1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This simple pass provides alias and mod/ref information for global values 11 // that do not have their address taken, and keeps track of whether functions 12 // read or write memory (are "pure"). For this simple (but very common) case, 13 // we can provide pretty accurate and useful information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "globalsmodref-aa" 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 // An option to enable unsafe alias results from the GlobalsModRef analysis. 43 // When enabled, GlobalsModRef will provide no-alias results which in extremely 44 // rare cases may not be conservatively correct. In particular, in the face of 45 // transforms which cause assymetry between how effective GetUnderlyingObject 46 // is for two pointers, it may produce incorrect results. 47 // 48 // These unsafe results have been returned by GMR for many years without 49 // causing significant issues in the wild and so we provide a mechanism to 50 // re-enable them for users of LLVM that have a particular performance 51 // sensitivity and no known issues. The option also makes it easy to evaluate 52 // the performance impact of these results. 53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 55 56 /// The mod/ref information collected for a particular function. 57 /// 58 /// We collect information about mod/ref behavior of a function here, both in 59 /// general and as pertains to specific globals. We only have this detailed 60 /// information when we know *something* useful about the behavior. If we 61 /// saturate to fully general mod/ref, we remove the info for the function. 62 class GlobalsAAResult::FunctionInfo { 63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 64 65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 66 /// should provide this much alignment at least, but this makes it clear we 67 /// specifically rely on this amount of alignment. 68 struct LLVM_ALIGNAS(8) AlignedMap { 69 AlignedMap() {} 70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 71 GlobalInfoMapType Map; 72 }; 73 74 /// Pointer traits for our aligned map. 75 struct AlignedMapPointerTraits { 76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 77 static inline AlignedMap *getFromVoidPointer(void *P) { 78 return (AlignedMap *)P; 79 } 80 enum { NumLowBitsAvailable = 3 }; 81 static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable), 82 "AlignedMap insufficiently aligned to have enough low bits."); 83 }; 84 85 /// The bit that flags that this function may read any global. This is 86 /// chosen to mix together with ModRefInfo bits. 87 enum { MayReadAnyGlobal = 4 }; 88 89 /// Checks to document the invariants of the bit packing here. 90 static_assert((MayReadAnyGlobal & MRI_ModRef) == 0, 91 "ModRef and the MayReadAnyGlobal flag bits overlap."); 92 static_assert(((MayReadAnyGlobal | MRI_ModRef) >> 93 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 94 "Insufficient low bits to store our flag and ModRef info."); 95 96 public: 97 FunctionInfo() : Info() {} 98 ~FunctionInfo() { 99 delete Info.getPointer(); 100 } 101 // Spell out the copy ond move constructors and assignment operators to get 102 // deep copy semantics and correct move semantics in the face of the 103 // pointer-int pair. 104 FunctionInfo(const FunctionInfo &Arg) 105 : Info(nullptr, Arg.Info.getInt()) { 106 if (const auto *ArgPtr = Arg.Info.getPointer()) 107 Info.setPointer(new AlignedMap(*ArgPtr)); 108 } 109 FunctionInfo(FunctionInfo &&Arg) 110 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 111 Arg.Info.setPointerAndInt(nullptr, 0); 112 } 113 FunctionInfo &operator=(const FunctionInfo &RHS) { 114 delete Info.getPointer(); 115 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 116 if (const auto *RHSPtr = RHS.Info.getPointer()) 117 Info.setPointer(new AlignedMap(*RHSPtr)); 118 return *this; 119 } 120 FunctionInfo &operator=(FunctionInfo &&RHS) { 121 delete Info.getPointer(); 122 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 123 RHS.Info.setPointerAndInt(nullptr, 0); 124 return *this; 125 } 126 127 /// Returns the \c ModRefInfo info for this function. 128 ModRefInfo getModRefInfo() const { 129 return ModRefInfo(Info.getInt() & MRI_ModRef); 130 } 131 132 /// Adds new \c ModRefInfo for this function to its state. 133 void addModRefInfo(ModRefInfo NewMRI) { 134 Info.setInt(Info.getInt() | NewMRI); 135 } 136 137 /// Returns whether this function may read any global variable, and we don't 138 /// know which global. 