1 //===- IRSimilarityIdentifier.cpp - Find similarity in a module -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // \file 10 // Implementation file for the IRSimilarityIdentifier for identifying 11 // similarities in IR including the IRInstructionMapper. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/IRSimilarityIdentifier.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/Operator.h" 19 #include "llvm/IR/User.h" 20 #include "llvm/InitializePasses.h" 21 #include "llvm/Support/SuffixTree.h" 22 23 using namespace llvm; 24 using namespace IRSimilarity; 25 26 namespace llvm { 27 cl::opt<bool> 28 DisableBranches("no-ir-sim-branch-matching", cl::init(false), 29 cl::ReallyHidden, 30 cl::desc("disable similarity matching, and outlining, " 31 "across branches for debugging purposes.")); 32 33 cl::opt<bool> 34 DisableIndirectCalls("no-ir-sim-indirect-calls", cl::init(false), 35 cl::ReallyHidden, 36 cl::desc("disable outlining indirect calls.")); 37 38 cl::opt<bool> 39 MatchCallsByName("ir-sim-calls-by-name", cl::init(false), cl::ReallyHidden, 40 cl::desc("only allow matching call instructions if the " 41 "name and type signature match.")); 42 43 cl::opt<bool> 44 DisableIntrinsics("no-ir-sim-intrinsics", cl::init(false), cl::ReallyHidden, 45 cl::desc("Don't match or outline intrinsics")); 46 } // namespace llvm 47 48 IRInstructionData::IRInstructionData(Instruction &I, bool Legality, 49 IRInstructionDataList &IDList) 50 : Inst(&I), Legal(Legality), IDL(&IDList) { 51 initializeInstruction(); 52 } 53 54 void IRInstructionData::initializeInstruction() { 55 // We check for whether we have a comparison instruction. If it is, we 56 // find the "less than" version of the predicate for consistency for 57 // comparison instructions throught the program. 58 if (CmpInst *C = dyn_cast<CmpInst>(Inst)) { 59 CmpInst::Predicate Predicate = predicateForConsistency(C); 60 if (Predicate != C->getPredicate()) 61 RevisedPredicate = Predicate; 62 } 63 64 // Here we collect the operands and their types for determining whether 65 // the structure of the operand use matches between two different candidates. 66 for (Use &OI : Inst->operands()) { 67 if (isa<CmpInst>(Inst) && RevisedPredicate.hasValue()) { 68 // If we have a CmpInst where the predicate is reversed, it means the 69 // operands must be reversed as well. 70 OperVals.insert(OperVals.begin(), OI.get()); 71 continue; 72 } 73 74 OperVals.push_back(OI.get()); 75 } 76 77 // We capture the incoming BasicBlocks as values as well as the incoming 78 // Values in order to check for structural similarity. 79 if (PHINode *PN = dyn_cast<PHINode>(Inst)) 80 for (BasicBlock *BB : PN->blocks()) 81 OperVals.push_back(BB); 82 } 83 84 IRInstructionData::IRInstructionData(IRInstructionDataList &IDList) 85 : IDL(&IDList) {} 86 87 void IRInstructionData::setBranchSuccessors( 88 DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) { 89 assert(isa<BranchInst>(Inst) && "Instruction must be branch"); 90 91 BranchInst *BI = cast<BranchInst>(Inst); 92 DenseMap<BasicBlock *, unsigned>::iterator BBNumIt; 93 94 BBNumIt = BasicBlockToInteger.find(BI->getParent()); 95 assert(BBNumIt != BasicBlockToInteger.end() && 96 "Could not find location for BasicBlock!"); 97 98 int CurrentBlockNumber = static_cast<int>(BBNumIt->second); 99 100 for (BasicBlock *Successor : BI->successors()) { 101 BBNumIt = BasicBlockToInteger.find(Successor); 102 assert(BBNumIt != BasicBlockToInteger.end() && 103 "Could not find number for BasicBlock!"); 104 int OtherBlockNumber = static_cast<int>(BBNumIt->second); 105 106 int Relative = OtherBlockNumber - CurrentBlockNumber; 107 RelativeBlockLocations.push_back(Relative); 108 } 109 } 110 111 void IRInstructionData::setCalleeName(bool MatchByName) { 112 CallInst *CI = dyn_cast<CallInst>(Inst); 113 assert(CI && "Instruction must be call"); 114 115 CalleeName = ""; 116 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 117 // To hash intrinsics, we use the opcode, and types like the other 118 // instructions, but also, the Intrinsic ID, and the Name of the 119 // intrinsic. 120 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 121 FunctionType *FT = II->getFunctionType(); 122 // If there is an overloaded name, we have to use the complex version 123 // of getName to get the entire string. 124 if (Intrinsic::isOverloaded(IntrinsicID)) 125 CalleeName = 126 Intrinsic::getName(IntrinsicID, FT->params(), II->getModule(), FT); 127 // If there is not an overloaded name, we only need to use this version. 128 else 129 CalleeName = Intrinsic::getName(IntrinsicID).str(); 130 131 return; 132 } 133 134 if (!CI->isIndirectCall() && MatchByName) 135 CalleeName = CI->getCalledFunction()->getName().str(); 136 } 137 138 void IRInstructionData::setPHIPredecessors( 139 DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) { 140 assert(isa<PHINode>(Inst) && "Instruction must be phi node"); 141 142 PHINode *PN = cast<PHINode>(Inst); 143 DenseMap<BasicBlock *, unsigned>::iterator BBNumIt; 144 145 BBNumIt = BasicBlockToInteger.find(PN->getParent()); 146 assert(BBNumIt != BasicBlockToInteger.end() && 147 "Could not find location for BasicBlock!"); 148 149 int CurrentBlockNumber = static_cast<int>(BBNumIt->second); 150 151 // Convert the incoming blocks of the PHINode to an integer value, based on 152 // the relative distances between the current block and the incoming block. 