1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This simple pass provides alias and mod/ref information for global values 11 // that do not have their address taken, and keeps track of whether functions 12 // read or write memory (are "pure"). For this simple (but very common) case, 13 // we can provide pretty accurate and useful information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "globalsmodref-aa" 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 // An option to enable unsafe alias results from the GlobalsModRef analysis. 43 // When enabled, GlobalsModRef will provide no-alias results which in extremely 44 // rare cases may not be conservatively correct. In particular, in the face of 45 // transforms which cause assymetry between how effective GetUnderlyingObject 46 // is for two pointers, it may produce incorrect results. 47 // 48 // These unsafe results have been returned by GMR for many years without 49 // causing significant issues in the wild and so we provide a mechanism to 50 // re-enable them for users of LLVM that have a particular performance 51 // sensitivity and no known issues. The option also makes it easy to evaluate 52 // the performance impact of these results. 53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 55 56 /// The mod/ref information collected for a particular function. 57 /// 58 /// We collect information about mod/ref behavior of a function here, both in 59 /// general and as pertains to specific globals. We only have this detailed 60 /// information when we know *something* useful about the behavior. If we 61 /// saturate to fully general mod/ref, we remove the info for the function. 62 class GlobalsAAResult::FunctionInfo { 63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 64 65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 66 /// should provide this much alignment at least, but this makes it clear we 67 /// specifically rely on this amount of alignment. 68 struct LLVM_ALIGNAS(8) AlignedMap { 69 AlignedMap() {} 70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 71 GlobalInfoMapType Map; 72 }; 73 74 /// Pointer traits for our aligned map. 75 struct AlignedMapPointerTraits { 76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 77 static inline AlignedMap *getFromVoidPointer(void *P) { 78 return (AlignedMap *)P; 79 } 80 enum { NumLowBitsAvailable = 3 }; 81 static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable), 82 "AlignedMap insufficiently aligned to have enough low bits."); 83 }; 84 85 /// The bit that flags that this function may read any global. This is 86 /// chosen to mix together with ModRefInfo bits. 87 enum { MayReadAnyGlobal = 4 }; 88 89 /// Checks to document the invariants of the bit packing here. 90 static_assert((MayReadAnyGlobal & MRI_ModRef) == 0, 91 "ModRef and the MayReadAnyGlobal flag bits overlap."); 92 static_assert(((MayReadAnyGlobal | MRI_ModRef) >> 93 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 94 "Insufficient low bits to store our flag and ModRef info."); 95 96 public: 97 FunctionInfo() : Info() {} 98 ~FunctionInfo() { 99 delete Info.getPointer(); 100 } 101 // Spell out the copy ond move constructors and assignment operators to get 102 // deep copy semantics and correct move semantics in the face of the 103 // pointer-int pair. 104 FunctionInfo(const FunctionInfo &Arg) 105 : Info(nullptr, Arg.Info.getInt()) { 106 if (const auto *ArgPtr = Arg.Info.getPointer()) 107 Info.setPointer(new AlignedMap(*ArgPtr)); 108 } 109 FunctionInfo(FunctionInfo &&Arg) 110 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 111 Arg.Info.setPointerAndInt(nullptr, 0); 112 } 113 FunctionInfo &operator=(const FunctionInfo &RHS) { 114 delete Info.getPointer(); 115 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 116 if (const auto *RHSPtr = RHS.Info.getPointer()) 117 Info.setPointer(new AlignedMap(*RHSPtr)); 118 return *this; 119 } 120 FunctionInfo &operator=(FunctionInfo &&RHS) { 121 delete Info.getPointer(); 122 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 123 RHS.Info.setPointerAndInt(nullptr, 0); 124 return *this; 125 } 126 127 /// Returns the \c ModRefInfo info for this function. 128 ModRefInfo getModRefInfo() const { 129 return ModRefInfo(Info.getInt() & MRI_ModRef); 130 } 131 132 /// Adds new \c ModRefInfo for this function to its state. 