139 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 140 141 /// Sets this function as potentially reading from any global. 142 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 143 144 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 145 /// global, which may be more precise than the general information above. 146 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 147 ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef; 148 if (AlignedMap *P = Info.getPointer()) { 149 auto I = P->Map.find(&GV); 150 if (I != P->Map.end()) 151 GlobalMRI = ModRefInfo(GlobalMRI | I->second); 152 } 153 return GlobalMRI; 154 } 155 156 /// Add mod/ref info from another function into ours, saturating towards 157 /// MRI_ModRef. 158 void addFunctionInfo(const FunctionInfo &FI) { 159 addModRefInfo(FI.getModRefInfo()); 160 161 if (FI.mayReadAnyGlobal()) 162 setMayReadAnyGlobal(); 163 164 if (AlignedMap *P = FI.Info.getPointer()) 165 for (const auto &G : P->Map) 166 addModRefInfoForGlobal(*G.first, G.second); 167 } 168 169 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 170 AlignedMap *P = Info.getPointer(); 171 if (!P) { 172 P = new AlignedMap(); 173 Info.setPointer(P); 174 } 175 auto &GlobalMRI = P->Map[&GV]; 176 GlobalMRI = ModRefInfo(GlobalMRI | NewMRI); 177 } 178 179 /// Clear a global's ModRef info. Should be used when a global is being 180 /// deleted. 181 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 182 if (AlignedMap *P = Info.getPointer()) 183 P->Map.erase(&GV); 184 } 185 186 private: 187 /// All of the information is encoded into a single pointer, with a three bit 188 /// integer in the low three bits. The high bit provides a flag for when this 189 /// function may read any global. The low two bits are the ModRefInfo. And 190 /// the pointer, when non-null, points to a map from GlobalValue to 191 /// ModRefInfo specific to that GlobalValue. 192 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 193 }; 194 195 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 196 Value *V = getValPtr(); 197 if (auto *F = dyn_cast<Function>(V)) 198 GAR->FunctionInfos.erase(F); 199 200 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 201 if (GAR->NonAddressTakenGlobals.erase(GV)) { 202 // This global might be an indirect global. If so, remove it and 203 // remove any AllocRelatedValues for it. 204 if (GAR->IndirectGlobals.erase(GV)) { 205 // Remove any entries in AllocsForIndirectGlobals for this global. 206 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 207 E = GAR->AllocsForIndirectGlobals.end(); 208 I != E; ++I) 209 if (I->second == GV) 210 GAR->AllocsForIndirectGlobals.erase(I); 211 } 212 213 // Scan the function info we have collected and remove this global 214 // from all of them. 215 for (auto &FIPair : GAR->FunctionInfos) 216 FIPair.second.eraseModRefInfoForGlobal(*GV); 217 } 218 } 219 220 // If this is an allocation related to an indirect global, remove it. 221 GAR->AllocsForIndirectGlobals.erase(V); 222 223 // And clear out the handle. 224 setValPtr(nullptr); 225 GAR->Handles.erase(I); 226 // This object is now destroyed! 227 } 228 229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 230 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 231 232 if (FunctionInfo *FI = getFunctionInfo(F)) { 233 if (FI->getModRefInfo() == MRI_NoModRef) 234 Min = FMRB_DoesNotAccessMemory; 235 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 236 Min = FMRB_OnlyReadsMemory; 237 } 238 239 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 240 } 241 242 FunctionModRefBehavior 243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { 244 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 245 246 if (!CS.hasOperandBundles()) 247 if (const Function *F = CS.getCalledFunction()) 248 if (FunctionInfo *FI = getFunctionInfo(F)) { 249 if (FI->getModRefInfo() == MRI_NoModRef) 250 Min = FMRB_DoesNotAccessMemory; 251 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 252 Min = FMRB_OnlyReadsMemory; 253 } 254 255 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 256 } 257 258 /// Returns the function info for the function, or null if we don't have 259 /// anything useful to say about it. 260 GlobalsAAResult::FunctionInfo * 261 GlobalsAAResult::getFunctionInfo(const Function *F) { 262 auto I = FunctionInfos.find(F); 263 if (I != FunctionInfos.end()) 264 return &I->second; 265 return nullptr; 266 } 267 268 /// AnalyzeGlobals - Scan through the users of all of the internal 269 /// GlobalValue's in the program. If none of them have their "address taken" 270 /// (really, their address passed to something nontrivial), record this fact, 271 /// and record the functions that they are used directly in. 272 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 273 SmallPtrSet<Function *, 32> TrackedFunctions; 274 for (Function &F : M) 275 if (F.hasLocalLinkage()) 276 if (!AnalyzeUsesOfPointer(&F)) { 277 // Remember that we are tracking this global. 