1 //===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner  --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a model runner using Tensorflow C APIs, allowing the
10 // loading of a model from a command line option.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "llvm/Config/config.h"
14 #if defined(LLVM_HAVE_TF_API)
15 
16 #include "llvm/Analysis/CallGraph.h"
17 #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
18 #include "llvm/Analysis/MLInlineAdvisor.h"
19 #include "llvm/Analysis/NoInferenceModelRunner.h"
20 #include "llvm/Analysis/Utils/TFUtils.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/ManagedStatic.h"
24 
25 #include <vector>
26 
27 using namespace llvm;
28 
29 static cl::opt<std::string> TrainingLog(
30     "training-log", cl::Hidden,
31     cl::desc("Path where the development - mode inlining log is saved."));
32 
33 static cl::opt<std::string> TFModelUnderTrainingPath(
34     "ml-inliner-model-under-training", cl::Hidden,
35     cl::desc(R"(Path to SavedModel from the previous training iteration.
36 The directory is also expected to contain a JSON specification of the
37 outputs expected to be logged, where the first entry must be the
38 inlining decision. The file containing the specification should be
39 called output_spec.json. The expected JSON value is an array of
40 dictionaries. Each dictionary should have 2 keys:
41 
42 - "tensor_spec, followed by the TensorSpec description of the
43 output; and
44 - "logging_name", a string indicating the name to use when
45 logging the output values.
46 
47 Example:
48 [
49   {
50     "logging_name" : "some_name",
51     "tensor_spec" : {
52       "name" : "model_name",
53       "port" : 0,
54       "shape" : [2, 3],
55       "type" : "float"
56       }
57   }
58 ]
59 
60 The first value must always correspond to the decision.)"));
61 
62 static cl::opt<std::string> TFOutputSpecOverride(
63     "ml-inliner-output-spec-override", cl::Hidden,
64     cl::desc("Override the path to the output spec json file. See "
65              "-ml-inliner-model-under-training documentation for the "
66              "specification of that file."));
67 
68 static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix",
69                                          cl::Hidden, cl::init("action_"),
70                                          cl::desc("Prefix for feature names."));
71 
72 namespace {
73 /// An InlineEvent, used by TrainingLogger.
74 struct InlineEvent {
75   /// What the default policy's decision would have been.
76   int64_t DefaultDecision = 0;
77 
78   /// What we advised. When training off the default policy, this is the same as
79   /// DefaultDecision.
80   int64_t AdvisedDecision = 0;
81 
82   /// What actually happened. This would be 'false' in the case of an inline
83   /// error, even if AdvisedDecision were true, otherwise it agrees with
84   /// AdvisedDecision.
85   bool Effect = false;
86 
87   /// What the change in size was: size_after - size_before
88   int64_t Reward = 0;
89 };
90 
91 /// Collect data we may use for training a model, and write it as a textual
92 /// Tensorflow SequenceExample
93 /// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample)
94 /// protobuf (https://developers.google.com/protocol-buffers).
95 /// Because this is a protobuf, we cannot just stream the events as they come.
96 /// Internally, TrainingLogger stores data in column-major format, because that
97 /// lines up with how TF SequenceExample represents it.
98 class ModelUnderTrainingRunner;
99 class TrainingLogger final {
100 public:
101   TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR);
102 
103   /// Log one inlining event.
104   void logInlineEvent(const InlineEvent &Event,
105                       const MLModelRunner &ModelRunner);
106 
107   /// Print the stored tensors.
108   void print();
109 
110 private:
111   StringRef LogFileName;
112   const ModelUnderTrainingRunner *const MUTR;
113   std::unique_ptr<Logger> L;
114   std::vector<bool> Effects;
115   /// There's at least one output. We'll set this to a different value if MUTR
116   /// is avaliable.
117   size_t OutputCount = 1;
118   /// Set these 2 clearly OOB, to make sure we set them later.