133 void addModRefInfo(ModRefInfo NewMRI) { 134 Info.setInt(Info.getInt() | NewMRI); 135 } 136 137 /// Returns whether this function may read any global variable, and we don't 138 /// know which global. 139 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 140 141 /// Sets this function as potentially reading from any global. 142 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 143 144 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 145 /// global, which may be more precise than the general information above. 146 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 147 ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef; 148 if (AlignedMap *P = Info.getPointer()) { 149 auto I = P->Map.find(&GV); 150 if (I != P->Map.end()) 151 GlobalMRI = ModRefInfo(GlobalMRI | I->second); 152 } 153 return GlobalMRI; 154 } 155 156 /// Add mod/ref info from another function into ours, saturating towards 157 /// MRI_ModRef. 158 void addFunctionInfo(const FunctionInfo &FI) { 159 addModRefInfo(FI.getModRefInfo()); 160 161 if (FI.mayReadAnyGlobal()) 162 setMayReadAnyGlobal(); 163 164 if (AlignedMap *P = FI.Info.getPointer()) 165 for (const auto &G : P->Map) 166 addModRefInfoForGlobal(*G.first, G.second); 167 } 168 169 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 170 AlignedMap *P = Info.getPointer(); 171 if (!P) { 172 P = new AlignedMap(); 173 Info.setPointer(P); 174 } 175 auto &GlobalMRI = P->Map[&GV]; 176 GlobalMRI = ModRefInfo(GlobalMRI | NewMRI); 177 } 178 179 /// Clear a global's ModRef info. Should be used when a global is being 180 /// deleted. 181 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 182 if (AlignedMap *P = Info.getPointer()) 183 P->Map.erase(&GV); 184 } 185 186 private: 187 /// All of the information is encoded into a single pointer, with a three bit 188 /// integer in the low three bits. The high bit provides a flag for when this 189 /// function may read any global. The low two bits are the ModRefInfo. And 190 /// the pointer, when non-null, points to a map from GlobalValue to 191 /// ModRefInfo specific to that GlobalValue. 192 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 193 }; 194 195 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 196 Value *V = getValPtr(); 197 if (auto *F = dyn_cast<Function>(V)) 198 GAR->FunctionInfos.erase(F); 199 200 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 201 if (GAR->NonAddressTakenGlobals.erase(GV)) { 202 // This global might be an indirect global. If so, remove it and 203 // remove any AllocRelatedValues for it. 204 if (GAR->IndirectGlobals.erase(GV)) { 205 // Remove any entries in AllocsForIndirectGlobals for this global. 206 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 207 E = GAR->AllocsForIndirectGlobals.end(); 208 I != E; ++I) 209 if (I->second == GV) 210 GAR->AllocsForIndirectGlobals.erase(I); 211 } 212 213 // Scan the function info we have collected and remove this global 214 // from all of them. 215 for (auto &FIPair : GAR->FunctionInfos) 216 FIPair.second.eraseModRefInfoForGlobal(*GV); 217 } 218 } 219 220 // If this is an allocation related to an indirect global, remove it. 221 GAR->AllocsForIndirectGlobals.erase(V); 222 223 // And clear out the handle. 224 setValPtr(nullptr); 225 GAR->Handles.erase(I); 226 // This object is now destroyed! 227 } 228 229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 230 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 231 232 if (FunctionInfo *FI = getFunctionInfo(F)) { 233 if (FI->getModRefInfo() == MRI_NoModRef) 234 Min = FMRB_DoesNotAccessMemory; 235 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 236 Min = FMRB_OnlyReadsMemory; 237 } 238 239 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 240 } 241 242 FunctionModRefBehavior 243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { 244 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 245 246 if (const Function *F = CS.getCalledFunction()) 247 if (FunctionInfo *FI = getFunctionInfo(F)) { 248 if (FI->getModRefInfo() == MRI_NoModRef) 249 Min = FMRB_DoesNotAccessMemory; 250 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 251 Min = FMRB_OnlyReadsMemory; 252 } 253 254 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 255 } 256 257 /// Returns the function info for the function, or null if we don't have 258 /// anything useful to say about it. 259 GlobalsAAResult::FunctionInfo * 260 GlobalsAAResult::getFunctionInfo(const Function *F) { 261 auto I = FunctionInfos.find(F); 262 if (I != FunctionInfos.end()) 263 return &I->second; 264 return nullptr; 265 } 266 267 /// AnalyzeGlobals - Scan through the users of all of the internal 268 /// GlobalValue's in the program. If none of them have their "address taken" 269 /// (really, their address passed to something nontrivial), record this fact, 270 /// and record the functions that they are used directly in. 271 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 272 SmallPtrSet<Function *, 64> TrackedFunctions; 273 for (Function &F : M) 274 if (F.hasLocalLinkage()) 275 if (!AnalyzeUsesOfPointer(&F)) { 276 // Remember that we are tracking this global. 277 NonAddressTakenGlobals.insert(&F); 278 TrackedFunctions.insert(&F); 279 Handles.emplace_front(*this, &F); 280 Handles.front().I = Handles.begin(); 281 ++NumNonAddrTakenFunctions; 282 } 283 284 SmallPtrSet<Function *, 64> Readers, Writers; 285 for (GlobalVariable &GV : M.globals()) 286 if (GV.hasLocalLinkage()) { 287 if (!AnalyzeUsesOfPointer(&GV, &Readers, 288 GV.isConstant() ? nullptr : &Writers)) { 289 // Remember that we are tracking this global, and the mod/ref fns 290 NonAddressTakenGlobals.insert(&GV); 291 Handles.emplace_front(*this, &GV); 292 Handles.front().I = Handles.begin(); 293 294 for (Function *Reader : Readers) { 295 if (TrackedFunctions.insert(Reader).second) { 296 Handles.emplace_front(*this, Reader); 297 Handles.front().I = Handles.begin(); 298 } 299 FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref); 300 } 301 302 if (!GV.isConstant()) // No need to keep track of writers to constants 303 for (Function *Writer : Writers) { 304 if (TrackedFunctions.insert(Writer).second) { 305 Handles.emplace_front(*this, Writer); 306 Handles.front().I = Handles.begin(); 307 } 308 FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod); 309 } 310 ++NumNonAddrTakenGlobalVars; 311 312 // If this global holds a pointer type, see if it is an indirect global. 313 if (GV.getType()->getElementType()->isPointerTy() && 314 AnalyzeIndirectGlobalMemory(&GV)) 315 ++NumIndirectGlobalVars; 316 } 317 Readers.clear(); 318 Writers.clear(); 319 } 320 } 321 322 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 323 /// If this is used by anything complex (i.e., the address escapes), return 324 /// true. Also, while we are at it, keep track of those functions that read and 325 /// write to the value. 326 /// 327 /// If OkayStoreDest is non-null, stores into this global are allowed. 328 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 329 SmallPtrSetImpl<Function *> *Readers, 330 SmallPtrSetImpl<Function *> *Writers, 331 GlobalValue *OkayStoreDest) { 332 if (!V->getType()->isPointerTy()) 333 return true; 334 335 for (Use &U : V->uses()) { 336 User *I = U.getUser(); 337 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 338 if (Readers) 339 Readers->insert(LI->getParent()->getParent()); 340 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 341 if (V == SI->getOperand(1)) { 342 if (Writers) 343 Writers->insert(SI->getParent()->getParent()); 344 } else if (SI->getOperand(1) != OkayStoreDest) { 345 return true; // Storing the pointer 346 } 347 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 348 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 349 return true; 350 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 351 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 352 return true; 353 } else if (auto CS = CallSite(I)) { 354 // Make sure that this is just the function being called, not that it is 355 // passing into the function. 356 if (!CS.isCallee(&U)) { 357 // Detect calls to free. 358 if (isFreeCall(I, &TLI)) { 359 if (Writers) 360 Writers->insert(CS->getParent()->getParent()); 361 } else if (CS.doesNotCapture(CS.getArgumentNo(&U))) { 362 Function *ParentF = CS->getParent()->getParent(); 363 // A nocapture argument may be read from or written to, but does not 364 // escape unless the call can somehow recurse. 365 // 366 // nocapture "indicates that the callee does not make any copies of 367 // the pointer that outlive itself". Therefore if we directly or 368 // indirectly recurse, we must treat the pointer as escaping. 