1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
12 //
13 //            Practical Dependence Testing
14 //            Goff, Kennedy, Tseng
15 //            PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
25 //
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
30 //
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
34 //
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
38 //
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
42 //
43 // Please note that this is work in progress and the interface is subject to
44 // change.
45 //
46 //===----------------------------------------------------------------------===//
47 //                                                                            //
48 //                   In memory of Ken Kennedy, 1945 - 2007                    //
49 //                                                                            //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "da"
73 
74 //===----------------------------------------------------------------------===//
75 // statistics
76 
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109 
110 static cl::opt<bool>
111     Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
112                 cl::desc("Try to delinearize array references."));
113 static cl::opt<bool> DisableDelinearizationChecks(
114     "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
115     cl::ZeroOrMore,
116     cl::desc(
117         "Disable checks that try to statically verify validity of "
118         "delinearized subscripts. Enabling this option may result in incorrect "
119         "dependence vectors for languages that allow the subscript of one "
120         "dimension to underflow or overflow into another dimension."));
121 
122 //===----------------------------------------------------------------------===//
123 // basics
124 
125 DependenceAnalysis::Result
126 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
127   auto &AA = FAM.getResult<AAManager>(F);
128   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
129   auto &LI = FAM.getResult<LoopAnalysis>(F);
130   return DependenceInfo(&F, &AA, &SE, &LI);
131 }
132 
133 AnalysisKey DependenceAnalysis::Key;
134 
135 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
136                       "Dependence Analysis", true, true)
137 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
138 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
141                     true, true)
142 
143 char DependenceAnalysisWrapperPass::ID = 0;
144 
145 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
146     : FunctionPass(ID) {
147   initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
148 }
149 
150 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
151   return new DependenceAnalysisWrapperPass();
152 }
153 
154 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
155   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
156   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
157   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
158   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
159   return false;
160 }
161 
162 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
163 
164 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
165 
166 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
167   AU.setPreservesAll();
168   AU.addRequiredTransitive<AAResultsWrapperPass>();
169   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
170   AU.addRequiredTransitive<LoopInfoWrapperPass>();
171 }
172 
173 // Used to test the dependence analyzer.
174 // Looks through the function, noting instructions that may access memory.
175 // Calls depends() on every possible pair and prints out the result.
176 // Ignores all other instructions.
177 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
178   auto *F = DA->getFunction();
179   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
180        ++SrcI) {
181     if (SrcI->mayReadOrWriteMemory()) {
182       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
183            DstI != DstE; ++DstI) {
184         if (DstI->mayReadOrWriteMemory()) {
185           OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
186           OS << "  da analyze - ";
187           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
188             D->dump(OS);
189             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
190               if (D->isSplitable(Level)) {
191                 OS << "  da analyze - split level = " << Level;
192                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
193                 OS << "!\n";
194               }
195             }
196           }
197           else
198             OS << "none!\n";
199         }
200       }
201     }
202   }
203 }
204 
205 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
206                                           const Module *) const {
207   dumpExampleDependence(OS, info.get());
208 }
209 
210 PreservedAnalyses
211 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
212   OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
213   dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
214   return PreservedAnalyses::all();
215 }
216 
217 //===----------------------------------------------------------------------===//
218 // Dependence methods
219 
220 // Returns true if this is an input dependence.
221 bool Dependence::isInput() const {
222   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
223 }
224 
225 
226 // Returns true if this is an output dependence.
227 bool Dependence::isOutput() const {
228   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
229 }
230 
231 
232 // Returns true if this is an flow (aka true)  dependence.
233 bool Dependence::isFlow() const {
234   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
235 }
236 
237 
238 // Returns true if this is an anti dependence.
239 bool Dependence::isAnti() const {
240   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
241 }
242 
243 
244 // Returns true if a particular level is scalar; that is,
245 // if no subscript in the source or destination mention the induction
246 // variable associated with the loop at this level.
247 // Leave this out of line, so it will serve as a virtual method anchor
248 bool Dependence::isScalar(unsigned level) const {
249   return false;
250 }
251 
252 
253 //===----------------------------------------------------------------------===//
254 // FullDependence methods
255 
256 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
257                                bool PossiblyLoopIndependent,
258                                unsigned CommonLevels)
259     : Dependence(Source, Destination), Levels(CommonLevels),
260       LoopIndependent(PossiblyLoopIndependent) {
261   Consistent = true;
262   if (CommonLevels)
263     DV = std::make_unique<DVEntry[]>(CommonLevels);
264 }
265 
266 // The rest are simple getters that hide the implementation.
267 
268 // getDirection - Returns the direction associated with a particular level.
269 unsigned FullDependence::getDirection(unsigned Level) const {
270   assert(0 < Level && Level <= Levels && "Level out of range");
271   return DV[Level - 1].Direction;
272 }
273 
274 
275 // Returns the distance (or NULL) associated with a particular level.
