1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This simple pass provides alias and mod/ref information for global values 11 // that do not have their address taken, and keeps track of whether functions 12 // read or write memory (are "pure"). For this simple (but very common) case, 13 // we can provide pretty accurate and useful information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "globalsmodref-aa" 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 // An option to enable unsafe alias results from the GlobalsModRef analysis. 43 // When enabled, GlobalsModRef will provide no-alias results which in extremely 44 // rare cases may not be conservatively correct. In particular, in the face of 45 // transforms which cause assymetry between how effective GetUnderlyingObject 46 // is for two pointers, it may produce incorrect results. 47 // 48 // These unsafe results have been returned by GMR for many years without 49 // causing significant issues in the wild and so we provide a mechanism to 50 // re-enable them for users of LLVM that have a particular performance 51 // sensitivity and no known issues. The option also makes it easy to evaluate 52 // the performance impact of these results. 53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 55 56 /// The mod/ref information collected for a particular function. 57 /// 58 /// We collect information about mod/ref behavior of a function here, both in 59 /// general and as pertains to specific globals. We only have this detailed 60 /// information when we know *something* useful about the behavior. If we 61 /// saturate to fully general mod/ref, we remove the info for the function. 62 class GlobalsAAResult::FunctionInfo { 63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 64 65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 66 /// should provide this much alignment at least, but this makes it clear we 67 /// specifically rely on this amount of alignment. 68 struct LLVM_ALIGNAS(8) AlignedMap { 69 AlignedMap() {} 70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 71 GlobalInfoMapType Map; 72 }; 73 74 /// Pointer traits for our aligned map. 75 struct AlignedMapPointerTraits { 76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 77 static inline AlignedMap *getFromVoidPointer(void *P) { 78 return (AlignedMap *)P; 79 } 80 enum { NumLowBitsAvailable = 3 }; 81 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 82 "AlignedMap insufficiently aligned to have enough low bits."); 83 }; 84 85 /// The bit that flags that this function may read any global. This is 86 /// chosen to mix together with ModRefInfo bits. 87 enum { MayReadAnyGlobal = 4 }; 88 89 /// Checks to document the invariants of the bit packing here. 90 static_assert((MayReadAnyGlobal & MRI_ModRef) == 0, 91 "ModRef and the MayReadAnyGlobal flag bits overlap."); 92 static_assert(((MayReadAnyGlobal | MRI_ModRef) >> 93 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 94 "Insufficient low bits to store our flag and ModRef info."); 95 96 public: 97 FunctionInfo() : Info() {} 98 ~FunctionInfo() { 99 delete Info.getPointer(); 100 } 101 // Spell out the copy ond move constructors and assignment operators to get 102 // deep copy semantics and correct move semantics in the face of the 103 // pointer-int pair. 104 FunctionInfo(const FunctionInfo &Arg) 105 : Info(nullptr, Arg.Info.getInt()) { 106 if (const auto *ArgPtr = Arg.Info.getPointer()) 107 Info.setPointer(new AlignedMap(*ArgPtr)); 108 } 109 FunctionInfo(FunctionInfo &&Arg) 110 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 111 Arg.Info.setPointerAndInt(nullptr, 0); 112 } 113 FunctionInfo &operator=(const FunctionInfo &RHS) { 114 delete Info.getPointer(); 115 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 116 if (const auto *RHSPtr = RHS.Info.getPointer()) 117 Info.setPointer(new AlignedMap(*RHSPtr)); 118 return *this; 119 } 120 FunctionInfo &operator=(FunctionInfo &&RHS) { 121 delete Info.getPointer(); 122 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 123 RHS.Info.setPointerAndInt(nullptr, 0); 124 return *this; 125 } 126 127 /// Returns the \c ModRefInfo info for this function. 128 ModRefInfo getModRefInfo() const { 129 return ModRefInfo(Info.getInt() & MRI_ModRef); 130 } 131 132 /// Adds new \c ModRefInfo for this function to its state. 133 void addModRefInfo(ModRefInfo NewMRI) { 134 Info.setInt(Info.getInt() | NewMRI); 135 } 136 137 /// Returns whether this function may read any global variable, and we don't 138 /// know which global. 