369 if (FunctionToSCCMap[ParentF] == 370 FunctionToSCCMap[CS.getCalledFunction()]) 371 return true; 372 if (Readers) 373 Readers->insert(ParentF); 374 if (Writers) 375 Writers->insert(ParentF); 376 } else { 377 return true; // Argument of an unknown call. 378 } 379 } 380 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 381 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 382 return true; // Allow comparison against null. 383 } else { 384 return true; 385 } 386 } 387 388 return false; 389 } 390 391 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 392 /// which holds a pointer type. See if the global always points to non-aliased 393 /// heap memory: that is, all initializers of the globals are allocations, and 394 /// those allocations have no use other than initialization of the global. 395 /// Further, all loads out of GV must directly use the memory, not store the 396 /// pointer somewhere. If this is true, we consider the memory pointed to by 397 /// GV to be owned by GV and can disambiguate other pointers from it. 398 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalValue *GV) { 399 // Keep track of values related to the allocation of the memory, f.e. the 400 // value produced by the malloc call and any casts. 401 std::vector<Value *> AllocRelatedValues; 402 403 // Walk the user list of the global. If we find anything other than a direct 404 // load or store, bail out. 405 for (User *U : GV->users()) { 406 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 407 // The pointer loaded from the global can only be used in simple ways: 408 // we allow addressing of it and loading storing to it. We do *not* allow 409 // storing the loaded pointer somewhere else or passing to a function. 410 if (AnalyzeUsesOfPointer(LI)) 411 return false; // Loaded pointer escapes. 412 // TODO: Could try some IP mod/ref of the loaded pointer. 413 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 414 // Storing the global itself. 415 if (SI->getOperand(0) == GV) 416 return false; 417 418 // If storing the null pointer, ignore it. 419 if (isa<ConstantPointerNull>(SI->getOperand(0))) 420 continue; 421 422 // Check the value being stored. 423 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 424 GV->getParent()->getDataLayout()); 425 426 if (!isAllocLikeFn(Ptr, &TLI)) 427 return false; // Too hard to analyze. 428 429 // Analyze all uses of the allocation. If any of them are used in a 430 // non-simple way (e.g. stored to another global) bail out. 431 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 432 GV)) 433 return false; // Loaded pointer escapes. 434 435 // Remember that this allocation is related to the indirect global. 436 AllocRelatedValues.push_back(Ptr); 437 } else { 438 // Something complex, bail out. 439 return false; 440 } 441 } 442 443 // Okay, this is an indirect global. Remember all of the allocations for 444 // this global in AllocsForIndirectGlobals. 445 while (!AllocRelatedValues.empty()) { 446 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 447 Handles.emplace_front(*this, AllocRelatedValues.back()); 448 Handles.front().I = Handles.begin(); 449 AllocRelatedValues.pop_back(); 450 } 451 IndirectGlobals.insert(GV); 452 Handles.emplace_front(*this, GV); 453 Handles.front().I = Handles.begin(); 454 return true; 455 } 456 457 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 458 // We do a bottom-up SCC traversal of the call graph. In other words, we 459 // visit all callees before callers (leaf-first). 460 unsigned SCCID = 0; 461 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 462 const std::vector<CallGraphNode *> &SCC = *I; 463 assert(!SCC.empty() && "SCC with no functions?"); 464 465 for (auto *CGN : SCC) 466 if (Function *F = CGN->getFunction()) 467 FunctionToSCCMap[F] = SCCID; 468 ++SCCID; 469 } 470 } 471 472 /// AnalyzeCallGraph - At this point, we know the functions where globals are 473 /// immediately stored to and read from. Propagate this information up the call 474 /// graph to all callers and compute the mod/ref info for all memory for each 475 /// function. 476 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 477 // We do a bottom-up SCC traversal of the call graph. In other words, we 478 // visit all callees before callers (leaf-first). 