276 const SCEV *FullDependence::getDistance(unsigned Level) const {
277   assert(0 < Level && Level <= Levels && "Level out of range");
278   return DV[Level - 1].Distance;
279 }
280 
281 
282 // Returns true if a particular level is scalar; that is,
283 // if no subscript in the source or destination mention the induction
284 // variable associated with the loop at this level.
285 bool FullDependence::isScalar(unsigned Level) const {
286   assert(0 < Level && Level <= Levels && "Level out of range");
287   return DV[Level - 1].Scalar;
288 }
289 
290 
291 // Returns true if peeling the first iteration from this loop
292 // will break this dependence.
293 bool FullDependence::isPeelFirst(unsigned Level) const {
294   assert(0 < Level && Level <= Levels && "Level out of range");
295   return DV[Level - 1].PeelFirst;
296 }
297 
298 
299 // Returns true if peeling the last iteration from this loop
300 // will break this dependence.
301 bool FullDependence::isPeelLast(unsigned Level) const {
302   assert(0 < Level && Level <= Levels && "Level out of range");
303   return DV[Level - 1].PeelLast;
304 }
305 
306 
307 // Returns true if splitting this loop will break the dependence.
308 bool FullDependence::isSplitable(unsigned Level) const {
309   assert(0 < Level && Level <= Levels && "Level out of range");
310   return DV[Level - 1].Splitable;
311 }
312 
313 
314 //===----------------------------------------------------------------------===//
315 // DependenceInfo::Constraint methods
316 
317 // If constraint is a point <X, Y>, returns X.
318 // Otherwise assert.
319 const SCEV *DependenceInfo::Constraint::getX() const {
320   assert(Kind == Point && "Kind should be Point");
321   return A;
322 }
323 
324 
325 // If constraint is a point <X, Y>, returns Y.
326 // Otherwise assert.
327 const SCEV *DependenceInfo::Constraint::getY() const {
328   assert(Kind == Point && "Kind should be Point");
329   return B;
330 }
331 
332 
333 // If constraint is a line AX + BY = C, returns A.
334 // Otherwise assert.
335 const SCEV *DependenceInfo::Constraint::getA() const {
336   assert((Kind == Line || Kind == Distance) &&
337          "Kind should be Line (or Distance)");
338   return A;
339 }
340 
341 
342 // If constraint is a line AX + BY = C, returns B.
343 // Otherwise assert.
344 const SCEV *DependenceInfo::Constraint::getB() const {
345   assert((Kind == Line || Kind == Distance) &&
346          "Kind should be Line (or Distance)");
347   return B;
348 }
349 
350 
351 // If constraint is a line AX + BY = C, returns C.
352 // Otherwise assert.
353 const SCEV *DependenceInfo::Constraint::getC() const {
354   assert((Kind == Line || Kind == Distance) &&
355          "Kind should be Line (or Distance)");
356   return C;
357 }
358 
359 
360 // If constraint is a distance, returns D.
361 // Otherwise assert.
362 const SCEV *DependenceInfo::Constraint::getD() const {
363   assert(Kind == Distance && "Kind should be Distance");
364   return SE->getNegativeSCEV(C);
365 }
366 
367 
368 // Returns the loop associated with this constraint.
369 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
370   assert((Kind == Distance || Kind == Line || Kind == Point) &&
371          "Kind should be Distance, Line, or Point");
372   return AssociatedLoop;
373 }
374 
375 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
376                                           const Loop *CurLoop) {
377   Kind = Point;
378   A = X;
379   B = Y;
380   AssociatedLoop = CurLoop;
381 }
382 
383 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
384                                          const SCEV *CC, const Loop *CurLoop) {
385   Kind = Line;
386   A = AA;
387   B = BB;
388   C = CC;
389   AssociatedLoop = CurLoop;
390 }
391 
392 void DependenceInfo::Constraint::setDistance(const SCEV *D,
393                                              const Loop *CurLoop) {
394   Kind = Distance;
395   A = SE->getOne(D->getType());
396   B = SE->getNegativeSCEV(A);
397   C = SE->getNegativeSCEV(D);
398   AssociatedLoop = CurLoop;
399 }
400 
401 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
402 
403 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
404   SE = NewSE;
405   Kind = Any;
406 }
407 
408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409 // For debugging purposes. Dumps the constraint out to OS.
410 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
411   if (isEmpty())
412     OS << " Empty\n";
413   else if (isAny())
414     OS << " Any\n";
415   else if (isPoint())
416     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
417   else if (isDistance())
418     OS << " Distance is " << *getD() <<
419       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
420   else if (isLine())
421     OS << " Line is " << *getA() << "*X + " <<
422       *getB() << "*Y = " << *getC() << "\n";
423   else
424     llvm_unreachable("unknown constraint type in Constraint::dump");
425 }
426 #endif
427 
428 
429 // Updates X with the intersection
430 // of the Constraints X and Y. Returns true if X has changed.
