1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure").  For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Analysis/GlobalsModRef.h"
18 #include "llvm/ADT/SCCIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/MemoryBuiltins.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/InstIterator.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/CommandLine.h"
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "globalsmodref-aa"
34 
35 STATISTIC(NumNonAddrTakenGlobalVars,
36           "Number of global vars without address taken");
37 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
38 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
39 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
40 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
41 
42 // An option to enable unsafe alias results from the GlobalsModRef analysis.
43 // When enabled, GlobalsModRef will provide no-alias results which in extremely
44 // rare cases may not be conservatively correct. In particular, in the face of
45 // transforms which cause assymetry between how effective GetUnderlyingObject
46 // is for two pointers, it may produce incorrect results.
47 //
48 // These unsafe results have been returned by GMR for many years without
49 // causing significant issues in the wild and so we provide a mechanism to
50 // re-enable them for users of LLVM that have a particular performance
51 // sensitivity and no known issues. The option also makes it easy to evaluate
52 // the performance impact of these results.
53 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
54     "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
55 
56 /// The mod/ref information collected for a particular function.
57 ///
58 /// We collect information about mod/ref behavior of a function here, both in
59 /// general and as pertains to specific globals. We only have this detailed
60 /// information when we know *something* useful about the behavior. If we
61 /// saturate to fully general mod/ref, we remove the info for the function.
62 class GlobalsAAResult::FunctionInfo {
63   typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
64 
65   /// Build a wrapper struct that has 8-byte alignment. All heap allocations
66   /// should provide this much alignment at least, but this makes it clear we
67   /// specifically rely on this amount of alignment.
68   struct LLVM_ALIGNAS(8) AlignedMap {
69     AlignedMap() {}
70     AlignedMap(const AlignedMap &Arg) : Map(Arg.Map) {}
71     GlobalInfoMapType Map;
72   };
73 
74   /// Pointer traits for our aligned map.
75   struct AlignedMapPointerTraits {
76     static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
77     static inline AlignedMap *getFromVoidPointer(void *P) {
78       return (AlignedMap *)P;
79     }
80     enum { NumLowBitsAvailable = 3 };
81     static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
82                   "AlignedMap insufficiently aligned to have enough low bits.");
83   };
84 
85   /// The bit that flags that this function may read any global. This is
86   /// chosen to mix together with ModRefInfo bits.
87   enum { MayReadAnyGlobal = 4 };
88 
89   /// Checks to document the invariants of the bit packing here.
90   static_assert((MayReadAnyGlobal & MRI_ModRef) == 0,
91                 "ModRef and the MayReadAnyGlobal flag bits overlap.");
92   static_assert(((MayReadAnyGlobal | MRI_ModRef) >>
93                  AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
94                 "Insufficient low bits to store our flag and ModRef info.");
95 
96 public:
97   FunctionInfo() : Info() {}
98   ~FunctionInfo() {
99     delete Info.getPointer();
100   }
101   // Spell out the copy ond move constructors and assignment operators to get
102   // deep copy semantics and correct move semantics in the face of the
103   // pointer-int pair.
104   FunctionInfo(const FunctionInfo &Arg)
105       : Info(nullptr, Arg.Info.getInt()) {
106     if (const auto *ArgPtr = Arg.Info.getPointer())
107       Info.setPointer(new AlignedMap(*ArgPtr));
108   }
109   FunctionInfo(FunctionInfo &&Arg)
110       : Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
111     Arg.Info.setPointerAndInt(nullptr, 0);
112   }
113   FunctionInfo &operator=(const FunctionInfo &RHS) {
114     delete Info.getPointer();
115     Info.setPointerAndInt(nullptr, RHS.Info.getInt());
116     if (const auto *RHSPtr = RHS.Info.getPointer())
117       Info.setPointer(new AlignedMap(*RHSPtr));
118     return *this;
119   }
120   FunctionInfo &operator=(FunctionInfo &&RHS) {
121     delete Info.getPointer();
122     Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
123     RHS.Info.setPointerAndInt(nullptr, 0);
124     return *this;
125   }
126 
127   /// Returns the \c ModRefInfo info for this function.
128   ModRefInfo getModRefInfo() const {
129     return ModRefInfo(Info.getInt() & MRI_ModRef);
130   }
131 
132   /// Adds new \c ModRefInfo for this function to its state.
133   void addModRefInfo(ModRefInfo NewMRI) {
134     Info.setInt(Info.getInt() | NewMRI);
135   }
136 
137   /// Returns whether this function may read any global variable, and we don't
138   /// know which global.
139   bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
140 
141   /// Sets this function as potentially reading from any global.
142   void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
143 
144   /// Returns the \c ModRefInfo info for this function w.r.t. a particular
145   /// global, which may be more precise than the general information above.