479 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 480 const std::vector<CallGraphNode *> &SCC = *I; 481 assert(!SCC.empty() && "SCC with no functions?"); 482 483 if (!SCC[0]->getFunction()) { 484 // Calls externally - can't say anything useful. Remove any existing 485 // function records (may have been created when scanning globals). 486 for (auto *Node : SCC) 487 FunctionInfos.erase(Node->getFunction()); 488 continue; 489 } 490 491 FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()]; 492 bool KnowNothing = false; 493 494 // Collect the mod/ref properties due to called functions. We only compute 495 // one mod-ref set. 496 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 497 Function *F = SCC[i]->getFunction(); 498 if (!F) { 499 KnowNothing = true; 500 break; 501 } 502 503 if (F->isDeclaration()) { 504 // Try to get mod/ref behaviour from function attributes. 505 if (F->doesNotAccessMemory()) { 506 // Can't do better than that! 507 } else if (F->onlyReadsMemory()) { 508 FI.addModRefInfo(MRI_Ref); 509 if (!F->isIntrinsic()) 510 // This function might call back into the module and read a global - 511 // consider every global as possibly being read by this function. 512 FI.setMayReadAnyGlobal(); 513 } else { 514 FI.addModRefInfo(MRI_ModRef); 515 // Can't say anything useful unless it's an intrinsic - they don't 516 // read or write global variables of the kind considered here. 517 KnowNothing = !F->isIntrinsic(); 518 } 519 continue; 520 } 521 522 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 523 CI != E && !KnowNothing; ++CI) 524 if (Function *Callee = CI->second->getFunction()) { 525 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 526 // Propagate function effect up. 527 FI.addFunctionInfo(*CalleeFI); 528 } else { 529 // Can't say anything about it. However, if it is inside our SCC, 530 // then nothing needs to be done. 531 CallGraphNode *CalleeNode = CG[Callee]; 532 if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end()) 533 KnowNothing = true; 534 } 535 } else { 536 KnowNothing = true; 537 } 538 } 539 540 // If we can't say anything useful about this SCC, remove all SCC functions 541 // from the FunctionInfos map. 542 if (KnowNothing) { 543 for (auto *Node : SCC) 544 FunctionInfos.erase(Node->getFunction()); 545 continue; 546 } 547 548 // Scan the function bodies for explicit loads or stores. 549 for (auto *Node : SCC) { 550 if (FI.getModRefInfo() == MRI_ModRef) 551 break; // The mod/ref lattice saturates here. 552 for (Instruction &I : instructions(Node->getFunction())) { 553 if (FI.getModRefInfo() == MRI_ModRef) 554 break; // The mod/ref lattice saturates here. 555 556 // We handle calls specially because the graph-relevant aspects are 557 // handled above. 558 if (auto CS = CallSite(&I)) { 559 if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { 560 // FIXME: It is completely unclear why this is necessary and not 561 // handled by the above graph code. 562 FI.addModRefInfo(MRI_ModRef); 563 } else if (Function *Callee = CS.getCalledFunction()) { 564 // The callgraph doesn't include intrinsic calls. 565 if (Callee->isIntrinsic()) { 566 FunctionModRefBehavior Behaviour = 567 AAResultBase::getModRefBehavior(Callee); 568 FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef)); 569 } 570 } 571 continue; 572 } 573 574 // All non-call instructions we use the primary predicates for whether 575 // thay read or write memory. 576 if (I.mayReadFromMemory()) 577 FI.addModRefInfo(MRI_Ref); 578 if (I.mayWriteToMemory()) 579 FI.addModRefInfo(MRI_Mod); 580 } 581 } 582 583 if ((FI.getModRefInfo() & MRI_Mod) == 0) 584 ++NumReadMemFunctions; 585 if (FI.getModRefInfo() == MRI_NoModRef) 586 ++NumNoMemFunctions; 587 588 // Finally, now that we know the full effect on this SCC, clone the 589 // information to each function in the SCC. 590 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 591 FunctionInfos[SCC[i]->getFunction()] = FI; 592 } 593 } 594 595 // There are particular cases where we can conclude no-alias between 596 // a non-addr-taken global and some other underlying object. Specifically, 597 // a non-addr-taken global is known to not be escaped from any function. It is 598 // also incorrect