1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This simple pass provides alias and mod/ref information for global values 11 // that do not have their address taken, and keeps track of whether functions 12 // read or write memory (are "pure"). For this simple (but very common) case, 13 // we can provide pretty accurate and useful information. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/Analysis/GlobalsModRef.h" 18 #include "llvm/ADT/SCCIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/InstIterator.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/CommandLine.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "globalsmodref-aa" 34 35 STATISTIC(NumNonAddrTakenGlobalVars, 36 "Number of global vars without address taken"); 37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 41 42 // An option to enable unsafe alias results from the GlobalsModRef analysis. 43 // When enabled, GlobalsModRef will provide no-alias results which in extremely 44 // rare cases may not be conservatively correct. In particular, in the face of 45 // transforms which cause assymetry between how effective GetUnderlyingObject 46 // is for two pointers, it may produce incorrect results. 47 // 48 // These unsafe results have been returned by GMR for many years without 49 // causing significant issues in the wild and so we provide a mechanism to 50 // re-enable them for users of LLVM that have a particular performance 51 // sensitivity and no known issues. The option also makes it easy to evaluate 52 // the performance impact of these results. 53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 54 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 55 56 /// The mod/ref information collected for a particular function. 57 /// 58 /// We collect information about mod/ref behavior of a function here, both in 59 /// general and as pertains to specific globals. We only have this detailed 60 /// information when we know *something* useful about the behavior. If we 61 /// saturate to fully general mod/ref, we remove the info for the function. 62 class GlobalsAAResult::FunctionInfo { 63 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 64 65 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 66 /// should provide this much alignment at least, but this makes it clear we 67 /// specifically rely on this amount of alignment. 68 struct LLVM_ALIGNAS(8) AlignedMap { 69 AlignedMap() {} 70 AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {} 71 GlobalInfoMapType Map; 72 }; 73 74 /// Pointer traits for our aligned map. 75 struct AlignedMapPointerTraits { 76 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 77 static inline AlignedMap *getFromVoidPointer(void *P) { 78 return (AlignedMap *)P; 79 } 80 enum { NumLowBitsAvailable = 3 }; 81 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 82 "AlignedMap insufficiently aligned to have enough low bits."); 83 }; 84 85 /// The bit that flags that this function may read any global. This is 86 /// chosen to mix together with ModRefInfo bits. 87 enum { MayReadAnyGlobal = 4 }; 88 89 /// Checks to document the invariants of the bit packing here. 90 static_assert((MayReadAnyGlobal & MRI_ModRef) == 0, 91 "ModRef and the MayReadAnyGlobal flag bits overlap."); 92 static_assert(((MayReadAnyGlobal | MRI_ModRef) >> 93 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 94 "Insufficient low bits to store our flag and ModRef info."); 95 96 public: 97 FunctionInfo() : Info() {} 98 ~FunctionInfo() { 99 delete Info.getPointer(); 100 } 101 // Spell out the copy ond move constructors and assignment operators to get 102 // deep copy semantics and correct move semantics in the face of the 103 // pointer-int pair. 104 FunctionInfo(const FunctionInfo &Arg) 105 : Info(nullptr, Arg.Info.getInt()) { 106 if (const auto *ArgPtr = Arg.Info.getPointer()) 107 Info.setPointer(new AlignedMap(*ArgPtr)); 108 } 109 FunctionInfo(FunctionInfo &&Arg) 110 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 111 Arg.Info.setPointerAndInt(nullptr, 0); 112 } 113 FunctionInfo &operator=(const FunctionInfo &RHS) { 114 delete Info.getPointer(); 115 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 116 if (const auto *RHSPtr = RHS.Info.getPointer()) 117 Info.setPointer(new AlignedMap(*RHSPtr)); 118 return *this; 119 } 120 FunctionInfo &operator=(FunctionInfo &&RHS) { 121 delete Info.getPointer(); 122 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 123 RHS.Info.setPointerAndInt(nullptr, 0); 124 return *this; 125 } 126 127 /// Returns the \c ModRefInfo info for this function. 