146   ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
147     ModRefInfo GlobalMRI = mayReadAnyGlobal() ? MRI_Ref : MRI_NoModRef;
148     if (AlignedMap *P = Info.getPointer()) {
149       auto I = P->Map.find(&GV);
150       if (I != P->Map.end())
151         GlobalMRI = ModRefInfo(GlobalMRI | I->second);
152     }
153     return GlobalMRI;
154   }
155 
156   /// Add mod/ref info from another function into ours, saturating towards
157   /// MRI_ModRef.
158   void addFunctionInfo(const FunctionInfo &FI) {
159     addModRefInfo(FI.getModRefInfo());
160 
161     if (FI.mayReadAnyGlobal())
162       setMayReadAnyGlobal();
163 
164     if (AlignedMap *P = FI.Info.getPointer())
165       for (const auto &G : P->Map)
166         addModRefInfoForGlobal(*G.first, G.second);
167   }
168 
169   void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
170     AlignedMap *P = Info.getPointer();
171     if (!P) {
172       P = new AlignedMap();
173       Info.setPointer(P);
174     }
175     auto &GlobalMRI = P->Map[&GV];
176     GlobalMRI = ModRefInfo(GlobalMRI | NewMRI);
177   }
178 
179   /// Clear a global's ModRef info. Should be used when a global is being
180   /// deleted.
181   void eraseModRefInfoForGlobal(const GlobalValue &GV) {
182     if (AlignedMap *P = Info.getPointer())
183       P->Map.erase(&GV);
184   }
185 
186 private:
187   /// All of the information is encoded into a single pointer, with a three bit
188   /// integer in the low three bits. The high bit provides a flag for when this
189   /// function may read any global. The low two bits are the ModRefInfo. And
190   /// the pointer, when non-null, points to a map from GlobalValue to
191   /// ModRefInfo specific to that GlobalValue.
192   PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
193 };
194 
195 void GlobalsAAResult::DeletionCallbackHandle::deleted() {
196   Value *V = getValPtr();
197   if (auto *F = dyn_cast<Function>(V))
198     GAR->FunctionInfos.erase(F);
199 
200   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
201     if (GAR->NonAddressTakenGlobals.erase(GV)) {
202       // This global might be an indirect global.  If so, remove it and
203       // remove any AllocRelatedValues for it.
204       if (GAR->IndirectGlobals.erase(GV)) {
205         // Remove any entries in AllocsForIndirectGlobals for this global.
206         for (auto I = GAR->AllocsForIndirectGlobals.begin(),
207                   E = GAR->AllocsForIndirectGlobals.end();
208              I != E; ++I)
209           if (I->second == GV)
210             GAR->AllocsForIndirectGlobals.erase(I);
211       }
212 
213       // Scan the function info we have collected and remove this global
214       // from all of them.
215       for (auto &FIPair : GAR->FunctionInfos)
216         FIPair.second.eraseModRefInfoForGlobal(*GV);
217     }
218   }
219 
220   // If this is an allocation related to an indirect global, remove it.
221   GAR->AllocsForIndirectGlobals.erase(V);
222 
223   // And clear out the handle.
224   setValPtr(nullptr);
225   GAR->Handles.erase(I);
226   // This object is now destroyed!
227 }
228 
229 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) {
230   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
231 
232   if (FunctionInfo *FI = getFunctionInfo(F)) {
233     if (FI->getModRefInfo() == MRI_NoModRef)
234       Min = FMRB_DoesNotAccessMemory;
235     else if ((FI->getModRefInfo() & MRI_Mod) == 0)
236       Min = FMRB_OnlyReadsMemory;
237   }
238 
239   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
240 }
241 
242 FunctionModRefBehavior
243 GlobalsAAResult::getModRefBehavior(ImmutableCallSite CS) {
244   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
245 
246   if (!CS.hasOperandBundles())
247     if (const Function *F = CS.getCalledFunction())
248       if (FunctionInfo *FI = getFunctionInfo(F)) {
249         if (FI->getModRefInfo() == MRI_NoModRef)
250           Min = FMRB_DoesNotAccessMemory;
251         else if ((FI->getModRefInfo() & MRI_Mod) == 0)
252           Min = FMRB_OnlyReadsMemory;
253       }
254 
255   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
256 }
257 
258 /// Returns the function info for the function, or null if we don't have
259 /// anything useful to say about it.
260 GlobalsAAResult::FunctionInfo *
261 GlobalsAAResult::getFunctionInfo(const Function *F) {
262   auto I = FunctionInfos.find(F);
263   if (I != FunctionInfos.end())
264     return &I->second;
265   return nullptr;
266 }
267 
268 /// AnalyzeGlobals - Scan through the users of all of the internal
269 /// GlobalValue's in the program.  If none of them have their "address taken"
270 /// (really, their address passed to something nontrivial), record this fact,
271 /// and record the functions that they are used directly in.