for a transformation to introduce an escape of a global in 599 // a way that is observable when it was not there previously. One function 600 // being transformed to introduce an escape which could possibly be observed 601 // (via loading from a global or the return value for example) within another 602 // function is never safe. If the observation is made through non-atomic 603 // operations on different threads, it is a data-race and UB. If the 604 // observation is well defined, by being observed the transformation would have 605 // changed program behavior by introducing the observed escape, making it an 606 // invalid transform. 607 // 608 // This property does require that transformations which *temporarily* escape 609 // a global that was not previously escaped, prior to restoring it, cannot rely 610 // on the results of GMR::alias. This seems a reasonable restriction, although 611 // currently there is no way to enforce it. There is also no realistic 612 // optimization pass that would make this mistake. The closest example is 613 // a transformation pass which does reg2mem of SSA values but stores them into 614 // global variables temporarily before restoring the global variable's value. 615 // This could be useful to expose "benign" races for example. However, it seems 616 // reasonable to require that a pass which introduces escapes of global 617 // variables in this way to either not trust AA results while the escape is 618 // active, or to be forced to operate as a module pass that cannot co-exist 619 // with an alias analysis such as GMR. 620 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 621 const Value *V) { 622 // In order to know that the underlying object cannot alias the 623 // non-addr-taken global, we must know that it would have to be an escape. 624 // Thus if the underlying object is a function argument, a load from 625 // a global, or the return of a function, it cannot alias. We can also 626 // recurse through PHI nodes and select nodes provided all of their inputs 627 // resolve to one of these known-escaping roots. 628 SmallPtrSet<const Value *, 8> Visited; 629 SmallVector<const Value *, 8> Inputs; 630 Visited.insert(V); 631 Inputs.push_back(V); 632 int Depth = 0; 633 do { 634 const Value *Input = Inputs.pop_back_val(); 635 636 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 637 // If one input is the very global we're querying against, then we can't 638 // conclude no-alias. 639 if (InputGV == GV) 640 return false; 641 642 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 643 // FIXME: The condition can be refined, but be conservative for now. 644 auto *GVar = dyn_cast<GlobalVariable>(GV); 645 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 646 if (GVar && InputGVar && 647 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 648 !GVar->mayBeOverridden() && !InputGVar->mayBeOverridden()) { 649 Type *GVType = GVar->getInitializer()->getType(); 650 Type *InputGVType = InputGVar->getInitializer()->getType(); 651 if (GVType->isSized() && InputGVType->isSized() && 652 (DL.getTypeAllocSize(GVType) > 0) && 653 (DL.getTypeAllocSize(InputGVType) > 0)) 654 continue; 655 } 656 657 // Conservatively return false, even though we could be smarter 658 // (e.g. look through GlobalAliases). 659 return false; 660 } 661 662 if (isa<Argument>(Input) || isa<CallInst>(Input) || 663 isa<InvokeInst>(Input)) { 664 // Arguments to functions or returns from functions are inherently 665 // escaping, so we can immediately classify those as not aliasing any 666 // non-addr-taken globals. 667 continue; 668 } 669 if (auto *LI = dyn_cast<LoadInst>(Input)) { 670 // A pointer loaded from a global would have been captured, and we know 671 // that the global is non-escaping, so no alias. 672 if (isa<GlobalValue>(GetUnderlyingObject(LI->getPointerOperand(), DL))) 673 continue; 674 675 // Otherwise, a load could come from anywhere, so bail. 676 return false; 677 } 678 679 // Recurse through a limited number of selects and PHIs. This is an 680 // arbitrary depth of 4, lower numbers could be used to fix compile time 681 // issues if needed, but this is generally expected to be only be important 682 // for small depths. 