1 //===- DevelopmentModeInlineAdvisor.cpp - runtime-loadable model runner --===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a model runner using Tensorflow C APIs, allowing the 10 // loading of a model from a command line option. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "llvm/Config/config.h" 14 #if defined(LLVM_HAVE_TF_API) 15 16 #include "llvm/Analysis/CallGraph.h" 17 #include "llvm/Analysis/InlineSizeEstimatorAnalysis.h" 18 #include "llvm/Analysis/MLInlineAdvisor.h" 19 #include "llvm/Analysis/NoInferenceModelRunner.h" 20 #include "llvm/Analysis/Utils/TFUtils.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/Support/ManagedStatic.h" 24 25 #include <vector> 26 27 using namespace llvm; 28 29 static cl::opt<std::string> TrainingLog( 30 "training-log", cl::Hidden, 31 cl::desc("Path where the development - mode inlining log is saved.")); 32 33 static cl::opt<std::string> TFModelUnderTrainingPath( 34 "ml-inliner-model-under-training", cl::Hidden, 35 cl::desc(R"(Path to SavedModel from the previous training iteration. 36 The directory is also expected to contain a JSON specification of the 37 outputs expected to be logged, where the first entry must be the 38 inlining decision. The file containing the specification should be 39 called output_spec.json. The expected JSON value is an array of 40 dictionaries. Each dictionary should have 2 keys: 41 42 - "tensor_spec, followed by the TensorSpec description of the 43 output; and 44 - "logging_name", a string indicating the name to use when 45 logging the output values. 46 47 Example: 48 [ 49 { 50 "logging_name" : "some_name", 51 "tensor_spec" : { 52 "name" : "model_name", 53 "port" : 0, 54 "shape" : [2, 3], 55 "type" : "float" 56 } 57 } 58 ] 59 60 The first value must always correspond to the decision.)")); 61 62 static cl::opt<std::string> TFOutputSpecOverride( 63 "ml-inliner-output-spec-override", cl::Hidden, 64 cl::desc("Override the path to the output spec json file. See " 65 "-ml-inliner-model-under-training documentation for the " 66 "specification of that file.")); 67 68 static cl::opt<std::string> TFFeedPrefix("ml-inliner-trained-model-feed-prefix", 69 cl::Hidden, cl::init("action_"), 70 cl::desc("Prefix for feature names.")); 71 72 namespace { 73 /// An InlineEvent, used by TrainingLogger. 74 struct InlineEvent { 75 /// What the default policy's decision would have been. 76 int64_t DefaultDecision = 0; 77 78 /// What we advised. When training off the default policy, this is the same as 79 /// DefaultDecision. 80 int64_t AdvisedDecision = 0; 81 82 /// What actually happened. This would be 'false' in the case of an inline 83 /// error, even if AdvisedDecision were true, otherwise it agrees with 84 /// AdvisedDecision. 85 bool Effect = false; 86 87 /// What the change in size was: size_after - size_before 88 int64_t Reward = 0; 89 }; 90 91 /// Collect data we may use for training a model, and write it as a textual 92 /// Tensorflow SequenceExample 93 /// (https://www.tensorflow.org/api_docs/python/tf/train/SequenceExample) 94 /// protobuf (https://developers.google.com/protocol-buffers). 95 /// Because this is a protobuf, we cannot just stream the events as they come. 96 /// Internally, TrainingLogger stores data in column-major format, because that 97 /// lines up with how TF SequenceExample represents it. 98 class ModelUnderTrainingRunner; 99 class TrainingLogger final { 100 public: 101 TrainingLogger(StringRef LogFileName, const ModelUnderTrainingRunner *MUTR); 102 103 /// Log one inlining event. 104 void logInlineEvent(const InlineEvent &Event, 105 const MLModelRunner &ModelRunner); 106 107 /// Print the stored tensors. 108 void print(); 109 110 private: 111 StringRef LogFileName; 112 const ModelUnderTrainingRunner *const MUTR; 113 std::unique_ptr<Logger> L; 114 std::vector<bool> Effects; 115 /// There's at least one output. We'll set this to a different value if MUTR 116 /// is avaliable. 