1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This simple pass provides alias and mod/ref information for global values 11 // that do not have their address taken, and keeps track of whether functions 12 // read or write memory (are "pure"). For this simple (but very common) case, 13 // we can provide pretty accurate and useful information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "globalsmodref-aa" 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 // An option to enable unsafe alias results from the GlobalsModRef analysis. 43 // When enabled, GlobalsModRef will provide no-alias results which in extremely 44 // rare cases may not be conservatively correct. In particular, in the face of 45 // transforms which cause assymetry between how effective GetUnderlyingObject 46 // is for two pointers, it may produce incorrect results. 47 // 48 // These unsafe results have been returned by GMR for many years without 49 // causing significant issues in the wild and so we provide a mechanism to 50 // re-enable them for users of LLVM that have a particular performance 51 // sensitivity and no known issues. The option also makes it easy to evaluate 52 // the performance impact of these results. 53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 55 56 /// The mod/ref information collected for a particular function. 57 /// 58 /// We collect information about mod/ref behavior of a function here, both in 59 /// general and as pertains to specific globals. We only have this detailed 60 /// information when we know *something* useful about the behavior. If we 61 /// saturate to fully general mod/ref, we remove the info for the function. 62 class GlobalsAAResult::FunctionInfo { 63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 64 65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 66 /// should provide this much alignment at least, but this makes it clear we 67 /// specifically rely on this amount of alignment. 68 struct LLVM_ALIGNAS(8) AlignedMap { 69 AlignedMap() {} 70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 71 GlobalInfoMapType Map; 72 }; 73 74 /// Pointer traits for our aligned map. 75 struct AlignedMapPointerTraits { 76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 77 static inline AlignedMap *getFromVoidPointer(void *P) { 78 return (AlignedMap *)P; 79 } 80 enum { NumLowBitsAvailable = 3 }; 81 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 82 "AlignedMap insufficiently aligned to have enough low bits."); 83 }; 84 85 /// The bit that flags that this function may read any global. This is 86 /// chosen to mix together with ModRefInfo bits. 87 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 88 enum { MayReadAnyGlobal = 4 }; 89 90 /// Checks to document the invariants of the bit packing here. 91 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0, 92 "ModRef and the MayReadAnyGlobal flag bits overlap."); 93 static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >> 94 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 95 "Insufficient low bits to store our flag and ModRef info."); 96 97 public: 98 FunctionInfo() : Info() {} 99 ~FunctionInfo() { 100 delete Info.getPointer(); 101 } 102 // Spell out the copy ond move constructors and assignment operators to get 103 // deep copy semantics and correct move semantics in the face of the 104 // pointer-int pair. 105 FunctionInfo(const FunctionInfo &Arg) 106 : Info(nullptr, Arg.Info.getInt()) { 107 if (const auto *ArgPtr = Arg.Info.getPointer()) 108 Info.setPointer(new AlignedMap(*ArgPtr)); 109 } 110 FunctionInfo(FunctionInfo &&Arg) 111 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 112 Arg.Info.setPointerAndInt(nullptr, 0); 113 } 114 FunctionInfo &operator=(const FunctionInfo &RHS) { 115 delete Info.getPointer(); 116 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 117 if (const auto *RHSPtr = RHS.Info.getPointer()) 118 Info.setPointer(new AlignedMap(*RHSPtr)); 119 return *this; 120 } 121 FunctionInfo &operator=(FunctionInfo &&RHS) { 122 delete Info.getPointer(); 123 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 124 RHS.Info.setPointerAndInt(nullptr, 0); 125 return *this; 126 } 127 128 /// Returns the \c ModRefInfo info for this function. 129 ModRefInfo getModRefInfo() const { 130 return ModRefInfo(Info.getInt() & static_cast<int>(ModRefInfo::ModRef)); 131 } 132 133 /// Adds new \c ModRefInfo for this function to its state. 134 void addModRefInfo(ModRefInfo NewMRI) { 135 Info.setInt(Info.getInt() | static_cast<int>(NewMRI)); 136 } 137 138 /// Returns whether this function may read any global variable, and we don't 139 /// know which global. 