128 ModRefInfo getModRefInfo() const { 129 return ModRefInfo(Info.getInt() & MRI_ModRef); 130 } 131 132 /// Adds new \c ModRefInfo for this function to its state. 133 void addModRefInfo(ModRefInfo NewMRI) { 134 Info.setInt(Info.getInt() | NewMRI); 135 } 136 137 /// Returns whether this function may read any global variable, and we don't 138 /// know which global. 139 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 140 141 /// Sets this function as potentially reading from any global. 142 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 143 144 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 145 /// global, which may be more precise than the general information above. 146 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 147 ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef; 148 if (AlignedMap *P = Info.getPointer()) { 149 auto I = P->Map.find(&GV); 150 if (I != P->Map.end()) 151 GlobalMRI = ModRefInfo(GlobalMRI | I->second); 152 } 153 return GlobalMRI; 154 } 155 156 /// Add mod/ref info from another function into ours, saturating towards 157 /// MRI_ModRef. 158 void addFunctionInfo(const FunctionInfo &FI) { 159 addModRefInfo(FI.getModRefInfo()); 160 161 if (FI.mayReadAnyGlobal()) 162 setMayReadAnyGlobal(); 163 164 if (AlignedMap *P = FI.Info.getPointer()) 165 for (const auto &G : P->Map) 166 addModRefInfoForGlobal(*G.first, G.second); 167 } 168 169 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 170 AlignedMap *P = Info.getPointer(); 171 if (!P) { 172 P = new AlignedMap(); 173 Info.setPointer(P); 174 } 175 auto &GlobalMRI = P->Map[&GV]; 176 GlobalMRI = ModRefInfo(GlobalMRI | NewMRI); 177 } 178 179 /// Clear a global's ModRef info. Should be used when a global is being 180 /// deleted. 181 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 182 if (AlignedMap *P = Info.getPointer()) 183 P->Map.erase(&GV); 184 } 185 186 private: 187 /// All of the information is encoded into a single pointer, with a three bit 188 /// integer in the low three bits. The high bit provides a flag for when this 189 /// function may read any global. The low two bits are the ModRefInfo. And 190 /// the pointer, when non-null, points to a map from GlobalValue to 191 /// ModRefInfo specific to that GlobalValue. 192 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 193 }; 194 195 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 196 Value *V = getValPtr(); 197 if (auto *F = dyn_cast<Function>(V)) 198 GAR->FunctionInfos.erase(F); 199 200 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 201 if (GAR->NonAddressTakenGlobals.erase(GV)) { 202 // This global might be an indirect global. If so, remove it and 203 // remove any AllocRelatedValues for it. 204 if (GAR->IndirectGlobals.erase(GV)) { 205 // Remove any entries in AllocsForIndirectGlobals for this global. 206 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 207 E = GAR->AllocsForIndirectGlobals.end(); 208 I != E; ++I) 209 if (I->second == GV) 210 GAR->AllocsForIndirectGlobals.erase(I); 211 } 212 213 // Scan the function info we have collected and remove this global 214 // from all of them. 215 for (auto &FIPair : GAR->FunctionInfos) 216 FIPair.second.eraseModRefInfoForGlobal(*GV); 217 } 218 } 219 220 // If this is an allocation related to an indirect global, remove it. 221 GAR->AllocsForIndirectGlobals.erase(V); 222 223 // And clear out the handle. 224 setValPtr(nullptr); 225 GAR->Handles.erase(I); 226 // This object is now destroyed! 227 } 228 229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 230 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 231 232 if (FunctionInfo *FI = getFunctionInfo(F)) { 233 if (FI->getModRefInfo() == MRI_NoModRef) 234 Min = FMRB_DoesNotAccessMemory; 235 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 236 Min = FMRB_OnlyReadsMemory; 237 } 238 239 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min); 240 } 241 242 FunctionModRefBehavior 243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) { 244 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 245 246 if (!CS.hasOperandBundles()) 247 if (const Function *F = CS.getCalledFunction()) 248 if (FunctionInfo *FI = getFunctionInfo(F)) { 249 if (FI->getModRefInfo() == MRI_NoModRef) 250 Min = FMRB_DoesNotAccessMemory; 251 else if ((FI->getModRefInfo() & MRI_Mod) == 0) 252 Min = FMRB_OnlyReadsMemory; 253 } 254 255 return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min); 256 } 257 258 /// Returns the function info for the function, or null if we don't have 259 /// anything useful to say about it. 260 GlobalsAAResult::FunctionInfo * 261 GlobalsAAResult::getFunctionInfo(const Function *F) { 262 auto I = FunctionInfos.find(F); 263 if (I != FunctionInfos.end()) 264 return &I->second; 265 return nullptr; 266 } 267 268 /// AnalyzeGlobals - Scan through the users of all of the internal 269 /// GlobalValue's in the program. If none of them have their "address taken" 270 /// (really, their address passed to something nontrivial), record this fact, 271 /// and record the functions that they are used directly in. 272 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 273 SmallPtrSet<Function *, 32> TrackedFunctions; 274 for (Function &F : M) 275 if (F.hasLocalLinkage()) 276 if (!AnalyzeUsesOfPointer(&F)) { 277 // Remember that we are tracking this global. 