<Instruction *> &Set) { 44 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 45 if (!Set.count(dyn_cast<Instruction>(*Use))) 46 return false; 47 return true; 48 } 49 50 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { 51 switch (Kind) { 52 default: 53 break; 54 case RecurKind::Add: 55 case RecurKind::Mul: 56 case RecurKind::Or: 57 case RecurKind::And: 58 case RecurKind::Xor: 59 case RecurKind::SMax: 60 case RecurKind::SMin: 61 case RecurKind::UMax: 62 case RecurKind::UMin: 63 return true; 64 } 65 return false; 66 } 67 68 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { 69 return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); 70 } 71 72 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) { 73 switch (Kind) { 74 default: 75 break; 76 case RecurKind::Add: 77 case RecurKind::Mul: 78 case RecurKind::FAdd: 79 case RecurKind::FMul: 80 return true; 81 } 82 return false; 83 } 84 85 /// Determines if Phi may have been type-promoted. If Phi has a single user 86 /// that ANDs the Phi with a type mask, return the user. RT is updated to 87 /// account for the narrower bit width represented by the mask, and the AND 88 /// instruction is added to CI. 89 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, 90 SmallPtrSetImpl<Instruction *> &Visited, 91 SmallPtrSetImpl<Instruction *> &CI) { 92 if (!Phi->hasOneUse()) 93 return Phi; 94 95 const APInt *M = nullptr; 96 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); 97 98 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT 99 // with a new integer type of the corresponding bit width. 100 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) { 101 int32_t Bits = (*M + 1).exactLogBase2(); 102 if (Bits > 0) { 103 RT = IntegerType::get(Phi->getContext(), Bits); 104 Visited.insert(Phi); 105 CI.insert(J); 106 return J; 107 } 108 } 109 return Phi; 110 } 111 112 /// Compute the minimal bit width needed to represent a reduction whose exit 113 /// instruction is given by Exit. 114 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, 115 DemandedBits *DB, 116 AssumptionCache *AC, 117 DominatorTree *DT) { 118 bool IsSigned = false; 119 const DataLayout &DL = Exit->getModule()->getDataLayout(); 120 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType()); 121 122 if (DB) { 123 // Use the demanded bits analysis to determine the bits that are live out 124 // of the exit instruction, rounding up to the nearest power of two. If the 125 // use of demanded bits results in a smaller bit width, we know the value 126 // must be positive (i.e., IsSigned = false), because if this were not the 127 // case, the sign bit would have been demanded. 128 auto Mask = DB->getDemandedBits(Exit); 129 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros(); 130 } 131 132 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) { 133 // If demanded bits wasn't able to limit the bit width, we can try to use 134 // value tracking instead. This can be the case, for example, if the value 135 // may be negative. 136 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT); 137 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType()); 138 MaxBitWidth = NumTypeBits - NumSignBits; 139 KnownBits Bits = computeKnownBits(Exit, DL); 140 if (!Bits.isNonNegative()) { 141 // If the value is not known to be non-negative, we set IsSigned to true, 142 // meaning that we will use sext instructions instead of zext 143 // instructions to restore the original type. 144 IsSigned = true; 145 if (!Bits.isNegative()) 146 // If the value is not known to be negative, we don't known what the 147 // upper bit is, and therefore, we don't know what kind of extend we 148 // will need. In this case, just increase the bit width by one bit and 149 // use sext. 150 ++MaxBitWidth; 151 } 152 } 153 if (!isPowerOf2_64(MaxBitWidth)) 154 MaxBitWidth = NextPowerOf2(MaxBitWidth); 155 156 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth), 157 IsSigned); 158 } 159 160 /// Collect cast instructions that can be ignored in the vectorizer's cost 161 /// model, given a reduction exit value and the minimal type in which the 162 /// reduction can be represented. 163 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit, 164 Type *RecurrenceType, 165 SmallPtrSetImpl<Instruction *> &Casts) { 166 167 SmallVector<Instruction *, 8> Worklist; 168 SmallPtrSet<Instruction *, 8> Visited; 169 Worklist.push_back(Exit); 170 171 while (!Worklist.empty()) { 172 Instruction *Val = Worklist.pop_back_val(); 173 Visited.insert(Val); 174 if (auto *Cast = dyn_cast<CastInst>(Val)) 175 if (Cast->getSrcTy() == RecurrenceType) { 176 // If the source type of a cast instruction is equal to the recurrence 177 // type, it will be eliminated, and should be ignored in the vectorizer 178 // cost model. 179 Casts.insert(Cast); 180 continue; 181 } 182 183 // Add all operands to the work list if they are loop-varying values that 184 // we haven't yet visited. 185 for (Value *O : cast<User>(Val)->operands()) 186 if (auto *I = dyn_cast<Instruction>(O)) 187 if (TheLoop->contains(I) && !Visited.count(I)) 188 Worklist.push_back(I); 189 } 190 } 191 192 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind, 193 Loop *TheLoop, FastMathFlags FuncFMF, 194 RecurrenceDescriptor &RedDes, 195 DemandedBits *DB, 196 AssumptionCache *AC, 197 DominatorTree *DT) { 198 if (Phi->getNumIncomingValues() != 2) 199 return false; 200 201 // Reduction variables are only found in the loop header block. 202 if (Phi->getParent() != TheLoop->getHeader()) 203 return false; 204 205 // Obtain the reduction start value from the value that comes from the loop 206 // preheader. 