119   size_t DefaultDecisionPos = std::numeric_limits<size_t>::max();
120   size_t DecisionPos = std::numeric_limits<size_t>::max();
121 };
122 
123 /// An extension of the MLInlineAdvisor for the 'development' mode, targeting
124 /// the offline training scenario. Note that training happens outside of the
125 /// compiler, this facility is concerned with producing training data ("logs").
126 /// This InlineAdvisor can operate in the following modes:
127 ///
128 /// 1) collect logs for the default policy. This is useful for bootstrapping
129 /// training, which will be considerably faster by starting from a reasonable
130 /// policy.
131 ///
132 /// 2) collect logs for the ML policy, using a model from a previous
133 /// training. Potentially, that model uses internally some small random
134 /// perturbation of its weights, to induce exploration (setting this up is the
135 /// responsibility of the training algorithm). The logs would then be used to
136 /// retrain and improve on this model.
137 ///
138 /// 3) use the provided model, with no logging. This is useful for end to end
139 /// validation - the model, in this case, is a release candidate and shouldn't
140 /// have random perturbations. It is a convenience feature: rather than needing
141 /// to take the release candidate model and compile it in 'release' mode,
142 /// validate it, then potentially discard it, it's easier to just pass the model
143 /// to the compiler, albeit compilation would be slower, as a one-off. Once the
144 /// model behaves satisfactorily, it can be compiled AOT, for efficiency, in
145 /// release mode. The expectation is that a well-trained model provides a good
146 /// policy over a sufficiently diverse codebase, over many changes (i.e.
147 /// training happens seldom).
148 class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor {
149 public:
150   DevelopmentModeMLInlineAdvisor(
151       Module &M, ModuleAnalysisManager &MAM,
152       std::unique_ptr<MLModelRunner> ModelRunner,
153       std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference,
154       std::unique_ptr<TrainingLogger> Logger);
155 
156   size_t getTotalSizeEstimate();
157 
158   virtual ~DevelopmentModeMLInlineAdvisor();
159   void updateNativeSizeEstimate(int64_t Change) {
160     *CurrentNativeSize += Change;
161   }
162   void resetNativeSize(Function *F) {
163     PreservedAnalyses PA = PreservedAnalyses::all();
164     PA.abandon<InlineSizeEstimatorAnalysis>();
165     FAM.invalidate(*F, PA);
166   }
167 
168   std::unique_ptr<MLInlineAdvice>
169   getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override;
170 
171   Optional<size_t> getNativeSizeEstimate(const Function &F) const;
172 
173 private:
174   bool isLogging() const { return !!Logger; }
175   std::unique_ptr<MLInlineAdvice> getMandatoryAdviceImpl(CallBase &CB) override;
176 
177   std::function<bool(CallBase &)> GetDefaultAdvice;
178   const bool IsDoingInference;
179   std::unique_ptr<TrainingLogger> Logger;
180 
181   const Optional<int32_t> InitialNativeSize;
182   Optional<int32_t> CurrentNativeSize;
183 };
184 
185 /// A variant of MLInlineAdvice that tracks all non-trivial inlining
186 /// decisions, for training/logging.
