1 //===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements divergence analysis which determines whether a branch 11 // in a GPU program is divergent.It can help branch optimizations such as jump 12 // threading and loop unswitching to make better decisions. 13 // 14 // GPU programs typically use the SIMD execution model, where multiple threads 15 // in the same execution group have to execute in lock-step. Therefore, if the 16 // code contains divergent branches (i.e., threads in a group do not agree on 17 // which path of the branch to take), the group of threads has to execute all 18 // the paths from that branch with different subsets of threads enabled until 19 // they converge at the immediately post-dominating BB of the paths. 20 // 21 // Due to this execution model, some optimizations such as jump 22 // threading and loop unswitching can be unfortunately harmful when performed on 23 // divergent branches. Therefore, an analysis that computes which branches in a 24 // GPU program are divergent can help the compiler to selectively run these 25 // optimizations. 26 // 27 // This file defines divergence analysis which computes a conservative but 28 // non-trivial approximation of all divergent branches in a GPU program. It 29 // partially implements the approach described in 30 // 31 // Divergence Analysis 32 // Sampaio, Souza, Collange, Pereira 33 // TOPLAS '13 34 // 35 // The divergence analysis identifies the sources of divergence (e.g., special 36 // variables that hold the thread ID), and recursively marks variables that are 37 // data or sync dependent on a source of divergence as divergent. 38 // 39 // While data dependency is a well-known concept, the notion of sync dependency 40 // is worth more explanation. Sync dependence characterizes the control flow 41 // aspect of the propagation of branch divergence. For example, 42 // 43 // %cond = icmp slt i32 %tid, 10 44 // br i1 %cond, label %then, label %else 45 // then: 46 // br label %merge 47 // else: 48 // br label %merge 49 // merge: 50 // %a = phi i32 [ 0, %then ], [ 1, %else ] 51 // 52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid 53 // because %tid is not on its use-def chains, %a is sync dependent on %tid 54 // because the branch "br i1 %cond" depends on %tid and affects which value %a 55 // is assigned to. 56 // 57 // The current implementation has the following limitations: 58 // 1. intra-procedural. It conservatively considers the arguments of a 59 // non-kernel-entry function and the return value of a function call as 60 // divergent. 61 // 2. memory as black box. It conservatively considers values loaded from 62 // generic or local address as divergent. This can be improved by leveraging 63 // pointer analysis. 64 // 65 //===----------------------------------------------------------------------===// 66 67 #include "llvm/Analysis/DivergenceAnalysis.h" 68 #include "llvm/Analysis/Passes.h" 69 #include "llvm/Analysis/PostDominators.h" 70 #include "llvm/Analysis/TargetTransformInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/InstIterator.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Value.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include <vector> 79 using namespace llvm; 80 81 namespace { 82 83 class DivergencePropagator { 84 public: 85 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT, 86 PostDominatorTree &PDT, DenseSet<const Value *> &DV) 87 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {} 88 void populateWithSourcesOfDivergence(); 89 void propagate(); 90 91 private: 92 // A helper function that explores data dependents of V. 93 void exploreDataDependency(Value *V); 94 // A helper function that explores sync dependents of TI. 95 void exploreSyncDependency(TerminatorInst *TI); 96 // Computes the influence region from Start to End. This region includes all 97 // basic blocks on any simple path from Start to End. 98 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, 99 DenseSet<BasicBlock *> &InfluenceRegion); 100 // Finds all users of I that are outside the influence region, and add these 101 // users to Worklist. 102 void findUsersOutsideInfluenceRegion( 103 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); 104 105 Function &F; 106 TargetTransformInfo &TTI; 107 DominatorTree &DT; 108 PostDominatorTree &PDT; 109 std::vector<Value *> Worklist; // Stack for DFS. 110 DenseSet<const Value *> &DV; // Stores all divergent values. 111 }; 112 113 void DivergencePropagator::populateWithSourcesOfDivergence() { 114 Worklist.clear(); 115 DV.clear(); 116 for (auto &I : instructions(F)) { 117 if (TTI.isSourceOfDivergence(&I)) { 118 Worklist.push_back(&I); 119 DV.insert(&I); 120 } 121 } 122 for (auto &Arg : F.args()) { 123 if (TTI.isSourceOfDivergence(&Arg)) { 124 Worklist.push_back(&Arg); 125 DV.insert(&Arg); 126 } 127 } 128 } 129 130 void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) { 131 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's 132 // immediate post dominator are divergent. This rule handles if-then-else 133 // patterns. For example, 134 // 135 // if (tid < 5) 136 // a1 = 1; 137 // else 138 // a2 = 2; 139 // a = phi(a1, a2); // sync dependent on (tid < 5) 140 BasicBlock *ThisBB = TI->getParent(); 141 BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock(); 142 if (IPostDom == nullptr) 143 return; 144 145 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { 146 // A PHINode is uniform if it returns the same value no matter which path is 147 // taken. 148 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second) 149 Worklist.push_back(&*I); 150 } 151 152 // Propagation rule 2: if a value defined in a loop is used outside, the user 153 // is sync dependent on the condition of the loop exits that dominate the 154 // user. For example, 155 // 156 // int i = 0; 157 // do { 158 // i++; 159 // if (foo(i)) ... // uniform 160 // } while (i < tid); 161 // if (bar(i)) ... // divergent 162 // 163 // A program may contain unstructured loops. Therefore, we cannot leverage 164 // LoopInfo, which only recognizes natural loops. 