278 NonAddressTakenGlobals.insert(&F); 279 TrackedFunctions.insert(&F); 280 Handles.emplace_front(*this, &F); 281 Handles.front().I = Handles.begin(); 282 ++NumNonAddrTakenFunctions; 283 } 284 285 SmallPtrSet<Function *, 16> Readers, Writers; 286 for (GlobalVariable &GV : M.globals()) 287 if (GV.hasLocalLinkage()) { 288 if (!AnalyzeUsesOfPointer(&GV, &Readers, 289 GV.isConstant() ? nullptr : &Writers)) { 290 // Remember that we are tracking this global, and the mod/ref fns 291 NonAddressTakenGlobals.insert(&GV); 292 Handles.emplace_front(*this, &GV); 293 Handles.front().I = Handles.begin(); 294 295 for (Function *Reader : Readers) { 296 if (TrackedFunctions.insert(Reader).second) { 297 Handles.emplace_front(*this, Reader); 298 Handles.front().I = Handles.begin(); 299 } 300 FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref); 301 } 302 303 if (!GV.isConstant()) // No need to keep track of writers to constants 304 for (Function *Writer : Writers) { 305 if (TrackedFunctions.insert(Writer).second) { 306 Handles.emplace_front(*this, Writer); 307 Handles.front().I = Handles.begin(); 308 } 309 FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod); 310 } 311 ++NumNonAddrTakenGlobalVars; 312 313 // If this global holds a pointer type, see if it is an indirect global. 314 if (GV.getValueType()->isPointerTy() && 315 AnalyzeIndirectGlobalMemory(&GV)) 316 ++NumIndirectGlobalVars; 317 } 318 Readers.clear(); 319 Writers.clear(); 320 } 321 } 322 323 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 324 /// If this is used by anything complex (i.e., the address escapes), return 325 /// true. Also, while we are at it, keep track of those functions that read and 326 /// write to the value. 327 /// 328 /// If OkayStoreDest is non-null, stores into this global are allowed. 329 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 330 SmallPtrSetImpl<Function *> *Readers, 331 SmallPtrSetImpl<Function *> *Writers, 332 GlobalValue *OkayStoreDest) { 333 if (!V->getType()->isPointerTy()) 334 return true; 335 336 for (Use &U : V->uses()) { 337 User *I = U.getUser(); 338 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 339 if (Readers) 340 Readers->insert(LI->getParent()->getParent()); 341 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 342 if (V == SI->getOperand(1)) { 343 if (Writers) 344 Writers->insert(SI->getParent()->getParent()); 345 } else if (SI->getOperand(1) != OkayStoreDest) { 346 return true; // Storing the pointer 347 } 348 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 349 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 350 return true; 351 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 352 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 353 return true; 354 } else if (auto CS = CallSite(I)) { 355 // Make sure that this is just the function being called, not that it is 356 // passing into the function. 357 if (CS.isDataOperand(&U)) { 358 // Detect calls to free. 359 if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) { 360 if (Writers) 361 Writers->insert(CS->getParent()->getParent()); 362 } else { 363 return true; // Argument of an unknown call. 364 } 365 } 366 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 367 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 368 return true; // Allow comparison against null. 369 } else if (Constant *C = dyn_cast<Constant>(I)) { 370 return C->isConstantUsed(); 371 } else { 372 return true; 373 } 374 } 375 376 return false; 377 } 378 379 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 380 /// which holds a pointer type. See if the global always points to non-aliased 381 /// heap memory: that is, all initializers of the globals are allocations, and 382 /// those allocations have no use other than initialization of the global. 383 /// Further, all loads out of GV must directly use the memory, not store the 384 /// pointer somewhere. If this is true, we consider the memory pointed to by 385 /// GV to be owned by GV and can disambiguate other pointers from it. 386 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 387 // Keep track of values related to the allocation of the memory, f.e. the 388 // value produced by the malloc call and any casts. 