140 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 141 142 /// Sets this function as potentially reading from any global. 143 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 144 145 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 146 /// global, which may be more precise than the general information above. 147 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 148 ModRefInfo GlobalMRI = 149 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 150 if (AlignedMap *P = Info.getPointer()) { 151 auto I = P->Map.find(&GV); 152 if (I != P->Map.end()) 153 GlobalMRI = unionModRef(GlobalMRI, I->second); 154 } 155 return GlobalMRI; 156 } 157 158 /// Add mod/ref info from another function into ours, saturating towards 159 /// ModRef. 160 void addFunctionInfo(const FunctionInfo &FI) { 161 addModRefInfo(FI.getModRefInfo()); 162 163 if (FI.mayReadAnyGlobal()) 164 setMayReadAnyGlobal(); 165 166 if (AlignedMap *P = FI.Info.getPointer()) 167 for (const auto &G : P->Map) 168 addModRefInfoForGlobal(*G.first, G.second); 169 } 170 171 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 172 AlignedMap *P = Info.getPointer(); 173 if (!P) { 174 P = new AlignedMap(); 175 Info.setPointer(P); 176 } 177 auto &GlobalMRI = P->Map[&GV]; 178 GlobalMRI = unionModRef(GlobalMRI, NewMRI); 179 } 180 181 /// Clear a global's ModRef info. Should be used when a global is being 182 /// deleted. 183 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 184 if (AlignedMap *P = Info.getPointer()) 185 P->Map.erase(&GV); 186 } 187 188 private: 189 /// All of the information is encoded into a single pointer, with a three bit 190 /// integer in the low three bits. The high bit provides a flag for when this 191 /// function may read any global. The low two bits are the ModRefInfo. And 192 /// the pointer, when non-null, points to a map from GlobalValue to 193 /// ModRefInfo specific to that GlobalValue. 194 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 195 }; 196 197 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 198 Value *V = getValPtr(); 199 if (auto *F = dyn_cast<Function>(V)) 200 GAR->FunctionInfos.erase(F); 201 202 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 203 if (GAR->NonAddressTakenGlobals.erase(GV)) { 204 // This global might be an indirect global. If so, remove it and 205 // remove any AllocRelatedValues for it. 206 if (GAR->IndirectGlobals.erase(GV)) { 207 // Remove any entries in AllocsForIndirectGlobals for this global. 208 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 209 E = GAR->AllocsForIndirectGlobals.end(); 210 I != E; ++I) 211 if (I->second == GV) 212 GAR->AllocsForIndirectGlobals.erase(I); 213 } 214 215 // Scan the function info we have collected and remove this global 216 // from all of them. 217 for (auto &FIPair : GAR->FunctionInfos) 218 FIPair.second.eraseModRefInfoForGlobal(*GV); 219 } 220 } 221 222 // If this is an allocation related to an indirect global, remove it. 223 GAR->AllocsForIndirectGlobals.erase(V); 224 225 // And clear out the handle. 226 setValPtr(nullptr); 227 GAR->Handles.erase(I); 228 // This object is now destroyed! 229 } 230 231 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 232 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 233 234 if (FunctionInfo *FI = getFunctionInfo(F)) { 235 if (!isModOrRefSet(FI->getModRefInfo())) 236 Min = FMRB_DoesNotAccessMemory; 237 else if (!isModSet(FI->getModRefInfo())) 238 Min = FMRB_OnlyReadsMemory; 239 } 240 241 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 242 } 243 244 FunctionModRefBehavior 245 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { 246 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 247 248 if (!CS.hasOperandBundles()) 249 if (const Function *F = CS.getCalledFunction()) 250 if (FunctionInfo *FI = getFunctionInfo(F)) { 251 if (!isModOrRefSet(FI->getModRefInfo())) 252 Min = FMRB_DoesNotAccessMemory; 253 else if (!isModSet(FI->getModRefInfo())) 254 Min = FMRB_OnlyReadsMemory; 255 } 256 257 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 258 } 259 260 /// Returns the function info for the function, or null if we don't have 261 /// anything useful to say about it. 262 GlobalsAAResult::FunctionInfo * 263 GlobalsAAResult::getFunctionInfo(const Function *F) { 264 auto I = FunctionInfos.find(F); 265 if (I != FunctionInfos.end()) 266 return &I->second; 267 return nullptr; 268 } 269 270 /// AnalyzeGlobals - Scan through the users of all of the internal 271 /// GlobalValue's in the program. If none of them have their "address taken" 272 /// (really, their address passed to something nontrivial), record this fact, 273 /// and record the functions that they are used directly in. 274 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 275 SmallPtrSet<Function *, 32> TrackedFunctions; 276 for (Function &F : M) 277 if (F.hasLocalLinkage()) 278 if (!AnalyzeUsesOfPointer(&F)) { 279 // Remember that we are tracking this global. 