1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This simple pass provides alias and mod/ref information for global values 11 // that do not have their address taken, and keeps track of whether functions 12 // read or write memory (are "pure"). For this simple (but very common) case, 13 // we can provide pretty accurate and useful information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "globalsmodref-aa" 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 // An option to enable unsafe alias results from the GlobalsModRef analysis. 43 // When enabled, GlobalsModRef will provide no-alias results which in extremely 44 // rare cases may not be conservatively correct. In particular, in the face of 45 // transforms which cause assymetry between how effective GetUnderlyingObject 46 // is for two pointers, it may produce incorrect results. 47 // 48 // These unsafe results have been returned by GMR for many years without 49 // causing significant issues in the wild and so we provide a mechanism to 50 // re-enable them for users of LLVM that have a particular performance 51 // sensitivity and no known issues. The option also makes it easy to evaluate 52 // the performance impact of these results. 53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 55 56 /// The mod/ref information collected for a particular function. 57 /// 58 /// We collect information about mod/ref behavior of a function here, both in 59 /// general and as pertains to specific globals. We only have this detailed 60 /// information when we know *something* useful about the behavior. If we 61 /// saturate to fully general mod/ref, we remove the info for the function. 62 class GlobalsAAResult::FunctionInfo { 63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 64 65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 66 /// should provide this much alignment at least, but this makes it clear we 67 /// specifically rely on this amount of alignment. 68 struct LLVM_ALIGNAS(8) AlignedMap { 69 AlignedMap() {} 70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 71 GlobalInfoMapType Map; 72 }; 73 74 /// Pointer traits for our aligned map. 75 struct AlignedMapPointerTraits { 76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 77 static inline AlignedMap *getFromVoidPointer(void *P) { 78 return (AlignedMap *)P; 79 } 80 enum { NumLowBitsAvailable = 3 }; 81 static_assert(AlignOf<AlignedMap>::Alignment >= (1 << NumLowBitsAvailable), 82 "AlignedMap insufficiently aligned to have enough low bits."); 83 }; 84 85 /// The bit that flags that this function may read any global. This is 86 /// chosen to mix together with ModRefInfo bits. 87 enum { MayReadAnyGlobal = 4 }; 88 89 /// Checks to document the invariants of the bit packing here. 90 static_assert((MayReadAnyGlobal & MRI_ModRef) == 0, 91 "ModRef and the MayReadAnyGlobal flag bits overlap."); 92 static_assert(((MayReadAnyGlobal | MRI_ModRef) >> 93 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 94 "Insufficient low bits to store our flag and ModRef info."); 95 96 public: 97 FunctionInfo() : Info() {} 98 ~FunctionInfo() { 99 delete Info.getPointer(); 100 } 101 // Spell out the copy ond move constructors and assignment operators to get 102 // deep copy semantics and correct move semantics in the face of the 103 // pointer-int pair. 104 FunctionInfo(const FunctionInfo &Arg) 105 : Info(nullptr, Arg.Info.getInt()) { 106 if (const auto *ArgPtr = Arg.Info.getPointer()) 107 Info.setPointer(new AlignedMap(*ArgPtr)); 108 } 109 FunctionInfo(FunctionInfo &&Arg) 110 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 111 Arg.Info.setPointerAndInt(nullptr, 0); 112 } 113 FunctionInfo &operator=(const FunctionInfo &RHS) { 114 delete Info.getPointer(); 115 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 116 if (const auto *RHSPtr = RHS.Info.getPointer()) 117 Info.setPointer(new AlignedMap(*RHSPtr)); 118 return *this; 119 } 120 FunctionInfo &operator=(FunctionInfo &&RHS) { 121 delete Info.getPointer(); 122 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 123 RHS.Info.setPointerAndInt(nullptr, 0); 124 return *this; 125 } 126 127 /// Returns the \c ModRefInfo info for this function. 128 ModRefInfo getModRefInfo() const { 129 return ModRefInfo(Info.getInt() & MRI_ModRef); 130 } 131 132 /// Adds new \c ModRefInfo for this function to its state. 133 void addModRefInfo(ModRefInfo NewMRI) { 134 Info.setInt(Info.getInt() | NewMRI); 135 } 136 137 /// Returns whether this function may read any global variable, and we don't 138 /// know which global. 