117 size_t OutputCount = 1; 118 /// Set these 2 clearly OOB, to make sure we set them later. 119 size_t DefaultDecisionPos = std::numeric_limits<size_t>::max(); 120 size_t DecisionPos = std::numeric_limits<size_t>::max(); 121 }; 122 123 /// An extension of the MLInlineAdvisor for the 'development' mode, targeting 124 /// the offline training scenario. Note that training happens outside of the 125 /// compiler, this facility is concerned with producing training data ("logs"). 126 /// This InlineAdvisor can operate in the following modes: 127 /// 128 /// 1) collect logs for the default policy. This is useful for bootstrapping 129 /// training, which will be considerably faster by starting from a reasonable 130 /// policy. 131 /// 132 /// 2) collect logs for the ML policy, using a model from a previous 133 /// training. Potentially, that model uses internally some small random 134 /// perturbation of its weights, to induce exploration (setting this up is the 135 /// responsibility of the training algorithm). The logs would then be used to 136 /// retrain and improve on this model. 137 /// 138 /// 3) use the provided model, with no logging. This is useful for end to end 139 /// validation - the model, in this case, is a release candidate and shouldn't 140 /// have random perturbations. It is a convenience feature: rather than needing 141 /// to take the release candidate model and compile it in 'release' mode, 142 /// validate it, then potentially discard it, it's easier to just pass the model 143 /// to the compiler, albeit compilation would be slower, as a one-off. Once the 144 /// model behaves satisfactorily, it can be compiled AOT, for efficiency, in 145 /// release mode. The expectation is that a well-trained model provides a good 146 /// policy over a sufficiently diverse codebase, over many changes (i.e. 147 /// training happens seldom). 148 class DevelopmentModeMLInlineAdvisor : public MLInlineAdvisor { 149 public: 150 DevelopmentModeMLInlineAdvisor( 151 Module &M, ModuleAnalysisManager &MAM, 152 std::unique_ptr<MLModelRunner> ModelRunner, 153 std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference, 154 std::unique_ptr<TrainingLogger> Logger); 155 156 size_t getTotalSizeEstimate(); 157 158 virtual ~DevelopmentModeMLInlineAdvisor(); 159 void updateNativeSizeEstimate(int64_t Change) { 160 *CurrentNativeSize += Change; 161 } 162 void resetNativeSize(Function *F) { 163 PreservedAnalyses PA = PreservedAnalyses::all(); 164 PA.abandon<InlineSizeEstimatorAnalysis>(); 165 FAM.invalidate(*F, PA); 166 } 167 168 std::unique_ptr<MLInlineAdvice> 169 getAdviceFromModel(CallBase &CB, OptimizationRemarkEmitter &ORE) override; 170 171 Optional<size_t> getNativeSizeEstimate(const Function &F) const; 172 173 private: 174 bool isLogging() const { return !!Logger; } 175 std::unique_ptr<MLInlineAdvice> getMandatoryAdviceImpl(CallBase &CB) override; 176 177 std::function<bool(CallBase &)> GetDefaultAdvice; 178 const bool IsDoingInference; 179 std::unique_ptr<TrainingLogger> Logger; 180 181 const Optional<int32_t> InitialNativeSize; 182 Optional<int32_t> CurrentNativeSize; 183 }; 184 185 /// A variant of MLInlineAdvice that tracks all non-trivial inlining 186 /// decisions, for training/logging. 