389 std::vector<Value *> AllocRelatedValues; 390 391 // If the initializer is a valid pointer, bail. 392 if (Constant *C = GV->getInitializer()) 393 if (!C->isNullValue()) 394 return false; 395 396 // Walk the user list of the global. If we find anything other than a direct 397 // load or store, bail out. 398 for (User *U : GV->users()) { 399 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 400 // The pointer loaded from the global can only be used in simple ways: 401 // we allow addressing of it and loading storing to it. We do *not* allow 402 // storing the loaded pointer somewhere else or passing to a function. 403 if (AnalyzeUsesOfPointer(LI)) 404 return false; // Loaded pointer escapes. 405 // TODO: Could try some IP mod/ref of the loaded pointer. 406 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 407 // Storing the global itself. 408 if (SI->getOperand(0) == GV) 409 return false; 410 411 // If storing the null pointer, ignore it. 412 if (isa<ConstantPointerNull>(SI->getOperand(0))) 413 continue; 414 415 // Check the value being stored. 416 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 417 GV->getParent()->getDataLayout()); 418 419 if (!isAllocLikeFn(Ptr, &TLI)) 420 return false; // Too hard to analyze. 421 422 // Analyze all uses of the allocation. If any of them are used in a 423 // non-simple way (e.g. stored to another global) bail out. 424 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 425 GV)) 426 return false; // Loaded pointer escapes. 427 428 // Remember that this allocation is related to the indirect global. 429 AllocRelatedValues.push_back(Ptr); 430 } else { 431 // Something complex, bail out. 432 return false; 433 } 434 } 435 436 // Okay, this is an indirect global. Remember all of the allocations for 437 // this global in AllocsForIndirectGlobals. 438 while (!AllocRelatedValues.empty()) { 439 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 440 Handles.emplace_front(*this, AllocRelatedValues.back()); 441 Handles.front().I = Handles.begin(); 442 AllocRelatedValues.pop_back(); 443 } 444 IndirectGlobals.insert(GV); 445 Handles.emplace_front(*this, GV); 446 Handles.front().I = Handles.begin(); 447 return true; 448 } 449 450 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 451 // We do a bottom-up SCC traversal of the call graph. In other words, we 452 // visit all callees before callers (leaf-first). 453 unsigned SCCID = 0; 454 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 455 const std::vector<CallGraphNode *> &SCC = *I; 456 assert(!SCC.empty() && "SCC with no functions?"); 457 458 for (auto *CGN : SCC) 459 if (Function *F = CGN->getFunction()) 460 FunctionToSCCMap[F] = SCCID; 461 ++SCCID; 462 } 463 } 464 465 /// AnalyzeCallGraph - At this point, we know the functions where globals are 466 /// immediately stored to and read from. Propagate this information up the call 467 /// graph to all callers and compute the mod/ref info for all memory for each 468 /// function. 469 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 470 // We do a bottom-up SCC traversal of the call graph. In other words, we 471 // visit all callees before callers (leaf-first). 472 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 473 const std::vector<CallGraphNode *> &SCC = *I; 474 assert(!SCC.empty() && "SCC with no functions?"); 475 476 if (!SCC[0]->getFunction() || !SCC[0]->getFunction()->isDefinitionExact()) { 477 // Calls externally or not exact - can't say anything useful. Remove any 478 // existing function records (may have been created when scanning 479 // globals). 480 for (auto *Node : SCC) 481 FunctionInfos.erase(Node->getFunction()); 482 continue; 483 } 484 485 FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()]; 486 bool KnowNothing = false; 487 488 // Collect the mod/ref properties due to called functions. We only compute 489 // one mod-ref set. 490 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 491 Function *F = SCC[i]->getFunction(); 492 if (!F) { 493 KnowNothing = true; 494 break; 495 } 496 497 if (F->isDeclaration()) { 498 // Try to get mod/ref behaviour from function attributes. 499 if (F->doesNotAccessMemory()) { 500 // Can't do better than that! 501 } else if (F->onlyReadsMemory()) { 502 FI.addModRefInfo(MRI_Ref); 503 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) 504 // This function might call back into the module and read a global - 505 // consider every global as possibly being read by this function. 