1 //===- DependenceGraphBuilder.cpp ------------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements common steps of the build algorithm for construction
9 // of dependence graphs such as DDG and PDG.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/Analysis/DependenceGraphBuilder.h"
13 #include "llvm/ADT/EnumeratedArray.h"
14 #include "llvm/ADT/SCCIterator.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/DDG.h"
17 
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "dgb"
21 
22 STATISTIC(TotalGraphs, "Number of dependence graphs created.");
23 STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
24 STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
25 STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
26 STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
27 STATISTIC(TotalConfusedEdges,
28           "Number of confused memory dependencies between two nodes.");
29 STATISTIC(TotalEdgeReversals,
30           "Number of times the source and sink of dependence was reversed to "
31           "expose cycles in the graph.");
32 
33 using InstructionListType = SmallVector<Instruction *, 2>;
34 
35 //===--------------------------------------------------------------------===//
36 // AbstractDependenceGraphBuilder implementation
37 //===--------------------------------------------------------------------===//
38 
39 template <class G>
40 void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
41   // The BBList is expected to be in program order.
42   size_t NextOrdinal = 1;
43   for (auto *BB : BBList)
44     for (auto &I : *BB)
45       InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
46 }
47 
48 template <class G>
49 void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
50   ++TotalGraphs;
51   assert(IMap.empty() && "Expected empty instruction map at start");
52   for (BasicBlock *BB : BBList)
53     for (Instruction &I : *BB) {
54       auto &NewNode = createFineGrainedNode(I);
55       IMap.insert(std::make_pair(&I, &NewNode));
56       NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
57       ++TotalFineGrainedNodes;
58     }
59 }
60 
61 template <class G>
62 void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
63   // Create a root node that connects to every connected component of the graph.
64   // This is done to allow graph iterators to visit all the disjoint components
65   // of the graph, in a single walk.
66   //
67   // This algorithm works by going through each node of the graph and for each
68   // node N, do a DFS starting from N. A rooted edge is established between the
69   // root node and N (if N is not yet visited). All the nodes reachable from N
70   // are marked as visited and are skipped in the DFS of subsequent nodes.
71   //
72   // Note: This algorithm tries to limit the number of edges out of the root
73   // node to some extent, but there may be redundant edges created depending on
74   // the iteration order. For example for a graph {A -> B}, an edge from the
75   // root node is added to both nodes if B is visited before A. While it does
76   // not result in minimal number of edges, this approach saves compile-time
77   // while keeping the number of edges in check.
78   auto &RootNode = createRootNode();
79   df_iterator_default_set<const NodeType *, 4> Visited;
80   for (auto *N : Graph) {
81     if (*N == RootNode)
82       continue;
83     for (auto I : depth_first_ext(N, Visited))
84       if (I == N)
85         createRootedEdge(RootNode, *N);
86   }
87 }
88 
89 template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
90   if (!shouldCreatePiBlocks())
91     return;
92 
93   LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
94 
95   // The overall algorithm is as follows:
96   // 1. Identify SCCs and for each SCC create a pi-block node containing all
97   //    the nodes in that SCC.
98   // 2. Identify incoming edges incident to the nodes inside of the SCC and
99   //    reconnect them to the pi-block node.
100   // 3. Identify outgoing edges from the nodes inside of the SCC to nodes
101   //    outside of it and reconnect them so that the edges are coming out of the
102   //    SCC node instead.
103 
104   // Adding nodes as we iterate through the SCCs cause the SCC
105   // iterators to get invalidated. To prevent this invalidation, we first
106   // collect a list of nodes that are part of an SCC, and then iterate over
107   // those lists to create the pi-block nodes. Each element of the list is a
108   // list of nodes in an SCC. Note: trivial SCCs containing a single node are
109   // ignored.
110   SmallVector<NodeListType, 4> ListOfSCCs;
111   for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
112     if (SCC.size() > 1)
113       ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
114   }
115 
116   for (NodeListType &NL : ListOfSCCs) {
117     LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
118                       << " nodes in it.\n");
119 
120     // SCC iterator may put the nodes in an order that's different from the
121     // program order. To preserve original program order, we sort the list of
122     // nodes based on ordinal numbers computed earlier.
123     llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
124       return getOrdinal(*LHS) < getOrdinal(*RHS);
125     });
126 
127     NodeType &PiNode = createPiBlock(NL);
128     ++TotalPiBlockNodes;
129 
130     // Build a set to speed up the lookup for edges whose targets
131     // are inside the SCC.