431 // Corresponds to Figure 4 from the paper
432 //
433 //            Practical Dependence Testing
434 //            Goff, Kennedy, Tseng
435 //            PLDI 1991
436 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
437   ++DeltaApplications;
438   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
439   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
440   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
441   assert(!Y->isPoint() && "Y must not be a Point");
442   if (X->isAny()) {
443     if (Y->isAny())
444       return false;
445     *X = *Y;
446     return true;
447   }
448   if (X->isEmpty())
449     return false;
450   if (Y->isEmpty()) {
451     X->setEmpty();
452     return true;
453   }
454 
455   if (X->isDistance() && Y->isDistance()) {
456     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
457     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
458       return false;
459     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
460       X->setEmpty();
461       ++DeltaSuccesses;
462       return true;
463     }
464     // Hmmm, interesting situation.
465     // I guess if either is constant, keep it and ignore the other.
466     if (isa<SCEVConstant>(Y->getD())) {
467       *X = *Y;
468       return true;
469     }
470     return false;
471   }
472 
473   // At this point, the pseudo-code in Figure 4 of the paper
474   // checks if (X->isPoint() && Y->isPoint()).
475   // This case can't occur in our implementation,
476   // since a Point can only arise as the result of intersecting
477   // two Line constraints, and the right-hand value, Y, is never
478   // the result of an intersection.
479   assert(!(X->isPoint() && Y->isPoint()) &&
480          "We shouldn't ever see X->isPoint() && Y->isPoint()");
481 
482   if (X->isLine() && Y->isLine()) {
483     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
484     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
485     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
486     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
487       // slopes are equal, so lines are parallel
488       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
489       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
490       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
491       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
492         return false;
493       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
494         X->setEmpty();
495         ++DeltaSuccesses;
496         return true;
497       }
498       return false;
499     }
500     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
501       // slopes differ, so lines intersect
502       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
503       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
504       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
505       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
506       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
507       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
508       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
509       const SCEVConstant *C1A2_C2A1 =
510         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
511       const SCEVConstant *C1B2_C2B1 =
512         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
513       const SCEVConstant *A1B2_A2B1 =
514         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
515       const SCEVConstant *A2B1_A1B2 =
516         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
517       if (!C1B2_C2B1 || !C1A2_C2A1 ||
518           !A1B2_A2B1 || !A2B1_A1B2)
519         return false;
520       APInt Xtop = C1B2_C2B1->getAPInt();
521       APInt Xbot = A1B2_A2B1->getAPInt();
522       APInt Ytop = C1A2_C2A1->getAPInt();
523       APInt Ybot = A2B1_A1B2->getAPInt();
524       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
525       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
526       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
527       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
528       APInt Xq = Xtop; // these need to be initialized, even
529       APInt Xr = Xtop; // though they're just going to be overwritten
530       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
531       APInt Yq = Ytop;
532       APInt Yr = Ytop;
533       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
534       if (Xr != 0 || Yr != 0) {
535         X->setEmpty();
536         ++DeltaSuccesses;
537         return true;
538       }
539       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
540       if (Xq.slt(0) || Yq.slt(0)) {
541         X->setEmpty();
542         ++DeltaSuccesses;
543         return true;
544       }
545       if (const SCEVConstant *CUB =
546           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
547         const APInt &UpperBound = CUB->getAPInt();
548         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
549         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
550           X->setEmpty();
551           ++DeltaSuccesses;
552           return true;
553         }
554       }
555       X->setPoint(SE->getConstant(Xq),
556                   SE->getConstant(Yq),
557                   X->getAssociatedLoop());
558       ++DeltaSuccesses;
559       return true;
560     }
561     return false;
562   }
563 
564   // if (X->isLine() && Y->isPoint()) This case can't occur.
565   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
566 
567   if (X->isPoint() && Y->isLine()) {
568     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
569     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
570     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
571     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
572     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
573       return false;
574     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
575       X->setEmpty();
576       ++DeltaSuccesses;
577       return true;
578     }
579     return false;
580   }
581 
582   llvm_unreachable("shouldn't reach the end of Constraint intersection");
583   return false;
584 }
585 
586 
587 //===----------------------------------------------------------------------===//
588 // DependenceInfo methods
589 
590 // For debugging purposes. Dumps a dependence to OS.
591 void Dependence::dump(raw_ostream &OS) const {
592   bool Splitable = false;
593   if (isConfused())
594     OS << "confused";
595   else {
596     if (isConsistent())
597       OS << "consistent ";
598     if (isFlow())
599       OS << "flow";
600     else if (isOutput())
601       OS << "output";
602     else if (isAnti())
603       OS << "anti";
604     else if (isInput())
605       OS << "input";
606     unsigned Levels = getLevels();
607     OS << " [";
608     for (unsigned II = 1; II <= Levels; ++II) {
609       if (isSplitable(II))
610         Splitable = true;
611       if (isPeelFirst(II))
612         OS << 'p';
613       const SCEV *Distance = getDistance(II);
614       if (Distance)
615         OS << *Distance;
616       else if (isScalar(II))
617         OS << "S";
618       else {
619         unsigned Direction = getDirection(II);
620         if (Direction == DVEntry::ALL)
621           OS << "*";
622         else {
623           if (Direction & DVEntry::LT)
624             OS << "<";
625           if (Direction & DVEntry::EQ)
626             OS << "=";
627           if (Direction & DVEntry::GT)
628             OS << ">";
629         }
630       }
631       if (isPeelLast(II))
632         OS << 'p';
633       if (II < Levels)
634         OS << " ";
635     }
636     if (isLoopIndependent())
637       OS << "|<";
638     OS << "]";
639     if (Splitable)
640       OS << " splitable";
641   }
642   OS << "!\n";
643 }
644 
645 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
646 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
647 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
648 // Otherwise the underlying objects are checked to see if they point to
649 // different identifiable objects.
