1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure").  For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "globalsmodref-aa"
34 
35 STATISTIC(NumNonAddrTakenGlobalVars,
36           "Number of global vars without address taken");
37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41 
42 // An option to enable unsafe alias results from the GlobalsModRef analysis.
43 // When enabled, GlobalsModRef will provide no-alias results which in extremely
44 // rare cases may not be conservatively correct. In particular, in the face of
45 // transforms which cause assymetry between how effective GetUnderlyingObject
46 // is for two pointers, it may produce incorrect results.
47 //
48 // These unsafe results have been returned by GMR for many years without
49 // causing significant issues in the wild and so we provide a mechanism to
50 // re-enable them for users of LLVM that have a particular performance
51 // sensitivity and no known issues. The option also makes it easy to evaluate
52 // the performance impact of these results.
53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
54     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
55 
56 /// The mod/ref information collected for a particular function.
57 ///
58 /// We collect information about mod/ref behavior of a function here, both in
59 /// general and as pertains to specific globals. We only have this detailed
60 /// information when we know *something* useful about the behavior. If we
61 /// saturate to fully general mod/ref, we remove the info for the function.
62 class GlobalsAAResult::FunctionInfo {
63   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
64 
65   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
66   /// should provide this much alignment at least, but this makes it clear we
67   /// specifically rely on this amount of alignment.
68   struct LLVM_ALIGNAS(8) AlignedMap {
69     AlignedMap() {}
70     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
71     GlobalInfoMapType Map;
72   };
73 
74   /// Pointer traits for our aligned map.
75   struct AlignedMapPointerTraits {
76     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
77     static inline AlignedMap *getFromVoidPointer(void *P) {
78       return (AlignedMap *)P;
79     }
80     enum { NumLowBitsAvailable = 3 };
81     static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable),
82                   "AlignedMap insufficiently aligned to have enough low bits.");
83   };
84 
85   /// The bit that flags that this function may read any global. This is
86   /// chosen to mix together with ModRefInfo bits.
87   enum { MayReadAnyGlobal = 4 };
88 
89   /// Checks to document the invariants of the bit packing here.
90   static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
91                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
92   static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
93                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
94                 "Insufficient low bits to store our flag and ModRef info.");
95 
96 public:
97   FunctionInfo() : Info() {}
98   ~FunctionInfo() {
99     delete Info.getPointer();
100   }
101   // Spell out the copy ond move constructors and assignment operators to get
102   // deep copy semantics and correct move semantics in the face of the
103   // pointer-int pair.
104   FunctionInfo(const FunctionInfo &Arg)
105       : Info(nullptr, Arg.Info.getInt()) {
106     if (const auto *ArgPtr = Arg.Info.getPointer())
107       Info.setPointer(new AlignedMap(*ArgPtr));
108   }
109   FunctionInfo(FunctionInfo &&Arg)
110       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
111     Arg.Info.setPointerAndInt(nullptr, 0);
112   }
113   FunctionInfo &operator=(const FunctionInfo &RHS) {
114     delete Info.getPointer();
115     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
116     if (const auto *RHSPtr = RHS.Info.getPointer())
117       Info.setPointer(new AlignedMap(*RHSPtr));
118     return *this;
119   }
120   FunctionInfo &operator=(FunctionInfo &&RHS) {
121     delete Info.getPointer();
122     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
123     RHS.Info.setPointerAndInt(nullptr, 0);
124     return *this;
125   }
126 
127   /// Returns the \c ModRefInfo info for this function.
128   ModRefInfo getModRefInfo() const {
129     return ModRefInfo(Info.getInt() & MRI_ModRef);
130   }
131 
132   /// Adds new \c ModRefInfo for this function to its state.
133   void addModRefInfo(ModRefInfo NewMRI) {
134     Info.setInt(Info.getInt() | NewMRI);
135   }
136 
137   /// Returns whether this function may read any global variable, and we don't
138   /// know which global.
139   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
140 
141   /// Sets this function as potentially reading from any global.
142   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
143 
144   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
145   /// global, which may be more precise than the general information above.
146   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
147     ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
148     if (AlignedMap *P = Info.getPointer()) {
149       auto I = P->Map.find(&GV);
150       if (I != P->Map.end())
151         GlobalMRI = ModRefInfo(GlobalMRI | I->second);
152     }
153     return GlobalMRI;
154   }
155 
156   /// Add mod/ref info from another function into ours, saturating towards
157   /// MRI_ModRef.