153 for (unsigned Idx = 0; Idx < PN->getNumIncomingValues(); Idx++) { 154 BasicBlock *Incoming = PN->getIncomingBlock(Idx); 155 BBNumIt = BasicBlockToInteger.find(Incoming); 156 assert(BBNumIt != BasicBlockToInteger.end() && 157 "Could not find number for BasicBlock!"); 158 int OtherBlockNumber = static_cast<int>(BBNumIt->second); 159 160 int Relative = OtherBlockNumber - CurrentBlockNumber; 161 RelativeBlockLocations.push_back(Relative); 162 RelativeBlockLocations.push_back(Relative); 163 } 164 } 165 166 CmpInst::Predicate IRInstructionData::predicateForConsistency(CmpInst *CI) { 167 switch (CI->getPredicate()) { 168 case CmpInst::FCMP_OGT: 169 case CmpInst::FCMP_UGT: 170 case CmpInst::FCMP_OGE: 171 case CmpInst::FCMP_UGE: 172 case CmpInst::ICMP_SGT: 173 case CmpInst::ICMP_UGT: 174 case CmpInst::ICMP_SGE: 175 case CmpInst::ICMP_UGE: 176 return CI->getSwappedPredicate(); 177 default: 178 return CI->getPredicate(); 179 } 180 } 181 182 CmpInst::Predicate IRInstructionData::getPredicate() const { 183 assert(isa<CmpInst>(Inst) && 184 "Can only get a predicate from a compare instruction"); 185 186 if (RevisedPredicate.hasValue()) 187 return RevisedPredicate.getValue(); 188 189 return cast<CmpInst>(Inst)->getPredicate(); 190 } 191 192 StringRef IRInstructionData::getCalleeName() const { 193 assert(isa<CallInst>(Inst) && 194 "Can only get a name from a call instruction"); 195 196 assert(CalleeName.hasValue() && "CalleeName has not been set"); 197 198 return *CalleeName; 199 } 200 201 bool IRSimilarity::isClose(const IRInstructionData &A, 202 const IRInstructionData &B) { 203 204 if (!A.Legal || !B.Legal) 205 return false; 206 207 // Check if we are performing the same sort of operation on the same types 208 // but not on the same values. 209 if (!A.Inst->isSameOperationAs(B.Inst)) { 210 // If there is a predicate, this means that either there is a swapped 211 // predicate, or that the types are different, we want to make sure that 212 // the predicates are equivalent via swapping. 213 if (isa<CmpInst>(A.Inst) && isa<CmpInst>(B.Inst)) { 214 215 if (A.getPredicate() != B.getPredicate()) 216 return false; 217 218 // If the predicates are the same via swap, make sure that the types are 219 // still the same. 220 auto ZippedTypes = zip(A.OperVals, B.OperVals); 221 222 return all_of( 223 ZippedTypes, [](std::tuple<llvm::Value *, llvm::Value *> R) { 224 return std::get<0>(R)->getType() == std::get<1>(R)->getType(); 225 }); 226 } 227 228 return false; 229 } 230 231 // Since any GEP Instruction operands after the first operand cannot be 232 // defined by a register, we must make sure that the operands after the first 233 // are the same in the two instructions 234 if (auto *GEP = dyn_cast<GetElementPtrInst>(A.Inst)) { 235 auto *OtherGEP = cast<GetElementPtrInst>(B.Inst); 236 237 // If the instructions do not have the same inbounds restrictions, we do 238 // not consider them the same. 239 if (GEP->isInBounds() != OtherGEP->isInBounds()) 240 return false; 241 242 auto ZippedOperands = zip(GEP->indices(), OtherGEP->indices()); 243 244 // We increment here since we do not care about the first instruction, 245 // we only care about the following operands since they must be the 246 // exact same to be considered similar. 247 return all_of(drop_begin(ZippedOperands), 248 [](std::tuple<llvm::Use &, llvm::Use &> R) { 249 return std::get<0>(R) == std::get<1>(R); 250 }); 251 } 252 253 // If the instructions are functions calls, we make sure that the function 254 // name is the same. We already know that the types are since is 255 // isSameOperationAs is true. 256 if (isa<CallInst>(A.Inst) && isa<CallInst>(B.Inst)) { 257 if (A.getCalleeName().str() != B.getCalleeName().str()) 258 return false; 259 } 260 261 if (isa<BranchInst>(A.Inst) && isa<BranchInst>(B.Inst) && 262 A.RelativeBlockLocations.size() != B.RelativeBlockLocations.size()) 263 return false; 264 265 return true; 266 } 267 268 // TODO: This is the same as the MachineOutliner, and should be consolidated 269 // into the same interface. 270 void IRInstructionMapper::convertToUnsignedVec( 271 BasicBlock &BB, std::vector<IRInstructionData *> &InstrList, 272 std::vector<unsigned> &IntegerMapping) { 273 BasicBlock::iterator It = BB.begin(); 274 275 std::vector<unsigned> IntegerMappingForBB; 276 std::vector<IRInstructionData *> InstrListForBB; 277 278 for (BasicBlock::iterator Et = BB.end(); It != Et; ++It) { 279 switch (InstClassifier.visit(*It)) { 280 case InstrType::Legal: 281 mapToLegalUnsigned(It, IntegerMappingForBB, InstrListForBB); 282 break; 283 case InstrType::Illegal: 284 mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB); 285 break; 286 case InstrType::Invisible: 287 AddedIllegalLastTime = false; 288 break; 289 } 290 } 291 292 if (AddedIllegalLastTime) 293 mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB, true); 294 for (IRInstructionData *ID : InstrListForBB) 295 this->IDL->push_back(*ID); 296 llvm::append_range(InstrList, InstrListForBB); 297 llvm::append_range(IntegerMapping, IntegerMappingForBB); 298 } 299 300 // TODO: This is the same as the MachineOutliner, and should be consolidated 301 // into the same interface. 302 unsigned IRInstructionMapper::mapToLegalUnsigned( 303 BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB, 304 std::vector<IRInstructionData *> &InstrListForBB) { 305 // We added something legal, so we should unset the AddedLegalLastTime 306 // flag. 307 AddedIllegalLastTime = false; 308 309 // If we have at least two adjacent legal instructions (which may have 310 // invisible instructions in between), remember that. 311 if (CanCombineWithPrevInstr) 312 HaveLegalRange = true; 313 CanCombineWithPrevInstr = true; 314 315 // Get the integer for this instruction or give it the current 316 // LegalInstrNumber. 317 IRInstructionData *ID = allocateIRInstructionData(*It, true, *IDL); 318 InstrListForBB.push_back(ID); 319 320 if (isa<BranchInst>(*It)) 321 ID->setBranchSuccessors(BasicBlockToInteger); 322 323 if (isa<CallInst>(*It)) 324 ID->setCalleeName(EnableMatchCallsByName); 325 326 if (isa<PHINode>(*It)) 327 ID->setPHIPredecessors(BasicBlockToInteger); 328 329 // Add to the instruction list 330 bool WasInserted; 331 DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>::iterator 332 ResultIt; 333 std::tie(ResultIt, WasInserted) = 334 InstructionIntegerMap.insert(std::make_pair(ID, LegalInstrNumber)); 335 unsigned INumber = ResultIt->second; 336 337 // There was an insertion. 338 if (WasInserted) 339 LegalInstrNumber++; 340 341 IntegerMappingForBB.push_back(INumber); 342 343 // Make sure we don't overflow or use any integers reserved by the DenseMap. 