278 NonAddressTakenGlobals.insert(&F); 279 TrackedFunctions.insert(&F); 280 Handles.emplace_front(*this, &F); 281 Handles.front().I = Handles.begin(); 282 ++NumNonAddrTakenFunctions; 283 } 284 285 SmallPtrSet<Function *, 16> Readers, Writers; 286 for (GlobalVariable &GV : M.globals()) 287 if (GV.hasLocalLinkage()) { 288 if (!AnalyzeUsesOfPointer(&GV, &Readers, 289 GV.isConstant() ? nullptr : &Writers)) { 290 // Remember that we are tracking this global, and the mod/ref fns 291 NonAddressTakenGlobals.insert(&GV); 292 Handles.emplace_front(*this, &GV); 293 Handles.front().I = Handles.begin(); 294 295 for (Function *Reader : Readers) { 296 if (TrackedFunctions.insert(Reader).second) { 297 Handles.emplace_front(*this, Reader); 298 Handles.front().I = Handles.begin(); 299 } 300 FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref); 301 } 302 303 if (!GV.isConstant()) // No need to keep track of writers to constants 304 for (Function *Writer : Writers) { 305 if (TrackedFunctions.insert(Writer).second) { 306 Handles.emplace_front(*this, Writer); 307 Handles.front().I = Handles.begin(); 308 } 309 FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod); 310 } 311 ++NumNonAddrTakenGlobalVars; 312 313 // If this global holds a pointer type, see if it is an indirect global. 314 if (GV.getValueType()->isPointerTy() && 315 AnalyzeIndirectGlobalMemory(&GV)) 316 ++NumIndirectGlobalVars; 317 } 318 Readers.clear(); 319 Writers.clear(); 320 } 321 } 322 323 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 324 /// If this is used by anything complex (i.e., the address escapes), return 325 /// true. Also, while we are at it, keep track of those functions that read and 326 /// write to the value. 327 /// 328 /// If OkayStoreDest is non-null, stores into this global are allowed. 329 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 330 SmallPtrSetImpl<Function *> *Readers, 331 SmallPtrSetImpl<Function *> *Writers, 332 GlobalValue *OkayStoreDest) { 333 if (!V->getType()->isPointerTy()) 334 return true; 335 336 for (Use &U : V->uses()) { 337 User *I = U.getUser(); 338 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 339 if (Readers) 340 Readers->insert(LI->getParent()->getParent()); 341 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 342 if (V == SI->getOperand(1)) { 343 if (Writers) 344 Writers->insert(SI->getParent()->getParent()); 345 } else if (SI->getOperand(1) != OkayStoreDest) { 346 return true; // Storing the pointer 347 } 348 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 349 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 350 return true; 351 } else if (Operator::getOpcode(I) == Instruction::BitCast) { 352 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 353 return true; 354 } else if (auto CS = CallSite(I)) { 355 // Make sure that this is just the function being called, not that it is 356 // passing into the function. 357 if (CS.isDataOperand(&U)) { 358 // Detect calls to free. 359 if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) { 360 if (Writers) 361 Writers->insert(CS->getParent()->getParent()); 362 } else { 363 return true; // Argument of an unknown call. 364 } 365 } 366 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 367 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 368 return true; // Allow comparison against null. 369 } else if (Constant *C = dyn_cast<Constant>(I)) { 370 // Ignore constants which don't have any live uses. 371 if (isa<GlobalValue>(C) || C->isConstantUsed()) 372 return true; 373 } else { 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 382 /// which holds a pointer type. See if the global always points to non-aliased 383 /// heap memory: that is, all initializers of the globals are allocations, and 384 /// those allocations have no use other than initialization of the global. 