280 NonAddressTakenGlobals.insert(&F); 281 TrackedFunctions.insert(&F); 282 Handles.emplace_front(*this, &F); 283 Handles.front().I = Handles.begin(); 284 ++NumNonAddrTakenFunctions; 285 } 286 287 SmallPtrSet<Function *, 16> Readers, Writers; 288 for (GlobalVariable &GV : M.globals()) 289 if (GV.hasLocalLinkage()) { 290 if (!AnalyzeUsesOfPointer(&GV, &Readers, 291 GV.isConstant() ? nullptr : &Writers)) { 292 // Remember that we are tracking this global, and the mod/ref fns 293 NonAddressTakenGlobals.insert(&GV); 294 Handles.emplace_front(*this, &GV); 295 Handles.front().I = Handles.begin(); 296 297 for (Function *Reader : Readers) { 298 if (TrackedFunctions.insert(Reader).second) { 299 Handles.emplace_front(*this, Reader); 300 Handles.front().I = Handles.begin(); 301 } 302 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 303 } 304 305 if (!GV.isConstant()) // No need to keep track of writers to constants 306 for (Function *Writer : Writers) { 307 if (TrackedFunctions.insert(Writer).second) { 308 Handles.emplace_front(*this, Writer); 309 Handles.front().I = Handles.begin(); 310 } 311 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 312 } 313 ++NumNonAddrTakenGlobalVars; 314 315 // If this global holds a pointer type, see if it is an indirect global. 316 if (GV.getValueType()->isPointerTy() && 317 AnalyzeIndirectGlobalMemory(&GV)) 318 ++NumIndirectGlobalVars; 319 } 320 Readers.clear(); 321 Writers.clear(); 322 } 323 } 324 325 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 326 /// If this is used by anything complex (i.e., the address escapes), return 327 /// true. Also, while we are at it, keep track of those functions that read and 328 /// write to the value. 329 /// 330 /// If OkayStoreDest is non-null, stores into this global are allowed. 331 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 332 SmallPtrSetImpl<Function *> *Readers, 333 SmallPtrSetImpl<Function *> *Writers, 334 GlobalValue *OkayStoreDest) { 335 if (!V->getType()->isPointerTy()) 336 return true; 337 338 for (Use &U : V->uses()) { 339 User *I = U.getUser(); 340 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 341 if (Readers) 342 Readers->insert(LI->getParent()->getParent()); 343 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 344 if (V == SI->getOperand(1)) { 345 if (Writers) 346 Writers->insert(SI->getParent()->getParent()); 347 } else if (SI->getOperand(1) != OkayStoreDest) { 348 return true; // Storing the pointer 349 } 350 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 351 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 352 return true; 353 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 354 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 355 return true; 356 } else if (auto CS = CallSite(I)) { 357 // Make sure that this is just the function being called, not that it is 358 // passing into the function. 359 if (CS.isDataOperand(&U)) { 360 // Detect calls to free. 361 if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) { 362 if (Writers) 363 Writers->insert(CS->getParent()->getParent()); 364 } else { 365 return true; // Argument of an unknown call. 366 } 367 } 368 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 369 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 370 return true; // Allow comparison against null. 371 } else if (Constant *C = dyn_cast<Constant>(I)) { 372 // Ignore constants which don't have any live uses. 373 if (isa<GlobalValue>(C) || C->isConstantUsed()) 374 return true; 375 } else { 376 return true; 377 } 378 } 379 380 return false; 381 } 382 383 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 384 /// which holds a pointer type. See if the global always points to non-aliased 385 /// heap memory: that is, all initializers of the globals are allocations, and 386 /// those allocations have no use other than initialization of the global. 387 /// Further, all loads out of GV must directly use the memory, not store the 388 /// pointer somewhere. If this is true, we consider the memory pointed to by 389 /// GV to be owned by GV and can disambiguate other pointers from it. 390 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 391 // Keep track of values related to the allocation of the memory, f.e. the 392 // value produced by the malloc call and any casts. 