650 static AliasResult underlyingObjectsAlias(AAResults *AA,
651                                           const DataLayout &DL,
652                                           const MemoryLocation &LocA,
653                                           const MemoryLocation &LocB) {
654   // Check the original locations (minus size) for noalias, which can happen for
655   // tbaa, incompatible underlying object locations, etc.
656   MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags);
657   MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags);
658   if (AA->alias(LocAS, LocBS) == NoAlias)
659     return NoAlias;
660 
661   // Check the underlying objects are the same
662   const Value *AObj = getUnderlyingObject(LocA.Ptr);
663   const Value *BObj = getUnderlyingObject(LocB.Ptr);
664 
665   // If the underlying objects are the same, they must alias
666   if (AObj == BObj)
667     return MustAlias;
668 
669   // We may have hit the recursion limit for underlying objects, or have
670   // underlying objects where we don't know they will alias.
671   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
672     return MayAlias;
673 
674   // Otherwise we know the objects are different and both identified objects so
675   // must not alias.
676   return NoAlias;
677 }
678 
679 
680 // Returns true if the load or store can be analyzed. Atomic and volatile
681 // operations have properties which this analysis does not understand.
682 static
683 bool isLoadOrStore(const Instruction *I) {
684   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
685     return LI->isUnordered();
686   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
687     return SI->isUnordered();
688   return false;
689 }
690 
691 
692 // Examines the loop nesting of the Src and Dst
693 // instructions and establishes their shared loops. Sets the variables
694 // CommonLevels, SrcLevels, and MaxLevels.
695 // The source and destination instructions needn't be contained in the same
696 // loop. The routine establishNestingLevels finds the level of most deeply
697 // nested loop that contains them both, CommonLevels. An instruction that's
698 // not contained in a loop is at level = 0. MaxLevels is equal to the level
699 // of the source plus the level of the destination, minus CommonLevels.
700 // This lets us allocate vectors MaxLevels in length, with room for every
701 // distinct loop referenced in both the source and destination subscripts.
702 // The variable SrcLevels is the nesting depth of the source instruction.
703 // It's used to help calculate distinct loops referenced by the destination.
704 // Here's the map from loops to levels:
705 //            0 - unused
706 //            1 - outermost common loop
707 //          ... - other common loops
708 // CommonLevels - innermost common loop
709 //          ... - loops containing Src but not Dst
710 //    SrcLevels - innermost loop containing Src but not Dst
711 //          ... - loops containing Dst but not Src
712 //    MaxLevels - innermost loops containing Dst but not Src
713 // Consider the follow code fragment:
714 //   for (a = ...) {
715 //     for (b = ...) {
716 //       for (c = ...) {
717 //         for (d = ...) {
718 //           A[] = ...;
719 //         }
720 //       }
721 //       for (e = ...) {
722 //         for (f = ...) {
723 //           for (g = ...) {
724 //             ... = A[];
725 //           }
726 //         }
727 //       }
728 //     }
729 //   }
730 // If we're looking at the possibility of a dependence between the store
731 // to A (the Src) and the load from A (the Dst), we'll note that they
732 // have 2 loops in common, so CommonLevels will equal 2 and the direction
733 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
734 // A map from loop names to loop numbers would look like
735 //     a - 1
736 //     b - 2 = CommonLevels
737 //     c - 3
738 //     d - 4 = SrcLevels
739 //     e - 5
740 //     f - 6
741 //     g - 7 = MaxLevels
742 void DependenceInfo::establishNestingLevels(const Instruction *Src,
743                                             const Instruction *Dst) {
744   const BasicBlock *SrcBlock = Src->getParent();
745   const BasicBlock *DstBlock = Dst->getParent();
746   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
747   unsigned DstLevel = LI->getLoopDepth(DstBlock);
748   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
749   const Loop *DstLoop = LI->getLoopFor(DstBlock);
750   SrcLevels = SrcLevel;
751   MaxLevels = SrcLevel + DstLevel;
752   while (SrcLevel > DstLevel) {
753     SrcLoop = SrcLoop->getParentLoop();
754     SrcLevel--;
755   }
756   while (DstLevel > SrcLevel) {
757     DstLoop = DstLoop->getParentLoop();
758     DstLevel--;
759   }
760   while (SrcLoop != DstLoop) {
761     SrcLoop = SrcLoop->getParentLoop();
762     DstLoop = DstLoop->getParentLoop();
763     SrcLevel--;
764   }
765   CommonLevels = SrcLevel;
766   MaxLevels -= CommonLevels;
767 }
768 
769 
770 // Given one of the loops containing the source, return
771 // its level index in our numbering scheme.