506 FI.setMayReadAnyGlobal(); 507 } else { 508 FI.addModRefInfo(MRI_ModRef); 509 // Can't say anything useful unless it's an intrinsic - they don't 510 // read or write global variables of the kind considered here. 511 KnowNothing = !F->isIntrinsic(); 512 } 513 continue; 514 } 515 516 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 517 CI != E && !KnowNothing; ++CI) 518 if (Function *Callee = CI->second->getFunction()) { 519 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 520 // Propagate function effect up. 521 FI.addFunctionInfo(*CalleeFI); 522 } else { 523 // Can't say anything about it. However, if it is inside our SCC, 524 // then nothing needs to be done. 525 CallGraphNode *CalleeNode = CG[Callee]; 526 if (!is_contained(SCC, CalleeNode)) 527 KnowNothing = true; 528 } 529 } else { 530 KnowNothing = true; 531 } 532 } 533 534 // If we can't say anything useful about this SCC, remove all SCC functions 535 // from the FunctionInfos map. 536 if (KnowNothing) { 537 for (auto *Node : SCC) 538 FunctionInfos.erase(Node->getFunction()); 539 continue; 540 } 541 542 // Scan the function bodies for explicit loads or stores. 543 for (auto *Node : SCC) { 544 if (FI.getModRefInfo() == MRI_ModRef) 545 break; // The mod/ref lattice saturates here. 546 for (Instruction &I : instructions(Node->getFunction())) { 547 if (FI.getModRefInfo() == MRI_ModRef) 548 break; // The mod/ref lattice saturates here. 549 550 // We handle calls specially because the graph-relevant aspects are 551 // handled above. 552 if (auto CS = CallSite(&I)) { 553 if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { 554 // FIXME: It is completely unclear why this is necessary and not 555 // handled by the above graph code. 556 FI.addModRefInfo(MRI_ModRef); 557 } else if (Function *Callee = CS.getCalledFunction()) { 558 // The callgraph doesn't include intrinsic calls. 559 if (Callee->isIntrinsic()) { 560 FunctionModRefBehavior Behaviour = 561 AAResultBase::getModRefBehavior(Callee); 562 FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef)); 563 } 564 } 565 continue; 566 } 567 568 // All non-call instructions we use the primary predicates for whether 569 // thay read or write memory. 570 if (I.mayReadFromMemory()) 571 FI.addModRefInfo(MRI_Ref); 572 if (I.mayWriteToMemory()) 573 FI.addModRefInfo(MRI_Mod); 574 } 575 } 576 577 if ((FI.getModRefInfo() & MRI_Mod) == 0) 578 ++NumReadMemFunctions; 579 if (FI.getModRefInfo() == MRI_NoModRef) 580 ++NumNoMemFunctions; 581 582 // Finally, now that we know the full effect on this SCC, clone the 583 // information to each function in the SCC. 584 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 585 // get invalidated if DenseMap decides to re-hash. 586 FunctionInfo CachedFI = FI; 587 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 588 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 589 } 590 } 591 592 // GV is a non-escaping global. V is a pointer address that has been loaded from. 593 // If we can prove that V must escape, we can conclude that a load from V cannot 594 // alias GV. 595 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 596 const Value *V, 597 int &Depth, 598 const DataLayout &DL) { 599 SmallPtrSet<const Value *, 8> Visited; 600 SmallVector<const Value *, 8> Inputs; 601 Visited.insert(V); 602 Inputs.push_back(V); 603 do { 604 const Value *Input = Inputs.pop_back_val(); 605 606 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 607 isa<InvokeInst>(Input)) 608 // Arguments to functions or returns from functions are inherently 609 // escaping, so we can immediately classify those as not aliasing any 610 // non-addr-taken globals. 611 // 612 // (Transitive) loads from a global are also safe - if this aliased 613 // another global, its address would escape, so no alias. 614 continue; 615 616 // Recurse through a limited number of selects, loads and PHIs. This is an 617 // arbitrary depth of 4, lower numbers could be used to fix compile time 618 // issues if needed, but this is generally expected to be only be important 619 // for small depths. 620 if (++Depth > 4) 621 return false; 622 623 if (auto *LI = dyn_cast<LoadInst>(Input)) { 624 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); 625 continue; 626 } 627 if (auto *SI = dyn_cast<SelectInst>(Input)) { 628 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 629 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 630 if (Visited.insert(LHS).second) 631 Inputs.push_back(LHS); 632 if (Visited.insert(RHS).second) 633 Inputs.push_back(RHS); 634 continue; 635 } 636 if (auto *PN = dyn_cast<PHINode>(Input)) { 637 for (const Value *Op : PN->incoming_values()) { 638 Op = GetUnderlyingObject(Op, DL); 639 if (Visited.insert(Op).second) 640 Inputs.push_back(Op); 641 } 642 continue; 643 } 644 645 return false; 646 } while (!Inputs.empty()); 647 648 // All inputs were known to be no-alias. 