207 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 208 209 // ExitInstruction is the single value which is used outside the loop. 210 // We only allow for a single reduction value to be used outside the loop. 211 // This includes users of the reduction, variables (which form a cycle 212 // which ends in the phi node). 213 Instruction *ExitInstruction = nullptr; 214 // Indicates that we found a reduction operation in our scan. 215 bool FoundReduxOp = false; 216 217 // We start with the PHI node and scan for all of the users of this 218 // instruction. All users must be instructions that can be used as reduction 219 // variables (such as ADD). We must have a single out-of-block user. The cycle 220 // must include the original PHI. 221 bool FoundStartPHI = false; 222 223 // To recognize min/max patterns formed by a icmp select sequence, we store 224 // the number of instruction we saw from the recognized min/max pattern, 225 // to make sure we only see exactly the two instructions. 226 unsigned NumCmpSelectPatternInst = 0; 227 InstDesc ReduxDesc(false, nullptr); 228 229 // Data used for determining if the recurrence has been type-promoted. 230 Type *RecurrenceType = Phi->getType(); 231 SmallPtrSet<Instruction *, 4> CastInsts; 232 Instruction *Start = Phi; 233 bool IsSigned = false; 234 235 SmallPtrSet<Instruction *, 8> VisitedInsts; 236 SmallVector<Instruction *, 8> Worklist; 237 238 // Return early if the recurrence kind does not match the type of Phi. If the 239 // recurrence kind is arithmetic, we attempt to look through AND operations 240 // resulting from the type promotion performed by InstCombine. Vector 241 // operations are not limited to the legal integer widths, so we may be able 242 // to evaluate the reduction in the narrower width. 243 if (RecurrenceType->isFloatingPointTy()) { 244 if (!isFloatingPointRecurrenceKind(Kind)) 245 return false; 246 } else if (RecurrenceType->isIntegerTy()) { 247 if (!isIntegerRecurrenceKind(Kind)) 248 return false; 249 if (isArithmeticRecurrenceKind(Kind)) 250 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); 251 } else { 252 // Pointer min/max may exist, but it is not supported as a reduction op. 253 return false; 254 } 255 256 Worklist.push_back(Start); 257 VisitedInsts.insert(Start); 258 259 // Start with all flags set because we will intersect this with the reduction 260 // flags from all the reduction operations. 261 FastMathFlags FMF = FastMathFlags::getFast(); 262 263 // A value in the reduction can be used: 264 // - By the reduction: 265 // - Reduction operation: 266 // - One use of reduction value (safe). 267 // - Multiple use of reduction value (not safe). 268 // - PHI: 269 // - All uses of the PHI must be the reduction (safe). 270 // - Otherwise, not safe. 271 // - By instructions outside of the loop (safe). 272 // * One value may have several outside users, but all outside 273 // uses must be of the same value. 274 // - By an instruction that is not part of the reduction (not safe). 275 // This is either: 276 // * An instruction type other than PHI or the reduction operation. 277 // * A PHI in the header other than the initial PHI. 278 while (!Worklist.empty()) { 279 Instruction *Cur = Worklist.pop_back_val(); 280 281 // No Users. 282 // If the instruction has no users then this is a broken chain and can't be 283 // a reduction variable. 284 if (Cur->use_empty()) 285 return false; 286 287 bool IsAPhi = isa<PHINode>(Cur); 288 289 // A header PHI use other than the original PHI. 290 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 291 return false; 292 293 // Reductions of instructions such as Div, and Sub is only possible if the 294 // LHS is the reduction variable. 295 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 296 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 297 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 298 return false; 299 300 // Any reduction instruction must be of one of the allowed kinds. We ignore 301 // the starting value (the Phi or an AND instruction if the Phi has been 302 // type-promoted). 303 if (Cur != Start) { 304 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, FuncFMF); 305 if (!ReduxDesc.isRecurrence()) 306 return false; 307 // FIXME: FMF is allowed on phi, but propagation is not handled correctly. 308 if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) { 309 FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); 310 if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) { 311 // Accept FMF on either fcmp or select of a min/max idiom. 312 // TODO: This is a hack to work-around the fact that FMF may not be 313 // assigned/propagated correctly. If that problem is fixed or we 314 // standardize on fmin/fmax via intrinsics, this can be removed. 315 if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition())) 316 CurFMF |= FCmp->getFastMathFlags(); 317 } 318 FMF &= CurFMF; 319 } 320 // Update this reduction kind if we matched a new instruction. 321 // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' 322 // state accurate while processing the worklist? 323 if (ReduxDesc.getRecKind() != RecurKind::None) 324 Kind = ReduxDesc.getRecKind(); 325 } 326 327 bool IsASelect = isa<SelectInst>(Cur); 328 329 // A conditional reduction operation must only have 2 or less uses in 330 // VisitedInsts. 331 if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && 332 hasMultipleUsesOf(Cur, VisitedInsts, 2)) 333 return false; 334 335 // A reduction operation must only have one use of the reduction value. 