272 void GlobalsAAResult::AnalyzeGlobals(Module &M) {
273   SmallPtrSet<Function *, 32> TrackedFunctions;
274   for (Function &F : M)
275     if (F.hasLocalLinkage())
276       if (!AnalyzeUsesOfPointer(&F)) {
277         // Remember that we are tracking this global.
278         NonAddressTakenGlobals.insert(&F);
279         TrackedFunctions.insert(&F);
280         Handles.emplace_front(*this, &F);
281         Handles.front().I = Handles.begin();
282         ++NumNonAddrTakenFunctions;
283       }
284 
285   SmallPtrSet<Function *, 16> Readers, Writers;
286   for (GlobalVariable &GV : M.globals())
287     if (GV.hasLocalLinkage()) {
288       if (!AnalyzeUsesOfPointer(&GV, &Readers,
289                                 GV.isConstant() ? nullptr : &Writers)) {
290         // Remember that we are tracking this global, and the mod/ref fns
291         NonAddressTakenGlobals.insert(&GV);
292         Handles.emplace_front(*this, &GV);
293         Handles.front().I = Handles.begin();
294 
295         for (Function *Reader : Readers) {
296           if (TrackedFunctions.insert(Reader).second) {
297             Handles.emplace_front(*this, Reader);
298             Handles.front().I = Handles.begin();
299           }
300           FunctionInfos[Reader].addModRefInfoForGlobal(GV, MRI_Ref);
301         }
302 
303         if (!GV.isConstant()) // No need to keep track of writers to constants
304           for (Function *Writer : Writers) {
305             if (TrackedFunctions.insert(Writer).second) {
306               Handles.emplace_front(*this, Writer);
307               Handles.front().I = Handles.begin();
308             }
309             FunctionInfos[Writer].addModRefInfoForGlobal(GV, MRI_Mod);
310           }
311         ++NumNonAddrTakenGlobalVars;
312 
313         // If this global holds a pointer type, see if it is an indirect global.
314         if (GV.getValueType()->isPointerTy() &&
315             AnalyzeIndirectGlobalMemory(&GV))
316           ++NumIndirectGlobalVars;
317       }
318       Readers.clear();
319       Writers.clear();
320     }
321 }
322 
323 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
324 /// If this is used by anything complex (i.e., the address escapes), return
325 /// true.  Also, while we are at it, keep track of those functions that read and
326 /// write to the value.
327 ///
328 /// If OkayStoreDest is non-null, stores into this global are allowed.
329 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
330                                            SmallPtrSetImpl<Function *> *Readers,
331                                            SmallPtrSetImpl<Function *> *Writers,
332                                            GlobalValue *OkayStoreDest) {
333   if (!V->getType()->isPointerTy())
334     return true;
335 
336   for (Use &U : V->uses()) {
337     User *I = U.getUser();
338     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
339       if (Readers)
340         Readers->insert(LI->getParent()->getParent());
341     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
342       if (V == SI->getOperand(1)) {
343         if (Writers)
344           Writers->insert(SI->getParent()->getParent());
345       } else if (SI->getOperand(1) != OkayStoreDest) {
346         return true; // Storing the pointer
347       }
348     } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
349       if (AnalyzeUsesOfPointer(I, Readers, Writers))
350         return true;
351     } else if (Operator::getOpcode(I) == Instruction::BitCast) {
352       if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
353         return true;
354     } else if (auto CS = CallSite(I)) {
355       // Make sure that this is just the function being called, not that it is
356       // passing into the function.
357       if (CS.isDataOperand(&U)) {
358         // Detect calls to free.
359         if (CS.isArgOperand(&U) && isFreeCall(I, &TLI)) {
360           if (Writers)
361             Writers->insert(CS->getParent()->getParent());
362         } else {
363           return true; // Argument of an unknown call.
364         }
365       }
366     } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
367       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
368         return true; // Allow comparison against null.
369     } else if (Constant *C = dyn_cast<Constant>(I)) {
370       // Ignore constants which don't have any live uses.
371       if (isa<GlobalValue>(C) || C->isConstantUsed())
372         return true;
373     } else {
374       return true;
375     }
376   }
377 
378   return false;
379 }
380 
381 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
382 /// which holds a pointer type.  See if the global always points to non-aliased
383 /// heap memory: that is, all initializers of the globals are allocations, and
384 /// those allocations have no use other than initialization of the global.
385 /// Further, all loads out of GV must directly use the memory, not store the
386 /// pointer somewhere.  If this is true, we consider the memory pointed to by
387 /// GV to be owned by GV and can disambiguate other pointers from it.