393 std::vector<Value *> AllocRelatedValues; 394 395 // If the initializer is a valid pointer, bail. 396 if (Constant *C = GV->getInitializer()) 397 if (!C->isNullValue()) 398 return false; 399 400 // Walk the user list of the global. If we find anything other than a direct 401 // load or store, bail out. 402 for (User *U : GV->users()) { 403 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 404 // The pointer loaded from the global can only be used in simple ways: 405 // we allow addressing of it and loading storing to it. We do *not* allow 406 // storing the loaded pointer somewhere else or passing to a function. 407 if (AnalyzeUsesOfPointer(LI)) 408 return false; // Loaded pointer escapes. 409 // TODO: Could try some IP mod/ref of the loaded pointer. 410 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 411 // Storing the global itself. 412 if (SI->getOperand(0) == GV) 413 return false; 414 415 // If storing the null pointer, ignore it. 416 if (isa<ConstantPointerNull>(SI->getOperand(0))) 417 continue; 418 419 // Check the value being stored. 420 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 421 GV->getParent()->getDataLayout()); 422 423 if (!isAllocLikeFn(Ptr, &TLI)) 424 return false; // Too hard to analyze. 425 426 // Analyze all uses of the allocation. If any of them are used in a 427 // non-simple way (e.g. stored to another global) bail out. 428 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 429 GV)) 430 return false; // Loaded pointer escapes. 431 432 // Remember that this allocation is related to the indirect global. 433 AllocRelatedValues.push_back(Ptr); 434 } else { 435 // Something complex, bail out. 436 return false; 437 } 438 } 439 440 // Okay, this is an indirect global. Remember all of the allocations for 441 // this global in AllocsForIndirectGlobals. 442 while (!AllocRelatedValues.empty()) { 443 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 444 Handles.emplace_front(*this, AllocRelatedValues.back()); 445 Handles.front().I = Handles.begin(); 446 AllocRelatedValues.pop_back(); 447 } 448 IndirectGlobals.insert(GV); 449 Handles.emplace_front(*this, GV); 450 Handles.front().I = Handles.begin(); 451 return true; 452 } 453 454 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 455 // We do a bottom-up SCC traversal of the call graph. In other words, we 456 // visit all callees before callers (leaf-first). 457 unsigned SCCID = 0; 458 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 459 const std::vector<CallGraphNode *> &SCC = *I; 460 assert(!SCC.empty() && "SCC with no functions?"); 461 462 for (auto *CGN : SCC) 463 if (Function *F = CGN->getFunction()) 464 FunctionToSCCMap[F] = SCCID; 465 ++SCCID; 466 } 467 } 468 469 /// AnalyzeCallGraph - At this point, we know the functions where globals are 470 /// immediately stored to and read from. Propagate this information up the call 471 /// graph to all callers and compute the mod/ref info for all memory for each 472 /// function. 473 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 474 // We do a bottom-up SCC traversal of the call graph. In other words, we 475 // visit all callees before callers (leaf-first). 476 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 477 const std::vector<CallGraphNode *> &SCC = *I; 478 assert(!SCC.empty() && "SCC with no functions?"); 479 480 Function *F = SCC[0]->getFunction(); 481 482 if (!F || !F->isDefinitionExact()) { 483 // Calls externally or not exact - can't say anything useful. Remove any 484 // existing function records (may have been created when scanning 485 // globals). 486 for (auto *Node : SCC) 487 FunctionInfos.erase(Node->getFunction()); 488 continue; 489 } 490 491 FunctionInfo &FI = FunctionInfos[F]; 492 bool KnowNothing = false; 493 494 // Collect the mod/ref properties due to called functions. We only compute 495 // one mod-ref set. 496 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 497 if (!F) { 498 KnowNothing = true; 499 break; 500 } 501 502 if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) { 503 // Try to get mod/ref behaviour from function attributes. 504 if (F->doesNotAccessMemory()) { 505 // Can't do better than that! 506 } else if (F->onlyReadsMemory()) { 507 FI.addModRefInfo(ModRefInfo::Ref); 508 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) 509 // This function might call back into the module and read a global - 510 // consider every global as possibly being read by this function. 