336 if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && 337 hasMultipleUsesOf(Cur, VisitedInsts, 1)) 338 return false; 339 340 // All inputs to a PHI node must be a reduction value. 341 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 342 return false; 343 344 if (isIntMinMaxRecurrenceKind(Kind) && 345 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) 346 ++NumCmpSelectPatternInst; 347 if (isFPMinMaxRecurrenceKind(Kind) && 348 (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) 349 ++NumCmpSelectPatternInst; 350 351 // Check whether we found a reduction operator. 352 FoundReduxOp |= !IsAPhi && Cur != Start; 353 354 // Process users of current instruction. Push non-PHI nodes after PHI nodes 355 // onto the stack. This way we are going to have seen all inputs to PHI 356 // nodes once we get to them. 357 SmallVector<Instruction *, 8> NonPHIs; 358 SmallVector<Instruction *, 8> PHIs; 359 for (User *U : Cur->users()) { 360 Instruction *UI = cast<Instruction>(U); 361 362 // Check if we found the exit user. 363 BasicBlock *Parent = UI->getParent(); 364 if (!TheLoop->contains(Parent)) { 365 // If we already know this instruction is used externally, move on to 366 // the next user. 367 if (ExitInstruction == Cur) 368 continue; 369 370 // Exit if you find multiple values used outside or if the header phi 371 // node is being used. In this case the user uses the value of the 372 // previous iteration, in which case we would loose "VF-1" iterations of 373 // the reduction operation if we vectorize. 374 if (ExitInstruction != nullptr || Cur == Phi) 375 return false; 376 377 // The instruction used by an outside user must be the last instruction 378 // before we feed back to the reduction phi. Otherwise, we loose VF-1 379 // operations on the value. 380 if (!is_contained(Phi->operands(), Cur)) 381 return false; 382 383 ExitInstruction = Cur; 384 continue; 385 } 386 387 // Process instructions only once (termination). Each reduction cycle 388 // value must only be used once, except by phi nodes and min/max 389 // reductions which are represented as a cmp followed by a select. 390 InstDesc IgnoredVal(false, nullptr); 391 if (VisitedInsts.insert(UI).second) { 392 if (isa<PHINode>(UI)) 393 PHIs.push_back(UI); 394 else 395 NonPHIs.push_back(UI); 396 } else if (!isa<PHINode>(UI) && 397 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && 398 !isa<SelectInst>(UI)) || 399 (!isConditionalRdxPattern(Kind, UI).isRecurrence() && 400 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))) 401 return false; 402 403 // Remember that we completed the cycle. 404 if (UI == Phi) 405 FoundStartPHI = true; 406 } 407 Worklist.append(PHIs.begin(), PHIs.end()); 408 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 409 } 410 411 // This means we have seen one but not the other instruction of the 412 // pattern or more than just a select and cmp. 413 if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2) 414 return false; 415 416 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 417 return false; 418 419 if (Start != Phi) { 420 // If the starting value is not the same as the phi node, we speculatively 421 // looked through an 'and' instruction when evaluating a potential 422 // arithmetic reduction to determine if it may have been type-promoted. 423 // 424 // We now compute the minimal bit width that is required to represent the 425 // reduction. If this is the same width that was indicated by the 'and', we 426 // can represent the reduction in the smaller type. The 'and' instruction 427 // will be eliminated since it will essentially be a cast instruction that 428 // can be ignore in the cost model. If we compute a different type than we 429 // did when evaluating the 'and', the 'and' will not be eliminated, and we 430 // will end up with different kinds of operations in the recurrence 431 // expression (e.g., IntegerAND, IntegerADD). We give up if this is 432 // the case. 433 // 434 // The vectorizer relies on InstCombine to perform the actual 435 // type-shrinking. It does this by inserting instructions to truncate the 436 // exit value of the reduction to the width indicated by RecurrenceType and 437 // then extend this value back to the original width. If IsSigned is false, 438 // a 'zext' instruction will be generated; otherwise, a 'sext' will be 439 // used. 440 // 441 // TODO: We should not rely on InstCombine to rewrite the reduction in the 442 // smaller type. We should just generate a correctly typed expression 443 // to begin with. 444 Type *ComputedType; 445 std::tie(ComputedType, IsSigned) = 446 computeRecurrenceType(ExitInstruction, DB, AC, DT); 447 if (ComputedType != RecurrenceType) 448 return false; 449 450 // The recurrence expression will be represented in a narrower type. If 451 // there are any cast instructions that will be unnecessary, collect them 452 // in CastInsts. Note that the 'and' instruction was already included in 453 // this list. 454 // 455 // TODO: A better way to represent this may be to tag in some way all the 456 // instructions that are a part of the reduction. The vectorizer cost 457 // model could then apply the recurrence type to these instructions, 458 // without needing a white list of instructions to ignore. 459 // This may also be useful for the inloop reductions, if it can be 460 // kept simple enough. 461 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts); 462 } 463 464 // We found a reduction var if we have reached the original phi node and we 465 // only have a single instruction with out-of-loop users. 