385 /// Further, all loads out of GV must directly use the memory, not store the 386 /// pointer somewhere. If this is true, we consider the memory pointed to by 387 /// GV to be owned by GV and can disambiguate other pointers from it. 388 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 389 // Keep track of values related to the allocation of the memory, f.e. the 390 // value produced by the malloc call and any casts. 391 std::vector<Value *> AllocRelatedValues; 392 393 // If the initializer is a valid pointer, bail. 394 if (Constant *C = GV->getInitializer()) 395 if (!C->isNullValue()) 396 return false; 397 398 // Walk the user list of the global. If we find anything other than a direct 399 // load or store, bail out. 400 for (User *U : GV->users()) { 401 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 402 // The pointer loaded from the global can only be used in simple ways: 403 // we allow addressing of it and loading storing to it. We do *not* allow 404 // storing the loaded pointer somewhere else or passing to a function. 405 if (AnalyzeUsesOfPointer(LI)) 406 return false; // Loaded pointer escapes. 407 // TODO: Could try some IP mod/ref of the loaded pointer. 408 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 409 // Storing the global itself. 410 if (SI->getOperand(0) == GV) 411 return false; 412 413 // If storing the null pointer, ignore it. 414 if (isa<ConstantPointerNull>(SI->getOperand(0))) 415 continue; 416 417 // Check the value being stored. 418 Value *Ptr = GetUnderlyingObject(SI->getOperand(0), 419 GV->getParent()->getDataLayout()); 420 421 if (!isAllocLikeFn(Ptr, &TLI)) 422 return false; // Too hard to analyze. 423 424 // Analyze all uses of the allocation. If any of them are used in a 425 // non-simple way (e.g. stored to another global) bail out. 426 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 427 GV)) 428 return false; // Loaded pointer escapes. 429 430 // Remember that this allocation is related to the indirect global. 431 AllocRelatedValues.push_back(Ptr); 432 } else { 433 // Something complex, bail out. 434 return false; 435 } 436 } 437 438 // Okay, this is an indirect global. Remember all of the allocations for 439 // this global in AllocsForIndirectGlobals. 440 while (!AllocRelatedValues.empty()) { 441 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 442 Handles.emplace_front(*this, AllocRelatedValues.back()); 443 Handles.front().I = Handles.begin(); 444 AllocRelatedValues.pop_back(); 445 } 446 IndirectGlobals.insert(GV); 447 Handles.emplace_front(*this, GV); 448 Handles.front().I = Handles.begin(); 449 return true; 450 } 451 452 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 453 // We do a bottom-up SCC traversal of the call graph. In other words, we 454 // visit all callees before callers (leaf-first). 455 unsigned SCCID = 0; 456 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 457 const std::vector<CallGraphNode *> &SCC = *I; 458 assert(!SCC.empty() && "SCC with no functions?"); 459 460 for (auto *CGN : SCC) 461 if (Function *F = CGN->getFunction()) 462 FunctionToSCCMap[F] = SCCID; 463 ++SCCID; 464 } 465 } 466 467 /// AnalyzeCallGraph - At this point, we know the functions where globals are 468 /// immediately stored to and read from. Propagate this information up the call 469 /// graph to all callers and compute the mod/ref info for all memory for each 470 /// function. 471 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 472 // We do a bottom-up SCC traversal of the call graph. In other words, we 473 // visit all callees before callers (leaf-first). 474 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 475 const std::vector<CallGraphNode *> &SCC = *I; 476 assert(!SCC.empty() && "SCC with no functions?"); 477 478 Function *F = SCC[0]->getFunction(); 479 480 if (!F || !F->isDefinitionExact()) { 481 // Calls externally or not exact - can't say anything useful. Remove any 482 // existing function records (may have been created when scanning 483 // globals). 484 for (auto *Node : SCC) 485 FunctionInfos.erase(Node->getFunction()); 486 continue; 487 } 488 489 FunctionInfo &FI = FunctionInfos[F]; 490 bool KnowNothing = false; 491 492 // Collect the mod/ref properties due to called functions. We only compute 493 // one mod-ref set. 494 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 495 if (!F) { 496 KnowNothing = true; 497 break; 498 } 499 500 if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) { 501 // Try to get mod/ref behaviour from function attributes. 502 if (F->doesNotAccessMemory()) { 503 // Can't do better than that! 504 } else if (F->onlyReadsMemory()) { 505 FI.addModRefInfo(MRI_Ref); 506 if (!F->isIntrinsic() && !F->onlyAccessesArgMemory()) 507 // This function might call back into the module and read a global - 508 // consider every global as possibly being read by this function. 