511 FI.setMayReadAnyGlobal(); 512 } else { 513 FI.addModRefInfo(ModRefInfo::ModRef); 514 // Can't say anything useful unless it's an intrinsic - they don't 515 // read or write global variables of the kind considered here. 516 KnowNothing = !F->isIntrinsic(); 517 } 518 continue; 519 } 520 521 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 522 CI != E && !KnowNothing; ++CI) 523 if (Function *Callee = CI->second->getFunction()) { 524 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 525 // Propagate function effect up. 526 FI.addFunctionInfo(*CalleeFI); 527 } else { 528 // Can't say anything about it. However, if it is inside our SCC, 529 // then nothing needs to be done. 530 CallGraphNode *CalleeNode = CG[Callee]; 531 if (!is_contained(SCC, CalleeNode)) 532 KnowNothing = true; 533 } 534 } else { 535 KnowNothing = true; 536 } 537 } 538 539 // If we can't say anything useful about this SCC, remove all SCC functions 540 // from the FunctionInfos map. 541 if (KnowNothing) { 542 for (auto *Node : SCC) 543 FunctionInfos.erase(Node->getFunction()); 544 continue; 545 } 546 547 // Scan the function bodies for explicit loads or stores. 548 for (auto *Node : SCC) { 549 if (isModAndRefSet(FI.getModRefInfo())) 550 break; // The mod/ref lattice saturates here. 551 552 // Don't prove any properties based on the implementation of an optnone 553 // function. Function attributes were already used as a best approximation 554 // above. 555 if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone)) 556 continue; 557 558 for (Instruction &I : instructions(Node->getFunction())) { 559 if (isModAndRefSet(FI.getModRefInfo())) 560 break; // The mod/ref lattice saturates here. 561 562 // We handle calls specially because the graph-relevant aspects are 563 // handled above. 564 if (auto CS = CallSite(&I)) { 565 if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { 566 // FIXME: It is completely unclear why this is necessary and not 567 // handled by the above graph code. 568 FI.addModRefInfo(ModRefInfo::ModRef); 569 } else if (Function *Callee = CS.getCalledFunction()) { 570 // The callgraph doesn't include intrinsic calls. 571 if (Callee->isIntrinsic()) { 572 FunctionModRefBehavior Behaviour = 573 AAResultBase::getModRefBehavior(Callee); 574 FI.addModRefInfo(createModRefInfo(Behaviour)); 575 } 576 } 577 continue; 578 } 579 580 // All non-call instructions we use the primary predicates for whether 581 // thay read or write memory. 582 if (I.mayReadFromMemory()) 583 FI.addModRefInfo(ModRefInfo::Ref); 584 if (I.mayWriteToMemory()) 585 FI.addModRefInfo(ModRefInfo::Mod); 586 } 587 } 588 589 if (!isModSet(FI.getModRefInfo())) 590 ++NumReadMemFunctions; 591 if (!isModOrRefSet(FI.getModRefInfo())) 592 ++NumNoMemFunctions; 593 594 // Finally, now that we know the full effect on this SCC, clone the 595 // information to each function in the SCC. 596 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 597 // get invalidated if DenseMap decides to re-hash. 598 FunctionInfo CachedFI = FI; 599 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 600 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 601 } 602 } 603 604 // GV is a non-escaping global. V is a pointer address that has been loaded from. 605 // If we can prove that V must escape, we can conclude that a load from V cannot 606 // alias GV. 607 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 608 const Value *V, 609 int &Depth, 610 const DataLayout &DL) { 611 SmallPtrSet<const Value *, 8> Visited; 612 SmallVector<const Value *, 8> Inputs; 613 Visited.insert(V); 614 Inputs.push_back(V); 615 do { 616 const Value *Input = Inputs.pop_back_val(); 617 618 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 619 isa<InvokeInst>(Input)) 620 // Arguments to functions or returns from functions are inherently 621 // escaping, so we can immediately classify those as not aliasing any 622 // non-addr-taken globals. 623 // 624 // (Transitive) loads from a global are also safe - if this aliased 625 // another global, its address would escape, so no alias. 626 continue; 627 628 // Recurse through a limited number of selects, loads and PHIs. This is an 629 // arbitrary depth of 4, lower numbers could be used to fix compile time 630 // issues if needed, but this is generally expected to be only be important 631 // for small depths. 632 if (++Depth > 4) 633 return false; 634 635 if (auto *LI = dyn_cast<LoadInst>(Input)) { 636 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); 637 continue; 638 } 639 if (auto *SI = dyn_cast<SelectInst>(Input)) { 640 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 641 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 642 if (Visited.insert(LHS).second) 643 Inputs.push_back(LHS); 644 if (Visited.insert(RHS).second) 645 Inputs.push_back(RHS); 646 continue; 647 } 648 if (auto *PN = dyn_cast<PHINode>(Input)) { 649 for (const Value *Op : PN->incoming_values()) { 650 Op = GetUnderlyingObject(Op, DL); 651 if (Visited.insert(Op).second) 652 Inputs.push_back(Op); 653 } 654 continue; 655 } 656 657 return false; 658 } while (!Inputs.empty()); 659 660 // All inputs were known to be no-alias. 