388 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
389   // Keep track of values related to the allocation of the memory, f.e. the
390   // value produced by the malloc call and any casts.
391   std::vector<Value *> AllocRelatedValues;
392 
393   // If the initializer is a valid pointer, bail.
394   if (Constant *C = GV->getInitializer())
395     if (!C->isNullValue())
396       return false;
397 
398   // Walk the user list of the global.  If we find anything other than a direct
399   // load or store, bail out.
400   for (User *U : GV->users()) {
401     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
402       // The pointer loaded from the global can only be used in simple ways:
403       // we allow addressing of it and loading storing to it.  We do *not* allow
404       // storing the loaded pointer somewhere else or passing to a function.
405       if (AnalyzeUsesOfPointer(LI))
406         return false; // Loaded pointer escapes.
407       // TODO: Could try some IP mod/ref of the loaded pointer.
408     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
409       // Storing the global itself.
410       if (SI->getOperand(0) == GV)
411         return false;
412 
413       // If storing the null pointer, ignore it.
414       if (isa<ConstantPointerNull>(SI->getOperand(0)))
415         continue;
416 
417       // Check the value being stored.
418       Value *Ptr = GetUnderlyingObject(SI->getOperand(0),
419                                        GV->getParent()->getDataLayout());
420 
421       if (!isAllocLikeFn(Ptr, &TLI))
422         return false; // Too hard to analyze.
423 
424       // Analyze all uses of the allocation.  If any of them are used in a
425       // non-simple way (e.g. stored to another global) bail out.
426       if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
427                                GV))
428         return false; // Loaded pointer escapes.
429 
430       // Remember that this allocation is related to the indirect global.
431       AllocRelatedValues.push_back(Ptr);
432     } else {
433       // Something complex, bail out.
434       return false;
435     }
436   }
437 
438   // Okay, this is an indirect global.  Remember all of the allocations for
439   // this global in AllocsForIndirectGlobals.
440   while (!AllocRelatedValues.empty()) {
441     AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
442     Handles.emplace_front(*this, AllocRelatedValues.back());
443     Handles.front().I = Handles.begin();
444     AllocRelatedValues.pop_back();
445   }
446   IndirectGlobals.insert(GV);
447   Handles.emplace_front(*this, GV);
448   Handles.front().I = Handles.begin();
449   return true;
450 }
451 
452 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
453   // We do a bottom-up SCC traversal of the call graph.  In other words, we
454   // visit all callees before callers (leaf-first).
455   unsigned SCCID = 0;
456   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
457     const std::vector<CallGraphNode *> &SCC = *I;
458     assert(!SCC.empty() && "SCC with no functions?");
459 
460     for (auto *CGN : SCC)
461       if (Function *F = CGN->getFunction())
462         FunctionToSCCMap[F] = SCCID;
463     ++SCCID;
464   }
465 }
466 
467 /// AnalyzeCallGraph - At this point, we know the functions where globals are
468 /// immediately stored to and read from.  Propagate this information up the call
469 /// graph to all callers and compute the mod/ref info for all memory for each
470 /// function.
471 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
472   // We do a bottom-up SCC traversal of the call graph.  In other words, we
473   // visit all callees before callers (leaf-first).
474   for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
475     const std::vector<CallGraphNode *> &SCC = *I;
476     assert(!SCC.empty() && "SCC with no functions?");
477 
478     Function *F = SCC[0]->getFunction();
479 
480     if (!F || !F->isDefinitionExact()) {
481       // Calls externally or not exact - can't say anything useful. Remove any
482       // existing function records (may have been created when scanning
483       // globals).
484       for (auto *Node : SCC)
485         FunctionInfos.erase(Node->getFunction());
486       continue;
487     }
488 
489     FunctionInfo &FI = FunctionInfos[F];
490     bool KnowNothing = false;
491 
492     // Collect the mod/ref properties due to called functions.  We only compute
493     // one mod-ref set.
494     for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
495       if (!F) {
496         KnowNothing = true;
497         break;
498       }
499 
500       if (F->isDeclaration() || F->hasFnAttribute(Attribute::OptimizeNone)) {
501         // Try to get mod/ref behaviour from function attributes.
502         if (F->doesNotAccessMemory()) {
503           // Can't do better than that!
504         } else if (F->onlyReadsMemory()) {
505           FI.addModRefInfo(MRI_Ref);
506           if (!F->isIntrinsic() && !F->onlyAccessesArgMemory())
507             // This function might call back into the module and read a global -
508             // consider every global as possibly being read by this function.
509             FI.setMayReadAnyGlobal();
510         } else {
511           FI.addModRefInfo(MRI_ModRef);
512           // Can't say anything useful unless it's an intrinsic - they don't
513           // read or write global variables of the kind considered here.