509 FI.setMayReadAnyGlobal(); 510 } else { 511 FI.addModRefInfo(MRI_ModRef); 512 // Can't say anything useful unless it's an intrinsic - they don't 513 // read or write global variables of the kind considered here. 514 KnowNothing = !F->isIntrinsic(); 515 } 516 continue; 517 } 518 519 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 520 CI != E && !KnowNothing; ++CI) 521 if (Function *Callee = CI->second->getFunction()) { 522 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 523 // Propagate function effect up. 524 FI.addFunctionInfo(*CalleeFI); 525 } else { 526 // Can't say anything about it. However, if it is inside our SCC, 527 // then nothing needs to be done. 528 CallGraphNode *CalleeNode = CG[Callee]; 529 if (!is_contained(SCC, CalleeNode)) 530 KnowNothing = true; 531 } 532 } else { 533 KnowNothing = true; 534 } 535 } 536 537 // If we can't say anything useful about this SCC, remove all SCC functions 538 // from the FunctionInfos map. 539 if (KnowNothing) { 540 for (auto *Node : SCC) 541 FunctionInfos.erase(Node->getFunction()); 542 continue; 543 } 544 545 // Scan the function bodies for explicit loads or stores. 546 for (auto *Node : SCC) { 547 if (FI.getModRefInfo() == MRI_ModRef) 548 break; // The mod/ref lattice saturates here. 549 550 // Don't prove any properties based on the implementation of an optnone 551 // function. Function attributes were already used as a best approximation 552 // above. 553 if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone)) 554 continue; 555 556 for (Instruction &I : instructions(Node->getFunction())) { 557 if (FI.getModRefInfo() == MRI_ModRef) 558 break; // The mod/ref lattice saturates here. 559 560 // We handle calls specially because the graph-relevant aspects are 561 // handled above. 562 if (auto CS = CallSite(&I)) { 563 if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) { 564 // FIXME: It is completely unclear why this is necessary and not 565 // handled by the above graph code. 566 FI.addModRefInfo(MRI_ModRef); 567 } else if (Function *Callee = CS.getCalledFunction()) { 568 // The callgraph doesn't include intrinsic calls. 569 if (Callee->isIntrinsic()) { 570 FunctionModRefBehavior Behaviour = 571 AAResultBase::getModRefBehavior(Callee); 572 FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef)); 573 } 574 } 575 continue; 576 } 577 578 // All non-call instructions we use the primary predicates for whether 579 // thay read or write memory. 580 if (I.mayReadFromMemory()) 581 FI.addModRefInfo(MRI_Ref); 582 if (I.mayWriteToMemory()) 583 FI.addModRefInfo(MRI_Mod); 584 } 585 } 586 587 if ((FI.getModRefInfo() & MRI_Mod) == 0) 588 ++NumReadMemFunctions; 589 if (FI.getModRefInfo() == MRI_NoModRef) 590 ++NumNoMemFunctions; 591 592 // Finally, now that we know the full effect on this SCC, clone the 593 // information to each function in the SCC. 594 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 595 // get invalidated if DenseMap decides to re-hash. 596 FunctionInfo CachedFI = FI; 597 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 598 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 599 } 600 } 601 602 // GV is a non-escaping global. V is a pointer address that has been loaded from. 603 // If we can prove that V must escape, we can conclude that a load from V cannot 604 // alias GV. 605 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 606 const Value *V, 607 int &Depth, 608 const DataLayout &DL) { 609 SmallPtrSet<const Value *, 8> Visited; 610 SmallVector<const Value *, 8> Inputs; 611 Visited.insert(V); 612 Inputs.push_back(V); 613 do { 614 const Value *Input = Inputs.pop_back_val(); 615 616 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 617 isa<InvokeInst>(Input)) 618 // Arguments to functions or returns from functions are inherently 619 // escaping, so we can immediately classify those as not aliasing any 620 // non-addr-taken globals. 621 // 622 // (Transitive) loads from a global are also safe - if this aliased 623 // another global, its address would escape, so no alias. 624 continue; 625 626 // Recurse through a limited number of selects, loads and PHIs. This is an 627 // arbitrary depth of 4, lower numbers could be used to fix compile time 628 // issues if needed, but this is generally expected to be only be important 629 // for small depths. 