132     SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
133 
134     // We have the set of nodes in the SCC. We go through the set of nodes
135     // that are outside of the SCC and look for edges that cross the two sets.
136     for (NodeType *N : Graph) {
137 
138       // Skip the SCC node and all the nodes inside of it.
139       if (*N == PiNode || NodesInSCC.count(N))
140         continue;
141 
142       for (NodeType *SCCNode : NL) {
143 
144         enum Direction {
145           Incoming,      // Incoming edges to the SCC
146           Outgoing,      // Edges going ot of the SCC
147           DirectionCount // To make the enum usable as an array index.
148         };
149 
150         // Use these flags to help us avoid creating redundant edges. If there
151         // are more than one edges from an outside node to inside nodes, we only
152         // keep one edge from that node to the pi-block node. Similarly, if
153         // there are more than one edges from inside nodes to an outside node,
154         // we only keep one edge from the pi-block node to the outside node.
155         // There is a flag defined for each direction (incoming vs outgoing) and
156         // for each type of edge supported, using a two-dimensional boolean
157         // array.
158         using EdgeKind = typename EdgeType::EdgeKind;
159         EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{
160             false, false};
161 
162         auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
163                                        const EdgeKind K) {
164           switch (K) {
165           case EdgeKind::RegisterDefUse:
166             createDefUseEdge(Src, Dst);
167             break;
168           case EdgeKind::MemoryDependence:
169             createMemoryEdge(Src, Dst);
170             break;
171           case EdgeKind::Rooted:
172             createRootedEdge(Src, Dst);
173             break;
174           default:
175             llvm_unreachable("Unsupported type of edge.");
176           }
177         };
178 
179         auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
180                                   const Direction Dir) {
181           if (!Src->hasEdgeTo(*Dst))
182             return;
183           LLVM_DEBUG(dbgs()
184                      << "reconnecting("
185                      << (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
186                      << ":\nSrc:" << *Src << "\nDst:" << *Dst
187                      << "\nNew:" << *New << "\n");
188           assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
189                  "Invalid direction.");
190 
191           SmallVector<EdgeType *, 10> EL;
192           Src->findEdgesTo(*Dst, EL);
193           for (EdgeType *OldEdge : EL) {
194             EdgeKind Kind = OldEdge->getKind();
195             if (!EdgeAlreadyCreated[Dir][Kind]) {
196               if (Dir == Direction::Incoming) {
197                 createEdgeOfKind(*Src, *New, Kind);
198                 LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
199               } else if (Dir == Direction::Outgoing) {
200                 createEdgeOfKind(*New, *Dst, Kind);
201                 LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
202               }
203               EdgeAlreadyCreated[Dir][Kind] = true;
204             }
205             Src->removeEdge(*OldEdge);
206             destroyEdge(*OldEdge);
207             LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
208           }
209         };
210 
211         // Process incoming edges incident to the pi-block node.
212         reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
213 
214         // Process edges that are coming out of the pi-block node.
215         reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
216       }
217     }
218   }
219 
220   // Ordinal maps are no longer needed.
221   InstOrdinalMap.clear();
222   NodeOrdinalMap.clear();
223 
224   LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
225 }
226 
227 template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
228   for (NodeType *N : Graph) {
229     InstructionListType SrcIList;
230     N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
231 
232     // Use a set to mark the targets that we link to N, so we don't add
233     // duplicate def-use edges when more than one instruction in a target node
234     // use results of instructions that are contained in N.
235     SmallPtrSet<NodeType *, 4> VisitedTargets;
236 
237     for (Instruction *II : SrcIList) {
238       for (User *U : II->users()) {
239         Instruction *UI = dyn_cast<Instruction>(U);
240         if (!UI)
241           continue;
242         NodeType *DstNode = nullptr;
243         if (IMap.find(UI) != IMap.end())
244           DstNode = IMap.find(UI)->second;
245 
246         // In the case of loops, the scope of the subgraph is all the
247         // basic blocks (and instructions within them) belonging to the loop. We
248         // simply ignore all the edges coming from (or going into) instructions
249         // or basic blocks outside of this range.
250         if (!DstNode) {
251           LLVM_DEBUG(
252               dbgs()
253               << "skipped def-use edge since the sink" << *UI
254               << " is outside the range of instructions being considered.\n");
255           continue;
256         }
257 
258         // Self dependencies are ignored because they are redundant and
259         // uninteresting.