466 467 // The ExitInstruction(Instruction which is allowed to have out-of-loop users) 468 // is saved as part of the RecurrenceDescriptor. 469 470 // Save the description of this reduction variable. 471 RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, 472 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, 473 IsSigned, CastInsts); 474 RedDes = RD; 475 476 return true; 477 } 478 479 RecurrenceDescriptor::InstDesc 480 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, 481 const InstDesc &Prev) { 482 assert((isa<CmpInst>(I) || isa<SelectInst>(I)) && 483 "Expected a cmp or select instruction"); 484 485 // We must handle the select(cmp()) as a single instruction. Advance to the 486 // select. 487 CmpInst::Predicate Pred; 488 if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) { 489 if (auto *Select = dyn_cast<SelectInst>(*I->user_begin())) 490 return InstDesc(Select, Prev.getRecKind()); 491 } 492 493 // Only match select with single use cmp condition. 494 if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(), 495 m_Value()))) 496 return InstDesc(false, I); 497 498 // Look for a min/max pattern. 499 if (match(I, m_UMin(m_Value(), m_Value()))) 500 return InstDesc(I, RecurKind::UMin); 501 if (match(I, m_UMax(m_Value(), m_Value()))) 502 return InstDesc(I, RecurKind::UMax); 503 if (match(I, m_SMax(m_Value(), m_Value()))) 504 return InstDesc(I, RecurKind::SMax); 505 if (match(I, m_SMin(m_Value(), m_Value()))) 506 return InstDesc(I, RecurKind::SMin); 507 if (match(I, m_OrdFMin(m_Value(), m_Value()))) 508 return InstDesc(I, RecurKind::FMin); 509 if (match(I, m_OrdFMax(m_Value(), m_Value()))) 510 return InstDesc(I, RecurKind::FMax); 511 if (match(I, m_UnordFMin(m_Value(), m_Value()))) 512 return InstDesc(I, RecurKind::FMin); 513 if (match(I, m_UnordFMax(m_Value(), m_Value()))) 514 return InstDesc(I, RecurKind::FMax); 515 516 return InstDesc(false, I); 517 } 518 519 /// Returns true if the select instruction has users in the compare-and-add 520 /// reduction pattern below. The select instruction argument is the last one 521 /// in the sequence. 522 /// 523 /// %sum.1 = phi ... 524 /// ... 525 /// %cmp = fcmp pred %0, %CFP 526 /// %add = fadd %0, %sum.1 527 /// %sum.2 = select %cmp, %add, %sum.1 528 RecurrenceDescriptor::InstDesc 529 RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { 530 SelectInst *SI = dyn_cast<SelectInst>(I); 531 if (!SI) 532 return InstDesc(false, I); 533 534 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition()); 535 // Only handle single use cases for now. 536 if (!CI || !CI->hasOneUse()) 537 return InstDesc(false, I); 538 539 Value *TrueVal = SI->getTrueValue(); 540 Value *FalseVal = SI->getFalseValue(); 541 // Handle only when either of operands of select instruction is a PHI 542 // node for now. 543 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) || 544 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal))) 545 return InstDesc(false, I); 546 547 Instruction *I1 = 548 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal) 549 : dyn_cast<Instruction>(TrueVal); 550 if (!I1 || !I1->isBinaryOp()) 551 return InstDesc(false, I); 552 553 Value *Op1, *Op2; 554 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) || 555 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) && 556 I1->isFast()) 557 return InstDesc(Kind == RecurKind::FAdd, SI); 558 559 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast())) 560 return InstDesc(Kind == RecurKind::FMul, SI); 561 562 return InstDesc(false, I); 563 } 564 565 RecurrenceDescriptor::InstDesc 566 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurKind Kind, 567 InstDesc &Prev, FastMathFlags FMF) { 568 Instruction *UAI = Prev.getUnsafeAlgebraInst(); 569 if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc()) 570 UAI = I; // Found an unsafe (unvectorizable) algebra instruction. 571 572 switch (I->getOpcode()) { 573 default: 574 return InstDesc(false, I); 575 case Instruction::PHI: 576 return InstDesc(I, Prev.getRecKind(), Prev.getUnsafeAlgebraInst()); 577 case Instruction::Sub: 578 case Instruction::Add: 579 return InstDesc(Kind == RecurKind::Add, I); 580 case Instruction::Mul: 581 return InstDesc(Kind == RecurKind::Mul, I); 582 case Instruction::And: 583 return InstDesc(Kind == RecurKind::And, I); 584 case Instruction::Or: 585 return InstDesc(Kind == RecurKind::Or, I); 586 case Instruction::Xor: 587 return InstDesc(Kind == RecurKind::Xor, I); 588 case Instruction::FDiv: 589 case Instruction::FMul: 590 return InstDesc(Kind == RecurKind::FMul, I, UAI); 591 case Instruction::FSub: 592 case Instruction::FAdd: 593 return InstDesc(Kind == RecurKind::FAdd, I, UAI); 594 case Instruction::Select: 595 if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) 596 return isConditionalRdxPattern(Kind, I); 597 LLVM_FALLTHROUGH; 598 case Instruction::FCmp: 599 case Instruction::ICmp: 600 if (isIntMinMaxRecurrenceKind(Kind) || 601 (FMF.noNaNs() && FMF.noSignedZeros() && 602 isFPMinMaxRecurrenceKind(Kind))) 603 return isMinMaxSelectCmpPattern(I, Prev); 604 return InstDesc(false, I); 605 } 606 } 607 608 bool RecurrenceDescriptor::hasMultipleUsesOf( 609 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, 610 unsigned MaxNumUses) { 611 unsigned NumUses = 0; 612 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; 613 ++Use) { 614 if (Insts.count(dyn_cast<Instruction>(*Use))) 615 ++NumUses; 616 if (NumUses > MaxNumUses) 617 return true; 618 } 619 620 return false; 621 } 622 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, 623 RecurrenceDescriptor &RedDes, 624 DemandedBits *DB, AssumptionCache *AC, 