344 assert(LegalInstrNumber < IllegalInstrNumber && 345 "Instruction mapping overflow!"); 346 347 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 348 "Tried to assign DenseMap tombstone or empty key to instruction."); 349 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 350 "Tried to assign DenseMap tombstone or empty key to instruction."); 351 352 return INumber; 353 } 354 355 IRInstructionData * 356 IRInstructionMapper::allocateIRInstructionData(Instruction &I, bool Legality, 357 IRInstructionDataList &IDL) { 358 return new (InstDataAllocator->Allocate()) IRInstructionData(I, Legality, IDL); 359 } 360 361 IRInstructionData * 362 IRInstructionMapper::allocateIRInstructionData(IRInstructionDataList &IDL) { 363 return new (InstDataAllocator->Allocate()) IRInstructionData(IDL); 364 } 365 366 IRInstructionDataList * 367 IRInstructionMapper::allocateIRInstructionDataList() { 368 return new (IDLAllocator->Allocate()) IRInstructionDataList(); 369 } 370 371 // TODO: This is the same as the MachineOutliner, and should be consolidated 372 // into the same interface. 373 unsigned IRInstructionMapper::mapToIllegalUnsigned( 374 BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB, 375 std::vector<IRInstructionData *> &InstrListForBB, bool End) { 376 // Can't combine an illegal instruction. Set the flag. 377 CanCombineWithPrevInstr = false; 378 379 // Only add one illegal number per range of legal numbers. 380 if (AddedIllegalLastTime) 381 return IllegalInstrNumber; 382 383 IRInstructionData *ID = nullptr; 384 if (!End) 385 ID = allocateIRInstructionData(*It, false, *IDL); 386 else 387 ID = allocateIRInstructionData(*IDL); 388 InstrListForBB.push_back(ID); 389 390 // Remember that we added an illegal number last time. 391 AddedIllegalLastTime = true; 392 unsigned INumber = IllegalInstrNumber; 393 IntegerMappingForBB.push_back(IllegalInstrNumber--); 394 395 assert(LegalInstrNumber < IllegalInstrNumber && 396 "Instruction mapping overflow!"); 397 398 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && 399 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 400 401 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && 402 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); 403 404 return INumber; 405 } 406 407 IRSimilarityCandidate::IRSimilarityCandidate(unsigned StartIdx, unsigned Len, 408 IRInstructionData *FirstInstIt, 409 IRInstructionData *LastInstIt) 410 : StartIdx(StartIdx), Len(Len) { 411 412 assert(FirstInstIt != nullptr && "Instruction is nullptr!"); 413 assert(LastInstIt != nullptr && "Instruction is nullptr!"); 414 assert(StartIdx + Len > StartIdx && 415 "Overflow for IRSimilarityCandidate range?"); 416 assert(Len - 1 == static_cast<unsigned>(std::distance( 417 iterator(FirstInstIt), iterator(LastInstIt))) && 418 "Length of the first and last IRInstructionData do not match the " 419 "given length"); 420 421 // We iterate over the given instructions, and map each unique value 422 // to a unique number in the IRSimilarityCandidate ValueToNumber and 423 // NumberToValue maps. A constant get its own value globally, the individual 424 // uses of the constants are not considered to be unique. 425 // 426 // IR: Mapping Added: 427 // %add1 = add i32 %a, c1 %add1 -> 3, %a -> 1, c1 -> 2 428 // %add2 = add i32 %a, %1 %add2 -> 4 429 // %add3 = add i32 c2, c1 %add3 -> 6, c2 -> 5 430 // 431 // when replace with global values, starting from 1, would be 432 // 433 // 3 = add i32 1, 2 434 // 4 = add i32 1, 3 435 // 6 = add i32 5, 2 436 unsigned LocalValNumber = 1; 437 IRInstructionDataList::iterator ID = iterator(*FirstInstIt); 438 for (unsigned Loc = StartIdx; Loc < StartIdx + Len; Loc++, ID++) { 439 // Map the operand values to an unsigned integer if it does not already 440 // have an unsigned integer assigned to it. 441 for (Value *Arg : ID->OperVals) 442 if (ValueToNumber.find(Arg) == ValueToNumber.end()) { 443 ValueToNumber.try_emplace(Arg, LocalValNumber); 444 NumberToValue.try_emplace(LocalValNumber, Arg); 445 LocalValNumber++; 446 } 447 448 // Mapping the instructions to an unsigned integer if it is not already 449 // exist in the mapping. 450 if (ValueToNumber.find(ID->Inst) == ValueToNumber.end()) { 451 ValueToNumber.try_emplace(ID->Inst, LocalValNumber); 452 NumberToValue.try_emplace(LocalValNumber, ID->Inst); 453 LocalValNumber++; 454 } 455 } 456 457 // Setting the first and last instruction data pointers for the candidate. If 458 // we got through the entire for loop without hitting an assert, we know 459 // that both of these instructions are not nullptrs. 460 FirstInst = FirstInstIt; 461 LastInst = LastInstIt; 462 } 463 464 bool IRSimilarityCandidate::isSimilar(const IRSimilarityCandidate &A, 465 const IRSimilarityCandidate &B) { 466 if (A.getLength() != B.getLength()) 467 return false; 468 469 auto InstrDataForBoth = 470 zip(make_range(A.begin(), A.end()), make_range(B.begin(), B.end())); 471 472 return all_of(InstrDataForBoth, 473 [](std::tuple<IRInstructionData &, IRInstructionData &> R) { 474 IRInstructionData &A = std::get<0>(R); 475 IRInstructionData &B = std::get<1>(R); 476 if (!A.Legal || !B.Legal) 477 return false; 478 return isClose(A, B); 479 }); 480 } 481 482 /// Determine if one or more of the assigned global value numbers for the 483 /// operands in \p TargetValueNumbers is in the current mapping set for operand 484 /// numbers in \p SourceOperands. The set of possible corresponding global 485 /// value numbers are replaced with the most recent version of compatible 486 /// values. 487 /// 488 /// \param [in] SourceValueToNumberMapping - The mapping of a Value to global 489 /// value number for the source IRInstructionCandidate. 490 /// \param [in, out] CurrentSrcTgtNumberMapping - The current mapping of source 491 /// IRSimilarityCandidate global value numbers to a set of possible numbers in 492 /// the target. 493 /// \param [in] SourceOperands - The operands in the original 494 /// IRSimilarityCandidate in the current instruction. 495 /// \param [in] TargetValueNumbers - The global value numbers of the operands in 496 /// the corresponding Instruction in the other IRSimilarityCandidate. 