139 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 140 141 /// Sets this function as potentially reading from any global. 142 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 143 144 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 145 /// global, which may be more precise than the general information above. 146 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 147 ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef; 148 if (AlignedMap *P = Info.getPointer()) { 149 auto I = P->Map.find(&GV); 150 if (I != P->Map.end()) 151 GlobalMRI = ModRefInfo(GlobalMRI | I->second); 152 } 153 return GlobalMRI; 154 } 155 156 /// Add mod/ref info from another function into ours, saturating towards 157 /// MRI_ModRef. 158 void addFunctionInfo(const FunctionInfo &FI) { 159 addModRefInfo(FI.getModRefInfo()); 160 161 if (FI.mayReadAnyGlobal()) 162 setMayReadAnyGlobal(); 163 164 if (AlignedMap *P = FI.Info.getPointer()) 165 for (const auto &G : P->Map) 166 addModRefInfoForGlobal(*G.first, G.second); 167 } 168 169 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 170 AlignedMap *P = Info.getPointer(); 171 if (!P) { 172 P = new AlignedMap(); 173 Info.setPointer(P); 174 } 175 auto &GlobalMRI = P->Map[&GV]; 176 GlobalMRI = ModRefInfo(GlobalMRI | NewMRI); 177 } 178 179 /// Clear a global's ModRef info. Should be used when a global is being 180 /// deleted. 181 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 182 if (AlignedMap *P = Info.getPointer()) 183 P->Map.erase(&GV); 184 } 185 186 private: 187 /// All of the information is encoded into a single pointer, with a three bit 188 /// integer in the low three bits. The high bit provides a flag for when this 189 /// function may read any global. The low two bits are the ModRefInfo. And 190 /// the pointer, when non-null, points to a map from GlobalValue to 191 /// ModRefInfo specific to that GlobalValue. 192 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 193 }; 194 195 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 196 Value *V = getValPtr(); 197 if (auto *F = dyn_cast<Function>(V)) 198 GAR->FunctionInfos.erase(F); 199 200 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 201 if (GAR->NonAddressTakenGlobals.erase(GV)) { 202 // This global might be an indirect global. If so, remove it and 203 // remove any AllocRelatedValues for it. 204 if (GAR->IndirectGlobals.erase(GV)) { 205 // Remove any entries in AllocsForIndirectGlobals for this global. 206 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 207 E = GAR->AllocsForIndirectGlobals.end(); 208 I != E; ++I) 209 if (I->second == GV) 210 GAR->AllocsForIndirectGlobals.erase(I); 211 } 212 213 // Scan the function info we have collected and remove this global 214 // from all of them. 215 for (auto &FIPair : GAR->FunctionInfos) 216 FIPair.second.eraseModRefInfoForGlobal(*GV); 217 } 218 } 219 220 // If this is an allocation related to an indirect global, remove it. 221 GAR->AllocsForIndirectGlobals.erase(V); 222 223 // And clear out the handle. 224 setValPtr(nullptr); 225 GAR->Handles.erase(I); 226 // This object is now destroyed! 227 } 228 229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 230 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 231 232 if (FunctionInfo *FI = getFunctionInfo(F)) { 233 if (FI->getModRefInfo() == MRI_NoModRef) 234 Min = FMRB_DoesNotAccessMemory; 235 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 236 Min = FMRB_OnlyReadsMemory; 237 } 238 239 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 240 } 241 242 FunctionModRefBehavior 243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { 244 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 245 246 if (!CS.hasOperandBundles()) 247 if (const Function *F = CS.getCalledFunction()) 248 if (FunctionInfo *FI = getFunctionInfo(F)) { 249 if (FI->getModRefInfo() == MRI_NoModRef) 250 Min = FMRB_DoesNotAccessMemory; 251 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 252 Min = FMRB_OnlyReadsMemory; 253 } 254 255 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 256 } 257 258 /// Returns the function info for the function, or null if we don't have 259 /// anything useful to say about it. 260 GlobalsAAResult::FunctionInfo * 261 GlobalsAAResult::getFunctionInfo(const Function *F) { 262 auto I = FunctionInfos.find(F); 263 if (I != FunctionInfos.end()) 264 return &I->second; 265 return nullptr; 266 } 267 268 /// AnalyzeGlobals - Scan through the users of all of the internal 269 /// GlobalValue's in the program. If none of them have their "address taken" 270 /// (really, their address passed to something nontrivial), record this fact, 271 /// and record the functions that they are used directly in. 272 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 273 SmallPtrSet<Function *, 32> TrackedFunctions; 274 for (Function &F : M) 275 if (F.hasLocalLinkage()) 276 if (!AnalyzeUsesOfPointer(&F)) { 277 // Remember that we are tracking this global. 