649 return true; 650 } 651 652 // There are particular cases where we can conclude no-alias between 653 // a non-addr-taken global and some other underlying object. Specifically, 654 // a non-addr-taken global is known to not be escaped from any function. It is 655 // also incorrect for a transformation to introduce an escape of a global in 656 // a way that is observable when it was not there previously. One function 657 // being transformed to introduce an escape which could possibly be observed 658 // (via loading from a global or the return value for example) within another 659 // function is never safe. If the observation is made through non-atomic 660 // operations on different threads, it is a data-race and UB. If the 661 // observation is well defined, by being observed the transformation would have 662 // changed program behavior by introducing the observed escape, making it an 663 // invalid transform. 664 // 665 // This property does require that transformations which *temporarily* escape 666 // a global that was not previously escaped, prior to restoring it, cannot rely 667 // on the results of GMR::alias. This seems a reasonable restriction, although 668 // currently there is no way to enforce it. There is also no realistic 669 // optimization pass that would make this mistake. The closest example is 670 // a transformation pass which does reg2mem of SSA values but stores them into 671 // global variables temporarily before restoring the global variable's value. 672 // This could be useful to expose "benign" races for example. However, it seems 673 // reasonable to require that a pass which introduces escapes of global 674 // variables in this way to either not trust AA results while the escape is 675 // active, or to be forced to operate as a module pass that cannot co-exist 676 // with an alias analysis such as GMR. 677 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 678 const Value *V) { 679 // In order to know that the underlying object cannot alias the 680 // non-addr-taken global, we must know that it would have to be an escape. 681 // Thus if the underlying object is a function argument, a load from 682 // a global, or the return of a function, it cannot alias. We can also 683 // recurse through PHI nodes and select nodes provided all of their inputs 684 // resolve to one of these known-escaping roots. 685 SmallPtrSet<const Value *, 8> Visited; 686 SmallVector<const Value *, 8> Inputs; 687 Visited.insert(V); 688 Inputs.push_back(V); 689 int Depth = 0; 690 do { 691 const Value *Input = Inputs.pop_back_val(); 692 693 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 694 // If one input is the very global we're querying against, then we can't 695 // conclude no-alias. 696 if (InputGV == GV) 697 return false; 698 699 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 700 // FIXME: The condition can be refined, but be conservative for now. 701 auto *GVar = dyn_cast<GlobalVariable>(GV); 702 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 703 if (GVar && InputGVar && 704 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 705 !GVar->isInterposable() && !InputGVar->isInterposable()) { 706 Type *GVType = GVar->getInitializer()->getType(); 707 Type *InputGVType = InputGVar->getInitializer()->getType(); 708 if (GVType->isSized() && InputGVType->isSized() && 709 (DL.getTypeAllocSize(GVType) > 0) && 710 (DL.getTypeAllocSize(InputGVType) > 0)) 711 continue; 712 } 713 714 // Conservatively return false, even though we could be smarter 715 // (e.g. look through GlobalAliases). 716 return false; 717 } 718 719 if (isa<Argument>(Input) || isa<CallInst>(Input) || 720 isa<InvokeInst>(Input)) { 721 // Arguments to functions or returns from functions are inherently 722 // escaping, so we can immediately classify those as not aliasing any 723 // non-addr-taken globals. 724 continue; 725 } 726 727 // Recurse through a limited number of selects, loads and PHIs. This is an 728 // arbitrary depth of 4, lower numbers could be used to fix compile time 729 // issues if needed, but this is generally expected to be only be important 730 // for small depths. 731 if (++Depth > 4) 732 return false; 733 734 if (auto *LI = dyn_cast<LoadInst>(Input)) { 735 // A pointer loaded from a global would have been captured, and we know 736 // that the global is non-escaping, so no alias. 