497 /// \returns true if there exists a possible mapping between the source 498 /// Instruction operands and the target Instruction operands, and false if not. 499 static bool checkNumberingAndReplaceCommutative( 500 const DenseMap<Value *, unsigned> &SourceValueToNumberMapping, 501 DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping, 502 ArrayRef<Value *> &SourceOperands, 503 DenseSet<unsigned> &TargetValueNumbers){ 504 505 DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt; 506 507 unsigned ArgVal; 508 bool WasInserted; 509 510 // Iterate over the operands in the source IRSimilarityCandidate to determine 511 // whether there exists an operand in the other IRSimilarityCandidate that 512 // creates a valid mapping of Value to Value between the 513 // IRSimilarityCaniddates. 514 for (Value *V : SourceOperands) { 515 ArgVal = SourceValueToNumberMapping.find(V)->second; 516 517 std::tie(ValueMappingIt, WasInserted) = CurrentSrcTgtNumberMapping.insert( 518 std::make_pair(ArgVal, TargetValueNumbers)); 519 520 // Instead of finding a current mapping, we inserted a set. This means a 521 // mapping did not exist for the source Instruction operand, it has no 522 // current constraints we need to check. 523 if (WasInserted) 524 continue; 525 526 // If a mapping already exists for the source operand to the values in the 527 // other IRSimilarityCandidate we need to iterate over the items in other 528 // IRSimilarityCandidate's Instruction to determine whether there is a valid 529 // mapping of Value to Value. 530 DenseSet<unsigned> NewSet; 531 for (unsigned &Curr : ValueMappingIt->second) 532 // If we can find the value in the mapping, we add it to the new set. 533 if (TargetValueNumbers.contains(Curr)) 534 NewSet.insert(Curr); 535 536 // If we could not find a Value, return 0. 537 if (NewSet.empty()) 538 return false; 539 540 // Otherwise replace the old mapping with the newly constructed one. 541 if (NewSet.size() != ValueMappingIt->second.size()) 542 ValueMappingIt->second.swap(NewSet); 543 544 // We have reached no conclusions about the mapping, and cannot remove 545 // any items from the other operands, so we move to check the next operand. 546 if (ValueMappingIt->second.size() != 1) 547 continue; 548 549 550 unsigned ValToRemove = *ValueMappingIt->second.begin(); 551 // When there is only one item left in the mapping for and operand, remove 552 // the value from the other operands. If it results in there being no 553 // mapping, return false, it means the mapping is wrong 554 for (Value *InnerV : SourceOperands) { 555 if (V == InnerV) 556 continue; 557 558 unsigned InnerVal = SourceValueToNumberMapping.find(InnerV)->second; 559 ValueMappingIt = CurrentSrcTgtNumberMapping.find(InnerVal); 560 if (ValueMappingIt == CurrentSrcTgtNumberMapping.end()) 561 continue; 562 563 ValueMappingIt->second.erase(ValToRemove); 564 if (ValueMappingIt->second.empty()) 565 return false; 566 } 567 } 568 569 return true; 570 } 571 572 /// Determine if operand number \p TargetArgVal is in the current mapping set 573 /// for operand number \p SourceArgVal. 574 /// 575 /// \param [in, out] CurrentSrcTgtNumberMapping current mapping of global 576 /// value numbers from source IRSimilarityCandidate to target 577 /// IRSimilarityCandidate. 578 /// \param [in] SourceArgVal The global value number for an operand in the 579 /// in the original candidate. 580 /// \param [in] TargetArgVal The global value number for the corresponding 581 /// operand in the other candidate. 582 /// \returns True if there exists a mapping and false if not. 583 bool checkNumberingAndReplace( 584 DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping, 585 unsigned SourceArgVal, unsigned TargetArgVal) { 586 // We are given two unsigned integers representing the global values of 587 // the operands in different IRSimilarityCandidates and a current mapping 588 // between the two. 589 // 590 // Source Operand GVN: 1 591 // Target Operand GVN: 2 592 // CurrentMapping: {1: {1, 2}} 593 // 594 // Since we have mapping, and the target operand is contained in the set, we 595 // update it to: 596 // CurrentMapping: {1: {2}} 597 // and can return true. But, if the mapping was 598 // CurrentMapping: {1: {3}} 599 // we would return false. 600 601 bool WasInserted; 602 DenseMap<unsigned, DenseSet<unsigned>>::iterator Val; 603 604 std::tie(Val, WasInserted) = CurrentSrcTgtNumberMapping.insert( 605 std::make_pair(SourceArgVal, DenseSet<unsigned>({TargetArgVal}))); 606 607 // If we created a new mapping, then we are done. 608 if (WasInserted) 609 return true; 610 611 // If there is more than one option in the mapping set, and the target value 612 // is included in the mapping set replace that set with one that only includes 613 // the target value, as it is the only valid mapping via the non commutative 614 // instruction. 615 616 DenseSet<unsigned> &TargetSet = Val->second; 617 if (TargetSet.size() > 1 && TargetSet.contains(TargetArgVal)) { 618 TargetSet.clear(); 619 TargetSet.insert(TargetArgVal); 620 return true; 621 } 622 623 // Return true if we can find the value in the set. 624 return TargetSet.contains(TargetArgVal); 625 } 626 627 bool IRSimilarityCandidate::compareNonCommutativeOperandMapping( 628 OperandMapping A, OperandMapping B) { 629 // Iterators to keep track of where we are in the operands for each 630 // Instruction. 631 ArrayRef<Value *>::iterator VItA = A.OperVals.begin(); 632 ArrayRef<Value *>::iterator VItB = B.OperVals.begin(); 633 unsigned OperandLength = A.OperVals.size(); 634 635 // For each operand, get the value numbering and ensure it is consistent. 636 for (unsigned Idx = 0; Idx < OperandLength; Idx++, VItA++, VItB++) { 637 unsigned OperValA = A.IRSC.ValueToNumber.find(*VItA)->second; 638 unsigned OperValB = B.IRSC.ValueToNumber.find(*VItB)->second; 639 640 // Attempt to add a set with only the target value. If there is no mapping 641 // we can create it here. 642 // 643 // For an instruction like a subtraction: 644 // IRSimilarityCandidateA: IRSimilarityCandidateB: 645 // %resultA = sub %a, %b %resultB = sub %d, %e 646 // 647 // We map %a -> %d and %b -> %e. 648 // 649 // And check to see whether their mapping is consistent in 650 // checkNumberingAndReplace. 