625 DominatorTree *DT) { 626 627 BasicBlock *Header = TheLoop->getHeader(); 628 Function &F = *Header->getParent(); 629 FastMathFlags FMF; 630 FMF.setNoNaNs( 631 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"); 632 FMF.setNoSignedZeros( 633 F.getFnAttribute("no-signed-zeros-fp-math").getValueAsString() == "true"); 634 635 if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) { 636 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); 637 return true; 638 } 639 if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) { 640 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); 641 return true; 642 } 643 if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) { 644 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); 645 return true; 646 } 647 if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) { 648 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); 649 return true; 650 } 651 if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) { 652 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); 653 return true; 654 } 655 if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 656 LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n"); 657 return true; 658 } 659 if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 660 LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n"); 661 return true; 662 } 663 if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 664 LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n"); 665 return true; 666 } 667 if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 668 LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n"); 669 return true; 670 } 671 if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) { 672 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); 673 return true; 674 } 675 if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) { 676 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); 677 return true; 678 } 679 if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) { 680 LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n"); 681 return true; 682 } 683 if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) { 684 LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n"); 685 return true; 686 } 687 // Not a reduction of known type. 688 return false; 689 } 690 691 bool RecurrenceDescriptor::isFirstOrderRecurrence( 692 PHINode *Phi, Loop *TheLoop, 693 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) { 694 695 // Ensure the phi node is in the loop header and has two incoming values. 696 if (Phi->getParent() != TheLoop->getHeader() || 697 Phi->getNumIncomingValues() != 2) 698 return false; 699 700 // Ensure the loop has a preheader and a single latch block. The loop 701 // vectorizer will need the latch to set up the next iteration of the loop. 702 auto *Preheader = TheLoop->getLoopPreheader(); 703 auto *Latch = TheLoop->getLoopLatch(); 704 if (!Preheader || !Latch) 705 return false; 706 707 // Ensure the phi node's incoming blocks are the loop preheader and latch. 708 if (Phi->getBasicBlockIndex(Preheader) < 0 || 709 Phi->getBasicBlockIndex(Latch) < 0) 710 return false; 711 712 // Get the previous value. The previous value comes from the latch edge while 713 // the initial value comes form the preheader edge. 714 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); 715 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) || 716 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion. 717 return false; 718 719 // Ensure every user of the phi node is dominated by the previous value. 720 // The dominance requirement ensures the loop vectorizer will not need to 721 // vectorize the initial value prior to the first iteration of the loop. 722 // TODO: Consider extending this sinking to handle memory instructions and 723 // phis with multiple users. 724 725 // Returns true, if all users of I are dominated by DominatedBy. 726 auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) { 727 return all_of(I->uses(), [DT, DominatedBy](Use &U) { 728 return DT->dominates(DominatedBy, U); 729 }); 730 }; 731 732 if (Phi->hasOneUse()) { 733 Instruction *I = Phi->user_back(); 734 735 // If the user of the PHI is also the incoming value, we potentially have a 736 // reduction and which cannot be handled by sinking. 737 if (Previous == I) 738 return false; 739 740 // We cannot sink terminator instructions. 741 if (I->getParent()->getTerminator() == I) 742 return false; 743 744 // Do not try to sink an instruction multiple times (if multiple operands 745 // are first order recurrences). 746 // TODO: We can support this case, by sinking the instruction after the 747 // 'deepest' previous instruction. 748 if (SinkAfter.find(I) != SinkAfter.end()) 749 return false; 750 751 if (DT->dominates(Previous, I)) // We already are good w/o sinking. 752 return true; 753 754 // We can sink any instruction without side effects, as long as all users 755 // are dominated by the instruction we are sinking after. 