187 class LoggingMLInlineAdvice : public MLInlineAdvice {
188 public:
189   LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB,
190                         OptimizationRemarkEmitter &ORE, bool Recommendation,
191                         TrainingLogger &Logger,
192                         Optional<size_t> CallerSizeEstimateBefore,
193                         Optional<size_t> CalleeSizeEstimateBefore,
194                         bool DefaultDecision, bool Mandatory = false)
195       : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger),
196         CallerSizeEstimateBefore(CallerSizeEstimateBefore),
197         CalleeSizeEstimateBefore(CalleeSizeEstimateBefore),
198         DefaultDecision(DefaultDecision), Mandatory(Mandatory) {}
199 
200   virtual ~LoggingMLInlineAdvice() = default;
201 
202 private:
203   DevelopmentModeMLInlineAdvisor *getAdvisor() const {
204     return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor);
205   }
206   void recordInliningImpl() override {
207     MLInlineAdvice::recordInliningImpl();
208     getAdvisor()->resetNativeSize(Caller);
209     int Reward = std::numeric_limits<int>::max();
210     if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() &&
211         !getAdvisor()->isForcedToStop()) {
212       int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) +
213                             *CalleeSizeEstimateBefore;
214       Reward = NativeSizeAfter -
215                (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore);
216       getAdvisor()->updateNativeSizeEstimate(Reward);
217     }
218     log(Reward, /*Success=*/true);
219   }
220 
221   void recordInliningWithCalleeDeletedImpl() override {
222     MLInlineAdvice::recordInliningWithCalleeDeletedImpl();
223     getAdvisor()->resetNativeSize(Caller);
224     if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() &&
225         !getAdvisor()->isForcedToStop()) {
226       int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller);
227       int Reward = NativeSizeAfter -
228                    (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore);
229       getAdvisor()->updateNativeSizeEstimate(Reward);
230       log(Reward, /*Success=*/true);
231     } else {
232       log(NoReward, /*Success=*/true);
233     }
234   }
235 
236   void recordUnsuccessfulInliningImpl(const InlineResult &Result) override {
237     MLInlineAdvice::recordUnsuccessfulInliningImpl(Result);
238     log(NoReward, /*Success=*/false);
239   }
240 
241   void recordUnattemptedInliningImpl() override {
242     MLInlineAdvice::recordUnattemptedInliningImpl();
243     log(NoReward, /*Success=*/false);
244   }
245 
246   void log(int64_t Reward, bool Success) {
247     if (Mandatory)
248       return;
249     InlineEvent Event;
250     Event.AdvisedDecision = isInliningRecommended();
251     Event.DefaultDecision = DefaultDecision;
252     Event.Effect = Success;
253     Event.Reward = Reward;
254     Logger.logInlineEvent(Event, getAdvisor()->getModelRunner());
255   }
256 
257   static const int64_t NoReward = 0;
258   TrainingLogger &Logger;
259   const Optional<size_t> CallerSizeEstimateBefore;
260   const Optional<size_t> CalleeSizeEstimateBefore;
261   const int64_t DefaultDecision;
262   const int64_t Mandatory;
263 };
264 
265 /// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs
266 /// to dynamically load and evaluate a TF SavedModel
267 /// (https://www.tensorflow.org/guide/saved_model). Runtime performance is
268 /// sacrificed for ease of use while training.
269 class ModelUnderTrainingRunner final : public MLModelRunner {
270 public:
271   ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath);
272 
273   // Disallows copy and assign.
274   ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete;
275   ModelUnderTrainingRunner &
276   operator=(const ModelUnderTrainingRunner &) = delete;
277 
278   bool isValid() const { return !!Evaluator; }
279 
280   const std::vector<LoggedFeatureSpec> &outputLoggedFeatureSpecs() const {
281     return OutputSpecs;
282   }
283 
284   const Optional<TFModelEvaluator::EvaluationResult> &
285   lastEvaluationResult() const {
286     return LastEvaluationResult;
287   }
288 
289   static const std::vector<TensorSpec> getInputFeatures() {
290     std::vector<TensorSpec> InputSpecs;
291     for (size_t I = 0; I < NumberOfFeatures; ++I)
292       InputSpecs.push_back(TensorSpec::createSpec<int64_t>(
293           TFFeedPrefix + FeatureNameMap[I], {1}));
294     append_range(InputSpecs, TrainingOnlyFeatures);
295     return InputSpecs;
296   }
297 
298 private:
299   std::unique_ptr<TFModelEvaluator> Evaluator;
300   std::vector<LoggedFeatureSpec> OutputSpecs;
301   Optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult;
302   void *evaluateUntyped() override;
303   void *getTensorUntyped(size_t Index) override;
304 
305   // The training framework needs some additional features.
306   const static std::vector<TensorSpec> TrainingOnlyFeatures;
307 };
308 
309 const std::vector<TensorSpec> ModelUnderTrainingRunner::TrainingOnlyFeatures{
310     TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}),
311     TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}),
312     TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}),
313     TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})};
314 } // namespace
315 
316 TrainingLogger::TrainingLogger(StringRef LogFileName,
317                                const ModelUnderTrainingRunner *MUTR)
318     : LogFileName(LogFileName), MUTR(MUTR) {
319   // The first output is the inlining decision.
