1 //===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements divergence analysis which determines whether a branch 11 // in a GPU program is divergent.It can help branch optimizations such as jump 12 // threading and loop unswitching to make better decisions. 13 // 14 // GPU programs typically use the SIMD execution model, where multiple threads 15 // in the same execution group have to execute in lock-step. Therefore, if the 16 // code contains divergent branches (i.e., threads in a group do not agree on 17 // which path of the branch to take), the group of threads has to execute all 18 // the paths from that branch with different subsets of threads enabled until 19 // they converge at the immediately post-dominating BB of the paths. 20 // 21 // Due to this execution model, some optimizations such as jump 22 // threading and loop unswitching can be unfortunately harmful when performed on 23 // divergent branches. Therefore, an analysis that computes which branches in a 24 // GPU program are divergent can help the compiler to selectively run these 25 // optimizations. 26 // 27 // This file defines divergence analysis which computes a conservative but 28 // non-trivial approximation of all divergent branches in a GPU program. It 29 // partially implements the approach described in 30 // 31 // Divergence Analysis 32 // Sampaio, Souza, Collange, Pereira 33 // TOPLAS '13 34 // 35 // The divergence analysis identifies the sources of divergence (e.g., special 36 // variables that hold the thread ID), and recursively marks variables that are 37 // data or sync dependent on a source of divergence as divergent. 38 // 39 // While data dependency is a well-known concept, the notion of sync dependency 40 // is worth more explanation. Sync dependence characterizes the control flow 41 // aspect of the propagation of branch divergence. For example, 42 // 43 // %cond = icmp slt i32 %tid, 10 44 // br i1 %cond, label %then, label %else 45 // then: 46 // br label %merge 47 // else: 48 // br label %merge 49 // merge: 50 // %a = phi i32 [ 0, %then ], [ 1, %else ] 51 // 52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid 53 // because %tid is not on its use-def chains, %a is sync dependent on %tid 54 // because the branch "br i1 %cond" depends on %tid and affects which value %a 55 // is assigned to. 56 // 57 // The current implementation has the following limitations: 58 // 1. intra-procedural. It conservatively considers the arguments of a 59 // non-kernel-entry function and the return value of a function call as 60 // divergent. 61 // 2. memory as black box. It conservatively considers values loaded from 62 // generic or local address as divergent. This can be improved by leveraging 63 // pointer analysis. 64 // 65 //===----------------------------------------------------------------------===// 66 67 #include "llvm/Analysis/DivergenceAnalysis.h" 68 #include "llvm/Analysis/Passes.h" 69 #include "llvm/Analysis/PostDominators.h" 70 #include "llvm/Analysis/TargetTransformInfo.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/InstIterator.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include <vector> 78 using namespace llvm; 79 80 namespace { 81 82 class DivergencePropagator { 83 public: 84 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT, 85 PostDominatorTree &PDT, DenseSet<const Value *> &DV) 86 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {} 87 void populateWithSourcesOfDivergence(); 88 void propagate(); 89 90 private: 91 // A helper function that explores data dependents of V. 92 void exploreDataDependency(Value *V); 93 // A helper function that explores sync dependents of TI. 94 void exploreSyncDependency(TerminatorInst *TI); 95 // Computes the influence region from Start to End. This region includes all 96 // basic blocks on any simple path from Start to End. 97 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End, 98 DenseSet<BasicBlock *> &InfluenceRegion); 99 // Finds all users of I that are outside the influence region, and add these 100 // users to Worklist. 101 void findUsersOutsideInfluenceRegion( 102 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion); 103 104 Function &F; 105 TargetTransformInfo &TTI; 106 DominatorTree &DT; 107 PostDominatorTree &PDT; 108 std::vector<Value *> Worklist; // Stack for DFS. 109 DenseSet<const Value *> &DV; // Stores all divergent values. 110 }; 111 112 void DivergencePropagator::populateWithSourcesOfDivergence() { 113 Worklist.clear(); 114 DV.clear(); 115 for (auto &I : instructions(F)) { 116 if (TTI.isSourceOfDivergence(&I)) { 117 Worklist.push_back(&I); 118 DV.insert(&I); 119 } 120 } 121 for (auto &Arg : F.args()) { 122 if (TTI.isSourceOfDivergence(&Arg)) { 123 Worklist.push_back(&Arg); 124 DV.insert(&Arg); 125 } 126 } 127 } 128 129 void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) { 130 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's 131 // immediate post dominator are divergent. This rule handles if-then-else 132 // patterns. For example, 133 // 134 // if (tid < 5) 135 // a1 = 1; 136 // else 137 // a2 = 2; 138 // a = phi(a1, a2); // sync dependent on (tid < 5) 139 BasicBlock *ThisBB = TI->getParent(); 140 141 // Unreachable blocks may not be in the dominator tree. 142 if (!DT.isReachableFromEntry(ThisBB)) 143 return; 144 145 // If the function has no exit blocks or doesn't reach any exit blocks, the 146 // post dominator may be null. 147 DomTreeNode *ThisNode = PDT.getNode(ThisBB); 148 if (!ThisNode) 149 return; 150 151 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock(); 152 if (IPostDom == nullptr) 153 return; 154 155 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) { 156 // A PHINode is uniform if it returns the same value no matter which path is 157 // taken. 