158   void addFunctionInfo(const FunctionInfo &FI) {
159     addModRefInfo(FI.getModRefInfo());
160 
161     if (FI.mayReadAnyGlobal())
162       setMayReadAnyGlobal();
163 
164     if (AlignedMap *P = FI.Info.getPointer())
165       for (const auto &G : P->Map)
166         addModRefInfoForGlobal(*G.first, G.second);
167   }
168 
169   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
170     AlignedMap *P = Info.getPointer();
171     if (!P) {
172       P = new AlignedMap();
173       Info.setPointer(P);
174     }
175     auto &GlobalMRI = P->Map[&GV];
176     GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
177   }
178 
179   /// Clear a global's ModRef info. Should be used when a global is being
180   /// deleted.
181   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
182     if (AlignedMap *P = Info.getPointer())
183       P->Map.erase(&GV);
184   }
185 
186 private:
187   /// All of the information is encoded into a single pointer, with a three bit
188   /// integer in the low three bits. The high bit provides a flag for when this
189   /// function may read any global. The low two bits are the ModRefInfo. And
190   /// the pointer, when non-null, points to a map from GlobalValue to
191   /// ModRefInfo specific to that GlobalValue.
192   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
193 };
194 
195 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
196   Value *V = getValPtr();
197   if (auto *F = dyn_cast<Function>(V))
198     GAR->FunctionInfos.erase(F);
199 
200   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
201     if (GAR->NonAddressTakenGlobals.erase(GV)) {
202       // This global might be an indirect global.  If so, remove it and
203       // remove any AllocRelatedValues for it.
204       if (GAR->IndirectGlobals.erase(GV)) {
205         // Remove any entries in AllocsForIndirectGlobals for this global.
206         for (auto I = GAR->AllocsForIndirectGlobals.begin(),
207                   E = GAR->AllocsForIndirectGlobals.end();
208              I != E; ++I)
209           if (I->second == GV)
210             GAR->AllocsForIndirectGlobals.erase(I);
211       }
212 
213       // Scan the function info we have collected and remove this global
214       // from all of them.
215       for (auto &FIPair : GAR->FunctionInfos)
216         FIPair.second.eraseModRefInfoForGlobal(*GV);
217     }
218   }
219 
220   // If this is an allocation related to an indirect global, remove it.
221   GAR->AllocsForIndirectGlobals.erase(V);
222 
223   // And clear out the handle.
224   setValPtr(nullptr);
225   GAR->Handles.erase(I);
226   // This object is now destroyed!
227 }
228 
229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
230   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
231 
232   if (FunctionInfo *FI = getFunctionInfo(F)) {
233     if (FI->getModRefInfo() == MRI_NoModRef)
234       Min = FMRB_DoesNotAccessMemory;
235     else if ((FI->getModRefInfo() & MRI_Mod) == 0)
236       Min = FMRB_OnlyReadsMemory;
237   }
238 
239   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
240 }
241 
242 FunctionModRefBehavior
243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) {
244   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
245 
246   if (!CS.hasOperandBundles())
247     if (const Function *F = CS.getCalledFunction())
248       if (FunctionInfo *FI = getFunctionInfo(F)) {
249         if (FI->getModRefInfo() == MRI_NoModRef)
250           Min = FMRB_DoesNotAccessMemory;
251         else if ((FI->getModRefInfo() & MRI_Mod) == 0)
252           Min = FMRB_OnlyReadsMemory;
253       }
254 
255   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
256 }
257 
258 /// Returns the function info for the function, or null if we don't have
259 /// anything useful to say about it.
260 GlobalsAAResult::FunctionInfo *
261 GlobalsAAResult::getFunctionInfo(const Function *F) {
262   auto I = FunctionInfos.find(F);
263   if (I != FunctionInfos.end())
264     return &I->second;
265   return nullptr;
266 }
267 
268 /// AnalyzeGlobals - Scan through the users of all of the internal
269 /// GlobalValue's in the program.  If none of them have their "address taken"
270 /// (really, their address passed to something nontrivial), record this fact,
271 /// and record the functions that they are used directly in.