737 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); 738 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 739 // The load does not alias with GV. 740 continue; 741 // Otherwise, a load could come from anywhere, so bail. 742 return false; 743 } 744 if (auto *SI = dyn_cast<SelectInst>(Input)) { 745 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 746 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 747 if (Visited.insert(LHS).second) 748 Inputs.push_back(LHS); 749 if (Visited.insert(RHS).second) 750 Inputs.push_back(RHS); 751 continue; 752 } 753 if (auto *PN = dyn_cast<PHINode>(Input)) { 754 for (const Value *Op : PN->incoming_values()) { 755 Op = GetUnderlyingObject(Op, DL); 756 if (Visited.insert(Op).second) 757 Inputs.push_back(Op); 758 } 759 continue; 760 } 761 762 // FIXME: It would be good to handle other obvious no-alias cases here, but 763 // it isn't clear how to do so reasonbly without building a small version 764 // of BasicAA into this code. We could recurse into AAResultBase::alias 765 // here but that seems likely to go poorly as we're inside the 766 // implementation of such a query. Until then, just conservatievly retun 767 // false. 768 return false; 769 } while (!Inputs.empty()); 770 771 // If all the inputs to V were definitively no-alias, then V is no-alias. 772 return true; 773 } 774 775 /// alias - If one of the pointers is to a global that we are tracking, and the 776 /// other is some random pointer, we know there cannot be an alias, because the 777 /// address of the global isn't taken. 778 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 779 const MemoryLocation &LocB) { 780 // Get the base object these pointers point to. 781 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 782 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 783 784 // If either of the underlying values is a global, they may be non-addr-taken 785 // globals, which we can answer queries about. 786 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 787 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 788 if (GV1 || GV2) { 789 // If the global's address is taken, pretend we don't know it's a pointer to 790 // the global. 791 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 792 GV1 = nullptr; 793 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 794 GV2 = nullptr; 795 796 // If the two pointers are derived from two different non-addr-taken 797 // globals we know these can't alias. 798 if (GV1 && GV2 && GV1 != GV2) 799 return NoAlias; 800 801 // If one is and the other isn't, it isn't strictly safe but we can fake 802 // this result if necessary for performance. This does not appear to be 803 // a common problem in practice. 804 if (EnableUnsafeGlobalsModRefAliasResults) 805 if ((GV1 || GV2) && GV1 != GV2) 806 return NoAlias; 807 808 // Check for a special case where a non-escaping global can be used to 809 // conclude no-alias. 810 if ((GV1 || GV2) && GV1 != GV2) { 811 const GlobalValue *GV = GV1 ? GV1 : GV2; 812 const Value *UV = GV1 ? UV2 : UV1; 813 if (isNonEscapingGlobalNoAlias(GV, UV)) 814 return NoAlias; 815 } 816 817 // Otherwise if they are both derived from the same addr-taken global, we 818 // can't know the two accesses don't overlap. 819 } 820 821 // These pointers may be based on the memory owned by an indirect global. If 822 // so, we may be able to handle this. First check to see if the base pointer 823 // is a direct load from an indirect global. 824 GV1 = GV2 = nullptr; 825 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 826 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 827 if (IndirectGlobals.count(GV)) 828 GV1 = GV; 829 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 830 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 831 if (IndirectGlobals.count(GV)) 832 GV2 = GV; 833 834 // These pointers may also be from an allocation for the indirect global. If 835 // so, also handle them. 836 if (!GV1) 837 GV1 = AllocsForIndirectGlobals.lookup(UV1); 838 if (!GV2) 839 GV2 = AllocsForIndirectGlobals.lookup(UV2); 840 841 // Now that we know whether the two pointers are related to indirect globals, 842 // use this to disambiguate the pointers. If the pointers are based on 843 // different indirect globals they cannot alias. 844 if (GV1 && GV2 && GV1 != GV2) 845 return NoAlias; 846 847 // If one is based on an indirect global and the other isn't, it isn't 848 // strictly safe but we can fake this result if necessary for performance. 