683 if (++Depth > 4) 684 return false; 685 if (auto *SI = dyn_cast<SelectInst>(Input)) { 686 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 687 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 688 if (Visited.insert(LHS).second) 689 Inputs.push_back(LHS); 690 if (Visited.insert(RHS).second) 691 Inputs.push_back(RHS); 692 continue; 693 } 694 if (auto *PN = dyn_cast<PHINode>(Input)) { 695 for (const Value *Op : PN->incoming_values()) { 696 Op = GetUnderlyingObject(Op, DL); 697 if (Visited.insert(Op).second) 698 Inputs.push_back(Op); 699 } 700 continue; 701 } 702 703 // FIXME: It would be good to handle other obvious no-alias cases here, but 704 // it isn't clear how to do so reasonbly without building a small version 705 // of BasicAA into this code. We could recurse into AAResultBase::alias 706 // here but that seems likely to go poorly as we're inside the 707 // implementation of such a query. Until then, just conservatievly retun 708 // false. 709 return false; 710 } while (!Inputs.empty()); 711 712 // If all the inputs to V were definitively no-alias, then V is no-alias. 713 return true; 714 } 715 716 /// alias - If one of the pointers is to a global that we are tracking, and the 717 /// other is some random pointer, we know there cannot be an alias, because the 718 /// address of the global isn't taken. 719 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 720 const MemoryLocation &LocB) { 721 // Get the base object these pointers point to. 722 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 723 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 724 725 // If either of the underlying values is a global, they may be non-addr-taken 726 // globals, which we can answer queries about. 727 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 728 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 729 if (GV1 || GV2) { 730 // If the global's address is taken, pretend we don't know it's a pointer to 731 // the global. 732 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 733 GV1 = nullptr; 734 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 735 GV2 = nullptr; 736 737 // If the two pointers are derived from two different non-addr-taken 738 // globals we know these can't alias. 739 if (GV1 && GV2 && GV1 != GV2) 740 return NoAlias; 741 742 // If one is and the other isn't, it isn't strictly safe but we can fake 743 // this result if necessary for performance. This does not appear to be 744 // a common problem in practice. 745 if (EnableUnsafeGlobalsModRefAliasResults) 746 if ((GV1 || GV2) && GV1 != GV2) 747 return NoAlias; 748 749 // Check for a special case where a non-escaping global can be used to 750 // conclude no-alias. 751 if ((GV1 || GV2) && GV1 != GV2) { 752 const GlobalValue *GV = GV1 ? GV1 : GV2; 753 const Value *UV = GV1 ? UV2 : UV1; 754 if (isNonEscapingGlobalNoAlias(GV, UV)) 755 return NoAlias; 756 } 757 758 // Otherwise if they are both derived from the same addr-taken global, we 759 // can't know the two accesses don't overlap. 760 } 761 762 // These pointers may be based on the memory owned by an indirect global. If 763 // so, we may be able to handle this. First check to see if the base pointer 764 // is a direct load from an indirect global. 765 GV1 = GV2 = nullptr; 766 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 767 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 768 if (IndirectGlobals.count(GV)) 769 GV1 = GV; 770 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 771 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 772 if (IndirectGlobals.count(GV)) 773 GV2 = GV; 774 775 // These pointers may also be from an allocation for the indirect global. If 776 // so, also handle them. 777 if (!GV1) 778 GV1 = AllocsForIndirectGlobals.lookup(UV1); 779 if (!GV2) 780 GV2 = AllocsForIndirectGlobals.lookup(UV2); 781 782 // Now that we know whether the two pointers are related to indirect globals, 783 // use this to disambiguate the pointers. If the pointers are based on 784 // different indirect globals they cannot alias. 785 if (GV1 && GV2 && GV1 != GV2) 786 return NoAlias; 787 788 // If one is based on an indirect global and the other isn't, it isn't 789 // strictly safe but we can fake this result if necessary for performance. 790 // This does not appear to be a common problem in practice. 