272 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
273   SmallPtrSet<Function *, 32> TrackedFunctions;
274   for (Function &F : M)
275     if (F.hasLocalLinkage())
276       if (!AnalyzeUsesOfPointer(&F)) {
277         // Remember that we are tracking this global.
278         NonAddressTakenGlobals.insert(&F);
279         TrackedFunctions.insert(&F);
280         Handles.emplace_front(*this, &F);
281         Handles.front().I = Handles.begin();
282         ++NumNonAddrTakenFunctions;
283       }
284 
285   SmallPtrSet<Function *, 16> Readers, Writers;
286   for (GlobalVariable &GV : M.globals())
287     if (GV.hasLocalLinkage()) {
288       if (!AnalyzeUsesOfPointer(&GV, &Readers,
289                                 GV.isConstant() ? nullptr : &Writers)) {
290         // Remember that we are tracking this global, and the mod/ref fns
291         NonAddressTakenGlobals.insert(&GV);
292         Handles.emplace_front(*this, &GV);
293         Handles.front().I = Handles.begin();
294 
295         for (Function *Reader : Readers) {
296           if (TrackedFunctions.insert(Reader).second) {
297             Handles.emplace_front(*this, Reader);
298             Handles.front().I = Handles.begin();
299           }
300           FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
301         }
302 
303         if (!GV.isConstant()) // No need to keep track of writers to constants
304           for (Function *Writer : Writers) {
305             if (TrackedFunctions.insert(Writer).second) {
306               Handles.emplace_front(*this, Writer);
307               Handles.front().I = Handles.begin();
308             }
309             FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
310           }
311         ++NumNonAddrTakenGlobalVars;
312 
313         // If this global holds a pointer type, see if it is an indirect global.
314         if (GV.getValueType()->isPointerTy() &&
315             AnalyzeIndirectGlobalMemory(&GV))
316           ++NumIndirectGlobalVars;
317       }
318       Readers.clear();
319       Writers.clear();
320     }
321 }
322 
323 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
324 /// If this is used by anything complex (i.e., the address escapes), return
325 /// true.  Also, while we are at it, keep track of those functions that read and
326 /// write to the value.
327 ///
328 /// If OkayStoreDest is non-null, stores into this global are allowed.
329 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
330                                            SmallPtrSetImpl<Function *> *Readers,
331                                            SmallPtrSetImpl<Function *> *Writers,
332                                            GlobalValue *OkayStoreDest) {
333   if (!V->getType()->isPointerTy())
334     return true;
335 
336   for (Use &U : V->uses()) {
337     User *I = U.getUser();
338     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
339       if (Readers)
340         Readers->insert(LI->getParent()->getParent());
341     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
342       if (V == SI->getOperand(1)) {
343         if (Writers)
344           Writers->insert(SI->getParent()->getParent());
345       } else if (SI->getOperand(1) != OkayStoreDest) {
346         return true; // Storing the pointer
347       }
348     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
349       if (AnalyzeUsesOfPointer(I, Readers, Writers))
350         return true;
351     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
352       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
353         return true;
354     } else if (auto CS = CallSite(I)) {
355       // Make sure that this is just the function being called, not that it is
356       // passing into the function.
357       if (CS.isDataOperand(&U)) {
358         // Detect calls to free.
359         if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) {
360           if (Writers)
361             Writers->insert(CS->getParent()->getParent());
362         } else {
363           return true; // Argument of an unknown call.
364         }
365       }
366     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
367       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
368         return true; // Allow comparison against null.
369     } else if (Constant *C = dyn_cast<Constant>(I)) {
370       return C->isConstantUsed();
371     } else {
372       return true;
373     }
374   }
375 
376   return false;
377 }
378 
379 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
380 /// which holds a pointer type.  See if the global always points to non-aliased
381 /// heap memory: that is, all initializers of the globals are allocations, and
382 /// those allocations have no use other than initialization of the global.
383 /// Further, all loads out of GV must directly use the memory, not store the
384 /// pointer somewhere.  If this is true, we consider the memory pointed to by
385 /// GV to be owned by GV and can disambiguate other pointers from it.
386 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
387   // Keep track of values related to the allocation of the memory, f.e. the
388   // value produced by the malloc call and any casts.