187 class LoggingMLInlineAdvice : public MLInlineAdvice { 188 public: 189 LoggingMLInlineAdvice(DevelopmentModeMLInlineAdvisor *Advisor, CallBase &CB, 190 OptimizationRemarkEmitter &ORE, bool Recommendation, 191 TrainingLogger &Logger, 192 Optional<size_t> CallerSizeEstimateBefore, 193 Optional<size_t> CalleeSizeEstimateBefore, 194 bool DefaultDecision, bool Mandatory = false) 195 : MLInlineAdvice(Advisor, CB, ORE, Recommendation), Logger(Logger), 196 CallerSizeEstimateBefore(CallerSizeEstimateBefore), 197 CalleeSizeEstimateBefore(CalleeSizeEstimateBefore), 198 DefaultDecision(DefaultDecision), Mandatory(Mandatory) {} 199 200 virtual ~LoggingMLInlineAdvice() = default; 201 202 private: 203 DevelopmentModeMLInlineAdvisor *getAdvisor() const { 204 return static_cast<DevelopmentModeMLInlineAdvisor *>(Advisor); 205 } 206 void recordInliningImpl() override { 207 MLInlineAdvice::recordInliningImpl(); 208 getAdvisor()->resetNativeSize(Caller); 209 int Reward = std::numeric_limits<int>::max(); 210 if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && 211 !getAdvisor()->isForcedToStop()) { 212 int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller) + 213 *CalleeSizeEstimateBefore; 214 Reward = NativeSizeAfter - 215 (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); 216 getAdvisor()->updateNativeSizeEstimate(Reward); 217 } 218 log(Reward, /*Success=*/true); 219 } 220 221 void recordInliningWithCalleeDeletedImpl() override { 222 MLInlineAdvice::recordInliningWithCalleeDeletedImpl(); 223 getAdvisor()->resetNativeSize(Caller); 224 if (InlineSizeEstimatorAnalysis::isEvaluatorRequested() && 225 !getAdvisor()->isForcedToStop()) { 226 int NativeSizeAfter = *getAdvisor()->getNativeSizeEstimate(*Caller); 227 int Reward = NativeSizeAfter - 228 (*CallerSizeEstimateBefore + *CalleeSizeEstimateBefore); 229 getAdvisor()->updateNativeSizeEstimate(Reward); 230 log(Reward, /*Success=*/true); 231 } else { 232 log(NoReward, /*Success=*/true); 233 } 234 } 235 236 void recordUnsuccessfulInliningImpl(const InlineResult &Result) override { 237 MLInlineAdvice::recordUnsuccessfulInliningImpl(Result); 238 log(NoReward, /*Success=*/false); 239 } 240 241 void recordUnattemptedInliningImpl() override { 242 MLInlineAdvice::recordUnattemptedInliningImpl(); 243 log(NoReward, /*Success=*/false); 244 } 245 246 void log(int64_t Reward, bool Success) { 247 if (Mandatory) 248 return; 249 InlineEvent Event; 250 Event.AdvisedDecision = isInliningRecommended(); 251 Event.DefaultDecision = DefaultDecision; 252 Event.Effect = Success; 253 Event.Reward = Reward; 254 Logger.logInlineEvent(Event, getAdvisor()->getModelRunner()); 255 } 256 257 static const int64_t NoReward = 0; 258 TrainingLogger &Logger; 259 const Optional<size_t> CallerSizeEstimateBefore; 260 const Optional<size_t> CalleeSizeEstimateBefore; 261 const int64_t DefaultDecision; 262 const int64_t Mandatory; 263 }; 264 265 /// ModelUnderTrainingRunner - training mode implementation. It uses TF C APIs 266 /// to dynamically load and evaluate a TF SavedModel 267 /// (https://www.tensorflow.org/guide/saved_model). Runtime performance is 268 /// sacrificed for ease of use while training. 269 class ModelUnderTrainingRunner final : public MLModelRunner { 270 public: 271 ModelUnderTrainingRunner(LLVMContext &Ctx, const std::string &ModelPath); 272 273 // Disallows copy and assign. 274 ModelUnderTrainingRunner(const ModelUnderTrainingRunner &) = delete; 275 ModelUnderTrainingRunner & 276 operator=(const ModelUnderTrainingRunner &) = delete; 277 278 bool isValid() const { return !!Evaluator; } 279 280 const std::vector<LoggedFeatureSpec> &outputLoggedFeatureSpecs() const { 281 return OutputSpecs; 282 } 283 284 const Optional<TFModelEvaluator::EvaluationResult> & 285 lastEvaluationResult() const { 286 return LastEvaluationResult; 287 } 288 289 static const std::vector<TensorSpec> getInputFeatures() { 290 std::vector<TensorSpec> InputSpecs; 291 for (size_t I = 0; I < NumberOfFeatures; ++I) 292 InputSpecs.push_back(TensorSpec::createSpec<int64_t>( 293 TFFeedPrefix + FeatureNameMap[I], {1})); 294 append_range(InputSpecs, TrainingOnlyFeatures); 295 return InputSpecs; 296 } 297 298 private: 299 std::unique_ptr<TFModelEvaluator> Evaluator; 300 std::vector<LoggedFeatureSpec> OutputSpecs; 301 Optional<TFModelEvaluator::EvaluationResult> LastEvaluationResult; 302 void *evaluateUntyped() override; 303 void *getTensorUntyped(size_t Index) override; 304 305 // The training framework needs some additional features. 