651 652 if (!checkNumberingAndReplace(A.ValueNumberMapping, OperValA, OperValB)) 653 return false; 654 655 if (!checkNumberingAndReplace(B.ValueNumberMapping, OperValB, OperValA)) 656 return false; 657 } 658 return true; 659 } 660 661 bool IRSimilarityCandidate::compareCommutativeOperandMapping( 662 OperandMapping A, OperandMapping B) { 663 DenseSet<unsigned> ValueNumbersA; 664 DenseSet<unsigned> ValueNumbersB; 665 666 ArrayRef<Value *>::iterator VItA = A.OperVals.begin(); 667 ArrayRef<Value *>::iterator VItB = B.OperVals.begin(); 668 unsigned OperandLength = A.OperVals.size(); 669 670 // Find the value number sets for the operands. 671 for (unsigned Idx = 0; Idx < OperandLength; 672 Idx++, VItA++, VItB++) { 673 ValueNumbersA.insert(A.IRSC.ValueToNumber.find(*VItA)->second); 674 ValueNumbersB.insert(B.IRSC.ValueToNumber.find(*VItB)->second); 675 } 676 677 // Iterate over the operands in the first IRSimilarityCandidate and make sure 678 // there exists a possible mapping with the operands in the second 679 // IRSimilarityCandidate. 680 if (!checkNumberingAndReplaceCommutative(A.IRSC.ValueToNumber, 681 A.ValueNumberMapping, A.OperVals, 682 ValueNumbersB)) 683 return false; 684 685 // Iterate over the operands in the second IRSimilarityCandidate and make sure 686 // there exists a possible mapping with the operands in the first 687 // IRSimilarityCandidate. 688 if (!checkNumberingAndReplaceCommutative(B.IRSC.ValueToNumber, 689 B.ValueNumberMapping, B.OperVals, 690 ValueNumbersA)) 691 return false; 692 693 return true; 694 } 695 696 bool IRSimilarityCandidate::checkRelativeLocations(RelativeLocMapping A, 697 RelativeLocMapping B) { 698 // Get the basic blocks the label refers to. 699 BasicBlock *ABB = static_cast<BasicBlock *>(A.OperVal); 700 BasicBlock *BBB = static_cast<BasicBlock *>(B.OperVal); 701 702 // Get the basic blocks contained in each region. 703 DenseSet<BasicBlock *> BasicBlockA; 704 DenseSet<BasicBlock *> BasicBlockB; 705 A.IRSC.getBasicBlocks(BasicBlockA); 706 B.IRSC.getBasicBlocks(BasicBlockB); 707 708 // Determine if the block is contained in the region. 709 bool AContained = BasicBlockA.contains(ABB); 710 bool BContained = BasicBlockB.contains(BBB); 711 712 // Both blocks need to be contained in the region, or both need to be outside 713 // the reigon. 714 if (AContained != BContained) 715 return false; 716 717 // If both are contained, then we need to make sure that the relative 718 // distance to the target blocks are the same. 719 if (AContained) 720 return A.RelativeLocation == B.RelativeLocation; 721 return true; 722 } 723 724 bool IRSimilarityCandidate::compareStructure(const IRSimilarityCandidate &A, 725 const IRSimilarityCandidate &B) { 726 DenseMap<unsigned, DenseSet<unsigned>> MappingA; 727 DenseMap<unsigned, DenseSet<unsigned>> MappingB; 728 return IRSimilarityCandidate::compareStructure(A, B, MappingA, MappingB); 729 } 730 731 typedef detail::zippy<detail::zip_shortest, SmallVector<int, 4> &, 732 SmallVector<int, 4> &, ArrayRef<Value *> &, 733 ArrayRef<Value *> &> 734 ZippedRelativeLocationsT; 735 736 bool IRSimilarityCandidate::compareStructure( 737 const IRSimilarityCandidate &A, const IRSimilarityCandidate &B, 738 DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA, 739 DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB) { 740 if (A.getLength() != B.getLength()) 741 return false; 742 743 if (A.ValueToNumber.size() != B.ValueToNumber.size()) 744 return false; 745 746 iterator ItA = A.begin(); 747 iterator ItB = B.begin(); 748 749 // These ValueNumber Mapping sets create a create a mapping between the values 750 // in one candidate to values in the other candidate. If we create a set with 751 // one element, and that same element maps to the original element in the 752 // candidate we have a good mapping. 753 DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt; 754 755 756 // Iterate over the instructions contained in each candidate 757 unsigned SectionLength = A.getStartIdx() + A.getLength(); 758 for (unsigned Loc = A.getStartIdx(); Loc < SectionLength; 759 ItA++, ItB++, Loc++) { 760 // Make sure the instructions are similar to one another. 761 if (!isClose(*ItA, *ItB)) 762 return false; 763 764 Instruction *IA = ItA->Inst; 765 Instruction *IB = ItB->Inst; 766 767 if (!ItA->Legal || !ItB->Legal) 768 return false; 769 770 // Get the operand sets for the instructions. 771 ArrayRef<Value *> OperValsA = ItA->OperVals; 772 ArrayRef<Value *> OperValsB = ItB->OperVals; 773 774 unsigned InstValA = A.ValueToNumber.find(IA)->second; 775 unsigned InstValB = B.ValueToNumber.find(IB)->second; 776 777 bool WasInserted; 778 // Ensure that the mappings for the instructions exists. 779 std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert( 780 std::make_pair(InstValA, DenseSet<unsigned>({InstValB}))); 781 if (!WasInserted && !ValueMappingIt->second.contains(InstValB)) 782 return false; 783 784 std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingB.insert( 785 std::make_pair(InstValB, DenseSet<unsigned>({InstValA}))); 786 if (!WasInserted && !ValueMappingIt->second.contains(InstValA)) 787 return false; 788 789 // We have different paths for commutative instructions and non-commutative 790 // instructions since commutative instructions could allow multiple mappings 791 // to certain values. 792 if (IA->isCommutative() && !isa<FPMathOperator>(IA) && 793 !isa<IntrinsicInst>(IA)) { 794 if (!compareCommutativeOperandMapping( 795 {A, OperValsA, ValueNumberMappingA}, 796 {B, OperValsB, ValueNumberMappingB})) 797 return false; 798 continue; 799 } 800 801 // Handle the non-commutative cases. 