389   std::vector<Value *> AllocRelatedValues;
390 
391   // If the initializer is a valid pointer, bail.
392   if (Constant *C = GV->getInitializer())
393     if (!C->isNullValue())
394       return false;
395 
396   // Walk the user list of the global.  If we find anything other than a direct
397   // load or store, bail out.
398   for (User *U : GV->users()) {
399     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
400       // The pointer loaded from the global can only be used in simple ways:
401       // we allow addressing of it and loading storing to it.  We do *not* allow
402       // storing the loaded pointer somewhere else or passing to a function.
403       if (AnalyzeUsesOfPointer(LI))
404         return false; // Loaded pointer escapes.
405       // TODO: Could try some IP mod/ref of the loaded pointer.
406     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
407       // Storing the global itself.
408       if (SI->getOperand(0) == GV)
409         return false;
410 
411       // If storing the null pointer, ignore it.
412       if (isa<ConstantPointerNull>(SI->getOperand(0)))
413         continue;
414 
415       // Check the value being stored.
416       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
417                                        GV->getParent()->getDataLayout());
418 
419       if (!isAllocLikeFn(Ptr, &TLI))
420         return false; // Too hard to analyze.
421 
422       // Analyze all uses of the allocation.  If any of them are used in a
423       // non-simple way (e.g. stored to another global) bail out.
424       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
425                                GV))
426         return false; // Loaded pointer escapes.
427 
428       // Remember that this allocation is related to the indirect global.
429       AllocRelatedValues.push_back(Ptr);
430     } else {
431       // Something complex, bail out.
432       return false;
433     }
434   }
435 
436   // Okay, this is an indirect global.  Remember all of the allocations for
437   // this global in AllocsForIndirectGlobals.
438   while (!AllocRelatedValues.empty()) {
439     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
440     Handles.emplace_front(*this, AllocRelatedValues.back());
441     Handles.front().I = Handles.begin();
442     AllocRelatedValues.pop_back();
443   }
444   IndirectGlobals.insert(GV);
445   Handles.emplace_front(*this, GV);
446   Handles.front().I = Handles.begin();
447   return true;
448 }
449 
450 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
451   // We do a bottom-up SCC traversal of the call graph.  In other words, we
452   // visit all callees before callers (leaf-first).
453   unsigned SCCID = 0;
454   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
455     const std::vector<CallGraphNode *> &SCC = *I;
456     assert(!SCC.empty() && "SCC with no functions?");
457 
458     for (auto *CGN : SCC)
459       if (Function *F = CGN->getFunction())
460         FunctionToSCCMap[F] = SCCID;
461     ++SCCID;
462   }
463 }
464 
465 /// AnalyzeCallGraph - At this point, we know the functions where globals are
466 /// immediately stored to and read from.  Propagate this information up the call
467 /// graph to all callers and compute the mod/ref info for all memory for each
468 /// function.
469 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
470   // We do a bottom-up SCC traversal of the call graph.  In other words, we
471   // visit all callees before callers (leaf-first).
472   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
473     const std::vector<CallGraphNode *> &SCC = *I;
474     assert(!SCC.empty() && "SCC with no functions?");
475 
476     if (!SCC[0]->getFunction() || !SCC[0]->getFunction()->isDefinitionExact()) {
477       // Calls externally or not exact - can't say anything useful. Remove any
478       // existing function records (may have been created when scanning
479       // globals).
480       for (auto *Node : SCC)
481         FunctionInfos.erase(Node->getFunction());
482       continue;
483     }
484 
485     FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()];
486     bool KnowNothing = false;
487 
488     // Collect the mod/ref properties due to called functions.  We only compute
489     // one mod-ref set.
490     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
491       Function *F = SCC[i]->getFunction();
492       if (!F) {
493         KnowNothing = true;
494         break;
495       }
496 
497       if (F->isDeclaration()) {
498         // Try to get mod/ref behaviour from function attributes.
499         if (F->doesNotAccessMemory()) {
500           // Can't do better than that!
501         } else if (F->onlyReadsMemory()) {
502           FI.addModRefInfo(MRI_Ref);
503           if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
504             // This function might call back into the module and read a global -
505             // consider every global as possibly being read by this function.