278 NonAddressTakenGlobals.insert(&F); 279 TrackedFunctions.insert(&F); 280 Handles.emplace_front(*this, &F); 281 Handles.front().I = Handles.begin(); 282 ++NumNonAddrTakenFunctions; 283 } 284 285 SmallPtrSet<Function *, 16> Readers, Writers; 286 for (GlobalVariable &GV : M.globals()) 287 if (GV.hasLocalLinkage()) { 288 if (!AnalyzeUsesOfPointer(&GV, &Readers, 289 GV.isConstant() ? nullptr : &Writers)) { 290 // Remember that we are tracking this global, and the mod/ref fns 291 NonAddressTakenGlobals.insert(&GV); 292 Handles.emplace_front(*this, &GV); 293 Handles.front().I = Handles.begin(); 294 295 for (Function *Reader : Readers) { 296 if (TrackedFunctions.insert(Reader).second) { 297 Handles.emplace_front(*this, Reader); 298 Handles.front().I = Handles.begin(); 299 } 300 FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref); 301 } 302 303 if (!GV.isConstant()) // No need to keep track of writers to constants 304 for (Function *Writer : Writers) { 305 if (TrackedFunctions.insert(Writer).second) { 306 Handles.emplace_front(*this, Writer); 307 Handles.front().I = Handles.begin(); 308 } 309 FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod); 310 } 311 ++NumNonAddrTakenGlobalVars; 312 313 // If this global holds a pointer type, see if it is an indirect global. 314 if (GV.getValueType()->isPointerTy() && 315 AnalyzeIndirectGlobalMemory(&GV)) 316 ++NumIndirectGlobalVars; 317 } 318 Readers.clear(); 319 Writers.clear(); 320 } 321 } 322 323 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 324 /// If this is used by anything complex (i.e., the address escapes), return 325 /// true. Also, while we are at it, keep track of those functions that read and 326 /// write to the value. 327 /// 328 /// If OkayStoreDest is non-null, stores into this global are allowed. 329 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 330 SmallPtrSetImpl<Function *> *Readers, 331 SmallPtrSetImpl<Function *> *Writers, 332 GlobalValue *OkayStoreDest) { 333 if (!V->getType()->isPointerTy()) 334 return true; 335 336 for (Use &U : V->uses()) { 337 User *I = U.getUser(); 338 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 339 if (Readers) 340 Readers->insert(LI->getParent()->getParent()); 341 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 342 if (V == SI->getOperand(1)) { 343 if (Writers) 344 Writers->insert(SI->getParent()->getParent()); 345 } else if (SI->getOperand(1) != OkayStoreDest) { 346 return true; // Storing the pointer 347 } 348 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 349 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 350 return true; 351 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 352 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 353 return true; 354 } else if (auto CS = CallSite(I)) { 355 // Make sure that this is just the function being called, not that it is 356 // passing into the function. 357 if (CS.isDataOperand(&U)) { 358 // Detect calls to free. 359 if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) { 360 if (Writers) 361 Writers->insert(CS->getParent()->getParent()); 362 } else { 363 return true; // Argument of an unknown call. 364 } 365 } 366 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 367 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 368 return true; // Allow comparison against null. 369 } else if (Constant *C = dyn_cast<Constant>(I)) { 370 // Ignore constants which don't have any live uses. 371 if (isa<GlobalValue>(C) || C->isConstantUsed()) 372 return true; 373 } else { 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 382 /// which holds a pointer type. See if the global always points to non-aliased 383 /// heap memory: that is, all initializers of the globals are allocations, and 384 /// those allocations have no use other than initialization of the global. 385 /// Further, all loads out of GV must directly use the memory, not store the 386 /// pointer somewhere. If this is true, we consider the memory pointed to by 387 /// GV to be owned by GV and can disambiguate other pointers from it. 388 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 389 // Keep track of values related to the allocation of the memory, f.e. the 390 // value produced by the malloc call and any casts. 