802 if (!compareNonCommutativeOperandMapping( 803 {A, OperValsA, ValueNumberMappingA}, 804 {B, OperValsB, ValueNumberMappingB})) 805 return false; 806 807 // Here we check that between two corresponding instructions, 808 // when referring to a basic block in the same region, the 809 // relative locations are the same. And, that the instructions refer to 810 // basic blocks outside the region in the same corresponding locations. 811 812 // We are able to make the assumption about blocks outside of the region 813 // since the target block labels are considered values and will follow the 814 // same number matching that we defined for the other instructions in the 815 // region. So, at this point, in each location we target a specific block 816 // outside the region, we are targeting a corresponding block in each 817 // analagous location in the region we are comparing to. 818 if (!(isa<BranchInst>(IA) && isa<BranchInst>(IB)) && 819 !(isa<PHINode>(IA) && isa<PHINode>(IB))) 820 continue; 821 822 SmallVector<int, 4> &RelBlockLocsA = ItA->RelativeBlockLocations; 823 SmallVector<int, 4> &RelBlockLocsB = ItB->RelativeBlockLocations; 824 if (RelBlockLocsA.size() != RelBlockLocsB.size() && 825 OperValsA.size() != OperValsB.size()) 826 return false; 827 828 ZippedRelativeLocationsT ZippedRelativeLocations = 829 zip(RelBlockLocsA, RelBlockLocsB, OperValsA, OperValsB); 830 if (any_of(ZippedRelativeLocations, 831 [&A, &B](std::tuple<int, int, Value *, Value *> R) { 832 return !checkRelativeLocations( 833 {A, std::get<0>(R), std::get<2>(R)}, 834 {B, std::get<1>(R), std::get<3>(R)}); 835 })) 836 return false; 837 } 838 return true; 839 } 840 841 bool IRSimilarityCandidate::overlap(const IRSimilarityCandidate &A, 842 const IRSimilarityCandidate &B) { 843 auto DoesOverlap = [](const IRSimilarityCandidate &X, 844 const IRSimilarityCandidate &Y) { 845 // Check: 846 // XXXXXX X starts before Y ends 847 // YYYYYYY Y starts after X starts 848 return X.StartIdx <= Y.getEndIdx() && Y.StartIdx >= X.StartIdx; 849 }; 850 851 return DoesOverlap(A, B) || DoesOverlap(B, A); 852 } 853 854 void IRSimilarityIdentifier::populateMapper( 855 Module &M, std::vector<IRInstructionData *> &InstrList, 856 std::vector<unsigned> &IntegerMapping) { 857 858 std::vector<IRInstructionData *> InstrListForModule; 859 std::vector<unsigned> IntegerMappingForModule; 860 // Iterate over the functions in the module to map each Instruction in each 861 // BasicBlock to an unsigned integer. 862 Mapper.initializeForBBs(M); 863 864 for (Function &F : M) { 865 866 if (F.empty()) 867 continue; 868 869 for (BasicBlock &BB : F) { 870 871 // BB has potential to have similarity since it has a size greater than 2 872 // and can therefore match other regions greater than 2. Map it to a list 873 // of unsigned integers. 874 Mapper.convertToUnsignedVec(BB, InstrListForModule, 875 IntegerMappingForModule); 876 } 877 878 BasicBlock::iterator It = F.begin()->end(); 879 Mapper.mapToIllegalUnsigned(It, IntegerMappingForModule, InstrListForModule, 880 true); 881 if (InstrListForModule.size() > 0) 882 Mapper.IDL->push_back(*InstrListForModule.back()); 883 } 884 885 // Insert the InstrListForModule at the end of the overall InstrList so that 886 // we can have a long InstrList for the entire set of Modules being analyzed. 887 llvm::append_range(InstrList, InstrListForModule); 888 // Do the same as above, but for IntegerMapping. 889 llvm::append_range(IntegerMapping, IntegerMappingForModule); 890 } 891 892 void IRSimilarityIdentifier::populateMapper( 893 ArrayRef<std::unique_ptr<Module>> &Modules, 894 std::vector<IRInstructionData *> &InstrList, 895 std::vector<unsigned> &IntegerMapping) { 896 897 // Iterate over, and map the instructions in each module. 898 for (const std::unique_ptr<Module> &M : Modules) 899 populateMapper(*M, InstrList, IntegerMapping); 900 } 901 902 /// From a repeated subsequence, find all the different instances of the 903 /// subsequence from the \p InstrList, and create an IRSimilarityCandidate from 904 /// the IRInstructionData in subsequence. 905 /// 906 /// \param [in] Mapper - The instruction mapper for basic correctness checks. 907 /// \param [in] InstrList - The vector that holds the instruction data. 908 /// \param [in] IntegerMapping - The vector that holds the mapped integers. 909 /// \param [out] CandsForRepSubstring - The vector to store the generated 910 /// IRSimilarityCandidates. 911 static void createCandidatesFromSuffixTree( 912 const IRInstructionMapper& Mapper, std::vector<IRInstructionData *> &InstrList, 913 std::vector<unsigned> &IntegerMapping, SuffixTree::RepeatedSubstring &RS, 914 std::vector<IRSimilarityCandidate> &CandsForRepSubstring) { 915 916 unsigned StringLen = RS.Length; 917 if (StringLen < 2) 918 return; 919 920 // Create an IRSimilarityCandidate for instance of this subsequence \p RS. 921 for (const unsigned &StartIdx : RS.StartIndices) { 922 unsigned EndIdx = StartIdx + StringLen - 1; 923 924 // Check that this subsequence does not contain an illegal instruction. 925 bool ContainsIllegal = false; 926 for (unsigned CurrIdx = StartIdx; CurrIdx <= EndIdx; CurrIdx++) { 927 unsigned Key = IntegerMapping[CurrIdx]; 928 if (Key > Mapper.IllegalInstrNumber) { 929 ContainsIllegal = true; 930 break; 931 } 932 } 933 934 // If we have an illegal instruction, we should not create an 935 // IRSimilarityCandidate for this region. 936 if (ContainsIllegal) 937 continue; 938 939 // We are getting iterators to the instructions in this region of code 940 // by advancing the start and end indices from the start of the 941 // InstrList. 942 std::vector<IRInstructionData *>::iterator StartIt = InstrList.begin(); 943 std::advance(StartIt, StartIdx); 944 std::vector<IRInstructionData *>::iterator EndIt = InstrList.begin(); 945 std::advance(EndIt, EndIdx); 946 947 CandsForRepSubstring.emplace_back(StartIdx, StringLen, *StartIt, *EndIt); 948 } 949 } 950 951 void IRSimilarityCandidate::createCanonicalRelationFrom( 952 IRSimilarityCandidate &SourceCand, 953 DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping, 954 DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping) { 955 assert(SourceCand.CanonNumToNumber.size() != 0 && 956 "Base canonical relationship is empty!"); 957 assert(SourceCand.NumberToCanonNum.size() != 0 && 958 "Base canonical relationship is empty!"); 959 960 assert(CanonNumToNumber.size() == 0 && "Canonical Relationship is non-empty"); 961 assert(NumberToCanonNum.size() == 0 && "Canonical Relationship is non-empty"); 962 963 DenseSet<unsigned> UsedGVNs; 964 // Iterate over the mappings provided from this candidate to SourceCand. We 965 // are then able to map the GVN in this candidate to the same canonical number 966 // given to the corresponding GVN in SourceCand. 