165 // 166 // The algorithm used here handles both natural and unstructured loops. Given 167 // a branch TI, we first compute its influence region, the union of all simple 168 // paths from TI to its immediate post dominator (IPostDom). Then, we search 169 // for all the values defined in the influence region but used outside. All 170 // these users are sync dependent on TI. 171 DenseSet<BasicBlock *> InfluenceRegion; 172 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); 173 // An insight that can speed up the search process is that all the in-region 174 // values that are used outside must dominate TI. Therefore, instead of 175 // searching every basic blocks in the influence region, we search all the 176 // dominators of TI until it is outside the influence region. 177 BasicBlock *InfluencedBB = ThisBB; 178 while (InfluenceRegion.count(InfluencedBB)) { 179 for (auto &I : *InfluencedBB) 180 findUsersOutsideInfluenceRegion(I, InfluenceRegion); 181 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); 182 if (IDomNode == nullptr) 183 break; 184 InfluencedBB = IDomNode->getBlock(); 185 } 186 } 187 188 void DivergencePropagator::findUsersOutsideInfluenceRegion( 189 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { 190 for (User *U : I.users()) { 191 Instruction *UserInst = cast<Instruction>(U); 192 if (!InfluenceRegion.count(UserInst->getParent())) { 193 if (DV.insert(UserInst).second) 194 Worklist.push_back(UserInst); 195 } 196 } 197 } 198 199 // A helper function for computeInfluenceRegion that adds successors of "ThisBB" 200 // to the influence region. 201 static void 202 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End, 203 DenseSet<BasicBlock *> &InfluenceRegion, 204 std::vector<BasicBlock *> &InfluenceStack) { 205 for (BasicBlock *Succ : successors(ThisBB)) { 206 if (Succ != End && InfluenceRegion.insert(Succ).second) 207 InfluenceStack.push_back(Succ); 208 } 209 } 210 211 void DivergencePropagator::computeInfluenceRegion( 212 BasicBlock *Start, BasicBlock *End, 213 DenseSet<BasicBlock *> &InfluenceRegion) { 214 assert(PDT.properlyDominates(End, Start) && 215 "End does not properly dominate Start"); 216 217 // The influence region starts from the end of "Start" to the beginning of 218 // "End". Therefore, "Start" should not be in the region unless "Start" is in 219 // a loop that doesn't contain "End". 220 std::vector<BasicBlock *> InfluenceStack; 221 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack); 222 while (!InfluenceStack.empty()) { 223 BasicBlock *BB = InfluenceStack.back(); 224 InfluenceStack.pop_back(); 225 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack); 226 } 227 } 228 229 void DivergencePropagator::exploreDataDependency(Value *V) { 230 // Follow def-use chains of V. 231 for (User *U : V->users()) { 232 Instruction *UserInst = cast<Instruction>(U); 233 if (DV.insert(UserInst).second) 234 Worklist.push_back(UserInst); 235 } 236 } 237 238 void DivergencePropagator::propagate() { 239 // Traverse the dependency graph using DFS. 240 while (!Worklist.empty()) { 241 Value *V = Worklist.back(); 242 Worklist.pop_back(); 243 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) { 244 // Terminators with less than two successors won't introduce sync 245 // dependency. Ignore them. 246 if (TI->getNumSuccessors() > 1) 247 exploreSyncDependency(TI); 248 } 249 exploreDataDependency(V); 250 } 251 } 252 253 } /// end namespace anonymous 254 255 // Register this pass. 256 char DivergenceAnalysis::ID = 0; 257 INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis", 258 false, true) 259 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 260 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 261 INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis", 262 false, true) 263 264 FunctionPass *llvm::createDivergenceAnalysisPass() { 265 return new DivergenceAnalysis(); 266 } 267 268 void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 269 AU.addRequired<DominatorTreeWrapperPass>(); 270 AU.addRequired<PostDominatorTreeWrapperPass>(); 271 AU.setPreservesAll(); 272 } 273 274 bool DivergenceAnalysis::runOnFunction(Function &F) { 275 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 276 if (TTIWP == nullptr) 277 return false; 278 279 TargetTransformInfo &TTI = TTIWP->getTTI(F); 280 // Fast path: if the target does not have branch divergence, we do not mark 281 // any branch as divergent. 282 if (!TTI.hasBranchDivergence()) 283 return false; 284 285 DivergentValues.clear(); 286 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 287 DivergencePropagator DP(F, TTI, 288 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 289 PDT, DivergentValues); 290 DP.populateWithSourcesOfDivergence(); 291 DP.propagate(); 292 return false; 293 } 294 295 void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const { 296 if (DivergentValues.empty()) 297 return; 298 const Value *FirstDivergentValue = *DivergentValues.begin(); 299 const Function *F; 300 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { 301 F = Arg->getParent(); 302 } else if (const Instruction *I = 303 dyn_cast<Instruction>(FirstDivergentValue)) { 304 F = I->getParent()->getParent(); 305 } else { 306 llvm_unreachable("Only arguments and instructions can be divergent"); 307 } 308 309 // Dumps all divergent values in F, arguments and then instructions. 310 for (auto &Arg : F->args()) { 311 if (DivergentValues.count(&Arg)) 312 OS << "DIVERGENT: " << Arg << "\n"; 313 } 314 // Iterate instructions using instructions() to ensure a deterministic order. 315 for (auto &I : instructions(F)) { 316 if (DivergentValues.count(&I)) 317 OS << "DIVERGENT:" << I << "\n"; 318 } 319 } 320