139 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 140 141 /// Sets this function as potentially reading from any global. 142 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 143 144 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 145 /// global, which may be more precise than the general information above. 146 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 147 ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef; 148 if (AlignedMap *P = Info.getPointer()) { 149 auto I = P->Map.find(&GV); 150 if (I != P->Map.end()) 151 GlobalMRI = ModRefInfo(GlobalMRI | I->second); 152 } 153 return GlobalMRI; 154 } 155 156 /// Add mod/ref info from another function into ours, saturating towards 157 /// MRI_ModRef. 158 void addFunctionInfo(const FunctionInfo &FI) { 159 addModRefInfo(FI.getModRefInfo()); 160 161 if (FI.mayReadAnyGlobal()) 162 setMayReadAnyGlobal(); 163 164 if (AlignedMap *P = FI.Info.getPointer()) 165 for (const auto &G : P->Map) 166 addModRefInfoForGlobal(*G.first, G.second); 167 } 168 169 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 170 AlignedMap *P = Info.getPointer(); 171 if (!P) { 172 P = new AlignedMap(); 173 Info.setPointer(P); 174 } 175 auto &GlobalMRI = P->Map[&GV]; 176 GlobalMRI = ModRefInfo(GlobalMRI | NewMRI); 177 } 178 179 /// Clear a global's ModRef info. Should be used when a global is being 180 /// deleted. 181 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 182 if (AlignedMap *P = Info.getPointer()) 183 P->Map.erase(&GV); 184 } 185 186 private: 187 /// All of the information is encoded into a single pointer, with a three bit 188 /// integer in the low three bits. The high bit provides a flag for when this 189 /// function may read any global. The low two bits are the ModRefInfo. And 190 /// the pointer, when non-null, points to a map from GlobalValue to 191 /// ModRefInfo specific to that GlobalValue. 192 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 193 }; 194 195 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 196 Value *V = getValPtr(); 197 if (auto *F = dyn_cast<Function>(V)) 198 GAR->FunctionInfos.erase(F); 199 200 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 201 if (GAR->NonAddressTakenGlobals.erase(GV)) { 202 // This global might be an indirect global. If so, remove it and 203 // remove any AllocRelatedValues for it. 204 if (GAR->IndirectGlobals.erase(GV)) { 205 // Remove any entries in AllocsForIndirectGlobals for this global. 206 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 207 E = GAR->AllocsForIndirectGlobals.end(); 208 I != E; ++I) 209 if (I->second == GV) 210 GAR->AllocsForIndirectGlobals.erase(I); 211 } 212 213 // Scan the function info we have collected and remove this global 214 // from all of them. 215 for (auto &FIPair : GAR->FunctionInfos) 216 FIPair.second.eraseModRefInfoForGlobal(*GV); 217 } 218 } 219 220 // If this is an allocation related to an indirect global, remove it. 221 GAR->AllocsForIndirectGlobals.erase(V); 222 223 // And clear out the handle. 224 setValPtr(nullptr); 225 GAR->Handles.erase(I); 226 // This object is now destroyed! 227 } 228 229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 230 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 231 232 if (FunctionInfo *FI = getFunctionInfo(F)) { 233 if (FI->getModRefInfo() == MRI_NoModRef) 234 Min = FMRB_DoesNotAccessMemory; 235 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 236 Min = FMRB_OnlyReadsMemory; 237 } 238 239 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 240 } 241 242 FunctionModRefBehavior 243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { 244 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 245 246 if (const Function *F = CS.getCalledFunction()) 247 if (FunctionInfo *FI = getFunctionInfo(F)) { 248 if (FI->getModRefInfo() == MRI_NoModRef) 249 Min = FMRB_DoesNotAccessMemory; 250 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 251 Min = FMRB_OnlyReadsMemory; 252 } 253 254 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 255 } 256 257 /// Returns the function info for the function, or null if we don't have 258 /// anything useful to say about it. 259 GlobalsAAResult::FunctionInfo * 260 GlobalsAAResult::getFunctionInfo(const Function *F) { 261 auto I = FunctionInfos.find(F); 262 if (I != FunctionInfos.end()) 263 return &I->second; 264 return nullptr; 265 } 266 267 /// AnalyzeGlobals - Scan through the users of all of the internal 268 /// GlobalValue's in the program. If none of them have their "address taken" 269 /// (really, their address passed to something nontrivial), record this fact, 270 /// and record the functions that they are used directly in. 271 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 272 SmallPtrSet<Function *, 64> TrackedFunctions; 273 for (Function &F : M) 274 if (F.hasLocalLinkage()) 275 if (!AnalyzeUsesOfPointer(&F)) { 276 // Remember that we are tracking this global. 