967 for (std::pair<unsigned, DenseSet<unsigned>> &GVNMapping : ToSourceMapping) { 968 unsigned SourceGVN = GVNMapping.first; 969 970 assert(GVNMapping.second.size() != 0 && "Possible GVNs is 0!"); 971 972 unsigned ResultGVN; 973 // We need special handling if we have more than one potential value. This 974 // means that there are at least two GVNs that could correspond to this GVN. 975 // This could lead to potential swapping later on, so we make a decision 976 // here to ensure a one-to-one mapping. 977 if (GVNMapping.second.size() > 1) { 978 bool Found = false; 979 for (unsigned Val : GVNMapping.second) { 980 // We make sure the target value number hasn't already been reserved. 981 if (UsedGVNs.contains(Val)) 982 continue; 983 984 // We make sure that the opposite mapping is still consistent. 985 DenseMap<unsigned, DenseSet<unsigned>>::iterator It = 986 FromSourceMapping.find(Val); 987 988 if (!It->second.contains(SourceGVN)) 989 continue; 990 991 // We pick the first item that satisfies these conditions. 992 Found = true; 993 ResultGVN = Val; 994 break; 995 } 996 997 assert(Found && "Could not find matching value for source GVN"); 998 (void)Found; 999 1000 } else 1001 ResultGVN = *GVNMapping.second.begin(); 1002 1003 // Whatever GVN is found, we mark it as used. 1004 UsedGVNs.insert(ResultGVN); 1005 1006 unsigned CanonNum = *SourceCand.getCanonicalNum(ResultGVN); 1007 CanonNumToNumber.insert(std::make_pair(CanonNum, SourceGVN)); 1008 NumberToCanonNum.insert(std::make_pair(SourceGVN, CanonNum)); 1009 } 1010 } 1011 1012 void IRSimilarityCandidate::createCanonicalMappingFor( 1013 IRSimilarityCandidate &CurrCand) { 1014 assert(CurrCand.CanonNumToNumber.size() == 0 && 1015 "Canonical Relationship is non-empty"); 1016 assert(CurrCand.NumberToCanonNum.size() == 0 && 1017 "Canonical Relationship is non-empty"); 1018 1019 unsigned CanonNum = 0; 1020 // Iterate over the value numbers found, the order does not matter in this 1021 // case. 1022 for (std::pair<unsigned, Value *> &NumToVal : CurrCand.NumberToValue) { 1023 CurrCand.NumberToCanonNum.insert(std::make_pair(NumToVal.first, CanonNum)); 1024 CurrCand.CanonNumToNumber.insert(std::make_pair(CanonNum, NumToVal.first)); 1025 CanonNum++; 1026 } 1027 } 1028 1029 /// From the list of IRSimilarityCandidates, perform a comparison between each 1030 /// IRSimilarityCandidate to determine if there are overlapping 1031 /// IRInstructionData, or if they do not have the same structure. 1032 /// 1033 /// \param [in] CandsForRepSubstring - The vector containing the 1034 /// IRSimilarityCandidates. 1035 /// \param [out] StructuralGroups - the mapping of unsigned integers to vector 1036 /// of IRSimilarityCandidates where each of the IRSimilarityCandidates in the 1037 /// vector are structurally similar to one another. 1038 static void findCandidateStructures( 1039 std::vector<IRSimilarityCandidate> &CandsForRepSubstring, 1040 DenseMap<unsigned, SimilarityGroup> &StructuralGroups) { 1041 std::vector<IRSimilarityCandidate>::iterator CandIt, CandEndIt, InnerCandIt, 1042 InnerCandEndIt; 1043 1044 // IRSimilarityCandidates each have a structure for operand use. It is 1045 // possible that two instances of the same subsequences have different 1046 // structure. Each type of structure found is assigned a number. This 1047 // DenseMap maps an IRSimilarityCandidate to which type of similarity 1048 // discovered it fits within. 1049 DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup; 1050 1051 // Find the compatibility from each candidate to the others to determine 1052 // which candidates overlap and which have the same structure by mapping 1053 // each structure to a different group. 1054 bool SameStructure; 1055 bool Inserted; 1056 unsigned CurrentGroupNum = 0; 1057 unsigned OuterGroupNum; 1058 DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupIt; 1059 DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupItInner; 1060 DenseMap<unsigned, SimilarityGroup>::iterator CurrentGroupPair; 1061 1062 // Iterate over the candidates to determine its structural and overlapping 1063 // compatibility with other instructions 1064 DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingA; 1065 DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingB; 1066 for (CandIt = CandsForRepSubstring.begin(), 1067 CandEndIt = CandsForRepSubstring.end(); 1068 CandIt != CandEndIt; CandIt++) { 1069 1070 // Determine if it has an assigned structural group already. 1071 CandToGroupIt = CandToGroup.find(&*CandIt); 1072 if (CandToGroupIt == CandToGroup.end()) { 1073 // If not, we assign it one, and add it to our mapping. 1074 std::tie(CandToGroupIt, Inserted) = 1075 CandToGroup.insert(std::make_pair(&*CandIt, CurrentGroupNum++)); 1076 } 1077 1078 // Get the structural group number from the iterator. 1079 OuterGroupNum = CandToGroupIt->second; 1080 1081 // Check if we already have a list of IRSimilarityCandidates for the current 1082 // structural group. Create one if one does not exist. 1083 CurrentGroupPair = StructuralGroups.find(OuterGroupNum); 1084 if (CurrentGroupPair == StructuralGroups.end()) { 1085 IRSimilarityCandidate::createCanonicalMappingFor(*CandIt); 1086 std::tie(CurrentGroupPair, Inserted) = StructuralGroups.insert( 1087 std::make_pair(OuterGroupNum, SimilarityGroup({*CandIt}))); 1088 } 1089 1090 // Iterate over the IRSimilarityCandidates following the current 1091 // IRSimilarityCandidate in the list to determine whether the two 1092 // IRSimilarityCandidates are compatible. This is so we do not repeat pairs 1093 // of IRSimilarityCandidates. 