849 // This does not appear to be a common problem in practice. 850 if (EnableUnsafeGlobalsModRefAliasResults) 851 if ((GV1 || GV2) && GV1 != GV2) 852 return NoAlias; 853 854 return AAResultBase::alias(LocA, LocB); 855 } 856 857 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS, 858 const GlobalValue *GV) { 859 if (CS.doesNotAccessMemory()) 860 return MRI_NoModRef; 861 ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef; 862 863 // Iterate through all the arguments to the called function. If any argument 864 // is based on GV, return the conservative result. 865 for (auto &A : CS.args()) { 866 SmallVector<Value*, 4> Objects; 867 GetUnderlyingObjects(A, Objects, DL); 868 869 // All objects must be identified. 870 if (!all_of(Objects, isIdentifiedObject) && 871 // Try ::alias to see if all objects are known not to alias GV. 872 !all_of(Objects, [&](Value *V) { 873 return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias; 874 })) 875 return ConservativeResult; 876 877 if (is_contained(Objects, GV)) 878 return ConservativeResult; 879 } 880 881 // We identified all objects in the argument list, and none of them were GV. 882 return MRI_NoModRef; 883 } 884 885 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, 886 const MemoryLocation &Loc) { 887 unsigned Known = MRI_ModRef; 888 889 // If we are asking for mod/ref info of a direct call with a pointer to a 890 // global we are tracking, return information if we have it. 891 if (const GlobalValue *GV = 892 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 893 if (GV->hasLocalLinkage()) 894 if (const Function *F = CS.getCalledFunction()) 895 if (NonAddressTakenGlobals.count(GV)) 896 if (const FunctionInfo *FI = getFunctionInfo(F)) 897 Known = FI->getModRefInfoForGlobal(*GV) | 898 getModRefInfoForArgument(CS, GV); 899 900 if (Known == MRI_NoModRef) 901 return MRI_NoModRef; // No need to query other mod/ref analyses 902 return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc)); 903 } 904 905 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, 906 const TargetLibraryInfo &TLI) 907 : AAResultBase(), DL(DL), TLI(TLI) {} 908 909 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 910 : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), 911 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 912 IndirectGlobals(std::move(Arg.IndirectGlobals)), 913 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 914 FunctionInfos(std::move(Arg.FunctionInfos)), 915 Handles(std::move(Arg.Handles)) { 916 // Update the parent for each DeletionCallbackHandle. 917 for (auto &H : Handles) { 918 assert(H.GAR == &Arg); 919 H.GAR = this; 920 } 921 } 922 923 GlobalsAAResult::~GlobalsAAResult() {} 924 925 /*static*/ GlobalsAAResult 926 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, 927 CallGraph &CG) { 928 GlobalsAAResult Result(M.getDataLayout(), TLI); 929 930 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 931 Result.CollectSCCMembership(CG); 932 933 // Find non-addr taken globals. 934 Result.AnalyzeGlobals(M); 935 936 // Propagate on CG. 937 Result.AnalyzeCallGraph(CG, M); 938 939 return Result; 940 } 941 942 char GlobalsAA::PassID; 943 944 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 945 return GlobalsAAResult::analyzeModule(M, 946 AM.getResult<TargetLibraryAnalysis>(M), 947 AM.getResult<CallGraphAnalysis>(M)); 948 } 949 950 char GlobalsAAWrapperPass::ID = 0; 951 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 952 "Globals Alias Analysis", false, true) 953 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 954 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 955 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 956 "Globals Alias Analysis", false, true) 957 958 ModulePass *llvm::createGlobalsAAWrapperPass() { 959 return new GlobalsAAWrapperPass(); 960 } 961 962 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 963 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 964 } 965 966 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 967 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 968 M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 969 getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 970 return false; 971 } 972 973 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 974 Result.reset(); 975 return false; 976 } 977 978 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 979 AU.setPreservesAll(); 980 AU.addRequired<CallGraphWrapperPass>(); 981 AU.addRequired<TargetLibraryInfoWrapperPass>(); 982 } 983