391 std::vector<Value *> AllocRelatedValues; 392 393 // If the initializer is a valid pointer, bail. 394 if (Constant *C = GV->getInitializer()) 395 if (!C->isNullValue()) 396 return false; 397 398 // Walk the user list of the global. If we find anything other than a direct 399 // load or store, bail out. 400 for (User *U : GV->users()) { 401 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 402 // The pointer loaded from the global can only be used in simple ways: 403 // we allow addressing of it and loading storing to it. We do *not* allow 404 // storing the loaded pointer somewhere else or passing to a function. 405 if (AnalyzeUsesOfPointer(LI)) 406 return false; // Loaded pointer escapes. 407 // TODO: Could try some IP mod/ref of the loaded pointer. 408 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 409 // Storing the global itself. 410 if (SI->getOperand(0) == GV) 411 return false; 412 413 // If storing the null pointer, ignore it. 414 if (isa<ConstantPointerNull>(SI->getOperand(0))) 415 continue; 416 417 // Check the value being stored. 418 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 419 GV->getParent()->getDataLayout()); 420 421 if (!isAllocLikeFn(Ptr, &TLI)) 422 return false; // Too hard to analyze. 423 424 // Analyze all uses of the allocation. If any of them are used in a 425 // non-simple way (e.g. stored to another global) bail out. 426 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 427 GV)) 428 return false; // Loaded pointer escapes. 429 430 // Remember that this allocation is related to the indirect global. 431 AllocRelatedValues.push_back(Ptr); 432 } else { 433 // Something complex, bail out. 434 return false; 435 } 436 } 437 438 // Okay, this is an indirect global. Remember all of the allocations for 439 // this global in AllocsForIndirectGlobals. 440 while (!AllocRelatedValues.empty()) { 441 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 442 Handles.emplace_front(*this, AllocRelatedValues.back()); 443 Handles.front().I = Handles.begin(); 444 AllocRelatedValues.pop_back(); 445 } 446 IndirectGlobals.insert(GV); 447 Handles.emplace_front(*this, GV); 448 Handles.front().I = Handles.begin(); 449 return true; 450 } 451 452 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 453 // We do a bottom-up SCC traversal of the call graph. In other words, we 454 // visit all callees before callers (leaf-first). 455 unsigned SCCID = 0; 456 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 457 const std::vector<CallGraphNode *> &SCC = *I; 458 assert(!SCC.empty() && "SCC with no functions?"); 459 460 for (auto *CGN : SCC) 461 if (Function *F = CGN->getFunction()) 462 FunctionToSCCMap[F] = SCCID; 463 ++SCCID; 464 } 465 } 466 467 /// AnalyzeCallGraph - At this point, we know the functions where globals are 468 /// immediately stored to and read from. Propagate this information up the call 469 /// graph to all callers and compute the mod/ref info for all memory for each 470 /// function. 471 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 472 // We do a bottom-up SCC traversal of the call graph. In other words, we 473 // visit all callees before callers (leaf-first). 474 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 475 const std::vector<CallGraphNode *> &SCC = *I; 476 assert(!SCC.empty() && "SCC with no functions?"); 477 478 if (!SCC[0]->getFunction() || !SCC[0]->getFunction()->isDefinitionExact()) { 479 // Calls externally or not exact - can't say anything useful. Remove any 480 // existing function records (may have been created when scanning 481 // globals). 482 for (auto *Node : SCC) 483 FunctionInfos.erase(Node->getFunction()); 484 continue; 485 } 486 487 FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()]; 488 bool KnowNothing = false; 489 490 // Collect the mod/ref properties due to called functions. We only compute 491 // one mod-ref set. 492 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 493 Function *F = SCC[i]->getFunction(); 494 if (!F) { 495 KnowNothing = true; 496 break; 497 } 498 499 if (F->isDeclaration()) { 500 // Try to get mod/ref behaviour from function attributes. 501 if (F->doesNotAccessMemory()) { 502 // Can't do better than that! 503 } else if (F->onlyReadsMemory()) { 504 FI.addModRefInfo(MRI_Ref); 505 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) 506 // This function might call back into the module and read a global - 507 // consider every global as possibly being read by this function. 