277 NonAddressTakenGlobals.insert(&F); 278 TrackedFunctions.insert(&F); 279 Handles.emplace_front(*this, &F); 280 Handles.front().I = Handles.begin(); 281 ++NumNonAddrTakenFunctions; 282 } 283 284 SmallPtrSet<Function *, 64> Readers, Writers; 285 for (GlobalVariable &GV : M.globals()) 286 if (GV.hasLocalLinkage()) { 287 if (!AnalyzeUsesOfPointer(&GV, &Readers, 288 GV.isConstant() ? nullptr : &Writers)) { 289 // Remember that we are tracking this global, and the mod/ref fns 290 NonAddressTakenGlobals.insert(&GV); 291 Handles.emplace_front(*this, &GV); 292 Handles.front().I = Handles.begin(); 293 294 for (Function *Reader : Readers) { 295 if (TrackedFunctions.insert(Reader).second) { 296 Handles.emplace_front(*this, Reader); 297 Handles.front().I = Handles.begin(); 298 } 299 FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref); 300 } 301 302 if (!GV.isConstant()) // No need to keep track of writers to constants 303 for (Function *Writer : Writers) { 304 if (TrackedFunctions.insert(Writer).second) { 305 Handles.emplace_front(*this, Writer); 306 Handles.front().I = Handles.begin(); 307 } 308 FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod); 309 } 310 ++NumNonAddrTakenGlobalVars; 311 312 // If this global holds a pointer type, see if it is an indirect global. 313 if (GV.getType()->getElementType()->isPointerTy() && 314 AnalyzeIndirectGlobalMemory(&GV)) 315 ++NumIndirectGlobalVars; 316 } 317 Readers.clear(); 318 Writers.clear(); 319 } 320 } 321 322 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 323 /// If this is used by anything complex (i.e., the address escapes), return 324 /// true. Also, while we are at it, keep track of those functions that read and 325 /// write to the value. 326 /// 327 /// If OkayStoreDest is non-null, stores into this global are allowed. 328 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 329 SmallPtrSetImpl<Function *> *Readers, 330 SmallPtrSetImpl<Function *> *Writers, 331 GlobalValue *OkayStoreDest) { 332 if (!V->getType()->isPointerTy()) 333 return true; 334 335 for (Use &U : V->uses()) { 336 User *I = U.getUser(); 337 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 338 if (Readers) 339 Readers->insert(LI->getParent()->getParent()); 340 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 341 if (V == SI->getOperand(1)) { 342 if (Writers) 343 Writers->insert(SI->getParent()->getParent()); 344 } else if (SI->getOperand(1) != OkayStoreDest) { 345 return true; // Storing the pointer 346 } 347 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 348 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 349 return true; 350 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 351 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 352 return true; 353 } else if (auto CS = CallSite(I)) { 354 // Make sure that this is just the function being called, not that it is 355 // passing into the function. 356 if (!CS.isCallee(&U)) { 357 // Detect calls to free. 358 if (isFreeCall(I, &TLI)) { 359 if (Writers) 360 Writers->insert(CS->getParent()->getParent()); 361 } else { 362 return true; // Argument of an unknown call. 363 } 364 } 365 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 366 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 367 return true; // Allow comparison against null. 368 } else { 369 return true; 370 } 371 } 372 373 return false; 374 } 375 376 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 377 /// which holds a pointer type. See if the global always points to non-aliased 378 /// heap memory: that is, all initializers of the globals are allocations, and 379 /// those allocations have no use other than initialization of the global. 380 /// Further, all loads out of GV must directly use the memory, not store the 381 /// pointer somewhere. If this is true, we consider the memory pointed to by 382 /// GV to be owned by GV and can disambiguate other pointers from it. 383 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalValue *GV) { 384 // Keep track of values related to the allocation of the memory, f.e. the 385 // value produced by the malloc call and any casts. 