514           KnowNothing = !F->isIntrinsic();
515         }
516         continue;
517       }
518 
519       for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
520            CI != E && !KnowNothing; ++CI)
521         if (Function *Callee = CI->second->getFunction()) {
522           if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
523             // Propagate function effect up.
524             FI.addFunctionInfo(*CalleeFI);
525           } else {
526             // Can't say anything about it.  However, if it is inside our SCC,
527             // then nothing needs to be done.
528             CallGraphNode *CalleeNode = CG[Callee];
529             if (!is_contained(SCC, CalleeNode))
530               KnowNothing = true;
531           }
532         } else {
533           KnowNothing = true;
534         }
535     }
536 
537     // If we can't say anything useful about this SCC, remove all SCC functions
538     // from the FunctionInfos map.
539     if (KnowNothing) {
540       for (auto *Node : SCC)
541         FunctionInfos.erase(Node->getFunction());
542       continue;
543     }
544 
545     // Scan the function bodies for explicit loads or stores.
546     for (auto *Node : SCC) {
547       if (FI.getModRefInfo() == MRI_ModRef)
548         break; // The mod/ref lattice saturates here.
549 
550       // Don't prove any properties based on the implementation of an optnone
551       // function. Function attributes were already used as a best approximation
552       // above.
553       if (Node->getFunction()->hasFnAttribute(Attribute::OptimizeNone))
554         continue;
555 
556       for (Instruction &I : instructions(Node->getFunction())) {
557         if (FI.getModRefInfo() == MRI_ModRef)
558           break; // The mod/ref lattice saturates here.
559 
560         // We handle calls specially because the graph-relevant aspects are
561         // handled above.
562         if (auto CS = CallSite(&I)) {
563           if (isAllocationFn(&I, &TLI) || isFreeCall(&I, &TLI)) {
564             // FIXME: It is completely unclear why this is necessary and not
565             // handled by the above graph code.
566             FI.addModRefInfo(MRI_ModRef);
567           } else if (Function *Callee = CS.getCalledFunction()) {
568             // The callgraph doesn't include intrinsic calls.
569             if (Callee->isIntrinsic()) {
570               FunctionModRefBehavior Behaviour =
571                   AAResultBase::getModRefBehavior(Callee);
572               FI.addModRefInfo(ModRefInfo(Behaviour & MRI_ModRef));
573             }
574           }
575           continue;
576         }
577 
578         // All non-call instructions we use the primary predicates for whether
579         // thay read or write memory.
580         if (I.mayReadFromMemory())
581           FI.addModRefInfo(MRI_Ref);
582         if (I.mayWriteToMemory())
583           FI.addModRefInfo(MRI_Mod);
584       }
585     }
586 
587     if ((FI.getModRefInfo() & MRI_Mod) == 0)
588       ++NumReadMemFunctions;
589     if (FI.getModRefInfo() == MRI_NoModRef)
590       ++NumNoMemFunctions;
591 
592     // Finally, now that we know the full effect on this SCC, clone the
593     // information to each function in the SCC.
594     // FI is a reference into FunctionInfos, so copy it now so that it doesn't
595     // get invalidated if DenseMap decides to re-hash.
596     FunctionInfo CachedFI = FI;
597     for (unsigned i = 1, e = SCC.size(); i != e; ++i)
598       FunctionInfos[SCC[i]->getFunction()] = CachedFI;
599   }
600 }
601 
602 // GV is a non-escaping global. V is a pointer address that has been loaded from.
603 // If we can prove that V must escape, we can conclude that a load from V cannot
604 // alias GV.
605 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
606                                                const Value *V,
607                                                int &Depth,
608                                                const DataLayout &DL) {
609   SmallPtrSet<const Value *, 8> Visited;
610   SmallVector<const Value *, 8> Inputs;
611   Visited.insert(V);
612   Inputs.push_back(V);
613   do {
614     const Value *Input = Inputs.pop_back_val();
615 
616     if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
617         isa<InvokeInst>(Input))
618       // Arguments to functions or returns from functions are inherently
619       // escaping, so we can immediately classify those as not aliasing any
620       // non-addr-taken globals.
621       //
622       // (Transitive) loads from a global are also safe - if this aliased
623       // another global, its address would escape, so no alias.
624       continue;
625 
626     // Recurse through a limited number of selects, loads and PHIs. This is an
627     // arbitrary depth of 4, lower numbers could be used to fix compile time
628     // issues if needed, but this is generally expected to be only be important
629     // for small depths.