508 FI.setMayReadAnyGlobal(); 509 } else { 510 FI.addModRefInfo(MRI_ModRef); 511 // Can't say anything useful unless it's an intrinsic - they don't 512 // read or write global variables of the kind considered here. 513 KnowNothing = !F->isIntrinsic(); 514 } 515 continue; 516 } 517 518 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 519 CI != E && !KnowNothing; ++CI) 520 if (Function *Callee = CI->second->getFunction()) { 521 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 522 // Propagate function effect up. 523 FI.addFunctionInfo(*CalleeFI); 524 } else { 525 // Can't say anything about it. However, if it is inside our SCC, 526 // then nothing needs to be done. 527 CallGraphNode *CalleeNode = CG[Callee]; 528 if (!is_contained(SCC, CalleeNode)) 529 KnowNothing = true; 530 } 531 } else { 532 KnowNothing = true; 533 } 534 } 535 536 // If we can't say anything useful about this SCC, remove all SCC functions 537 // from the FunctionInfos map. 538 if (KnowNothing) { 539 for (auto *Node : SCC) 540 FunctionInfos.erase(Node->getFunction()); 541 continue; 542 } 543 544 // Scan the function bodies for explicit loads or stores. 545 for (auto *Node : SCC) { 546 if (FI.getModRefInfo() == MRI_ModRef) 547 break; // The mod/ref lattice saturates here. 548 for (Instruction &I : instructions(Node->getFunction())) { 549 if (FI.getModRefInfo() == MRI_ModRef) 550 break; // The mod/ref lattice saturates here. 551 552 // We handle calls specially because the graph-relevant aspects are 553 // handled above. 554 if (auto CS = CallSite(&I)) { 555 if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { 556 // FIXME: It is completely unclear why this is necessary and not 557 // handled by the above graph code. 558 FI.addModRefInfo(MRI_ModRef); 559 } else if (Function *Callee = CS.getCalledFunction()) { 560 // The callgraph doesn't include intrinsic calls. 561 if (Callee->isIntrinsic()) { 562 FunctionModRefBehavior Behaviour = 563 AAResultBase::getModRefBehavior(Callee); 564 FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef)); 565 } 566 } 567 continue; 568 } 569 570 // All non-call instructions we use the primary predicates for whether 571 // thay read or write memory. 572 if (I.mayReadFromMemory()) 573 FI.addModRefInfo(MRI_Ref); 574 if (I.mayWriteToMemory()) 575 FI.addModRefInfo(MRI_Mod); 576 } 577 } 578 579 if ((FI.getModRefInfo() & MRI_Mod) == 0) 580 ++NumReadMemFunctions; 581 if (FI.getModRefInfo() == MRI_NoModRef) 582 ++NumNoMemFunctions; 583 584 // Finally, now that we know the full effect on this SCC, clone the 585 // information to each function in the SCC. 586 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 587 // get invalidated if DenseMap decides to re-hash. 588 FunctionInfo CachedFI = FI; 589 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 590 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 591 } 592 } 593 594 // GV is a non-escaping global. V is a pointer address that has been loaded from. 595 // If we can prove that V must escape, we can conclude that a load from V cannot 596 // alias GV. 597 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 598 const Value *V, 599 int &Depth, 600 const DataLayout &DL) { 601 SmallPtrSet<const Value *, 8> Visited; 602 SmallVector<const Value *, 8> Inputs; 603 Visited.insert(V); 604 Inputs.push_back(V); 605 do { 606 const Value *Input = Inputs.pop_back_val(); 607 608 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 609 isa<InvokeInst>(Input)) 610 // Arguments to functions or returns from functions are inherently 611 // escaping, so we can immediately classify those as not aliasing any 612 // non-addr-taken globals. 613 // 614 // (Transitive) loads from a global are also safe - if this aliased 615 // another global, its address would escape, so no alias. 616 continue; 617 618 // Recurse through a limited number of selects, loads and PHIs. This is an 619 // arbitrary depth of 4, lower numbers could be used to fix compile time 620 // issues if needed, but this is generally expected to be only be important 621 // for small depths. 622 if (++Depth > 4) 623 return false; 624 625 if (auto *LI = dyn_cast<LoadInst>(Input)) { 626 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); 627 continue; 628 } 629 if (auto *SI = dyn_cast<SelectInst>(Input)) { 630 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 631 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 632 if (Visited.insert(LHS).second) 633 Inputs.push_back(LHS); 634 if (Visited.insert(RHS).second) 635 Inputs.push_back(RHS); 636 continue; 637 } 638 if (auto *PN = dyn_cast<PHINode>(Input)) { 639 for (const Value *Op : PN->incoming_values()) { 640 Op = GetUnderlyingObject(Op, DL); 641 if (Visited.insert(Op).second) 642 Inputs.push_back(Op); 643 } 644 continue; 645 } 646 647 return false; 648 } while (!Inputs.empty()); 649 650 // All inputs were known to be no-alias. 