158 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second) 159 Worklist.push_back(&*I); 160 } 161 162 // Propagation rule 2: if a value defined in a loop is used outside, the user 163 // is sync dependent on the condition of the loop exits that dominate the 164 // user. For example, 165 // 166 // int i = 0; 167 // do { 168 // i++; 169 // if (foo(i)) ... // uniform 170 // } while (i < tid); 171 // if (bar(i)) ... // divergent 172 // 173 // A program may contain unstructured loops. Therefore, we cannot leverage 174 // LoopInfo, which only recognizes natural loops. 175 // 176 // The algorithm used here handles both natural and unstructured loops. Given 177 // a branch TI, we first compute its influence region, the union of all simple 178 // paths from TI to its immediate post dominator (IPostDom). Then, we search 179 // for all the values defined in the influence region but used outside. All 180 // these users are sync dependent on TI. 181 DenseSet<BasicBlock *> InfluenceRegion; 182 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion); 183 // An insight that can speed up the search process is that all the in-region 184 // values that are used outside must dominate TI. Therefore, instead of 185 // searching every basic blocks in the influence region, we search all the 186 // dominators of TI until it is outside the influence region. 187 BasicBlock *InfluencedBB = ThisBB; 188 while (InfluenceRegion.count(InfluencedBB)) { 189 for (auto &I : *InfluencedBB) 190 findUsersOutsideInfluenceRegion(I, InfluenceRegion); 191 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom(); 192 if (IDomNode == nullptr) 193 break; 194 InfluencedBB = IDomNode->getBlock(); 195 } 196 } 197 198 void DivergencePropagator::findUsersOutsideInfluenceRegion( 199 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) { 200 for (User *U : I.users()) { 201 Instruction *UserInst = cast<Instruction>(U); 202 if (!InfluenceRegion.count(UserInst->getParent())) { 203 if (DV.insert(UserInst).second) 204 Worklist.push_back(UserInst); 205 } 206 } 207 } 208 209 // A helper function for computeInfluenceRegion that adds successors of "ThisBB" 210 // to the influence region. 211 static void 212 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End, 213 DenseSet<BasicBlock *> &InfluenceRegion, 214 std::vector<BasicBlock *> &InfluenceStack) { 215 for (BasicBlock *Succ : successors(ThisBB)) { 216 if (Succ != End && InfluenceRegion.insert(Succ).second) 217 InfluenceStack.push_back(Succ); 218 } 219 } 220 221 void DivergencePropagator::computeInfluenceRegion( 222 BasicBlock *Start, BasicBlock *End, 223 DenseSet<BasicBlock *> &InfluenceRegion) { 224 assert(PDT.properlyDominates(End, Start) && 225 "End does not properly dominate Start"); 226 227 // The influence region starts from the end of "Start" to the beginning of 228 // "End". Therefore, "Start" should not be in the region unless "Start" is in 229 // a loop that doesn't contain "End". 230 std::vector<BasicBlock *> InfluenceStack; 231 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack); 232 while (!InfluenceStack.empty()) { 233 BasicBlock *BB = InfluenceStack.back(); 234 InfluenceStack.pop_back(); 235 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack); 236 } 237 } 238 239 void DivergencePropagator::exploreDataDependency(Value *V) { 240 // Follow def-use chains of V. 241 for (User *U : V->users()) { 242 Instruction *UserInst = cast<Instruction>(U); 243 if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second) 244 Worklist.push_back(UserInst); 245 } 246 } 247 248 void DivergencePropagator::propagate() { 249 // Traverse the dependency graph using DFS. 250 while (!Worklist.empty()) { 251 Value *V = Worklist.back(); 252 Worklist.pop_back(); 253 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) { 254 // Terminators with less than two successors won't introduce sync 255 // dependency. Ignore them. 256 if (TI->getNumSuccessors() > 1) 257 exploreSyncDependency(TI); 258 } 259 exploreDataDependency(V); 260 } 261 } 262 263 } /// end namespace anonymous 264 265 // Register this pass. 266 char DivergenceAnalysis::ID = 0; 267 INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis", 268 false, true) 269 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 270 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 271 INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis", 272 false, true) 273 274 FunctionPass *llvm::createDivergenceAnalysisPass() { 275 return new DivergenceAnalysis(); 276 } 277 278 void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 279 AU.addRequired<DominatorTreeWrapperPass>(); 280 AU.addRequired<PostDominatorTreeWrapperPass>(); 281 AU.setPreservesAll(); 282 } 283 284 bool DivergenceAnalysis::runOnFunction(Function &F) { 285 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 286 if (TTIWP == nullptr) 287 return false; 288 289 TargetTransformInfo &TTI = TTIWP->getTTI(F); 290 // Fast path: if the target does not have branch divergence, we do not mark 291 // any branch as divergent. 292 if (!TTI.hasBranchDivergence()) 293 return false; 294 295 DivergentValues.clear(); 296 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 297 DivergencePropagator DP(F, TTI, 298 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 299 PDT, DivergentValues); 300 DP.populateWithSourcesOfDivergence(); 301 DP.propagate(); 302 return false; 303 } 304 305 void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const { 306 if (DivergentValues.empty()) 307 return; 308 const Value *FirstDivergentValue = *DivergentValues.begin(); 309 const Function *F; 310 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) { 311 F = Arg->getParent(); 312 } else if (const Instruction *I = 313 dyn_cast<Instruction>(FirstDivergentValue)) { 314 F = I->getParent()->getParent(); 315 } else { 316 llvm_unreachable("Only arguments and instructions can be divergent"); 317 } 318 319 // Dumps all divergent values in F, arguments and then instructions. 320 for (auto &Arg : F->args()) { 321 if (DivergentValues.count(&Arg)) 322 OS << "DIVERGENT: " << Arg << "\n"; 323 } 324 // Iterate instructions using instructions() to ensure a deterministic order. 325 for (auto &I : instructions(F)) { 326 if (DivergentValues.count(&I)) 327 OS << "DIVERGENT:" << I << "\n"; 328 } 329 } 330