756 if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() && 757 allUsesDominatedBy(I, Previous)) { 758 SinkAfter[I] = Previous; 759 return true; 760 } 761 } 762 763 return allUsesDominatedBy(Phi, Previous); 764 } 765 766 /// This function returns the identity element (or neutral element) for 767 /// the operation K. 768 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp) { 769 switch (K) { 770 case RecurKind::Xor: 771 case RecurKind::Add: 772 case RecurKind::Or: 773 // Adding, Xoring, Oring zero to a number does not change it. 774 return ConstantInt::get(Tp, 0); 775 case RecurKind::Mul: 776 // Multiplying a number by 1 does not change it. 777 return ConstantInt::get(Tp, 1); 778 case RecurKind::And: 779 // AND-ing a number with an all-1 value does not change it. 780 return ConstantInt::get(Tp, -1, true); 781 case RecurKind::FMul: 782 // Multiplying a number by 1 does not change it. 783 return ConstantFP::get(Tp, 1.0L); 784 case RecurKind::FAdd: 785 // Adding zero to a number does not change it. 786 return ConstantFP::get(Tp, 0.0L); 787 case RecurKind::UMin: 788 return ConstantInt::get(Tp, -1); 789 case RecurKind::UMax: 790 return ConstantInt::get(Tp, 0); 791 case RecurKind::SMin: 792 return ConstantInt::get(Tp, 793 APInt::getSignedMaxValue(Tp->getIntegerBitWidth())); 794 case RecurKind::SMax: 795 return ConstantInt::get(Tp, 796 APInt::getSignedMinValue(Tp->getIntegerBitWidth())); 797 case RecurKind::FMin: 798 return ConstantFP::getInfinity(Tp, true); 799 case RecurKind::FMax: 800 return ConstantFP::getInfinity(Tp, false); 801 default: 802 llvm_unreachable("Unknown recurrence kind"); 803 } 804 } 805 806 unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { 807 switch (Kind) { 808 case RecurKind::Add: 809 return Instruction::Add; 810 case RecurKind::Mul: 811 return Instruction::Mul; 812 case RecurKind::Or: 813 return Instruction::Or; 814 case RecurKind::And: 815 return Instruction::And; 816 case RecurKind::Xor: 817 return Instruction::Xor; 818 case RecurKind::FMul: 819 return Instruction::FMul; 820 case RecurKind::FAdd: 821 return Instruction::FAdd; 822 case RecurKind::SMax: 823 case RecurKind::SMin: 824 case RecurKind::UMax: 825 case RecurKind::UMin: 826 return Instruction::ICmp; 827 case RecurKind::FMax: 828 case RecurKind::FMin: 829 return Instruction::FCmp; 830 default: 831 llvm_unreachable("Unknown recurrence operation"); 832 } 833 } 834 835 SmallVector<Instruction *, 4> 836 RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { 837 SmallVector<Instruction *, 4> ReductionOperations; 838 unsigned RedOp = getOpcode(Kind); 839 840 // Search down from the Phi to the LoopExitInstr, looking for instructions 841 // with a single user of the correct type for the reduction. 842 843 // Note that we check that the type of the operand is correct for each item in 844 // the chain, including the last (the loop exit value). This can come up from 845 // sub, which would otherwise be treated as an add reduction. MinMax also need 846 // to check for a pair of icmp/select, for which we use getNextInstruction and 847 // isCorrectOpcode functions to step the right number of instruction, and 848 // check the icmp/select pair. 849 // FIXME: We also do not attempt to look through Phi/Select's yet, which might 850 // be part of the reduction chain, or attempt to looks through And's to find a 851 // smaller bitwidth. Subs are also currently not allowed (which are usually 852 // treated as part of a add reduction) as they are expected to generally be 853 // more expensive than out-of-loop reductions, and need to be costed more 854 // carefully. 855 unsigned ExpectedUses = 1; 856 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) 857 ExpectedUses = 2; 858 859 auto getNextInstruction = [&](Instruction *Cur) { 860 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 861 // We are expecting a icmp/select pair, which we go to the next select 862 // instruction if we can. We already know that Cur has 2 uses. 863 if (isa<SelectInst>(*Cur->user_begin())) 864 return cast<Instruction>(*Cur->user_begin()); 865 else 866 return cast<Instruction>(*std::next(Cur->user_begin())); 867 } 868 return cast<Instruction>(*Cur->user_begin()); 869 }; 870 auto isCorrectOpcode = [&](Instruction *Cur) { 871 if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { 872 Value *LHS, *RHS; 873 return SelectPatternResult::isMinOrMax( 874 matchSelectPattern(Cur, LHS, RHS).Flavor); 875 } 876 return Cur->getOpcode() == RedOp; 877 }; 878 879 // The loop exit instruction we check first (as a quick test) but add last. We 880 // check the opcode is correct (and dont allow them to be Subs) and that they 881 // have expected to have the expected number of uses. They will have one use 882 // from the phi and one from a LCSSA value, no matter the type. 883 if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2)) 884 return {}; 885 886 // Check that the Phi has one (or two for min/max) uses. 887 if (!Phi->hasNUses(ExpectedUses)) 888 return {}; 889 Instruction *Cur = getNextInstruction(Phi); 890 891 // Each other instruction in the chain should have the expected number of uses 892 // and be the correct opcode. 893 while (Cur != LoopExitInstr) { 894 if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses)) 895 return {}; 896 897 ReductionOperations.push_back(Cur); 898 Cur = getNextInstruction(Cur); 899 } 900 901 ReductionOperations.push_back(Cur); 902 return ReductionOperations; 903 } 904 905 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, 906 const SCEV *Step, BinaryOperator *BOp, 907 SmallVectorImpl<Instruction *> *Casts) 908 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { 909 assert(IK != IK_NoInduction && "Not an induction"); 910 911 // Start value type should match the induction kind and the value 912 // itself should not be null. 913 assert(StartValue && "StartValue is null"); 914 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 915 "StartValue is not a pointer for pointer induction"); 916 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 917 "StartValue is not an integer for integer induction"); 918 919 // Check the Step Value. It should be non-zero integer value. 