306 const static std::vector<TensorSpec> TrainingOnlyFeatures; 307 }; 308 309 const std::vector<TensorSpec> ModelUnderTrainingRunner::TrainingOnlyFeatures{ 310 TensorSpec::createSpec<int64_t>(TFFeedPrefix + "inlining_default", {1}), 311 TensorSpec::createSpec<float>(TFFeedPrefix + "discount", {1}), 312 TensorSpec::createSpec<float>(TFFeedPrefix + "reward", {1}), 313 TensorSpec::createSpec<int32_t>(TFFeedPrefix + "step_type", {1})}; 314 } // namespace 315 316 TrainingLogger::TrainingLogger(StringRef LogFileName, 317 const ModelUnderTrainingRunner *MUTR) 318 : LogFileName(LogFileName), MUTR(MUTR) { 319 // The first output is the inlining decision. 320 if (MUTR) 321 OutputCount = MUTR->outputLoggedFeatureSpecs().size(); 322 std::vector<LoggedFeatureSpec> FT; 323 324 for (size_t I = 0; I < NumberOfFeatures; ++I) 325 FT.push_back( 326 {TensorSpec::createSpec<int64_t>(FeatureNameMap.at(I), {1}), None}); 327 if (MUTR && MUTR->outputLoggedFeatureSpecs().size() > 1) 328 append_range(FT, drop_begin(MUTR->outputLoggedFeatureSpecs())); 329 330 DefaultDecisionPos = FT.size(); 331 FT.push_back( 332 {TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1}), None}); 333 334 DecisionPos = FT.size(); 335 FT.push_back({TensorSpec::createSpec<int64_t>(DecisionName, {1}), None}); 336 337 L = std::make_unique<Logger>( 338 FT, TensorSpec::createSpec<int64_t>(RewardName, {1}), 339 InlineSizeEstimatorAnalysis::isEvaluatorRequested()); 340 } 341 342 /// Log one inlining event. 343 void TrainingLogger::logInlineEvent(const InlineEvent &Event, 344 const MLModelRunner &ModelRunner) { 345 size_t CurrentFeature = 0; 346 for (; CurrentFeature < NumberOfFeatures; ++CurrentFeature) { 347 int64_t F = *ModelRunner.getTensor<int64_t>(CurrentFeature); 348 L->logInt64Value(CurrentFeature, &F); 349 } 350 351 for (size_t I = 1; I < OutputCount; ++I) { 352 const auto &Result = *MUTR->lastEvaluationResult(); 353 const char *RawData = 354 reinterpret_cast<const char *>(Result.getUntypedTensorValue(I)); 355 L->logSpecifiedTensorValue(CurrentFeature, RawData); 356 ++CurrentFeature; 357 } 358 359 assert(CurrentFeature == DefaultDecisionPos); 360 L->logInt64Value(DefaultDecisionPos, &Event.DefaultDecision); 361 L->logInt64Value(DecisionPos, &Event.AdvisedDecision); 362 if (InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 363 L->logInt64Reward(Event.Reward); 364 365 // For debugging / later use 366 Effects.push_back(Event.Effect); 367 } 368 369 void TrainingLogger::print() { 370 std::error_code EC; 371 raw_fd_ostream OutFile(LogFileName, EC); 372 L->flush(OutFile); 373 } 374 375 DevelopmentModeMLInlineAdvisor::DevelopmentModeMLInlineAdvisor( 376 Module &M, ModuleAnalysisManager &MAM, 377 std::unique_ptr<MLModelRunner> ModelRunner, 378 std::function<bool(CallBase &)> GetDefaultAdvice, bool IsDoingInference, 379 std::unique_ptr<TrainingLogger> Logger) 380 : MLInlineAdvisor(M, MAM, std::move(ModelRunner)), 381 GetDefaultAdvice(GetDefaultAdvice), IsDoingInference(IsDoingInference), 382 Logger(std::move(Logger)), 383 InitialNativeSize(isLogging() ? getTotalSizeEstimate() : 0), 384 CurrentNativeSize(InitialNativeSize) { 385 // We cannot have the case of neither inference nor logging. 386 assert(IsDoingInference || isLogging()); 387 } 388 389 DevelopmentModeMLInlineAdvisor::~DevelopmentModeMLInlineAdvisor() { 390 if (isLogging()) 391 Logger->print(); 392 } 393 394 Optional<size_t> 395 DevelopmentModeMLInlineAdvisor::getNativeSizeEstimate(const Function &F) const { 396 if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 397 return None; 398 auto &R = 399 FAM.getResult<InlineSizeEstimatorAnalysis>(const_cast<Function &>(F)); 400 if (!R) { 401 F.getParent()->getContext().emitError( 402 "Native size estimator is not present."); 403 return 0; 404 } 405 return *R; 406 } 407 408 std::unique_ptr<MLInlineAdvice> 