772 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
773   return SrcLoop->getLoopDepth();
774 }
775 
776 
777 // Given one of the loops containing the destination,
778 // return its level index in our numbering scheme.
779 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
780   unsigned D = DstLoop->getLoopDepth();
781   if (D > CommonLevels)
782     return D - CommonLevels + SrcLevels;
783   else
784     return D;
785 }
786 
787 
788 // Returns true if Expression is loop invariant in LoopNest.
789 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
790                                      const Loop *LoopNest) const {
791   if (!LoopNest)
792     return true;
793   return SE->isLoopInvariant(Expression, LoopNest) &&
794     isLoopInvariant(Expression, LoopNest->getParentLoop());
795 }
796 
797 
798 
799 // Finds the set of loops from the LoopNest that
800 // have a level <= CommonLevels and are referred to by the SCEV Expression.
801 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
802                                         const Loop *LoopNest,
803                                         SmallBitVector &Loops) const {
804   while (LoopNest) {
805     unsigned Level = LoopNest->getLoopDepth();
806     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
807       Loops.set(Level);
808     LoopNest = LoopNest->getParentLoop();
809   }
810 }
811 
812 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
813 
814   unsigned widestWidthSeen = 0;
815   Type *widestType;
816 
817   // Go through each pair and find the widest bit to which we need
818   // to extend all of them.
819   for (Subscript *Pair : Pairs) {
820     const SCEV *Src = Pair->Src;
821     const SCEV *Dst = Pair->Dst;
822     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
823     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
824     if (SrcTy == nullptr || DstTy == nullptr) {
825       assert(SrcTy == DstTy && "This function only unify integer types and "
826              "expect Src and Dst share the same type "
827              "otherwise.");
828       continue;
829     }
830     if (SrcTy->getBitWidth() > widestWidthSeen) {
831       widestWidthSeen = SrcTy->getBitWidth();
832       widestType = SrcTy;
833     }
834     if (DstTy->getBitWidth() > widestWidthSeen) {
835       widestWidthSeen = DstTy->getBitWidth();
836       widestType = DstTy;
837     }
838   }
839 
840 
841   assert(widestWidthSeen > 0);
842 
843   // Now extend each pair to the widest seen.
844   for (Subscript *Pair : Pairs) {
845     const SCEV *Src = Pair->Src;
846     const SCEV *Dst = Pair->Dst;
847     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
848     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
849     if (SrcTy == nullptr || DstTy == nullptr) {
850       assert(SrcTy == DstTy && "This function only unify integer types and "
851              "expect Src and Dst share the same type "
852              "otherwise.");
853       continue;
854     }
855     if (SrcTy->getBitWidth() < widestWidthSeen)
856       // Sign-extend Src to widestType
857       Pair->Src = SE->getSignExtendExpr(Src, widestType);
858     if (DstTy->getBitWidth() < widestWidthSeen) {
859       // Sign-extend Dst to widestType
860       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
861     }
862   }
863 }
864 
865 // removeMatchingExtensions - Examines a subscript pair.
866 // If the source and destination are identically sign (or zero)
867 // extended, it strips off the extension in an effect to simplify
868 // the actual analysis.
869 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
870   const SCEV *Src = Pair->Src;
871   const SCEV *Dst = Pair->Dst;
872   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
873       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
874     const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
875     const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
876     const SCEV *SrcCastOp = SrcCast->getOperand();
877     const SCEV *DstCastOp = DstCast->getOperand();
878     if (SrcCastOp->getType() == DstCastOp->getType()) {
879       Pair->Src = SrcCastOp;
880       Pair->Dst = DstCastOp;
881     }
882   }
883 }
884 
885 // Examine the scev and return true iff it's linear.
886 // Collect any loops mentioned in the set of "Loops".
887 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
888                                     SmallBitVector &Loops, bool IsSrc) {
889   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
890   if (!AddRec)
891     return isLoopInvariant(Expr, LoopNest);
892   const SCEV *Start = AddRec->getStart();
893   const SCEV *Step = AddRec->getStepRecurrence(*SE);
894   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
895   if (!isa<SCEVCouldNotCompute>(UB)) {
896     if (SE->getTypeSizeInBits(Start->getType()) <
897         SE->getTypeSizeInBits(UB->getType())) {
898       if (!AddRec->getNoWrapFlags())
899         return false;
900     }
901   }
902   if (!isLoopInvariant(Step, LoopNest))
903     return false;
904   if (IsSrc)
905     Loops.set(mapSrcLoop(AddRec->getLoop()));
906   else
907     Loops.set(mapDstLoop(AddRec->getLoop()));
908   return checkSubscript(Start, LoopNest, Loops, IsSrc);
909 }
910 
911 // Examine the scev and return true iff it's linear.