920 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && 921 "Step value is zero"); 922 923 assert((IK != IK_PtrInduction || getConstIntStepValue()) && 924 "Step value should be constant for pointer induction"); 925 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && 926 "StepValue is not an integer"); 927 928 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && 929 "StepValue is not FP for FpInduction"); 930 assert((IK != IK_FpInduction || 931 (InductionBinOp && 932 (InductionBinOp->getOpcode() == Instruction::FAdd || 933 InductionBinOp->getOpcode() == Instruction::FSub))) && 934 "Binary opcode should be specified for FP induction"); 935 936 if (Casts) { 937 for (auto &Inst : *Casts) { 938 RedundantCasts.push_back(Inst); 939 } 940 } 941 } 942 943 ConstantInt *InductionDescriptor::getConstIntStepValue() const { 944 if (isa<SCEVConstant>(Step)) 945 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); 946 return nullptr; 947 } 948 949 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, 950 ScalarEvolution *SE, 951 InductionDescriptor &D) { 952 953 // Here we only handle FP induction variables. 954 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type"); 955 956 if (TheLoop->getHeader() != Phi->getParent()) 957 return false; 958 959 // The loop may have multiple entrances or multiple exits; we can analyze 960 // this phi if it has a unique entry value and a unique backedge value. 961 if (Phi->getNumIncomingValues() != 2) 962 return false; 963 Value *BEValue = nullptr, *StartValue = nullptr; 964 if (TheLoop->contains(Phi->getIncomingBlock(0))) { 965 BEValue = Phi->getIncomingValue(0); 966 StartValue = Phi->getIncomingValue(1); 967 } else { 968 assert(TheLoop->contains(Phi->getIncomingBlock(1)) && 969 "Unexpected Phi node in the loop"); 970 BEValue = Phi->getIncomingValue(1); 971 StartValue = Phi->getIncomingValue(0); 972 } 973 974 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue); 975 if (!BOp) 976 return false; 977 978 Value *Addend = nullptr; 979 if (BOp->getOpcode() == Instruction::FAdd) { 980 if (BOp->getOperand(0) == Phi) 981 Addend = BOp->getOperand(1); 982 else if (BOp->getOperand(1) == Phi) 983 Addend = BOp->getOperand(0); 984 } else if (BOp->getOpcode() == Instruction::FSub) 985 if (BOp->getOperand(0) == Phi) 986 Addend = BOp->getOperand(1); 987 988 if (!Addend) 989 return false; 990 991 // The addend should be loop invariant 992 if (auto *I = dyn_cast<Instruction>(Addend)) 993 if (TheLoop->contains(I)) 994 return false; 995 996 // FP Step has unknown SCEV 997 const SCEV *Step = SE->getUnknown(Addend); 998 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); 999 return true; 1000 } 1001 1002 /// This function is called when we suspect that the update-chain of a phi node 1003 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, 1004 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime 1005 /// predicate P under which the SCEV expression for the phi can be the 1006 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the 1007 /// cast instructions that are involved in the update-chain of this induction. 1008 /// A caller that adds the required runtime predicate can be free to drop these 1009 /// cast instructions, and compute the phi using \p AR (instead of some scev 1010 /// expression with casts). 1011 /// 1012 /// For example, without a predicate the scev expression can take the following 1013 /// form: 1014 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) 1015 /// 1016 /// It corresponds to the following IR sequence: 1017 /// %for.body: 1018 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] 1019 /// %casted_phi = "ExtTrunc i64 %x" 1020 /// %add = add i64 %casted_phi, %step 1021 /// 1022 /// where %x is given in \p PN, 1023 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, 1024 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of 1025 /// several forms, for example, such as: 1026 /// ExtTrunc1: %casted_phi = and %x, 2^n-1 1027 /// or: 1028 /// ExtTrunc2: %t = shl %x, m 1029 /// %casted_phi = ashr %t, m 1030 /// 1031 /// If we are able to find such sequence, we return the instructions 1032 /// we found, namely %casted_phi and the instructions on its use-def chain up 1033 /// to the phi (not including the phi). 1034 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, 1035 const SCEVUnknown *PhiScev, 1036 const SCEVAddRecExpr *AR, 1037 SmallVectorImpl<Instruction *> &CastInsts) { 1038 1039 assert(CastInsts.empty() && "CastInsts is expected to be empty."); 1040 auto *PN = cast<PHINode>(PhiScev->getValue()); 1041 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression"); 1042 const Loop *L = AR->getLoop(); 1043 1044 // Find any cast instructions that participate in the def-use chain of 1045 // PhiScev in the loop. 1046 // FORNOW/TODO: We currently expect the def-use chain to include only 1047 // two-operand instructions, where one of the operands is an invariant. 1048 // createAddRecFromPHIWithCasts() currently does not support anything more 1049 // involved than that, so we keep the search simple. This can be 1050 // extended/generalized as needed. 1051 1052 auto getDef = [&](const Value *Val) -> Value * { 1053 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); 1054 if (!BinOp) 1055 return nullptr; 1056 Value *Op0 = BinOp->getOperand(0); 1057 Value *Op1 = BinOp->getOperand(1); 1058 Value *Def = nullptr; 1059 if (L->isLoopInvariant(Op0)) 1060 Def = Op1; 1061 else if (L->isLoopInvariant(Op1)) 1062 Def = Op0; 1063 return Def; 1064 }; 1065 1066 // Look for the instruction that defines the induction via the 1067 // loop backedge. 