791 if (EnableUnsafeGlobalsModRefAliasResults) 792 if ((GV1 || GV2) && GV1 != GV2) 793 return NoAlias; 794 795 return AAResultBase::alias(LocA, LocB); 796 } 797 798 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS, 799 const GlobalValue *GV) { 800 if (CS.doesNotAccessMemory()) 801 return MRI_NoModRef; 802 ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef; 803 804 // Iterate through all the arguments to the called function. If any argument 805 // is based on GV, return the conservative result. 806 for (auto &A : CS.args()) { 807 SmallVector<Value*, 4> Objects; 808 GetUnderlyingObjects(A, Objects, DL); 809 810 // All objects must be identified. 811 if (!std::all_of(Objects.begin(), Objects.end(), [&GV](const Value *V) { 812 return isIdentifiedObject(V); 813 })) 814 return ConservativeResult; 815 816 if (std::find(Objects.begin(), Objects.end(), GV) != Objects.end()) 817 return ConservativeResult; 818 } 819 820 // We identified all objects in the argument list, and none of them were GV. 821 return MRI_NoModRef; 822 } 823 824 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, 825 const MemoryLocation &Loc) { 826 unsigned Known = MRI_ModRef; 827 828 // If we are asking for mod/ref info of a direct call with a pointer to a 829 // global we are tracking, return information if we have it. 830 if (const GlobalValue *GV = 831 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 832 if (GV->hasLocalLinkage()) 833 if (const Function *F = CS.getCalledFunction()) 834 if (NonAddressTakenGlobals.count(GV)) 835 if (const FunctionInfo *FI = getFunctionInfo(F)) 836 Known = FI->getModRefInfoForGlobal(*GV) | 837 getModRefInfoForArgument(CS, GV); 838 839 if (Known == MRI_NoModRef) 840 return MRI_NoModRef; // No need to query other mod/ref analyses 841 return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc)); 842 } 843 844 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, 845 const TargetLibraryInfo &TLI) 846 : AAResultBase(TLI), DL(DL) {} 847 848 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 849 : AAResultBase(std::move(Arg)), DL(Arg.DL), 850 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 851 IndirectGlobals(std::move(Arg.IndirectGlobals)), 852 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 853 FunctionInfos(std::move(Arg.FunctionInfos)), 854 Handles(std::move(Arg.Handles)) { 855 // Update the parent for each DeletionCallbackHandle. 856 for (auto &H : Handles) { 857 assert(H.GAR == &Arg); 858 H.GAR = this; 859 } 860 } 861 862 /*static*/ GlobalsAAResult 863 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, 864 CallGraph &CG) { 865 GlobalsAAResult Result(M.getDataLayout(), TLI); 866 867 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 868 Result.CollectSCCMembership(CG); 869 870 // Find non-addr taken globals. 871 Result.AnalyzeGlobals(M); 872 873 // Propagate on CG. 874 Result.AnalyzeCallGraph(CG, M); 875 876 return Result; 877 } 878 879 GlobalsAAResult GlobalsAA::run(Module &M, AnalysisManager<Module> *AM) { 880 return GlobalsAAResult::analyzeModule(M, 881 AM->getResult<TargetLibraryAnalysis>(M), 882 AM->getResult<CallGraphAnalysis>(M)); 883 } 884 885 char GlobalsAA::PassID; 886 887 char GlobalsAAWrapperPass::ID = 0; 888 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 889 "Globals Alias Analysis", false, true) 890 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 891 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 892 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 893 "Globals Alias Analysis", false, true) 894 895 ModulePass *llvm::createGlobalsAAWrapperPass() { 896 return new GlobalsAAWrapperPass(); 897 } 898 899 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 900 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 901 } 902 903 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 904 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 905 M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 906 getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 907 return false; 908 } 909 910 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 911 Result.reset(); 912 return false; 913 } 914 915 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 916 AU.setPreservesAll(); 917 AU.addRequired<CallGraphWrapperPass>(); 918 AU.addRequired<TargetLibraryInfoWrapperPass>(); 919 } 920