260         if (DstNode == N) {
261           LLVM_DEBUG(dbgs()
262                      << "skipped def-use edge since the sink and the source ("
263                      << N << ") are the same.\n");
264           continue;
265         }
266 
267         if (VisitedTargets.insert(DstNode).second) {
268           createDefUseEdge(*N, *DstNode);
269           ++TotalDefUseEdges;
270         }
271       }
272     }
273   }
274 }
275 
276 template <class G>
277 void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
278   using DGIterator = typename G::iterator;
279   auto isMemoryAccess = [](const Instruction *I) {
280     return I->mayReadOrWriteMemory();
281   };
282   for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
283     InstructionListType SrcIList;
284     (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
285     if (SrcIList.empty())
286       continue;
287 
288     for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
289       if (**SrcIt == **DstIt)
290         continue;
291       InstructionListType DstIList;
292       (*DstIt)->collectInstructions(isMemoryAccess, DstIList);
293       if (DstIList.empty())
294         continue;
295       bool ForwardEdgeCreated = false;
296       bool BackwardEdgeCreated = false;
297       for (Instruction *ISrc : SrcIList) {
298         for (Instruction *IDst : DstIList) {
299           auto D = DI.depends(ISrc, IDst, true);
300           if (!D)
301             continue;
302 
303           // If we have a dependence with its left-most non-'=' direction
304           // being '>' we need to reverse the direction of the edge, because
305           // the source of the dependence cannot occur after the sink. For
306           // confused dependencies, we will create edges in both directions to
307           // represent the possibility of a cycle.
308 
309           auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
310             if (!ForwardEdgeCreated) {
311               createMemoryEdge(Src, Dst);
312               ++TotalMemoryEdges;
313             }
314             if (!BackwardEdgeCreated) {
315               createMemoryEdge(Dst, Src);
316               ++TotalMemoryEdges;
317             }
318             ForwardEdgeCreated = BackwardEdgeCreated = true;
319             ++TotalConfusedEdges;
320           };
321 
322           auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
323             if (!ForwardEdgeCreated) {
324               createMemoryEdge(Src, Dst);
325               ++TotalMemoryEdges;
326             }
327             ForwardEdgeCreated = true;
328           };
329 
330           auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
331             if (!BackwardEdgeCreated) {
332               createMemoryEdge(Dst, Src);
333               ++TotalMemoryEdges;
334             }
335             BackwardEdgeCreated = true;
336           };
337 
338           if (D->isConfused())
339             createConfusedEdges(**SrcIt, **DstIt);
340           else if (D->isOrdered() && !D->isLoopIndependent()) {
341             bool ReversedEdge = false;
342             for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
343               if (D->getDirection(Level) == Dependence::DVEntry::EQ)
344                 continue;
345               else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
346                 createBackwardEdge(**SrcIt, **DstIt);
347                 ReversedEdge = true;
348                 ++TotalEdgeReversals;
349                 break;
350               } else if (D->getDirection(Level) == Dependence::DVEntry::LT)
351                 break;
352               else {
353                 createConfusedEdges(**SrcIt, **DstIt);
354                 break;
355               }
356             }
357             if (!ReversedEdge)
358               createForwardEdge(**SrcIt, **DstIt);
359           } else
360             createForwardEdge(**SrcIt, **DstIt);
361 
362           // Avoid creating duplicate edges.
363           if (ForwardEdgeCreated && BackwardEdgeCreated)
364             break;
365         }
366 
367         // If we've created edges in both directions, there is no more
368         // unique edge that we can create between these two nodes, so we
369         // can exit early.
370         if (ForwardEdgeCreated && BackwardEdgeCreated)
371           break;
372       }
373     }
374   }
375 }
376 
377 template <class G> void AbstractDependenceGraphBuilder<G>::simplify() {
378   if (!shouldSimplify())
379     return;
380   LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n");
381 
382   // This algorithm works by first collecting a set of candidate nodes that have
383   // an out-degree of one (in terms of def-use edges), and then ignoring those
384   // whose targets have an in-degree more than one. Each node in the resulting
385   // set can then be merged with its corresponding target and put back into the
386   // worklist until no further merge candidates are available.
387   SmallPtrSet<NodeType *, 32> CandidateSourceNodes;
388 
389   // A mapping between nodes and their in-degree. To save space, this map
390   // only contains nodes that are targets of nodes in the CandidateSourceNodes.