651 return true; 652 } 653 654 // There are particular cases where we can conclude no-alias between 655 // a non-addr-taken global and some other underlying object. Specifically, 656 // a non-addr-taken global is known to not be escaped from any function. It is 657 // also incorrect for a transformation to introduce an escape of a global in 658 // a way that is observable when it was not there previously. One function 659 // being transformed to introduce an escape which could possibly be observed 660 // (via loading from a global or the return value for example) within another 661 // function is never safe. If the observation is made through non-atomic 662 // operations on different threads, it is a data-race and UB. If the 663 // observation is well defined, by being observed the transformation would have 664 // changed program behavior by introducing the observed escape, making it an 665 // invalid transform. 666 // 667 // This property does require that transformations which *temporarily* escape 668 // a global that was not previously escaped, prior to restoring it, cannot rely 669 // on the results of GMR::alias. This seems a reasonable restriction, although 670 // currently there is no way to enforce it. There is also no realistic 671 // optimization pass that would make this mistake. The closest example is 672 // a transformation pass which does reg2mem of SSA values but stores them into 673 // global variables temporarily before restoring the global variable's value. 674 // This could be useful to expose "benign" races for example. However, it seems 675 // reasonable to require that a pass which introduces escapes of global 676 // variables in this way to either not trust AA results while the escape is 677 // active, or to be forced to operate as a module pass that cannot co-exist 678 // with an alias analysis such as GMR. 679 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 680 const Value *V) { 681 // In order to know that the underlying object cannot alias the 682 // non-addr-taken global, we must know that it would have to be an escape. 683 // Thus if the underlying object is a function argument, a load from 684 // a global, or the return of a function, it cannot alias. We can also 685 // recurse through PHI nodes and select nodes provided all of their inputs 686 // resolve to one of these known-escaping roots. 687 SmallPtrSet<const Value *, 8> Visited; 688 SmallVector<const Value *, 8> Inputs; 689 Visited.insert(V); 690 Inputs.push_back(V); 691 int Depth = 0; 692 do { 693 const Value *Input = Inputs.pop_back_val(); 694 695 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 696 // If one input is the very global we're querying against, then we can't 697 // conclude no-alias. 698 if (InputGV == GV) 699 return false; 700 701 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 702 // FIXME: The condition can be refined, but be conservative for now. 703 auto *GVar = dyn_cast<GlobalVariable>(GV); 704 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 705 if (GVar && InputGVar && 706 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 707 !GVar->isInterposable() && !InputGVar->isInterposable()) { 708 Type *GVType = GVar->getInitializer()->getType(); 709 Type *InputGVType = InputGVar->getInitializer()->getType(); 710 if (GVType->isSized() && InputGVType->isSized() && 711 (DL.getTypeAllocSize(GVType) > 0) && 712 (DL.getTypeAllocSize(InputGVType) > 0)) 713 continue; 714 } 715 716 // Conservatively return false, even though we could be smarter 717 // (e.g. look through GlobalAliases). 718 return false; 719 } 720 721 if (isa<Argument>(Input) || isa<CallInst>(Input) || 722 isa<InvokeInst>(Input)) { 723 // Arguments to functions or returns from functions are inherently 724 // escaping, so we can immediately classify those as not aliasing any 725 // non-addr-taken globals. 726 continue; 727 } 728 729 // Recurse through a limited number of selects, loads and PHIs. This is an 730 // arbitrary depth of 4, lower numbers could be used to fix compile time 731 // issues if needed, but this is generally expected to be only be important 732 // for small depths. 