661 return true; 662 } 663 664 // There are particular cases where we can conclude no-alias between 665 // a non-addr-taken global and some other underlying object. Specifically, 666 // a non-addr-taken global is known to not be escaped from any function. It is 667 // also incorrect for a transformation to introduce an escape of a global in 668 // a way that is observable when it was not there previously. One function 669 // being transformed to introduce an escape which could possibly be observed 670 // (via loading from a global or the return value for example) within another 671 // function is never safe. If the observation is made through non-atomic 672 // operations on different threads, it is a data-race and UB. If the 673 // observation is well defined, by being observed the transformation would have 674 // changed program behavior by introducing the observed escape, making it an 675 // invalid transform. 676 // 677 // This property does require that transformations which *temporarily* escape 678 // a global that was not previously escaped, prior to restoring it, cannot rely 679 // on the results of GMR::alias. This seems a reasonable restriction, although 680 // currently there is no way to enforce it. There is also no realistic 681 // optimization pass that would make this mistake. The closest example is 682 // a transformation pass which does reg2mem of SSA values but stores them into 683 // global variables temporarily before restoring the global variable's value. 684 // This could be useful to expose "benign" races for example. However, it seems 685 // reasonable to require that a pass which introduces escapes of global 686 // variables in this way to either not trust AA results while the escape is 687 // active, or to be forced to operate as a module pass that cannot co-exist 688 // with an alias analysis such as GMR. 689 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 690 const Value *V) { 691 // In order to know that the underlying object cannot alias the 692 // non-addr-taken global, we must know that it would have to be an escape. 693 // Thus if the underlying object is a function argument, a load from 694 // a global, or the return of a function, it cannot alias. We can also 695 // recurse through PHI nodes and select nodes provided all of their inputs 696 // resolve to one of these known-escaping roots. 697 SmallPtrSet<const Value *, 8> Visited; 698 SmallVector<const Value *, 8> Inputs; 699 Visited.insert(V); 700 Inputs.push_back(V); 701 int Depth = 0; 702 do { 703 const Value *Input = Inputs.pop_back_val(); 704 705 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 706 // If one input is the very global we're querying against, then we can't 707 // conclude no-alias. 708 if (InputGV == GV) 709 return false; 710 711 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 712 // FIXME: The condition can be refined, but be conservative for now. 713 auto *GVar = dyn_cast<GlobalVariable>(GV); 714 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 715 if (GVar && InputGVar && 716 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 717 !GVar->isInterposable() && !InputGVar->isInterposable()) { 718 Type *GVType = GVar->getInitializer()->getType(); 719 Type *InputGVType = InputGVar->getInitializer()->getType(); 720 if (GVType->isSized() && InputGVType->isSized() && 721 (DL.getTypeAllocSize(GVType) > 0) && 722 (DL.getTypeAllocSize(InputGVType) > 0)) 723 continue; 724 } 725 726 // Conservatively return false, even though we could be smarter 727 // (e.g. look through GlobalAliases). 728 return false; 729 } 730 731 if (isa<Argument>(Input) || isa<CallInst>(Input) || 732 isa<InvokeInst>(Input)) { 733 // Arguments to functions or returns from functions are inherently 734 // escaping, so we can immediately classify those as not aliasing any 735 // non-addr-taken globals. 736 continue; 737 } 738 739 // Recurse through a limited number of selects, loads and PHIs. This is an 740 // arbitrary depth of 4, lower numbers could be used to fix compile time 741 // issues if needed, but this is generally expected to be only be important 742 // for small depths. 