386 std::vector<Value *> AllocRelatedValues; 387 388 // Walk the user list of the global. If we find anything other than a direct 389 // load or store, bail out. 390 for (User *U : GV->users()) { 391 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 392 // The pointer loaded from the global can only be used in simple ways: 393 // we allow addressing of it and loading storing to it. We do *not* allow 394 // storing the loaded pointer somewhere else or passing to a function. 395 if (AnalyzeUsesOfPointer(LI)) 396 return false; // Loaded pointer escapes. 397 // TODO: Could try some IP mod/ref of the loaded pointer. 398 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 399 // Storing the global itself. 400 if (SI->getOperand(0) == GV) 401 return false; 402 403 // If storing the null pointer, ignore it. 404 if (isa<ConstantPointerNull>(SI->getOperand(0))) 405 continue; 406 407 // Check the value being stored. 408 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 409 GV->getParent()->getDataLayout()); 410 411 if (!isAllocLikeFn(Ptr, &TLI)) 412 return false; // Too hard to analyze. 413 414 // Analyze all uses of the allocation. If any of them are used in a 415 // non-simple way (e.g. stored to another global) bail out. 416 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 417 GV)) 418 return false; // Loaded pointer escapes. 419 420 // Remember that this allocation is related to the indirect global. 421 AllocRelatedValues.push_back(Ptr); 422 } else { 423 // Something complex, bail out. 424 return false; 425 } 426 } 427 428 // Okay, this is an indirect global. Remember all of the allocations for 429 // this global in AllocsForIndirectGlobals. 430 while (!AllocRelatedValues.empty()) { 431 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 432 Handles.emplace_front(*this, AllocRelatedValues.back()); 433 Handles.front().I = Handles.begin(); 434 AllocRelatedValues.pop_back(); 435 } 436 IndirectGlobals.insert(GV); 437 Handles.emplace_front(*this, GV); 438 Handles.front().I = Handles.begin(); 439 return true; 440 } 441 442 /// AnalyzeCallGraph - At this point, we know the functions where globals are 443 /// immediately stored to and read from. Propagate this information up the call 444 /// graph to all callers and compute the mod/ref info for all memory for each 445 /// function. 446 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 447 // We do a bottom-up SCC traversal of the call graph. In other words, we 448 // visit all callees before callers (leaf-first). 449 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 450 const std::vector<CallGraphNode *> &SCC = *I; 451 assert(!SCC.empty() && "SCC with no functions?"); 452 453 if (!SCC[0]->getFunction()) { 454 // Calls externally - can't say anything useful. Remove any existing 455 // function records (may have been created when scanning globals). 456 for (auto *Node : SCC) 457 FunctionInfos.erase(Node->getFunction()); 458 continue; 459 } 460 461 FunctionInfo &FI = FunctionInfos[SCC[0]->getFunction()]; 462 bool KnowNothing = false; 463 464 // Collect the mod/ref properties due to called functions. We only compute 465 // one mod-ref set. 466 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 467 Function *F = SCC[i]->getFunction(); 468 if (!F) { 469 KnowNothing = true; 470 break; 471 } 472 473 if (F->isDeclaration()) { 474 // Try to get mod/ref behaviour from function attributes. 475 if (F->doesNotAccessMemory()) { 476 // Can't do better than that! 477 } else if (F->onlyReadsMemory()) { 478 FI.addModRefInfo(MRI_Ref); 479 if (!F->isIntrinsic()) 480 // This function might call back into the module and read a global - 481 // consider every global as possibly being read by this function. 482 FI.setMayReadAnyGlobal(); 483 } else { 484 FI.addModRefInfo(MRI_ModRef); 485 // Can't say anything useful unless it's an intrinsic - they don't 486 // read or write global variables of the kind considered here. 487 KnowNothing = !F->isIntrinsic(); 488 } 489 continue; 490 } 491 492 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 493 CI != E && !KnowNothing; ++CI) 494 if (Function *Callee = CI->second->getFunction()) { 495 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 496 // Propagate function effect up. 497 FI.addFunctionInfo(*CalleeFI); 498 } else { 499 // Can't say anything about it. However, if it is inside our SCC, 500 // then nothing needs to be done. 501 CallGraphNode *CalleeNode = CG[Callee]; 502 if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end()) 503 KnowNothing = true; 504 } 505 } else { 506 KnowNothing = true; 507 } 508 } 509 510 // If we can't say anything useful about this SCC, remove all SCC functions 511 // from the FunctionInfos map. 512 if (KnowNothing) { 513 for (auto *Node : SCC) 514 FunctionInfos.erase(Node->getFunction()); 515 continue; 516 } 517 518 // Scan the function bodies for explicit loads or stores. 