409 DevelopmentModeMLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) { 410 return std::make_unique<LoggingMLInlineAdvice>( 411 /*Advisor=*/this, 412 /*CB=*/CB, /*ORE=*/getCallerORE(CB), /*Recommendation=*/true, 413 /*Logger=*/*Logger, 414 /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), 415 /*CalleeSizeEstimateBefore=*/ 416 getNativeSizeEstimate(*CB.getCalledFunction()), 417 /*DefaultDecision=*/true, /*Mandatory*/ true); 418 } 419 420 std::unique_ptr<MLInlineAdvice> 421 DevelopmentModeMLInlineAdvisor::getAdviceFromModel( 422 CallBase &CB, OptimizationRemarkEmitter &ORE) { 423 if (IsDoingInference && !isLogging()) 424 return MLInlineAdvisor::getAdviceFromModel(CB, ORE); 425 426 bool DefaultAdvice = GetDefaultAdvice(CB); 427 auto Recommendation = 428 IsDoingInference ? static_cast<bool>(ModelRunner->evaluate<int64_t>()) 429 : DefaultAdvice; 430 return std::make_unique<LoggingMLInlineAdvice>( 431 /*Advisor=*/this, 432 /*CB=*/CB, /*ORE=*/ORE, /*Recommendation=*/Recommendation, 433 /*Logger=*/*Logger, 434 /*CallerSizeEstimateBefore=*/getNativeSizeEstimate(*CB.getCaller()), 435 /*CalleeSizeEstimateBefore=*/ 436 getNativeSizeEstimate(*CB.getCalledFunction()), 437 /*DefaultDecision=*/DefaultAdvice); 438 } 439 440 size_t DevelopmentModeMLInlineAdvisor::getTotalSizeEstimate() { 441 if (!InlineSizeEstimatorAnalysis::isEvaluatorRequested()) 442 return 0; 443 size_t Ret = 0; 444 for (auto &F : M) { 445 if (F.isDeclaration()) 446 continue; 447 if (isFunctionDeleted(&F)) 448 continue; 449 Ret += *getNativeSizeEstimate(F); 450 } 451 return Ret; 452 } 453 454 ModelUnderTrainingRunner::ModelUnderTrainingRunner(LLVMContext &Ctx, 455 const std::string &ModelPath) 456 : MLModelRunner(Ctx) { 457 std::vector<TensorSpec> InputSpecs = 458 ModelUnderTrainingRunner::getInputFeatures(); 459 if (auto MaybeOutSpecs = 460 loadOutputSpecs(Ctx, DecisionName, ModelPath, TFOutputSpecOverride)) 461 OutputSpecs = std::move(*MaybeOutSpecs); 462 else 463 return; 464 465 Evaluator = std::make_unique<TFModelEvaluator>( 466 ModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I].Spec; }, 467 OutputSpecs.size()); 468 if (!Evaluator || !Evaluator->isValid()) { 469 Ctx.emitError("Failed to create inliner saved model evaluator"); 470 Evaluator.reset(); 471 return; 472 } 473 } 474 475 void *ModelUnderTrainingRunner::evaluateUntyped() { 476 LastEvaluationResult = Evaluator->evaluate(); 477 if (!LastEvaluationResult.hasValue()) { 478 Ctx.emitError("Error evaluating model."); 479 return nullptr; 480 } 481 return LastEvaluationResult->getTensorValue<int64_t>(0); 482 } 483 484 void *ModelUnderTrainingRunner::getTensorUntyped(size_t Index) { 485 return Evaluator->getUntypedInput(Index); 486 } 487 488 std::unique_ptr<InlineAdvisor> llvm::getDevelopmentModeAdvisor( 489 Module &M, ModuleAnalysisManager &MAM, 490 std::function<bool(CallBase &)> GetDefaultAdvice) { 491 auto &Ctx = M.getContext(); 492 std::unique_ptr<MLModelRunner> Runner; 493 ModelUnderTrainingRunner *MUTRPtr = nullptr; 494 bool IsDoingInference = false; 495 if (TFModelUnderTrainingPath.empty()) 496 Runner.reset(new NoInferenceModelRunner( 497 Ctx, ModelUnderTrainingRunner::getInputFeatures())); 498 else { 499 auto MUTR = std::make_unique<ModelUnderTrainingRunner>( 500 Ctx, TFModelUnderTrainingPath); 501 if (!MUTR || !MUTR->isValid()) { 502 Ctx.emitError("Could not load the policy model from the provided path"); 503 return nullptr; 504 } 505 IsDoingInference = true; 506 MUTRPtr = MUTR.get(); 507 Runner = std::move(MUTR); 508 } 509 std::unique_ptr<TrainingLogger> Logger; 510 if (!TrainingLog.empty()) 511 Logger = std::make_unique<TrainingLogger>(TrainingLog, MUTRPtr); 512 513 return std::make_unique<DevelopmentModeMLInlineAdvisor>( 514 M, MAM, std::move(Runner), GetDefaultAdvice, IsDoingInference, 515 std::move(Logger)); 516 } 517 #endif // defined(LLVM_HAVE_TF_API) 518