506             FI.setMayReadAnyGlobal();
507         } else {
508           FI.addModRefInfo(MRI_ModRef);
509           // Can't say anything useful unless it's an intrinsic - they don't
510           // read or write global variables of the kind considered here.
511           KnowNothing = !F->isIntrinsic();
512         }
513         continue;
514       }
515 
516       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
517            CI != E && !KnowNothing; ++CI)
518         if (Function *Callee = CI->second->getFunction()) {
519           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
520             // Propagate function effect up.
521             FI.addFunctionInfo(*CalleeFI);
522           } else {
523             // Can't say anything about it.  However, if it is inside our SCC,
524             // then nothing needs to be done.
525             CallGraphNode *CalleeNode = CG[Callee];
526             if (!is_contained(SCC, CalleeNode))
527               KnowNothing = true;
528           }
529         } else {
530           KnowNothing = true;
531         }
532     }
533 
534     // If we can't say anything useful about this SCC, remove all SCC functions
535     // from the FunctionInfos map.
536     if (KnowNothing) {
537       for (auto *Node : SCC)
538         FunctionInfos.erase(Node->getFunction());
539       continue;
540     }
541 
542     // Scan the function bodies for explicit loads or stores.
543     for (auto *Node : SCC) {
544       if (FI.getModRefInfo() == MRI_ModRef)
545         break; // The mod/ref lattice saturates here.
546       for (Instruction &I : instructions(Node->getFunction())) {
547         if (FI.getModRefInfo() == MRI_ModRef)
548           break; // The mod/ref lattice saturates here.
549 
550         // We handle calls specially because the graph-relevant aspects are
551         // handled above.
552         if (auto CS = CallSite(&I)) {
553           if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) {
554             // FIXME: It is completely unclear why this is necessary and not
555             // handled by the above graph code.
556             FI.addModRefInfo(MRI_ModRef);
557           } else if (Function *Callee = CS.getCalledFunction()) {
558             // The callgraph doesn't include intrinsic calls.
559             if (Callee->isIntrinsic()) {
560               FunctionModRefBehavior Behaviour =
561                   AAResultBase::getModRefBehavior(Callee);
562               FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
563             }
564           }
565           continue;
566         }
567 
568         // All non-call instructions we use the primary predicates for whether
569         // thay read or write memory.
570         if (I.mayReadFromMemory())
571           FI.addModRefInfo(MRI_Ref);
572         if (I.mayWriteToMemory())
573           FI.addModRefInfo(MRI_Mod);
574       }
575     }
576 
577     if ((FI.getModRefInfo() & MRI_Mod) == 0)
578       ++NumReadMemFunctions;
579     if (FI.getModRefInfo() == MRI_NoModRef)
580       ++NumNoMemFunctions;
581 
582     // Finally, now that we know the full effect on this SCC, clone the
583     // information to each function in the SCC.
584     // FI is a reference into FunctionInfos, so copy it now so that it doesn't
585     // get invalidated if DenseMap decides to re-hash.
586     FunctionInfo CachedFI = FI;
587     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
588       FunctionInfos[SCC[i]->getFunction()] = CachedFI;
589   }
590 }
591 
592 // GV is a non-escaping global. V is a pointer address that has been loaded from.
593 // If we can prove that V must escape, we can conclude that a load from V cannot
594 // alias GV.
595 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
596                                                const Value *V,
597                                                int &Depth,
598                                                const DataLayout &DL) {
599   SmallPtrSet<const Value *, 8> Visited;
600   SmallVector<const Value *, 8> Inputs;
601   Visited.insert(V);
602   Inputs.push_back(V);
603   do {
604     const Value *Input = Inputs.pop_back_val();
605 
606     if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
607         isa<InvokeInst>(Input))
608       // Arguments to functions or returns from functions are inherently
609       // escaping, so we can immediately classify those as not aliasing any
610       // non-addr-taken globals.
611       //
612       // (Transitive) loads from a global are also safe - if this aliased
613       // another global, its address would escape, so no alias.
614       continue;
615 
616     // Recurse through a limited number of selects, loads and PHIs. This is an
617     // arbitrary depth of 4, lower numbers could be used to fix compile time
618     // issues if needed, but this is generally expected to be only be important
619     // for small depths.