1094 for (InnerCandIt = std::next(CandIt), 1095 InnerCandEndIt = CandsForRepSubstring.end(); 1096 InnerCandIt != InnerCandEndIt; InnerCandIt++) { 1097 1098 // We check if the inner item has a group already, if it does, we skip it. 1099 CandToGroupItInner = CandToGroup.find(&*InnerCandIt); 1100 if (CandToGroupItInner != CandToGroup.end()) 1101 continue; 1102 1103 // Otherwise we determine if they have the same structure and add it to 1104 // vector if they match. 1105 ValueNumberMappingA.clear(); 1106 ValueNumberMappingB.clear(); 1107 SameStructure = IRSimilarityCandidate::compareStructure( 1108 *CandIt, *InnerCandIt, ValueNumberMappingA, ValueNumberMappingB); 1109 if (!SameStructure) 1110 continue; 1111 1112 InnerCandIt->createCanonicalRelationFrom(*CandIt, ValueNumberMappingA, 1113 ValueNumberMappingB); 1114 CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum)); 1115 CurrentGroupPair->second.push_back(*InnerCandIt); 1116 } 1117 } 1118 } 1119 1120 void IRSimilarityIdentifier::findCandidates( 1121 std::vector<IRInstructionData *> &InstrList, 1122 std::vector<unsigned> &IntegerMapping) { 1123 SuffixTree ST(IntegerMapping); 1124 1125 std::vector<IRSimilarityCandidate> CandsForRepSubstring; 1126 std::vector<SimilarityGroup> NewCandidateGroups; 1127 1128 DenseMap<unsigned, SimilarityGroup> StructuralGroups; 1129 1130 // Iterate over the subsequences found by the Suffix Tree to create 1131 // IRSimilarityCandidates for each repeated subsequence and determine which 1132 // instances are structurally similar to one another. 1133 for (SuffixTree::RepeatedSubstring &RS : ST) { 1134 createCandidatesFromSuffixTree(Mapper, InstrList, IntegerMapping, RS, 1135 CandsForRepSubstring); 1136 1137 if (CandsForRepSubstring.size() < 2) 1138 continue; 1139 1140 findCandidateStructures(CandsForRepSubstring, StructuralGroups); 1141 for (std::pair<unsigned, SimilarityGroup> &Group : StructuralGroups) 1142 // We only add the group if it contains more than one 1143 // IRSimilarityCandidate. If there is only one, that means there is no 1144 // other repeated subsequence with the same structure. 1145 if (Group.second.size() > 1) 1146 SimilarityCandidates->push_back(Group.second); 1147 1148 CandsForRepSubstring.clear(); 1149 StructuralGroups.clear(); 1150 NewCandidateGroups.clear(); 1151 } 1152 } 1153 1154 SimilarityGroupList &IRSimilarityIdentifier::findSimilarity( 1155 ArrayRef<std::unique_ptr<Module>> Modules) { 1156 resetSimilarityCandidates(); 1157 1158 std::vector<IRInstructionData *> InstrList; 1159 std::vector<unsigned> IntegerMapping; 1160 Mapper.InstClassifier.EnableBranches = this->EnableBranches; 1161 Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls; 1162 Mapper.EnableMatchCallsByName = EnableMatchingCallsByName; 1163 Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics; 1164 Mapper.InstClassifier.EnableMustTailCalls = EnableMustTailCalls; 1165 1166 populateMapper(Modules, InstrList, IntegerMapping); 1167 findCandidates(InstrList, IntegerMapping); 1168 1169 return SimilarityCandidates.getValue(); 1170 } 1171 1172 SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(Module &M) { 1173 resetSimilarityCandidates(); 1174 Mapper.InstClassifier.EnableBranches = this->EnableBranches; 1175 Mapper.InstClassifier.EnableIndirectCalls = EnableIndirectCalls; 1176 Mapper.EnableMatchCallsByName = EnableMatchingCallsByName; 1177 Mapper.InstClassifier.EnableIntrinsics = EnableIntrinsics; 1178 Mapper.InstClassifier.EnableMustTailCalls = EnableMustTailCalls; 1179 1180 std::vector<IRInstructionData *> InstrList; 1181 std::vector<unsigned> IntegerMapping; 1182 1183 populateMapper(M, InstrList, IntegerMapping); 1184 findCandidates(InstrList, IntegerMapping); 1185 1186 return SimilarityCandidates.getValue(); 1187 } 1188 1189 INITIALIZE_PASS(IRSimilarityIdentifierWrapperPass, "ir-similarity-identifier", 1190 "ir-similarity-identifier", false, true) 1191 1192 IRSimilarityIdentifierWrapperPass::IRSimilarityIdentifierWrapperPass() 1193 : ModulePass(ID) { 1194 initializeIRSimilarityIdentifierWrapperPassPass( 1195 *PassRegistry::getPassRegistry()); 1196 } 1197 1198 bool IRSimilarityIdentifierWrapperPass::doInitialization(Module &M) { 1199 IRSI.reset(new IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls, 1200 MatchCallsByName, !DisableIntrinsics, 1201 false)); 1202 return false; 1203 } 1204 1205 bool IRSimilarityIdentifierWrapperPass::doFinalization(Module &M) { 1206 IRSI.reset(); 1207 return false; 1208 } 1209 1210 bool IRSimilarityIdentifierWrapperPass::runOnModule(Module &M) { 1211 IRSI->findSimilarity(M); 1212 return false; 1213 } 1214 1215 AnalysisKey IRSimilarityAnalysis::Key; 1216 IRSimilarityIdentifier IRSimilarityAnalysis::run(Module &M, 1217 ModuleAnalysisManager &) { 1218 auto IRSI = IRSimilarityIdentifier(!DisableBranches, !DisableIndirectCalls, 1219 MatchCallsByName, !DisableIntrinsics, 1220 false); 1221 IRSI.findSimilarity(M); 1222 return IRSI; 1223 } 1224 1225 PreservedAnalyses 1226 IRSimilarityAnalysisPrinterPass::run(Module &M, ModuleAnalysisManager &AM) { 1227 IRSimilarityIdentifier &IRSI = AM.getResult<IRSimilarityAnalysis>(M); 1228 Optional<SimilarityGroupList> &SimilarityCandidatesOpt = IRSI.getSimilarity(); 1229 1230 for (std::vector<IRSimilarityCandidate> &CandVec : *SimilarityCandidatesOpt) { 1231 OS << CandVec.size() << " candidates of length " 1232 << CandVec.begin()->getLength() << ". Found in: \n"; 1233 for (IRSimilarityCandidate &Cand : CandVec) { 1234 OS << " Function: " << Cand.front()->Inst->getFunction()->getName().str() 1235 << ", Basic Block: "; 1236 if (Cand.front()->Inst->getParent()->getName().str() == "") 1237 OS << "(unnamed)"; 1238 else 1239 OS << Cand.front()->Inst->getParent()->getName().str(); 1240 OS << "\n Start Instruction: "; 1241 Cand.frontInstruction()->print(OS); 1242 OS << "\n End Instruction: "; 1243 Cand.backInstruction()->print(OS); 1244 OS << "\n"; 1245 } 1246 } 1247 1248 return PreservedAnalyses::all(); 1249 } 1250 1251 char IRSimilarityIdentifierWrapperPass::ID = 0; 1252