733 if (++Depth > 4) 734 return false; 735 736 if (auto *LI = dyn_cast<LoadInst>(Input)) { 737 // A pointer loaded from a global would have been captured, and we know 738 // that the global is non-escaping, so no alias. 739 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); 740 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 741 // The load does not alias with GV. 742 continue; 743 // Otherwise, a load could come from anywhere, so bail. 744 return false; 745 } 746 if (auto *SI = dyn_cast<SelectInst>(Input)) { 747 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 748 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 749 if (Visited.insert(LHS).second) 750 Inputs.push_back(LHS); 751 if (Visited.insert(RHS).second) 752 Inputs.push_back(RHS); 753 continue; 754 } 755 if (auto *PN = dyn_cast<PHINode>(Input)) { 756 for (const Value *Op : PN->incoming_values()) { 757 Op = GetUnderlyingObject(Op, DL); 758 if (Visited.insert(Op).second) 759 Inputs.push_back(Op); 760 } 761 continue; 762 } 763 764 // FIXME: It would be good to handle other obvious no-alias cases here, but 765 // it isn't clear how to do so reasonbly without building a small version 766 // of BasicAA into this code. We could recurse into AAResultBase::alias 767 // here but that seems likely to go poorly as we're inside the 768 // implementation of such a query. Until then, just conservatievly retun 769 // false. 770 return false; 771 } while (!Inputs.empty()); 772 773 // If all the inputs to V were definitively no-alias, then V is no-alias. 774 return true; 775 } 776 777 /// alias - If one of the pointers is to a global that we are tracking, and the 778 /// other is some random pointer, we know there cannot be an alias, because the 779 /// address of the global isn't taken. 780 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 781 const MemoryLocation &LocB) { 782 // Get the base object these pointers point to. 783 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 784 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 785 786 // If either of the underlying values is a global, they may be non-addr-taken 787 // globals, which we can answer queries about. 788 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 789 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 790 if (GV1 || GV2) { 791 // If the global's address is taken, pretend we don't know it's a pointer to 792 // the global. 793 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 794 GV1 = nullptr; 795 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 796 GV2 = nullptr; 797 798 // If the two pointers are derived from two different non-addr-taken 799 // globals we know these can't alias. 800 if (GV1 && GV2 && GV1 != GV2) 801 return NoAlias; 802 803 // If one is and the other isn't, it isn't strictly safe but we can fake 804 // this result if necessary for performance. This does not appear to be 805 // a common problem in practice. 806 if (EnableUnsafeGlobalsModRefAliasResults) 807 if ((GV1 || GV2) && GV1 != GV2) 808 return NoAlias; 809 810 // Check for a special case where a non-escaping global can be used to 811 // conclude no-alias. 812 if ((GV1 || GV2) && GV1 != GV2) { 813 const GlobalValue *GV = GV1 ? GV1 : GV2; 814 const Value *UV = GV1 ? UV2 : UV1; 815 if (isNonEscapingGlobalNoAlias(GV, UV)) 816 return NoAlias; 817 } 818 819 // Otherwise if they are both derived from the same addr-taken global, we 820 // can't know the two accesses don't overlap. 821 } 822 823 // These pointers may be based on the memory owned by an indirect global. If 824 // so, we may be able to handle this. First check to see if the base pointer 825 // is a direct load from an indirect global. 826 GV1 = GV2 = nullptr; 827 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 828 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 829 if (IndirectGlobals.count(GV)) 830 GV1 = GV; 831 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 832 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 833 if (IndirectGlobals.count(GV)) 834 GV2 = GV; 835 836 // These pointers may also be from an allocation for the indirect global. If 837 // so, also handle them. 838 if (!GV1) 839 GV1 = AllocsForIndirectGlobals.lookup(UV1); 840 if (!GV2) 841 GV2 = AllocsForIndirectGlobals.lookup(UV2); 842 843 // Now that we know whether the two pointers are related to indirect globals, 844 // use this to disambiguate the pointers. If the pointers are based on 845 // different indirect globals they cannot alias. 846 if (GV1 && GV2 && GV1 != GV2) 847 return NoAlias; 848 849 // If one is based on an indirect global and the other isn't, it isn't 850 // strictly safe but we can fake this result if necessary for performance. 