912 // Collect any loops mentioned in the set of "Loops".
913 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
914                                        SmallBitVector &Loops) {
915   return checkSubscript(Src, LoopNest, Loops, true);
916 }
917 
918 // Examine the scev and return true iff it's linear.
919 // Collect any loops mentioned in the set of "Loops".
920 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
921                                        SmallBitVector &Loops) {
922   return checkSubscript(Dst, LoopNest, Loops, false);
923 }
924 
925 
926 // Examines the subscript pair (the Src and Dst SCEVs)
927 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
928 // Collects the associated loops in a set.
929 DependenceInfo::Subscript::ClassificationKind
930 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
931                              const SCEV *Dst, const Loop *DstLoopNest,
932                              SmallBitVector &Loops) {
933   SmallBitVector SrcLoops(MaxLevels + 1);
934   SmallBitVector DstLoops(MaxLevels + 1);
935   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
936     return Subscript::NonLinear;
937   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
938     return Subscript::NonLinear;
939   Loops = SrcLoops;
940   Loops |= DstLoops;
941   unsigned N = Loops.count();
942   if (N == 0)
943     return Subscript::ZIV;
944   if (N == 1)
945     return Subscript::SIV;
946   if (N == 2 && (SrcLoops.count() == 0 ||
947                  DstLoops.count() == 0 ||
948                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
949     return Subscript::RDIV;
950   return Subscript::MIV;
951 }
952 
953 
954 // A wrapper around SCEV::isKnownPredicate.
955 // Looks for cases where we're interested in comparing for equality.
956 // If both X and Y have been identically sign or zero extended,
957 // it strips off the (confusing) extensions before invoking
958 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
959 // will be similarly updated.
960 //
961 // If SCEV::isKnownPredicate can't prove the predicate,
962 // we try simple subtraction, which seems to help in some cases
963 // involving symbolics.
964 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
965                                       const SCEV *Y) const {
966   if (Pred == CmpInst::ICMP_EQ ||
967       Pred == CmpInst::ICMP_NE) {
968     if ((isa<SCEVSignExtendExpr>(X) &&
969          isa<SCEVSignExtendExpr>(Y)) ||
970         (isa<SCEVZeroExtendExpr>(X) &&
971          isa<SCEVZeroExtendExpr>(Y))) {
972       const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
973       const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
974       const SCEV *Xop = CX->getOperand();
975       const SCEV *Yop = CY->getOperand();
976       if (Xop->getType() == Yop->getType()) {
977         X = Xop;
978         Y = Yop;
979       }
980     }
981   }
982   if (SE->isKnownPredicate(Pred, X, Y))
983     return true;
984   // If SE->isKnownPredicate can't prove the condition,
985   // we try the brute-force approach of subtracting
986   // and testing the difference.
987   // By testing with SE->isKnownPredicate first, we avoid
988   // the possibility of overflow when the arguments are constants.
989   const SCEV *Delta = SE->getMinusSCEV(X, Y);
990   switch (Pred) {
991   case CmpInst::ICMP_EQ:
992     return Delta->isZero();
993   case CmpInst::ICMP_NE:
994     return SE->isKnownNonZero(Delta);
995   case CmpInst::ICMP_SGE:
996     return SE->isKnownNonNegative(Delta);
997   case CmpInst::ICMP_SLE:
998     return SE->isKnownNonPositive(Delta);
999   case CmpInst::ICMP_SGT:
1000     return SE->isKnownPositive(Delta);
1001   case CmpInst::ICMP_SLT:
1002     return SE->isKnownNegative(Delta);
1003   default:
1004     llvm_unreachable("unexpected predicate in isKnownPredicate");
1005   }
1006 }
1007 
1008 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1009 /// with some extra checking if S is an AddRec and we can prove less-than using
1010 /// the loop bounds.
1011 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1012   // First unify to the same type
1013   auto *SType = dyn_cast<IntegerType>(S->getType());
1014   auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1015   if (!SType || !SizeType)
1016     return false;
1017   Type *MaxType =
1018       (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1019   S = SE->getTruncateOrZeroExtend(S, MaxType);
1020   Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1021 
1022   // Special check for addrecs using BE taken count
1023   const SCEV *Bound = SE->getMinusSCEV(S, Size);
1024   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1025     if (AddRec->isAffine()) {
1026       const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1027       if (!isa<SCEVCouldNotCompute>(BECount)) {
1028         const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1029         if (SE->isKnownNegative(Limit))
1030           return true;
1031       }
1032     }
1033   }
1034 
1035   // Check using normal isKnownNegative
1036   const SCEV *LimitedBound =
1037       SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1038   return SE->isKnownNegative(LimitedBound);
1039 }
1040 
1041 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1042   bool Inbounds = false;
1043   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1044     Inbounds = SrcGEP->isInBounds();
1045   if (Inbounds) {
1046     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1047       if (AddRec->isAffine()) {
1048         // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1049         // If both parts are NonNegative, the end result will be NonNegative
1050         if (SE->isKnownNonNegative(AddRec->getStart()) &&
1051             SE->isKnownNonNegative(AddRec->getOperand(1)))
1052           return true;
1053       }
1054     }
1055   }
1056 
1057   return SE->isKnownNonNegative(S);
1058 }
1059 
1060 // All subscripts are all the same type.