320   if (MUTR)
321     OutputCount = MUTR->outputLoggedFeatureSpecs().size();
322   std::vector<LoggedFeatureSpec> FT;
323 
324   for (size_t I = 0; I < NumberOfFeatures; ++I)
325     FT.push_back(
326         {TensorSpec::createSpec<int64_t>(FeatureNameMap.at(I), {1}), None});
327   if (MUTR && MUTR->outputLoggedFeatureSpecs().size() > 1)
328     append_range(FT, drop_begin(MUTR->outputLoggedFeatureSpecs()));
329 
330   DefaultDecisionPos = FT.size();
331   FT.push_back(
332       {TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}), None});
333 
334   DecisionPos = FT.size();
335   FT.push_back({TensorSpec::createSpec<int64_t>(DecisionName, {1}), None});
336 
337   L = std::make_unique<Logger>(
338       FT, TensorSpec::createSpec<int64_t>(RewardName, {1}),
339       InlineSizeEstimatorAnalysis::isEvaluatorRequested());
340 }
341 
342 /// Log one inlining event.
343 void TrainingLogger::logInlineEvent(const InlineEvent &Event,
344                                     const MLModelRunner &ModelRunner) {
345   size_t CurrentFeature = 0;
346   for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature) {
347     int64_t F = *ModelRunner.getTensor<int64_t>(CurrentFeature);
348     L->logInt64Value(CurrentFeature, &F);
349   }
350 
351   for (size_t I = 1; I < OutputCount; ++I) {
352     const auto &Result = *MUTR->lastEvaluationResult();
353     const char *RawData =
354         reinterpret_cast<const char *>(Result.getUntypedTensorValue(I));
355     L->logSpecifiedTensorValue(CurrentFeature, RawData);
356     ++CurrentFeature;
357   }
358 
359   assert(CurrentFeature == DefaultDecisionPos);
360   L->logInt64Value(DefaultDecisionPos, &Event.DefaultDecision);
361   L->logInt64Value(DecisionPos, &Event.AdvisedDecision);
362   if (InlineSizeEstimatorAnalysis::isEvaluatorRequested())
363     L->logInt64Reward(Event.Reward);
364 
365   // For debugging / later use
366   Effects.push_back(Event.Effect);
367 }
368 
369 void TrainingLogger::print() {
370   std::error_code EC;
371   raw_fd_ostream OutFile(LogFileName, EC);
372   L->flush(OutFile);
373 }
374 
375 DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor(
376     Module &M, ModuleAnalysisManager &MAM,
377     std::unique_ptr<MLModelRunner> ModelRunner,
378     std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference,
379     std::unique_ptr<TrainingLogger> Logger)
380     : MLInlineAdvisor(M, MAM, std::move(ModelRunner)),
381       GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference),
382       Logger(std::move(Logger)),
383       InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0),
384       CurrentNativeSize(InitialNativeSize) {
385   // We cannot have the case of neither inference nor logging.