519 for (auto *Node : SCC) { 520 if (FI.getModRefInfo() == MRI_ModRef) 521 break; // The mod/ref lattice saturates here. 522 for (Instruction &I : instructions(Node->getFunction())) { 523 if (FI.getModRefInfo() == MRI_ModRef) 524 break; // The mod/ref lattice saturates here. 525 526 // We handle calls specially because the graph-relevant aspects are 527 // handled above. 528 if (auto CS = CallSite(&I)) { 529 if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { 530 // FIXME: It is completely unclear why this is necessary and not 531 // handled by the above graph code. 532 FI.addModRefInfo(MRI_ModRef); 533 } else if (Function *Callee = CS.getCalledFunction()) { 534 // The callgraph doesn't include intrinsic calls. 535 if (Callee->isIntrinsic()) { 536 FunctionModRefBehavior Behaviour = 537 AAResultBase::getModRefBehavior(Callee); 538 FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef)); 539 } 540 } 541 continue; 542 } 543 544 // All non-call instructions we use the primary predicates for whether 545 // thay read or write memory. 546 if (I.mayReadFromMemory()) 547 FI.addModRefInfo(MRI_Ref); 548 if (I.mayWriteToMemory()) 549 FI.addModRefInfo(MRI_Mod); 550 } 551 } 552 553 if ((FI.getModRefInfo() & MRI_Mod) == 0) 554 ++NumReadMemFunctions; 555 if (FI.getModRefInfo() == MRI_NoModRef) 556 ++NumNoMemFunctions; 557 558 // Finally, now that we know the full effect on this SCC, clone the 559 // information to each function in the SCC. 560 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 561 FunctionInfos[SCC[i]->getFunction()] = FI; 562 } 563 } 564 565 // There are particular cases where we can conclude no-alias between 566 // a non-addr-taken global and some other underlying object. Specifically, 567 // a non-addr-taken global is known to not be escaped from any function. It is 568 // also incorrect for a transformation to introduce an escape of a global in 569 // a way that is observable when it was not there previously. One function 570 // being transformed to introduce an escape which could possibly be observed 571 // (via loading from a global or the return value for example) within another 572 // function is never safe. If the observation is made through non-atomic 573 // operations on different threads, it is a data-race and UB. If the 574 // observation is well defined, by being observed the transformation would have 575 // changed program behavior by introducing the observed escape, making it an 576 // invalid transform. 577 // 578 // This property does require that transformations which *temporarily* escape 579 // a global that was not previously escaped, prior to restoring it, cannot rely 580 // on the results of GMR::alias. This seems a reasonable restriction, although 581 // currently there is no way to enforce it. There is also no realistic 582 // optimization pass that would make this mistake. The closest example is 583 // a transformation pass which does reg2mem of SSA values but stores them into 584 // global variables temporarily before restoring the global variable's value. 585 // This could be useful to expose "benign" races for example. However, it seems 586 // reasonable to require that a pass which introduces escapes of global 587 // variables in this way to either not trust AA results while the escape is 588 // active, or to be forced to operate as a module pass that cannot co-exist 589 // with an alias analysis such as GMR. 590 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 591 const Value *V) { 592 // In order to know that the underlying object cannot alias the 593 // non-addr-taken global, we must know that it would have to be an escape. 594 // Thus if the underlying object is a function argument, a load from 595 // a global, or the return of a function, it cannot alias. We can also 596 // recurse through PHI nodes and select nodes provided all of their inputs 597 // resolve to one of these known-escaping roots. 598 SmallPtrSet<const Value *, 8> Visited; 599 SmallVector<const Value *, 8> Inputs; 600 Visited.insert(V); 601 Inputs.push_back(V); 602 int Depth = 0; 603 do { 604 const Value *Input = Inputs.pop_back_val(); 605 606 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 607 // If one input is the very global we're querying against, then we can't 608 // conclude no-alias. 