743 if (++Depth > 4) 744 return false; 745 746 if (auto *LI = dyn_cast<LoadInst>(Input)) { 747 // A pointer loaded from a global would have been captured, and we know 748 // that the global is non-escaping, so no alias. 749 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); 750 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 751 // The load does not alias with GV. 752 continue; 753 // Otherwise, a load could come from anywhere, so bail. 754 return false; 755 } 756 if (auto *SI = dyn_cast<SelectInst>(Input)) { 757 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 758 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 759 if (Visited.insert(LHS).second) 760 Inputs.push_back(LHS); 761 if (Visited.insert(RHS).second) 762 Inputs.push_back(RHS); 763 continue; 764 } 765 if (auto *PN = dyn_cast<PHINode>(Input)) { 766 for (const Value *Op : PN->incoming_values()) { 767 Op = GetUnderlyingObject(Op, DL); 768 if (Visited.insert(Op).second) 769 Inputs.push_back(Op); 770 } 771 continue; 772 } 773 774 // FIXME: It would be good to handle other obvious no-alias cases here, but 775 // it isn't clear how to do so reasonbly without building a small version 776 // of BasicAA into this code. We could recurse into AAResultBase::alias 777 // here but that seems likely to go poorly as we're inside the 778 // implementation of such a query. Until then, just conservatievly retun 779 // false. 780 return false; 781 } while (!Inputs.empty()); 782 783 // If all the inputs to V were definitively no-alias, then V is no-alias. 784 return true; 785 } 786 787 /// alias - If one of the pointers is to a global that we are tracking, and the 788 /// other is some random pointer, we know there cannot be an alias, because the 789 /// address of the global isn't taken. 790 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 791 const MemoryLocation &LocB) { 792 // Get the base object these pointers point to. 793 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 794 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 795 796 // If either of the underlying values is a global, they may be non-addr-taken 797 // globals, which we can answer queries about. 798 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 799 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 800 if (GV1 || GV2) { 801 // If the global's address is taken, pretend we don't know it's a pointer to 802 // the global. 803 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 804 GV1 = nullptr; 805 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 806 GV2 = nullptr; 807 808 // If the two pointers are derived from two different non-addr-taken 809 // globals we know these can't alias. 810 if (GV1 && GV2 && GV1 != GV2) 811 return NoAlias; 812 813 // If one is and the other isn't, it isn't strictly safe but we can fake 814 // this result if necessary for performance. This does not appear to be 815 // a common problem in practice. 816 if (EnableUnsafeGlobalsModRefAliasResults) 817 if ((GV1 || GV2) && GV1 != GV2) 818 return NoAlias; 819 820 // Check for a special case where a non-escaping global can be used to 821 // conclude no-alias. 822 if ((GV1 || GV2) && GV1 != GV2) { 823 const GlobalValue *GV = GV1 ? GV1 : GV2; 824 const Value *UV = GV1 ? UV2 : UV1; 825 if (isNonEscapingGlobalNoAlias(GV, UV)) 826 return NoAlias; 827 } 828 829 // Otherwise if they are both derived from the same addr-taken global, we 830 // can't know the two accesses don't overlap. 831 } 832 833 // These pointers may be based on the memory owned by an indirect global. If 834 // so, we may be able to handle this. First check to see if the base pointer 835 // is a direct load from an indirect global. 836 GV1 = GV2 = nullptr; 837 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 838 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 839 if (IndirectGlobals.count(GV)) 840 GV1 = GV; 841 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 842 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 843 if (IndirectGlobals.count(GV)) 844 GV2 = GV; 845 846 // These pointers may also be from an allocation for the indirect global. If 847 // so, also handle them. 848 if (!GV1) 849 GV1 = AllocsForIndirectGlobals.lookup(UV1); 850 if (!GV2) 851 GV2 = AllocsForIndirectGlobals.lookup(UV2); 852 853 // Now that we know whether the two pointers are related to indirect globals, 854 // use this to disambiguate the pointers. If the pointers are based on 855 // different indirect globals they cannot alias. 856 if (GV1 && GV2 && GV1 != GV2) 857 return NoAlias; 858 859 // If one is based on an indirect global and the other isn't, it isn't 860 // strictly safe but we can fake this result if necessary for performance. 