1061 // Loop bound may be smaller (e.g., a char).
1062 // Should zero extend loop bound, since it's always >= 0.
1063 // This routine collects upper bound and extends or truncates if needed.
1064 // Truncating is safe when subscripts are known not to wrap. Cases without
1065 // nowrap flags should have been rejected earlier.
1066 // Return null if no bound available.
1067 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1068   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1069     const SCEV *UB = SE->getBackedgeTakenCount(L);
1070     return SE->getTruncateOrZeroExtend(UB, T);
1071   }
1072   return nullptr;
1073 }
1074 
1075 
1076 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1077 // If the cast fails, returns NULL.
1078 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1079                                                               Type *T) const {
1080   if (const SCEV *UB = collectUpperBound(L, T))
1081     return dyn_cast<SCEVConstant>(UB);
1082   return nullptr;
1083 }
1084 
1085 
1086 // testZIV -
1087 // When we have a pair of subscripts of the form [c1] and [c2],
1088 // where c1 and c2 are both loop invariant, we attack it using
1089 // the ZIV test. Basically, we test by comparing the two values,
1090 // but there are actually three possible results:
1091 // 1) the values are equal, so there's a dependence
1092 // 2) the values are different, so there's no dependence
1093 // 3) the values might be equal, so we have to assume a dependence.
1094 //
1095 // Return true if dependence disproved.
1096 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1097                              FullDependence &Result) const {
1098   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
1099   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1100   ++ZIVapplications;
1101   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1102     LLVM_DEBUG(dbgs() << "    provably dependent\n");
1103     return false; // provably dependent
1104   }
1105   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1106     LLVM_DEBUG(dbgs() << "    provably independent\n");
1107     ++ZIVindependence;
1108     return true; // provably independent
1109   }
1110   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
1111   Result.Consistent = false;
1112   return false; // possibly dependent
1113 }
1114 
1115 
1116 // strongSIVtest -
1117 // From the paper, Practical Dependence Testing, Section 4.2.1
1118 //
1119 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1120 // where i is an induction variable, c1 and c2 are loop invariant,
1121 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1122 //
1123 // Can prove independence. Failing that, can compute distance (and direction).
1124 // In the presence of symbolic terms, we can sometimes make progress.
1125 //
1126 // If there's a dependence,
1127 //
1128 //    c1 + a*i = c2 + a*i'
1129 //
1130 // The dependence distance is
1131 //
1132 //    d = i' - i = (c1 - c2)/a
1133 //
1134 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1135 // loop's upper bound. If a dependence exists, the dependence direction is
1136 // defined as
1137 //
1138 //                { < if d > 0
1139 //    direction = { = if d = 0
1140 //                { > if d < 0
1141 //
1142 // Return true if dependence disproved.
1143 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1144                                    const SCEV *DstConst, const Loop *CurLoop,
1145                                    unsigned Level, FullDependence &Result,
1146                                    Constraint &NewConstraint) const {
1147   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1148   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1149   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1150   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1151   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1152   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1153   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1154   ++StrongSIVapplications;
1155   assert(0 < Level && Level <= CommonLevels && "level out of range");
1156   Level--;
1157 
1158   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1159   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
1160   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1161 
1162   // check that |Delta| < iteration count
1163   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1164     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1165     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1166     const SCEV *AbsDelta =
1167       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1168     const SCEV *AbsCoeff =
1169       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1170     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1171     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1172       // Distance greater than trip count - no dependence
1173       ++StrongSIVindependence;
1174       ++StrongSIVsuccesses;
1175       return true;
1176     }
1177   }
1178 
1179   // Can we compute distance?
1180   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1181     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1182     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1183     APInt Distance  = ConstDelta; // these need to be initialized
1184     APInt Remainder = ConstDelta;
1185     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1186     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1187     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1188     // Make sure Coeff divides Delta exactly
1189     if (Remainder != 0) {
1190       // Coeff doesn't divide Distance, no dependence
1191       ++StrongSIVindependence;
1192       ++StrongSIVsuccesses;
1193       return true;
1194     }
1195     Result.DV[Level].Distance = SE->getConstant(Distance);
1196     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1197     if (Distance.sgt(0))
1198       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1199     else if (Distance.slt(0))
1200       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1201     else
1202       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1203     ++StrongSIVsuccesses;
1204   }
1205   else if (Delta->isZero()) {
1206     // since 0/X == 0
1207     Result.DV[Level].Distance = Delta;
1208     NewConstraint.setDistance(Delta, CurLoop);
1209     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1210     ++StrongSIVsuccesses;
1211   }
1212   else {
1213     if (Coeff->isOne()) {
1214       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1215       Result.DV[Level].Distance = Delta; // since X/1 == X
1216       NewConstraint.setDistance(Delta, CurLoop);
1217     }
1218     else {
1219       Result.Consistent = false;
1220       NewConstraint.setLine(Coeff,
1221                             SE->getNegativeSCEV(Coeff),
1222                             SE->getNegativeSCEV(Delta), CurLoop);
1223     }
1224 
1225     // maybe we can get a useful direction
1226     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1227     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1228     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1229     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1230     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1231     // The double negatives above are confusing.