609 if (InputGV == GV) 610 return false; 611 612 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 613 // FIXME: The condition can be refined, but be conservative for now. 614 auto *GVar = dyn_cast<GlobalVariable>(GV); 615 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 616 if (GVar && InputGVar && 617 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 618 !GVar->mayBeOverridden() && !InputGVar->mayBeOverridden()) { 619 Type *GVType = GVar->getInitializer()->getType(); 620 Type *InputGVType = InputGVar->getInitializer()->getType(); 621 if (GVType->isSized() && InputGVType->isSized() && 622 (DL.getTypeAllocSize(GVType) > 0) && 623 (DL.getTypeAllocSize(InputGVType) > 0)) 624 continue; 625 } 626 627 // Conservatively return false, even though we could be smarter 628 // (e.g. look through GlobalAliases). 629 return false; 630 } 631 632 if (isa<Argument>(Input) || isa<CallInst>(Input) || 633 isa<InvokeInst>(Input)) { 634 // Arguments to functions or returns from functions are inherently 635 // escaping, so we can immediately classify those as not aliasing any 636 // non-addr-taken globals. 637 continue; 638 } 639 if (auto *LI = dyn_cast<LoadInst>(Input)) { 640 // A pointer loaded from a global would have been captured, and we know 641 // that the global is non-escaping, so no alias. 642 if (isa<GlobalValue>(GetUnderlyingObject(LI->getPointerOperand(), DL))) 643 continue; 644 645 // Otherwise, a load could come from anywhere, so bail. 646 return false; 647 } 648 649 // Recurse through a limited number of selects and PHIs. This is an 650 // arbitrary depth of 4, lower numbers could be used to fix compile time 651 // issues if needed, but this is generally expected to be only be important 652 // for small depths. 653 if (++Depth > 4) 654 return false; 655 if (auto *SI = dyn_cast<SelectInst>(Input)) { 656 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 657 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 658 if (Visited.insert(LHS).second) 659 Inputs.push_back(LHS); 660 if (Visited.insert(RHS).second) 661 Inputs.push_back(RHS); 662 continue; 663 } 664 if (auto *PN = dyn_cast<PHINode>(Input)) { 665 for (const Value *Op : PN->incoming_values()) { 666 Op = GetUnderlyingObject(Op, DL); 667 if (Visited.insert(Op).second) 668 Inputs.push_back(Op); 669 } 670 continue; 671 } 672 673 // FIXME: It would be good to handle other obvious no-alias cases here, but 674 // it isn't clear how to do so reasonbly without building a small version 675 // of BasicAA into this code. We could recurse into AAResultBase::alias 676 // here but that seems likely to go poorly as we're inside the 677 // implementation of such a query. Until then, just conservatievly retun 678 // false. 679 return false; 680 } while (!Inputs.empty()); 681 682 // If all the inputs to V were definitively no-alias, then V is no-alias. 683 return true; 684 } 685 686 /// alias - If one of the pointers is to a global that we are tracking, and the 687 /// other is some random pointer, we know there cannot be an alias, because the 688 /// address of the global isn't taken. 689 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 690 const MemoryLocation &LocB) { 691 // Get the base object these pointers point to. 692 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 693 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 694 695 // If either of the underlying values is a global, they may be non-addr-taken 696 // globals, which we can answer queries about. 697 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 698 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 699 if (GV1 || GV2) { 700 // If the global's address is taken, pretend we don't know it's a pointer to 701 // the global. 702 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 703 GV1 = nullptr; 704 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 705 GV2 = nullptr; 706 707 // If the two pointers are derived from two different non-addr-taken 708 // globals we know these can't alias. 709 if (GV1 && GV2 && GV1 != GV2) 710 return NoAlias; 711 712 // If one is and the other isn't, it isn't strictly safe but we can fake 713 // this result if necessary for performance. This does not appear to be 714 // a common problem in practice. 715 if (EnableUnsafeGlobalsModRefAliasResults) 716 if ((GV1 || GV2) && GV1 != GV2) 717 return NoAlias; 718 719 // Check for a special case where a non-escaping global can be used to 720 // conclude no-alias. 721 if ((GV1 || GV2) && GV1 != GV2) { 722 const GlobalValue *GV = GV1 ? GV1 : GV2; 723 const Value *UV = GV1 ? UV2 : UV1; 724 if (isNonEscapingGlobalNoAlias(GV, UV)) 725 return NoAlias; 726 } 727 728 // Otherwise if they are both derived from the same addr-taken global, we 729 // can't know the two accesses don't overlap. 