630 if (++Depth > 4) 631 return false; 632 633 if (auto *LI = dyn_cast<LoadInst>(Input)) { 634 Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL)); 635 continue; 636 } 637 if (auto *SI = dyn_cast<SelectInst>(Input)) { 638 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 639 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 640 if (Visited.insert(LHS).second) 641 Inputs.push_back(LHS); 642 if (Visited.insert(RHS).second) 643 Inputs.push_back(RHS); 644 continue; 645 } 646 if (auto *PN = dyn_cast<PHINode>(Input)) { 647 for (const Value *Op : PN->incoming_values()) { 648 Op = GetUnderlyingObject(Op, DL); 649 if (Visited.insert(Op).second) 650 Inputs.push_back(Op); 651 } 652 continue; 653 } 654 655 return false; 656 } while (!Inputs.empty()); 657 658 // All inputs were known to be no-alias. 659 return true; 660 } 661 662 // There are particular cases where we can conclude no-alias between 663 // a non-addr-taken global and some other underlying object. Specifically, 664 // a non-addr-taken global is known to not be escaped from any function. It is 665 // also incorrect for a transformation to introduce an escape of a global in 666 // a way that is observable when it was not there previously. One function 667 // being transformed to introduce an escape which could possibly be observed 668 // (via loading from a global or the return value for example) within another 669 // function is never safe. If the observation is made through non-atomic 670 // operations on different threads, it is a data-race and UB. If the 671 // observation is well defined, by being observed the transformation would have 672 // changed program behavior by introducing the observed escape, making it an 673 // invalid transform. 674 // 675 // This property does require that transformations which *temporarily* escape 676 // a global that was not previously escaped, prior to restoring it, cannot rely 677 // on the results of GMR::alias. This seems a reasonable restriction, although 678 // currently there is no way to enforce it. There is also no realistic 679 // optimization pass that would make this mistake. The closest example is 680 // a transformation pass which does reg2mem of SSA values but stores them into 681 // global variables temporarily before restoring the global variable's value. 682 // This could be useful to expose "benign" races for example. However, it seems 683 // reasonable to require that a pass which introduces escapes of global 684 // variables in this way to either not trust AA results while the escape is 685 // active, or to be forced to operate as a module pass that cannot co-exist 686 // with an alias analysis such as GMR. 687 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 688 const Value *V) { 689 // In order to know that the underlying object cannot alias the 690 // non-addr-taken global, we must know that it would have to be an escape. 691 // Thus if the underlying object is a function argument, a load from 692 // a global, or the return of a function, it cannot alias. We can also 693 // recurse through PHI nodes and select nodes provided all of their inputs 694 // resolve to one of these known-escaping roots. 695 SmallPtrSet<const Value *, 8> Visited; 696 SmallVector<const Value *, 8> Inputs; 697 Visited.insert(V); 698 Inputs.push_back(V); 699 int Depth = 0; 700 do { 701 const Value *Input = Inputs.pop_back_val(); 702 703 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 704 // If one input is the very global we're querying against, then we can't 705 // conclude no-alias. 706 if (InputGV == GV) 707 return false; 708 709 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 710 // FIXME: The condition can be refined, but be conservative for now. 711 auto *GVar = dyn_cast<GlobalVariable>(GV); 712 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 713 if (GVar && InputGVar && 714 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 715 !GVar->isInterposable() && !InputGVar->isInterposable()) { 716 Type *GVType = GVar->getInitializer()->getType(); 717 Type *InputGVType = InputGVar->getInitializer()->getType(); 718 if (GVType->isSized() && InputGVType->isSized() && 719 (DL.getTypeAllocSize(GVType) > 0) && 720 (DL.getTypeAllocSize(InputGVType) > 0)) 721 continue; 722 } 723 724 // Conservatively return false, even though we could be smarter 725 // (e.g. look through GlobalAliases). 726 return false; 727 } 728 729 if (isa<Argument>(Input) || isa<CallInst>(Input) || 730 isa<InvokeInst>(Input)) { 731 // Arguments to functions or returns from functions are inherently 732 // escaping, so we can immediately classify those as not aliasing any 733 // non-addr-taken globals. 734 continue; 735 } 736 737 // Recurse through a limited number of selects, loads and PHIs. This is an 738 // arbitrary depth of 4, lower numbers could be used to fix compile time 739 // issues if needed, but this is generally expected to be only be important 740 // for small depths. 