861 // This does not appear to be a common problem in practice. 862 if (EnableUnsafeGlobalsModRefAliasResults) 863 if ((GV1 || GV2) && GV1 != GV2) 864 return NoAlias; 865 866 return AAResultBase::alias(LocA, LocB); 867 } 868 869 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS, 870 const GlobalValue *GV) { 871 if (CS.doesNotAccessMemory()) 872 return ModRefInfo::NoModRef; 873 ModRefInfo ConservativeResult = 874 CS.onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 875 876 // Iterate through all the arguments to the called function. If any argument 877 // is based on GV, return the conservative result. 878 for (auto &A : CS.args()) { 879 SmallVector<Value*, 4> Objects; 880 GetUnderlyingObjects(A, Objects, DL); 881 882 // All objects must be identified. 883 if (!all_of(Objects, isIdentifiedObject) && 884 // Try ::alias to see if all objects are known not to alias GV. 885 !all_of(Objects, [&](Value *V) { 886 return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias; 887 })) 888 return ConservativeResult; 889 890 if (is_contained(Objects, GV)) 891 return ConservativeResult; 892 } 893 894 // We identified all objects in the argument list, and none of them were GV. 895 return ModRefInfo::NoModRef; 896 } 897 898 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, 899 const MemoryLocation &Loc) { 900 ModRefInfo Known = ModRefInfo::ModRef; 901 902 // If we are asking for mod/ref info of a direct call with a pointer to a 903 // global we are tracking, return information if we have it. 904 if (const GlobalValue *GV = 905 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 906 if (GV->hasLocalLinkage()) 907 if (const Function *F = CS.getCalledFunction()) 908 if (NonAddressTakenGlobals.count(GV)) 909 if (const FunctionInfo *FI = getFunctionInfo(F)) 910 Known = unionModRef(FI->getModRefInfoForGlobal(*GV), 911 getModRefInfoForArgument(CS, GV)); 912 913 if (!isModOrRefSet(Known)) 914 return ModRefInfo::NoModRef; // No need to query other mod/ref analyses 915 return intersectModRef(Known, AAResultBase::getModRefInfo(CS, Loc)); 916 } 917 918 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, 919 const TargetLibraryInfo &TLI) 920 : AAResultBase(), DL(DL), TLI(TLI) {} 921 922 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 923 : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), 924 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 925 IndirectGlobals(std::move(Arg.IndirectGlobals)), 926 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 927 FunctionInfos(std::move(Arg.FunctionInfos)), 928 Handles(std::move(Arg.Handles)) { 929 // Update the parent for each DeletionCallbackHandle. 930 for (auto &H : Handles) { 931 assert(H.GAR == &Arg); 932 H.GAR = this; 933 } 934 } 935 936 GlobalsAAResult::~GlobalsAAResult() {} 937 938 /*static*/ GlobalsAAResult 939 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, 940 CallGraph &CG) { 941 GlobalsAAResult Result(M.getDataLayout(), TLI); 942 943 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 944 Result.CollectSCCMembership(CG); 945 946 // Find non-addr taken globals. 947 Result.AnalyzeGlobals(M); 948 949 // Propagate on CG. 950 Result.AnalyzeCallGraph(CG, M); 951 952 return Result; 953 } 954 955 AnalysisKey GlobalsAA::Key; 956 957 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 958 return GlobalsAAResult::analyzeModule(M, 959 AM.getResult<TargetLibraryAnalysis>(M), 960 AM.getResult<CallGraphAnalysis>(M)); 961 } 962 963 char GlobalsAAWrapperPass::ID = 0; 964 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 965 "Globals Alias Analysis", false, true) 966 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 967 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 968 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 969 "Globals Alias Analysis", false, true) 970 971 ModulePass *llvm::createGlobalsAAWrapperPass() { 972 return new GlobalsAAWrapperPass(); 973 } 974 975 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 976 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 977 } 978 979 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 980 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 981 M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 982 getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 983 return false; 984 } 985 986 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 987 Result.reset(); 988 return false; 989 } 990 991 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 992 AU.setPreservesAll(); 993 AU.addRequired<CallGraphWrapperPass>(); 994 AU.addRequired<TargetLibraryInfoWrapperPass>(); 995 } 996