620     if (++Depth > 4)
621       return false;
622 
623     if (auto *LI = dyn_cast<LoadInst>(Input)) {
624       Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
625       continue;
626     }
627     if (auto *SI = dyn_cast<SelectInst>(Input)) {
628       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
629       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
630       if (Visited.insert(LHS).second)
631         Inputs.push_back(LHS);
632       if (Visited.insert(RHS).second)
633         Inputs.push_back(RHS);
634       continue;
635     }
636     if (auto *PN = dyn_cast<PHINode>(Input)) {
637       for (const Value *Op : PN->incoming_values()) {
638         Op = GetUnderlyingObject(Op, DL);
639         if (Visited.insert(Op).second)
640           Inputs.push_back(Op);
641       }
642       continue;
643     }
644 
645     return false;
646   } while (!Inputs.empty());
647 
648   // All inputs were known to be no-alias.
649   return true;
650 }
651 
652 // There are particular cases where we can conclude no-alias between
653 // a non-addr-taken global and some other underlying object. Specifically,
654 // a non-addr-taken global is known to not be escaped from any function. It is
655 // also incorrect for a transformation to introduce an escape of a global in
656 // a way that is observable when it was not there previously. One function
657 // being transformed to introduce an escape which could possibly be observed
658 // (via loading from a global or the return value for example) within another
659 // function is never safe. If the observation is made through non-atomic
660 // operations on different threads, it is a data-race and UB. If the
661 // observation is well defined, by being observed the transformation would have
662 // changed program behavior by introducing the observed escape, making it an
663 // invalid transform.
664 //
665 // This property does require that transformations which *temporarily* escape
666 // a global that was not previously escaped, prior to restoring it, cannot rely
667 // on the results of GMR::alias. This seems a reasonable restriction, although
668 // currently there is no way to enforce it. There is also no realistic
669 // optimization pass that would make this mistake. The closest example is
670 // a transformation pass which does reg2mem of SSA values but stores them into
671 // global variables temporarily before restoring the global variable's value.
672 // This could be useful to expose "benign" races for example. However, it seems
673 // reasonable to require that a pass which introduces escapes of global
674 // variables in this way to either not trust AA results while the escape is
675 // active, or to be forced to operate as a module pass that cannot co-exist
676 // with an alias analysis such as GMR.
677 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
678                                                  const Value *V) {
679   // In order to know that the underlying object cannot alias the
680   // non-addr-taken global, we must know that it would have to be an escape.
681   // Thus if the underlying object is a function argument, a load from
682   // a global, or the return of a function, it cannot alias. We can also
683   // recurse through PHI nodes and select nodes provided all of their inputs
684   // resolve to one of these known-escaping roots.
685   SmallPtrSet<const Value *, 8> Visited;
686   SmallVector<const Value *, 8> Inputs;
687   Visited.insert(V);
688   Inputs.push_back(V);
689   int Depth = 0;
690   do {
691     const Value *Input = Inputs.pop_back_val();
692 
693     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
694       // If one input is the very global we're querying against, then we can't
695       // conclude no-alias.
696       if (InputGV == GV)
697         return false;
698 
699       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
700       // FIXME: The condition can be refined, but be conservative for now.
701       auto *GVar = dyn_cast<GlobalVariable>(GV);
702       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
703       if (GVar && InputGVar &&
704           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
705           !GVar->isInterposable() && !InputGVar->isInterposable()) {
706         Type *GVType = GVar->getInitializer()->getType();
707         Type *InputGVType = InputGVar->getInitializer()->getType();
708         if (GVType->isSized() && InputGVType->isSized() &&
709             (DL.getTypeAllocSize(GVType) > 0) &&
710             (DL.getTypeAllocSize(InputGVType) > 0))
711           continue;
712       }
713 
714       // Conservatively return false, even though we could be smarter
715       // (e.g. look through GlobalAliases).
716       return false;
717     }
718 
719     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
720         isa<InvokeInst>(Input)) {
721       // Arguments to functions or returns from functions are inherently
722       // escaping, so we can immediately classify those as not aliasing any
723       // non-addr-taken globals.
724       continue;
725     }
726 
727     // Recurse through a limited number of selects, loads and PHIs. This is an
728     // arbitrary depth of 4, lower numbers could be used to fix compile time
729     // issues if needed, but this is generally expected to be only be important
730     // for small depths.