630     if (++Depth > 4)
631       return false;
632 
633     if (auto *LI = dyn_cast<LoadInst>(Input)) {
634       Inputs.push_back(GetUnderlyingObject(LI->getPointerOperand(), DL));
635       continue;
636     }
637     if (auto *SI = dyn_cast<SelectInst>(Input)) {
638       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
639       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
640       if (Visited.insert(LHS).second)
641         Inputs.push_back(LHS);
642       if (Visited.insert(RHS).second)
643         Inputs.push_back(RHS);
644       continue;
645     }
646     if (auto *PN = dyn_cast<PHINode>(Input)) {
647       for (const Value *Op : PN->incoming_values()) {
648         Op = GetUnderlyingObject(Op, DL);
649         if (Visited.insert(Op).second)
650           Inputs.push_back(Op);
651       }
652       continue;
653     }
654 
655     return false;
656   } while (!Inputs.empty());
657 
658   // All inputs were known to be no-alias.
659   return true;
660 }
661 
662 // There are particular cases where we can conclude no-alias between
663 // a non-addr-taken global and some other underlying object. Specifically,
664 // a non-addr-taken global is known to not be escaped from any function. It is
665 // also incorrect for a transformation to introduce an escape of a global in
666 // a way that is observable when it was not there previously. One function
667 // being transformed to introduce an escape which could possibly be observed
668 // (via loading from a global or the return value for example) within another
669 // function is never safe. If the observation is made through non-atomic
670 // operations on different threads, it is a data-race and UB. If the
671 // observation is well defined, by being observed the transformation would have
672 // changed program behavior by introducing the observed escape, making it an
673 // invalid transform.
674 //
675 // This property does require that transformations which *temporarily* escape
676 // a global that was not previously escaped, prior to restoring it, cannot rely
677 // on the results of GMR::alias. This seems a reasonable restriction, although
678 // currently there is no way to enforce it. There is also no realistic
679 // optimization pass that would make this mistake. The closest example is
680 // a transformation pass which does reg2mem of SSA values but stores them into
681 // global variables temporarily before restoring the global variable's value.
682 // This could be useful to expose "benign" races for example. However, it seems
683 // reasonable to require that a pass which introduces escapes of global
684 // variables in this way to either not trust AA results while the escape is
685 // active, or to be forced to operate as a module pass that cannot co-exist
686 // with an alias analysis such as GMR.
687 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
688                                                  const Value *V) {
689   // In order to know that the underlying object cannot alias the
690   // non-addr-taken global, we must know that it would have to be an escape.
691   // Thus if the underlying object is a function argument, a load from
692   // a global, or the return of a function, it cannot alias. We can also
693   // recurse through PHI nodes and select nodes provided all of their inputs
694   // resolve to one of these known-escaping roots.
695   SmallPtrSet<const Value *, 8> Visited;
696   SmallVector<const Value *, 8> Inputs;
697   Visited.insert(V);
698   Inputs.push_back(V);
699   int Depth = 0;
700   do {
701     const Value *Input = Inputs.pop_back_val();
702 
703     if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
704       // If one input is the very global we're querying against, then we can't
705       // conclude no-alias.
706       if (InputGV == GV)
707         return false;
708 
709       // Distinct GlobalVariables never alias, unless overriden or zero-sized.
710       // FIXME: The condition can be refined, but be conservative for now.
711       auto *GVar = dyn_cast<GlobalVariable>(GV);
712       auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
713       if (GVar && InputGVar &&
714           !GVar->isDeclaration() && !InputGVar->isDeclaration() &&
715           !GVar->isInterposable() && !InputGVar->isInterposable()) {
716         Type *GVType = GVar->getInitializer()->getType();
717         Type *InputGVType = InputGVar->getInitializer()->getType();
718         if (GVType->isSized() && InputGVType->isSized() &&
719             (DL.getTypeAllocSize(GVType) > 0) &&
720             (DL.getTypeAllocSize(InputGVType) > 0))
721           continue;
722       }
723 
724       // Conservatively return false, even though we could be smarter
725       // (e.g. look through GlobalAliases).
726       return false;
727     }
728 
729     if (isa<Argument>(Input) || isa<CallInst>(Input) ||
730         isa<InvokeInst>(Input)) {
731       // Arguments to functions or returns from functions are inherently
732       // escaping, so we can immediately classify those as not aliasing any
733       // non-addr-taken globals.
734       continue;
735     }
736 
737     // Recurse through a limited number of selects, loads and PHIs. This is an
738     // arbitrary depth of 4, lower numbers could be used to fix compile time
739     // issues if needed, but this is generally expected to be only be important
740     // for small depths.
741     if (++Depth > 4)
742       return false;
743 
744     if (auto *LI = dyn_cast<LoadInst>(Input)) {
745       // A pointer loaded from a global would have been captured, and we know
746       // that the global is non-escaping, so no alias.