741 if (++Depth > 4) 742 return false; 743 744 if (auto *LI = dyn_cast<LoadInst>(Input)) { 745 // A pointer loaded from a global would have been captured, and we know 746 // that the global is non-escaping, so no alias. 747 const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL); 748 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 749 // The load does not alias with GV. 750 continue; 751 // Otherwise, a load could come from anywhere, so bail. 752 return false; 753 } 754 if (auto *SI = dyn_cast<SelectInst>(Input)) { 755 const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL); 756 const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL); 757 if (Visited.insert(LHS).second) 758 Inputs.push_back(LHS); 759 if (Visited.insert(RHS).second) 760 Inputs.push_back(RHS); 761 continue; 762 } 763 if (auto *PN = dyn_cast<PHINode>(Input)) { 764 for (const Value *Op : PN->incoming_values()) { 765 Op = GetUnderlyingObject(Op, DL); 766 if (Visited.insert(Op).second) 767 Inputs.push_back(Op); 768 } 769 continue; 770 } 771 772 // FIXME: It would be good to handle other obvious no-alias cases here, but 773 // it isn't clear how to do so reasonbly without building a small version 774 // of BasicAA into this code. We could recurse into AAResultBase::alias 775 // here but that seems likely to go poorly as we're inside the 776 // implementation of such a query. Until then, just conservatievly retun 777 // false. 778 return false; 779 } while (!Inputs.empty()); 780 781 // If all the inputs to V were definitively no-alias, then V is no-alias. 782 return true; 783 } 784 785 /// alias - If one of the pointers is to a global that we are tracking, and the 786 /// other is some random pointer, we know there cannot be an alias, because the 787 /// address of the global isn't taken. 788 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 789 const MemoryLocation &LocB) { 790 // Get the base object these pointers point to. 791 const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL); 792 const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL); 793 794 // If either of the underlying values is a global, they may be non-addr-taken 795 // globals, which we can answer queries about. 796 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 797 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 798 if (GV1 || GV2) { 799 // If the global's address is taken, pretend we don't know it's a pointer to 800 // the global. 801 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 802 GV1 = nullptr; 803 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 804 GV2 = nullptr; 805 806 // If the two pointers are derived from two different non-addr-taken 807 // globals we know these can't alias. 808 if (GV1 && GV2 && GV1 != GV2) 809 return NoAlias; 810 811 // If one is and the other isn't, it isn't strictly safe but we can fake 812 // this result if necessary for performance. This does not appear to be 813 // a common problem in practice. 814 if (EnableUnsafeGlobalsModRefAliasResults) 815 if ((GV1 || GV2) && GV1 != GV2) 816 return NoAlias; 817 818 // Check for a special case where a non-escaping global can be used to 819 // conclude no-alias. 820 if ((GV1 || GV2) && GV1 != GV2) { 821 const GlobalValue *GV = GV1 ? GV1 : GV2; 822 const Value *UV = GV1 ? UV2 : UV1; 823 if (isNonEscapingGlobalNoAlias(GV, UV)) 824 return NoAlias; 825 } 826 827 // Otherwise if they are both derived from the same addr-taken global, we 828 // can't know the two accesses don't overlap. 829 } 830 831 // These pointers may be based on the memory owned by an indirect global. If 832 // so, we may be able to handle this. First check to see if the base pointer 833 // is a direct load from an indirect global. 834 GV1 = GV2 = nullptr; 835 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 836 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 837 if (IndirectGlobals.count(GV)) 838 GV1 = GV; 839 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 840 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 841 if (IndirectGlobals.count(GV)) 842 GV2 = GV; 843 844 // These pointers may also be from an allocation for the indirect global. If 845 // so, also handle them. 846 if (!GV1) 847 GV1 = AllocsForIndirectGlobals.lookup(UV1); 848 if (!GV2) 849 GV2 = AllocsForIndirectGlobals.lookup(UV2); 850 851 // Now that we know whether the two pointers are related to indirect globals, 852 // use this to disambiguate the pointers. If the pointers are based on 853 // different indirect globals they cannot alias. 