731     if (++Depth > 4)
732       return false;
733 
734     if (auto *LI = dyn_cast<LoadInst>(Input)) {
735       // A pointer loaded from a global would have been captured, and we know
736       // that the global is non-escaping, so no alias.
737       const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
738       if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
739         // The load does not alias with GV.
740         continue;
741       // Otherwise, a load could come from anywhere, so bail.
742       return false;
743     }
744     if (auto *SI = dyn_cast<SelectInst>(Input)) {
745       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
746       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
747       if (Visited.insert(LHS).second)
748         Inputs.push_back(LHS);
749       if (Visited.insert(RHS).second)
750         Inputs.push_back(RHS);
751       continue;
752     }
753     if (auto *PN = dyn_cast<PHINode>(Input)) {
754       for (const Value *Op : PN->incoming_values()) {
755         Op = GetUnderlyingObject(Op, DL);
756         if (Visited.insert(Op).second)
757           Inputs.push_back(Op);
758       }
759       continue;
760     }
761 
762     // FIXME: It would be good to handle other obvious no-alias cases here, but
763     // it isn't clear how to do so reasonbly without building a small version
764     // of BasicAA into this code. We could recurse into AAResultBase::alias
765     // here but that seems likely to go poorly as we're inside the
766     // implementation of such a query. Until then, just conservatievly retun
767     // false.
768     return false;
769   } while (!Inputs.empty());
770 
771   // If all the inputs to V were definitively no-alias, then V is no-alias.
772   return true;
773 }
774 
775 /// alias - If one of the pointers is to a global that we are tracking, and the
776 /// other is some random pointer, we know there cannot be an alias, because the
777 /// address of the global isn't taken.
778 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
779                                    const MemoryLocation &LocB) {
780   // Get the base object these pointers point to.
781   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
782   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
783 
784   // If either of the underlying values is a global, they may be non-addr-taken
785   // globals, which we can answer queries about.
786   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
787   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
788   if (GV1 || GV2) {
789     // If the global's address is taken, pretend we don't know it's a pointer to
790     // the global.
791     if (GV1 && !NonAddressTakenGlobals.count(GV1))
792       GV1 = nullptr;
793     if (GV2 && !NonAddressTakenGlobals.count(GV2))
794       GV2 = nullptr;
795 
796     // If the two pointers are derived from two different non-addr-taken
797     // globals we know these can't alias.
798     if (GV1 && GV2 && GV1 != GV2)
799       return NoAlias;
800 
801     // If one is and the other isn't, it isn't strictly safe but we can fake
802     // this result if necessary for performance. This does not appear to be
803     // a common problem in practice.
804     if (EnableUnsafeGlobalsModRefAliasResults)
805       if ((GV1 || GV2) && GV1 != GV2)
806         return NoAlias;
807 
808     // Check for a special case where a non-escaping global can be used to
809     // conclude no-alias.
810     if ((GV1 || GV2) && GV1 != GV2) {
811       const GlobalValue *GV = GV1 ? GV1 : GV2;
812       const Value *UV = GV1 ? UV2 : UV1;
813       if (isNonEscapingGlobalNoAlias(GV, UV))
814         return NoAlias;
815     }
816 
817     // Otherwise if they are both derived from the same addr-taken global, we
818     // can't know the two accesses don't overlap.
819   }
820 
821   // These pointers may be based on the memory owned by an indirect global.  If
822   // so, we may be able to handle this.  First check to see if the base pointer
823   // is a direct load from an indirect global.
824   GV1 = GV2 = nullptr;
825   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
826     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
827       if (IndirectGlobals.count(GV))
828         GV1 = GV;
829   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
830     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
831       if (IndirectGlobals.count(GV))
832         GV2 = GV;
833 
834   // These pointers may also be from an allocation for the indirect global.  If
835   // so, also handle them.
836   if (!GV1)
837     GV1 = AllocsForIndirectGlobals.lookup(UV1);
838   if (!GV2)
839     GV2 = AllocsForIndirectGlobals.lookup(UV2);
840 
841   // Now that we know whether the two pointers are related to indirect globals,
842   // use this to disambiguate the pointers. If the pointers are based on
843   // different indirect globals they cannot alias.
844   if (GV1 && GV2 && GV1 != GV2)
845     return NoAlias;
846 
847   // If one is based on an indirect global and the other isn't, it isn't
848   // strictly safe but we can fake this result if necessary for performance.