851 // This does not appear to be a common problem in practice. 852 if (EnableUnsafeGlobalsModRefAliasResults) 853 if ((GV1 || GV2) && GV1 != GV2) 854 return NoAlias; 855 856 return AAResultBase::alias(LocA, LocB); 857 } 858 859 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS, 860 const GlobalValue *GV) { 861 if (CS.doesNotAccessMemory()) 862 return MRI_NoModRef; 863 ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef; 864 865 // Iterate through all the arguments to the called function. If any argument 866 // is based on GV, return the conservative result. 867 for (auto &A : CS.args()) { 868 SmallVector<Value*, 4> Objects; 869 GetUnderlyingObjects(A, Objects, DL); 870 871 // All objects must be identified. 872 if (!all_of(Objects, isIdentifiedObject) && 873 // Try ::alias to see if all objects are known not to alias GV. 874 !all_of(Objects, [&](Value *V) { 875 return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias; 876 })) 877 return ConservativeResult; 878 879 if (is_contained(Objects, GV)) 880 return ConservativeResult; 881 } 882 883 // We identified all objects in the argument list, and none of them were GV. 884 return MRI_NoModRef; 885 } 886 887 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, 888 const MemoryLocation &Loc) { 889 unsigned Known = MRI_ModRef; 890 891 // If we are asking for mod/ref info of a direct call with a pointer to a 892 // global we are tracking, return information if we have it. 893 if (const GlobalValue *GV = 894 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 895 if (GV->hasLocalLinkage()) 896 if (const Function *F = CS.getCalledFunction()) 897 if (NonAddressTakenGlobals.count(GV)) 898 if (const FunctionInfo *FI = getFunctionInfo(F)) 899 Known = FI->getModRefInfoForGlobal(*GV) | 900 getModRefInfoForArgument(CS, GV); 901 902 if (Known == MRI_NoModRef) 903 return MRI_NoModRef; // No need to query other mod/ref analyses 904 return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc)); 905 } 906 907 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, 908 const TargetLibraryInfo &TLI) 909 : AAResultBase(), DL(DL), TLI(TLI) {} 910 911 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 912 : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), 913 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 914 IndirectGlobals(std::move(Arg.IndirectGlobals)), 915 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 916 FunctionInfos(std::move(Arg.FunctionInfos)), 917 Handles(std::move(Arg.Handles)) { 918 // Update the parent for each DeletionCallbackHandle. 919 for (auto &H : Handles) { 920 assert(H.GAR == &Arg); 921 H.GAR = this; 922 } 923 } 924 925 GlobalsAAResult::~GlobalsAAResult() {} 926 927 /*static*/ GlobalsAAResult 928 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, 929 CallGraph &CG) { 930 GlobalsAAResult Result(M.getDataLayout(), TLI); 931 932 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 933 Result.CollectSCCMembership(CG); 934 935 // Find non-addr taken globals. 936 Result.AnalyzeGlobals(M); 937 938 // Propagate on CG. 939 Result.AnalyzeCallGraph(CG, M); 940 941 return Result; 942 } 943 944 AnalysisKey GlobalsAA::Key; 945 946 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 947 return GlobalsAAResult::analyzeModule(M, 948 AM.getResult<TargetLibraryAnalysis>(M), 949 AM.getResult<CallGraphAnalysis>(M)); 950 } 951 952 char GlobalsAAWrapperPass::ID = 0; 953 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 954 "Globals Alias Analysis", false, true) 955 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 956 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 957 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 958 "Globals Alias Analysis", false, true) 959 960 ModulePass *llvm::createGlobalsAAWrapperPass() { 961 return new GlobalsAAWrapperPass(); 962 } 963 964 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 965 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 966 } 967 968 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 969 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 970 M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 971 getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 972 return false; 973 } 974 975 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 976 Result.reset(); 977 return false; 978 } 979 980 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 981 AU.setPreservesAll(); 982 AU.addRequired<CallGraphWrapperPass>(); 983 AU.addRequired<TargetLibraryInfoWrapperPass>(); 984 } 985