391   DenseMap<NodeType *, unsigned> TargetInDegreeMap;
392 
393   for (NodeType *N : Graph) {
394     if (N->getEdges().size() != 1)
395       continue;
396     EdgeType &Edge = N->back();
397     if (!Edge.isDefUse())
398       continue;
399     CandidateSourceNodes.insert(N);
400 
401     // Insert an element into the in-degree map and initialize to zero. The
402     // count will get updated in the next step.
403     TargetInDegreeMap.insert({&Edge.getTargetNode(), 0});
404   }
405 
406   LLVM_DEBUG({
407     dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size()
408            << "\nNode with single outgoing def-use edge:\n";
409     for (NodeType *N : CandidateSourceNodes) {
410       dbgs() << N << "\n";
411     }
412   });
413 
414   for (NodeType *N : Graph) {
415     for (EdgeType *E : *N) {
416       NodeType *Tgt = &E->getTargetNode();
417       auto TgtIT = TargetInDegreeMap.find(Tgt);
418       if (TgtIT != TargetInDegreeMap.end())
419         ++(TgtIT->second);
420     }
421   }
422 
423   LLVM_DEBUG({
424     dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size()
425            << "\nContent of in-degree map:\n";
426     for (auto &I : TargetInDegreeMap) {
427       dbgs() << I.first << " --> " << I.second << "\n";
428     }
429   });
430 
431   SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(),
432                                        CandidateSourceNodes.end());
433   while (!Worklist.empty()) {
434     NodeType &Src = *Worklist.pop_back_val();
435     // As nodes get merged, we need to skip any node that has been removed from
436     // the candidate set (see below).
437     if (CandidateSourceNodes.find(&Src) == CandidateSourceNodes.end())
438       continue;
439     CandidateSourceNodes.erase(&Src);
440 
441     assert(Src.getEdges().size() == 1 &&
442            "Expected a single edge from the candidate src node.");
443     NodeType &Tgt = Src.back().getTargetNode();
444     assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() &&
445            "Expected target to be in the in-degree map.");
446 
447     if (TargetInDegreeMap[&Tgt] != 1)
448       continue;
449 
450     if (!areNodesMergeable(Src, Tgt))
451       continue;
452 
453     // Do not merge if there is also an edge from target to src (immediate
454     // cycle).
455     if (Tgt.hasEdgeTo(Src))
456       continue;
457 
458     LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n");
459 
460     mergeNodes(Src, Tgt);
461 
462     // If the target node is in the candidate set itself, we need to put the
463     // src node back into the worklist again so it gives the target a chance
464     // to get merged into it. For example if we have:
465     // {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a},
466     // then after merging (a) and (b) together, we need to put (a,b) back in
467     // the worklist so that (c) can get merged in as well resulting in
468     // {(a,b,c) -> d}
469     // We also need to remove the old target (b), from the worklist. We first
470     // remove it from the candidate set here, and skip any item from the
471     // worklist that is not in the set.
472     if (CandidateSourceNodes.find(&Tgt) != CandidateSourceNodes.end()) {
473       Worklist.push_back(&Src);
474       CandidateSourceNodes.insert(&Src);
475       CandidateSourceNodes.erase(&Tgt);
476       LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n");
477     }
478   }
479   LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n");
480 }
481 
482 template <class G>
483 void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
484 
485   // If we don't create pi-blocks, then we may not have a DAG.
486   if (!shouldCreatePiBlocks())
487     return;
488 
489   SmallVector<NodeType *, 64> NodesInPO;
490   using NodeKind = typename NodeType::NodeKind;
491   for (NodeType *N : post_order(&Graph)) {
492     if (N->getKind() == NodeKind::PiBlock) {
493       // Put members of the pi-block right after the pi-block itself, for
494       // convenience.
495       const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
496       NodesInPO.insert(NodesInPO.end(), PiBlockMembers.begin(),
497                        PiBlockMembers.end());
498     }
499     NodesInPO.push_back(N);
500   }
501 
502   size_t OldSize = Graph.Nodes.size();
503   Graph.Nodes.clear();
504   for (NodeType *N : reverse(NodesInPO))
505     Graph.Nodes.push_back(N);
506   if (Graph.Nodes.size() != OldSize)
507     assert(false &&
508            "Expected the number of nodes to stay the same after the sort");
509 }
510 
511 template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
512 template class llvm::DependenceGraphInfo<DDGNode>;
513