747       const Value *Ptr = GetUnderlyingObject(LI->getPointerOperand(), DL);
748       if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
749         // The load does not alias with GV.
750         continue;
751       // Otherwise, a load could come from anywhere, so bail.
752       return false;
753     }
754     if (auto *SI = dyn_cast<SelectInst>(Input)) {
755       const Value *LHS = GetUnderlyingObject(SI->getTrueValue(), DL);
756       const Value *RHS = GetUnderlyingObject(SI->getFalseValue(), DL);
757       if (Visited.insert(LHS).second)
758         Inputs.push_back(LHS);
759       if (Visited.insert(RHS).second)
760         Inputs.push_back(RHS);
761       continue;
762     }
763     if (auto *PN = dyn_cast<PHINode>(Input)) {
764       for (const Value *Op : PN->incoming_values()) {
765         Op = GetUnderlyingObject(Op, DL);
766         if (Visited.insert(Op).second)
767           Inputs.push_back(Op);
768       }
769       continue;
770     }
771 
772     // FIXME: It would be good to handle other obvious no-alias cases here, but
773     // it isn't clear how to do so reasonbly without building a small version
774     // of BasicAA into this code. We could recurse into AAResultBase::alias
775     // here but that seems likely to go poorly as we're inside the
776     // implementation of such a query. Until then, just conservatievly retun
777     // false.
778     return false;
779   } while (!Inputs.empty());
780 
781   // If all the inputs to V were definitively no-alias, then V is no-alias.
782   return true;
783 }
784 
785 /// alias - If one of the pointers is to a global that we are tracking, and the
786 /// other is some random pointer, we know there cannot be an alias, because the
787 /// address of the global isn't taken.
788 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
789                                    const MemoryLocation &LocB) {
790   // Get the base object these pointers point to.
791   const Value *UV1 = GetUnderlyingObject(LocA.Ptr, DL);
792   const Value *UV2 = GetUnderlyingObject(LocB.Ptr, DL);
793 
794   // If either of the underlying values is a global, they may be non-addr-taken
795   // globals, which we can answer queries about.
796   const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
797   const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
798   if (GV1 || GV2) {
799     // If the global's address is taken, pretend we don't know it's a pointer to
800     // the global.
801     if (GV1 && !NonAddressTakenGlobals.count(GV1))
802       GV1 = nullptr;
803     if (GV2 && !NonAddressTakenGlobals.count(GV2))
804       GV2 = nullptr;
805 
806     // If the two pointers are derived from two different non-addr-taken
807     // globals we know these can't alias.
808     if (GV1 && GV2 && GV1 != GV2)
809       return NoAlias;
810 
811     // If one is and the other isn't, it isn't strictly safe but we can fake
812     // this result if necessary for performance. This does not appear to be
813     // a common problem in practice.
814     if (EnableUnsafeGlobalsModRefAliasResults)
815       if ((GV1 || GV2) && GV1 != GV2)
816         return NoAlias;
817 
818     // Check for a special case where a non-escaping global can be used to
819     // conclude no-alias.
820     if ((GV1 || GV2) && GV1 != GV2) {
821       const GlobalValue *GV = GV1 ? GV1 : GV2;
822       const Value *UV = GV1 ? UV2 : UV1;
823       if (isNonEscapingGlobalNoAlias(GV, UV))
824         return NoAlias;
825     }
826 
827     // Otherwise if they are both derived from the same addr-taken global, we
828     // can't know the two accesses don't overlap.
829   }
830 
831   // These pointers may be based on the memory owned by an indirect global.  If
832   // so, we may be able to handle this.  First check to see if the base pointer
833   // is a direct load from an indirect global.
834   GV1 = GV2 = nullptr;
835   if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
836     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
837       if (IndirectGlobals.count(GV))
838         GV1 = GV;
839   if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
840     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
841       if (IndirectGlobals.count(GV))
842         GV2 = GV;
843 
844   // These pointers may also be from an allocation for the indirect global.  If
845   // so, also handle them.
846   if (!GV1)
847     GV1 = AllocsForIndirectGlobals.lookup(UV1);
848   if (!GV2)
849     GV2 = AllocsForIndirectGlobals.lookup(UV2);
850 
851   // Now that we know whether the two pointers are related to indirect globals,
852   // use this to disambiguate the pointers. If the pointers are based on
853   // different indirect globals they cannot alias.
854   if (GV1 && GV2 && GV1 != GV2)
855     return NoAlias;
856 
857   // If one is based on an indirect global and the other isn't, it isn't
858   // strictly safe but we can fake this result if necessary for performance.
859   // This does not appear to be a common problem in practice.