730 } 731 732 // These pointers may be based on the memory owned by an indirect global. If 733 // so, we may be able to handle this. First check to see if the base pointer 734 // is a direct load from an indirect global. 735 GV1 = GV2 = nullptr; 736 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 737 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 738 if (IndirectGlobals.count(GV)) 739 GV1 = GV; 740 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 741 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 742 if (IndirectGlobals.count(GV)) 743 GV2 = GV; 744 745 // These pointers may also be from an allocation for the indirect global. If 746 // so, also handle them. 747 if (!GV1) 748 GV1 = AllocsForIndirectGlobals.lookup(UV1); 749 if (!GV2) 750 GV2 = AllocsForIndirectGlobals.lookup(UV2); 751 752 // Now that we know whether the two pointers are related to indirect globals, 753 // use this to disambiguate the pointers. If the pointers are based on 754 // different indirect globals they cannot alias. 755 if (GV1 && GV2 && GV1 != GV2) 756 return NoAlias; 757 758 // If one is based on an indirect global and the other isn't, it isn't 759 // strictly safe but we can fake this result if necessary for performance. 760 // This does not appear to be a common problem in practice. 761 if (EnableUnsafeGlobalsModRefAliasResults) 762 if ((GV1 || GV2) && GV1 != GV2) 763 return NoAlias; 764 765 return AAResultBase::alias(LocA, LocB); 766 } 767 768 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, 769 const MemoryLocation &Loc) { 770 unsigned Known = MRI_ModRef; 771 772 // If we are asking for mod/ref info of a direct call with a pointer to a 773 // global we are tracking, return information if we have it. 774 if (const GlobalValue *GV = 775 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 776 if (GV->hasLocalLinkage()) 777 if (const Function *F = CS.getCalledFunction()) 778 if (NonAddressTakenGlobals.count(GV)) 779 if (const FunctionInfo *FI = getFunctionInfo(F)) 780 Known = FI->getModRefInfoForGlobal(*GV); 781 782 if (Known == MRI_NoModRef) 783 return MRI_NoModRef; // No need to query other mod/ref analyses 784 return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc)); 785 } 786 787 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, 788 const TargetLibraryInfo &TLI) 789 : AAResultBase(TLI), DL(DL) {} 790 791 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 792 : AAResultBase(std::move(Arg)), DL(Arg.DL), 793 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 794 IndirectGlobals(std::move(Arg.IndirectGlobals)), 795 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 796 FunctionInfos(std::move(Arg.FunctionInfos)), 797 Handles(std::move(Arg.Handles)) { 798 // Update the parent for each DeletionCallbackHandle. 799 for (auto &H : Handles) { 800 assert(H.GAR == &Arg); 801 H.GAR = this; 802 } 803 } 804 805 /*static*/ GlobalsAAResult 806 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, 807 CallGraph &CG) { 808 GlobalsAAResult Result(M.getDataLayout(), TLI); 809 810 // Find non-addr taken globals. 811 Result.AnalyzeGlobals(M); 812 813 // Propagate on CG. 814 Result.AnalyzeCallGraph(CG, M); 815 816 return Result; 817 } 818 819 GlobalsAAResult GlobalsAA::run(Module &M, AnalysisManager<Module> *AM) { 820 return GlobalsAAResult::analyzeModule(M, 821 AM->getResult<TargetLibraryAnalysis>(M), 822 AM->getResult<CallGraphAnalysis>(M)); 823 } 824 825 char GlobalsAA::PassID; 826 827 char GlobalsAAWrapperPass::ID = 0; 828 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 829 "Globals Alias Analysis", false, true) 830 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 831 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 832 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 833 "Globals Alias Analysis", false, true) 834 835 ModulePass *llvm::createGlobalsAAWrapperPass() { 836 return new GlobalsAAWrapperPass(); 837 } 838 839 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 840 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 841 } 842 843 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 844 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 845 M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 846 getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 847 return false; 848 } 849 850 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 851 Result.reset(); 852 return false; 853 } 854 855 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 856 AU.setPreservesAll(); 857 AU.addRequired<CallGraphWrapperPass>(); 858 AU.addRequired<TargetLibraryInfoWrapperPass>(); 859 } 860