1068 BasicBlock *Latch = L->getLoopLatch(); 1069 if (!Latch) 1070 return false; 1071 Value *Val = PN->getIncomingValueForBlock(Latch); 1072 if (!Val) 1073 return false; 1074 1075 // Follow the def-use chain until the induction phi is reached. 1076 // If on the way we encounter a Value that has the same SCEV Expr as the 1077 // phi node, we can consider the instructions we visit from that point 1078 // as part of the cast-sequence that can be ignored. 1079 bool InCastSequence = false; 1080 auto *Inst = dyn_cast<Instruction>(Val); 1081 while (Val != PN) { 1082 // If we encountered a phi node other than PN, or if we left the loop, 1083 // we bail out. 1084 if (!Inst || !L->contains(Inst)) { 1085 return false; 1086 } 1087 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val)); 1088 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR)) 1089 InCastSequence = true; 1090 if (InCastSequence) { 1091 // Only the last instruction in the cast sequence is expected to have 1092 // uses outside the induction def-use chain. 1093 if (!CastInsts.empty()) 1094 if (!Inst->hasOneUse()) 1095 return false; 1096 CastInsts.push_back(Inst); 1097 } 1098 Val = getDef(Val); 1099 if (!Val) 1100 return false; 1101 Inst = dyn_cast<Instruction>(Val); 1102 } 1103 1104 return InCastSequence; 1105 } 1106 1107 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, 1108 PredicatedScalarEvolution &PSE, 1109 InductionDescriptor &D, bool Assume) { 1110 Type *PhiTy = Phi->getType(); 1111 1112 // Handle integer and pointer inductions variables. 1113 // Now we handle also FP induction but not trying to make a 1114 // recurrent expression from the PHI node in-place. 1115 1116 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && 1117 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) 1118 return false; 1119 1120 if (PhiTy->isFloatingPointTy()) 1121 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D); 1122 1123 const SCEV *PhiScev = PSE.getSCEV(Phi); 1124 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1125 1126 // We need this expression to be an AddRecExpr. 1127 if (Assume && !AR) 1128 AR = PSE.getAsAddRec(Phi); 1129 1130 if (!AR) { 1131 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1132 return false; 1133 } 1134 1135 // Record any Cast instructions that participate in the induction update 1136 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev); 1137 // If we started from an UnknownSCEV, and managed to build an addRecurrence 1138 // only after enabling Assume with PSCEV, this means we may have encountered 1139 // cast instructions that required adding a runtime check in order to 1140 // guarantee the correctness of the AddRecurrence respresentation of the 1141 // induction. 1142 if (PhiScev != AR && SymbolicPhi) { 1143 SmallVector<Instruction *, 2> Casts; 1144 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts)) 1145 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts); 1146 } 1147 1148 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR); 1149 } 1150 1151 bool InductionDescriptor::isInductionPHI( 1152 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, 1153 InductionDescriptor &D, const SCEV *Expr, 1154 SmallVectorImpl<Instruction *> *CastsToIgnore) { 1155 Type *PhiTy = Phi->getType(); 1156 // We only handle integer and pointer inductions variables. 1157 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 1158 return false; 1159 1160 // Check that the PHI is consecutive. 1161 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); 1162 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 1163 1164 if (!AR) { 1165 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 1166 return false; 1167 } 1168 1169 if (AR->getLoop() != TheLoop) { 1170 // FIXME: We should treat this as a uniform. Unfortunately, we 1171 // don't currently know how to handled uniform PHIs. 1172 LLVM_DEBUG( 1173 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n"); 1174 return false; 1175 } 1176 1177 Value *StartValue = 1178 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); 1179 1180 BasicBlock *Latch = AR->getLoop()->getLoopLatch(); 1181 if (!Latch) 1182 return false; 1183 BinaryOperator *BOp = 1184 dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch)); 1185 1186 const SCEV *Step = AR->getStepRecurrence(*SE); 1187 // Calculate the pointer stride and check if it is consecutive. 1188 // The stride may be a constant or a loop invariant integer value. 1189 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); 1190 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop)) 1191 return false; 1192 1193 if (PhiTy->isIntegerTy()) { 1194 D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, 1195 CastsToIgnore); 1196 return true; 1197 } 1198 1199 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 1200 // Pointer induction should be a constant. 1201 if (!ConstStep) 1202 return false; 1203 1204 ConstantInt *CV = ConstStep->getValue(); 1205 Type *PointerElementType = PhiTy->getPointerElementType(); 1206 // The pointer stride cannot be determined if the pointer element type is not 1207 // sized. 1208 if (!PointerElementType->isSized()) 1209 return false; 1210 1211 const DataLayout &DL = Phi->getModule()->getDataLayout(); 1212 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); 1213 if (!Size) 1214 return false; 1215 1216 int64_t CVSize = CV->getSExtValue(); 1217 if (CVSize % Size) 1218 return false; 1219 auto *StepValue = 1220 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); 1221 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp); 1222 return true; 1223 } 1224