860   if (EnableUnsafeGlobalsModRefAliasResults)
861     if ((GV1 || GV2) && GV1 != GV2)
862       return NoAlias;
863 
864   return AAResultBase::alias(LocA, LocB);
865 }
866 
867 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(ImmutableCallSite CS,
868                                                      const GlobalValue *GV) {
869   if (CS.doesNotAccessMemory())
870     return MRI_NoModRef;
871   ModRefInfo ConservativeResult = CS.onlyReadsMemory() ? MRI_Ref : MRI_ModRef;
872 
873   // Iterate through all the arguments to the called function. If any argument
874   // is based on GV, return the conservative result.
875   for (auto &A : CS.args()) {
876     SmallVector<Value*, 4> Objects;
877     GetUnderlyingObjects(A, Objects, DL);
878 
879     // All objects must be identified.
880     if (!all_of(Objects, isIdentifiedObject) &&
881         // Try ::alias to see if all objects are known not to alias GV.
882         !all_of(Objects, [&](Value *V) {
883           return this->alias(MemoryLocation(V), MemoryLocation(GV)) == NoAlias;
884         }))
885       return ConservativeResult;
886 
887     if (is_contained(Objects, GV))
888       return ConservativeResult;
889   }
890 
891   // We identified all objects in the argument list, and none of them were GV.
892   return MRI_NoModRef;
893 }
894 
895 ModRefInfo GlobalsAAResult::getModRefInfo(ImmutableCallSite CS,
896                                           const MemoryLocation &Loc) {
897   unsigned Known = MRI_ModRef;
898 
899   // If we are asking for mod/ref info of a direct call with a pointer to a
900   // global we are tracking, return information if we have it.
901   if (const GlobalValue *GV =
902           dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr, DL)))
903     if (GV->hasLocalLinkage())
904       if (const Function *F = CS.getCalledFunction())
905         if (NonAddressTakenGlobals.count(GV))
906           if (const FunctionInfo *FI = getFunctionInfo(F))
907             Known = FI->getModRefInfoForGlobal(*GV) |
908               getModRefInfoForArgument(CS, GV);
909 
910   if (Known == MRI_NoModRef)
911     return MRI_NoModRef; // No need to query other mod/ref analyses
912   return ModRefInfo(Known & AAResultBase::getModRefInfo(CS, Loc));
913 }
914 
915 GlobalsAAResult::GlobalsAAResult(const DataLayout &DL,
916                                  const TargetLibraryInfo &TLI)
917     : AAResultBase(), DL(DL), TLI(TLI) {}
918 
919 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
920     : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI),
921       NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
922       IndirectGlobals(std::move(Arg.IndirectGlobals)),
923       AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
924       FunctionInfos(std::move(Arg.FunctionInfos)),
925       Handles(std::move(Arg.Handles)) {
926   // Update the parent for each DeletionCallbackHandle.
927   for (auto &H : Handles) {
928     assert(H.GAR == &Arg);
929     H.GAR = this;
930   }
931 }
932 
933 GlobalsAAResult::~GlobalsAAResult() {}
934 
935 /*static*/ GlobalsAAResult
936 GlobalsAAResult::analyzeModule(Module &M, const TargetLibraryInfo &TLI,
937                                CallGraph &CG) {
938   GlobalsAAResult Result(M.getDataLayout(), TLI);
939 
940   // Discover which functions aren't recursive, to feed into AnalyzeGlobals.
941   Result.CollectSCCMembership(CG);
942 
943   // Find non-addr taken globals.
944   Result.AnalyzeGlobals(M);
945 
946   // Propagate on CG.
947   Result.AnalyzeCallGraph(CG, M);
948 
949   return Result;
950 }
951 
952 AnalysisKey GlobalsAA::Key;
953 
954 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
955   return GlobalsAAResult::analyzeModule(M,
956                                         AM.getResult<TargetLibraryAnalysis>(M),
957                                         AM.getResult<CallGraphAnalysis>(M));
958 }
959 
960 char GlobalsAAWrapperPass::ID = 0;
961 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
962                       "Globals Alias Analysis", false, true)
963 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
964 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
965 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
966                     "Globals Alias Analysis", false, true)
967 
968 ModulePass *llvm::createGlobalsAAWrapperPass() {
969   return new GlobalsAAWrapperPass();
970 }
971 
972 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
973   initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
974 }
975 
976 bool GlobalsAAWrapperPass::runOnModule(Module &M) {
977   Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
978       M, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
979       getAnalysis<CallGraphWrapperPass>().getCallGraph())));
980   return false;
981 }
982 
983 bool GlobalsAAWrapperPass::doFinalization(Module &M) {
984   Result.reset();
985   return false;
986 }
987 
988 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
989   AU.setPreservesAll();
990   AU.addRequired<CallGraphWrapperPass>();
991   AU.addRequired<TargetLibraryInfoWrapperPass>();
992 }
993