849   // This does not appear to be a common problem in practice.
850   if (EnableUnsafeGlobalsModRefAliasResults)
851     if ((GV1 || GV2) && GV1 != GV2)
852       return NoAlias;
853 
854   return AAResultBase::alias(LocA, LocB);
855 }
856 
857 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS,
858                                                      const GlobalValue *GV) {
859   if (CS.doesNotAccessMemory())
860     return MRI_NoModRef;
861   ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef;
862 
863   // Iterate through all the arguments to the called function. If any argument
864   // is based on GV, return the conservative result.
865   for (auto &A : CS.args()) {
866     SmallVector<Value*, 4> Objects;
867     GetUnderlyingObjects(A, Objects, DL);
868 
869     // All objects must be identified.
870     if (!all_of(Objects, isIdentifiedObject) &&
871         // Try ::alias to see if all objects are known not to alias GV.
872         !all_of(Objects, [&](Value *V) {
873           return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias;
874         }))
875       return ConservativeResult;
876 
877     if (is_contained(Objects, GV))
878       return ConservativeResult;
879   }
880 
881   // We identified all objects in the argument list, and none of them were GV.
882   return MRI_NoModRef;
883 }
884 
885 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
886                                           const MemoryLocation &Loc) {
887   unsigned Known = MRI_ModRef;
888 
889   // If we are asking for mod/ref info of a direct call with a pointer to a
890   // global we are tracking, return information if we have it.
891   if (const GlobalValue *GV =
892           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
893     if (GV->hasLocalLinkage())
894       if (const Function *F = CS.getCalledFunction())
895         if (NonAddressTakenGlobals.count(GV))
896           if (const FunctionInfo *FI = getFunctionInfo(F))
897             Known = FI->getModRefInfoForGlobal(*GV) |
898               getModRefInfoForArgument(CS, GV);
899 
900   if (Known == MRI_NoModRef)
901     return MRI_NoModRef; // No need to query other mod/ref analyses
902   return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc));
903 }
904 
905 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
906                                  const TargetLibraryInfo &TLI)
907     : AAResultBase(), DL(DL), TLI(TLI) {}
908 
909 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
910     : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
911       NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
912       IndirectGlobals(std::move(Arg.IndirectGlobals)),
913       AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
914       FunctionInfos(std::move(Arg.FunctionInfos)),
915       Handles(std::move(Arg.Handles)) {
916   // Update the parent for each DeletionCallbackHandle.
917   for (auto &H : Handles) {
918     assert(H.GAR == &Arg);
919     H.GAR = this;
920   }
921 }
922 
923 GlobalsAAResult::~GlobalsAAResult() {}
924 
925 /*static*/ GlobalsAAResult
926 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
927                                CallGraph &CG) {
928   GlobalsAAResult Result(M.getDataLayout(), TLI);
929 
930   // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
931   Result.CollectSCCMembership(CG);
932 
933   // Find non-addr taken globals.
934   Result.AnalyzeGlobals(M);
935 
936   // Propagate on CG.
937   Result.AnalyzeCallGraph(CG, M);
938 
939   return Result;
940 }
941 
942 char GlobalsAA::PassID;
943 
944 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
945   return GlobalsAAResult::analyzeModule(M,
946                                         AM.getResult<TargetLibraryAnalysis>(M),
947                                         AM.getResult<CallGraphAnalysis>(M));
948 }
949 
950 char GlobalsAAWrapperPass::ID = 0;
951 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
952                       "Globals Alias Analysis", false, true)
953 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
954 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
955 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
956                     "Globals Alias Analysis", false, true)
957 
958 ModulePass *llvm::createGlobalsAAWrapperPass() {
959   return new GlobalsAAWrapperPass();
960 }
961 
962 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
963   initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
964 }
965 
966 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
967   Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
968       M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
969       getAnalysis<CallGraphWrapperPass>().getCallGraph())));
970   return false;
971 }
972 
973 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
974   Result.reset();
975   return false;
976 }
977 
978 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
979   AU.setPreservesAll();
980   AU.addRequired<CallGraphWrapperPass>();
981   AU.addRequired<TargetLibraryInfoWrapperPass>();
982 }
983