854 if (GV1 && GV2 && GV1 != GV2) 855 return NoAlias; 856 857 // If one is based on an indirect global and the other isn't, it isn't 858 // strictly safe but we can fake this result if necessary for performance. 859 // This does not appear to be a common problem in practice. 860 if (EnableUnsafeGlobalsModRefAliasResults) 861 if ((GV1 || GV2) && GV1 != GV2) 862 return NoAlias; 863 864 return AAResultBase::alias(LocA, LocB); 865 } 866 867 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS, 868 const GlobalValue *GV) { 869 if (CS.doesNotAccessMemory()) 870 return MRI_NoModRef; 871 ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef; 872 873 // Iterate through all the arguments to the called function. If any argument 874 // is based on GV, return the conservative result. 875 for (auto &A : CS.args()) { 876 SmallVector<Value*, 4> Objects; 877 GetUnderlyingObjects(A, Objects, DL); 878 879 // All objects must be identified. 880 if (!all_of(Objects, isIdentifiedObject) && 881 // Try ::alias to see if all objects are known not to alias GV. 882 !all_of(Objects, [&](Value *V) { 883 return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias; 884 })) 885 return ConservativeResult; 886 887 if (is_contained(Objects, GV)) 888 return ConservativeResult; 889 } 890 891 // We identified all objects in the argument list, and none of them were GV. 892 return MRI_NoModRef; 893 } 894 895 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS, 896 const MemoryLocation &Loc) { 897 unsigned Known = MRI_ModRef; 898 899 // If we are asking for mod/ref info of a direct call with a pointer to a 900 // global we are tracking, return information if we have it. 901 if (const GlobalValue *GV = 902 dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL))) 903 if (GV->hasLocalLinkage()) 904 if (const Function *F = CS.getCalledFunction()) 905 if (NonAddressTakenGlobals.count(GV)) 906 if (const FunctionInfo *FI = getFunctionInfo(F)) 907 Known = FI->getModRefInfoForGlobal(*GV) | 908 getModRefInfoForArgument(CS, GV); 909 910 if (Known == MRI_NoModRef) 911 return MRI_NoModRef; // No need to query other mod/ref analyses 912 return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc)); 913 } 914 915 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL, 916 const TargetLibraryInfo &TLI) 917 : AAResultBase(), DL(DL), TLI(TLI) {} 918 919 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 920 : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), 921 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 922 IndirectGlobals(std::move(Arg.IndirectGlobals)), 923 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 924 FunctionInfos(std::move(Arg.FunctionInfos)), 925 Handles(std::move(Arg.Handles)) { 926 // Update the parent for each DeletionCallbackHandle. 927 for (auto &H : Handles) { 928 assert(H.GAR == &Arg); 929 H.GAR = this; 930 } 931 } 932 933 GlobalsAAResult::~GlobalsAAResult() {} 934 935 /*static*/ GlobalsAAResult 936 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI, 937 CallGraph &CG) { 938 GlobalsAAResult Result(M.getDataLayout(), TLI); 939 940 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 941 Result.CollectSCCMembership(CG); 942 943 // Find non-addr taken globals. 944 Result.AnalyzeGlobals(M); 945 946 // Propagate on CG. 947 Result.AnalyzeCallGraph(CG, M); 948 949 return Result; 950 } 951 952 AnalysisKey GlobalsAA::Key; 953 954 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 955 return GlobalsAAResult::analyzeModule(M, 956 AM.getResult<TargetLibraryAnalysis>(M), 957 AM.getResult<CallGraphAnalysis>(M)); 958 } 959 960 char GlobalsAAWrapperPass::ID = 0; 961 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 962 "Globals Alias Analysis", false, true) 963 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 964 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 965 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 966 "Globals Alias Analysis", false, true) 967 968 ModulePass *llvm::createGlobalsAAWrapperPass() { 969 return new GlobalsAAWrapperPass(); 970 } 971 972 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 973 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 974 } 975 976 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 977 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 978 M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 979 getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 980 return false; 981 } 982 983 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 984 Result.reset(); 985 return false; 986 } 987 988 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 989 AU.setPreservesAll(); 990 AU.addRequired<CallGraphWrapperPass>(); 991 AU.addRequired<TargetLibraryInfoWrapperPass>(); 992 } 993