386   assert(IsDoingInference || isLogging());
387 }
388 
389 DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() {
390   if (isLogging())
391     Logger->print();
392 }
393 
394 Optional<size_t>
395 DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const {
396   if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested())
397     return None;
398   auto &R =
399       FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F));
400   if (!R) {
401     F.getParent()->getContext().emitError(
402         "Native size estimator is not present.");
403     return 0;
404   }
405   return *R;
406 }
407 
408 std::unique_ptr<MLInlineAdvice>
409 DevelopmentModeMLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
410   return std::make_unique<LoggingMLInlineAdvice>(
411       /*Advisor=*/this,
412       /*CB=*/CB, /*ORE=*/getCallerORE(CB), /*Recommendation=*/true,
413       /*Logger=*/*Logger,
414       /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
415       /*CalleeSizeEstimateBefore=*/
416       getNativeSizeEstimate(*CB.getCalledFunction()),
417       /*DefaultDecision=*/true, /*Mandatory*/ true);
418 }
419 
420 std::unique_ptr<MLInlineAdvice>
421 DevelopmentModeMLInlineAdvisor::getAdviceFromModel(
422     CallBase &CB, OptimizationRemarkEmitter &ORE) {
423   if (IsDoingInference && !isLogging())
424     return MLInlineAdvisor::getAdviceFromModel(CB, ORE);
425 
426   bool DefaultAdvice = GetDefaultAdvice(CB);
427   auto Recommendation =
428       IsDoingInference ? static_cast<bool>(ModelRunner->evaluate<int64_t>())
429                        : DefaultAdvice;
430   return std::make_unique<LoggingMLInlineAdvice>(
431       /*Advisor=*/this,
432       /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation,
433       /*Logger=*/*Logger,
434       /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()),
435       /*CalleeSizeEstimateBefore=*/
436       getNativeSizeEstimate(*CB.getCalledFunction()),
437       /*DefaultDecision=*/DefaultAdvice);
438 }
439 
440 size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() {
441   if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested())
442     return 0;
443   size_t Ret = 0;
444   for (auto &F : M) {
445     if (F.isDeclaration())
446       continue;
447     if (isFunctionDeleted(&F))
448       continue;
449     Ret += *getNativeSizeEstimate(F);
450   }
451   return Ret;
452 }
453 
454 ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx,
455                                                    const std::string &ModelPath)
456     : MLModelRunner(Ctx) {
457   std::vector<TensorSpec> InputSpecs =
458       ModelUnderTrainingRunner::getInputFeatures();
459   if (auto MaybeOutSpecs =
460           loadOutputSpecs(Ctx, DecisionName, ModelPath, TFOutputSpecOverride))
461     OutputSpecs = std::move(*MaybeOutSpecs);
462   else
463     return;
464 
465   Evaluator = std::make_unique<TFModelEvaluator>(
466       ModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I].Spec; },
467       OutputSpecs.size());
468   if (!Evaluator || !Evaluator->isValid()) {
469     Ctx.emitError("Failed to create inliner saved model evaluator");
470     Evaluator.reset();
471     return;
472   }
473 }
474 
475 void *ModelUnderTrainingRunner::evaluateUntyped() {
476   LastEvaluationResult = Evaluator->evaluate();
477   if (!LastEvaluationResult.hasValue()) {
478     Ctx.emitError("Error evaluating model.");
479     return nullptr;
480   }
481   return LastEvaluationResult->getTensorValue<int64_t>(0);
482 }
483 
484 void *ModelUnderTrainingRunner::getTensorUntyped(size_t Index) {
485   return Evaluator->getUntypedInput(Index);
486 }
487 
488 std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor(
489     Module &M, ModuleAnalysisManager &MAM,
490     std::function<bool(CallBase &)> GetDefaultAdvice) {
491   auto &Ctx = M.getContext();
492   std::unique_ptr<MLModelRunner> Runner;
493   ModelUnderTrainingRunner *MUTRPtr = nullptr;
494   bool IsDoingInference = false;
495   if (TFModelUnderTrainingPath.empty())
496     Runner.reset(new NoInferenceModelRunner(
497         Ctx, ModelUnderTrainingRunner::getInputFeatures()));
498   else {
499     auto MUTR = std::make_unique<ModelUnderTrainingRunner>(
500         Ctx, TFModelUnderTrainingPath);
501     if (!MUTR || !MUTR->isValid()) {
502       Ctx.emitError("Could not load the policy model from the provided path");
503       return nullptr;
504     }
505     IsDoingInference = true;
506     MUTRPtr = MUTR.get();
507     Runner = std::move(MUTR);
508   }
509   std::unique_ptr<TrainingLogger> Logger;
510   if (!TrainingLog.empty())
511     Logger = std::make_unique<TrainingLogger>(TrainingLog, MUTRPtr);
512 
513   return std::make_unique<DevelopmentModeMLInlineAdvisor>(
514       M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference,
515       std::move(Logger));
516 }
517 #endif // defined(LLVM_HAVE_TF_API)
518