1232     // It helps to read !SE->isKnownNonZero(Delta)
1233     // as "Delta might be Zero"
1234     unsigned NewDirection = Dependence::DVEntry::NONE;
1235     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1236         (DeltaMaybeNegative && CoeffMaybeNegative))
1237       NewDirection = Dependence::DVEntry::LT;
1238     if (DeltaMaybeZero)
1239       NewDirection |= Dependence::DVEntry::EQ;
1240     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1241         (DeltaMaybePositive && CoeffMaybeNegative))
1242       NewDirection |= Dependence::DVEntry::GT;
1243     if (NewDirection < Result.DV[Level].Direction)
1244       ++StrongSIVsuccesses;
1245     Result.DV[Level].Direction &= NewDirection;
1246   }
1247   return false;
1248 }
1249 
1250 
1251 // weakCrossingSIVtest -
1252 // From the paper, Practical Dependence Testing, Section 4.2.2
1253 //
1254 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1255 // where i is an induction variable, c1 and c2 are loop invariant,
1256 // and a is a constant, we can solve it exactly using the
1257 // Weak-Crossing SIV test.
1258 //
1259 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1260 // the two lines, where i = i', yielding
1261 //
1262 //    c1 + a*i = c2 - a*i
1263 //    2a*i = c2 - c1
1264 //    i = (c2 - c1)/2a
1265 //
1266 // If i < 0, there is no dependence.
1267 // If i > upperbound, there is no dependence.
1268 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1269 // If i = upperbound, there's a dependence with distance = 0.
1270 // If i is integral, there's a dependence (all directions).
1271 // If the non-integer part = 1/2, there's a dependence (<> directions).
1272 // Otherwise, there's no dependence.
1273 //
1274 // Can prove independence. Failing that,
1275 // can sometimes refine the directions.
1276 // Can determine iteration for splitting.
1277 //
1278 // Return true if dependence disproved.
1279 bool DependenceInfo::weakCrossingSIVtest(
1280     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1281     const Loop *CurLoop, unsigned Level, FullDependence &Result,
1282     Constraint &NewConstraint, const SCEV *&SplitIter) const {
1283   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1284   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1285   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1286   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1287   ++WeakCrossingSIVapplications;
1288   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1289   Level--;
1290   Result.Consistent = false;
1291   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1292   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1293   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1294   if (Delta->isZero()) {
1295     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1296     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1297     ++WeakCrossingSIVsuccesses;
1298     if (!Result.DV[Level].Direction) {
1299       ++WeakCrossingSIVindependence;
1300       return true;
1301     }
1302     Result.DV[Level].Distance = Delta; // = 0
1303     return false;
1304   }
1305   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1306   if (!ConstCoeff)
1307     return false;
1308 
1309   Result.DV[Level].Splitable = true;
1310   if (SE->isKnownNegative(ConstCoeff)) {
1311     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1312     assert(ConstCoeff &&
1313            "dynamic cast of negative of ConstCoeff should yield constant");
1314     Delta = SE->getNegativeSCEV(Delta);
1315   }
1316   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1317 
1318   // compute SplitIter for use by DependenceInfo::getSplitIteration()
1319   SplitIter = SE->getUDivExpr(
1320       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1321       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1322   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1323 
1324   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1325   if (!ConstDelta)
1326     return false;
1327 
1328   // We're certain that ConstCoeff > 0; therefore,
1329   // if Delta < 0, then no dependence.
1330   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1331   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1332   if (SE->isKnownNegative(Delta)) {
1333     // No dependence, Delta < 0
1334     ++WeakCrossingSIVindependence;
1335     ++WeakCrossingSIVsuccesses;
1336     return true;
1337   }
1338 
1339   // We're certain that Delta > 0 and ConstCoeff > 0.
1340   // Check Delta/(2*ConstCoeff) against upper loop bound
1341   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1342     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1343     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1344     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1345                                     ConstantTwo);
1346     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1347     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1348       // Delta too big, no dependence
1349       ++WeakCrossingSIVindependence;
1350       ++WeakCrossingSIVsuccesses;
1351       return true;
1352     }
1353     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1354       // i = i' = UB
1355       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1356       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1357       ++WeakCrossingSIVsuccesses;
1358       if (!Result.DV[Level].Direction) {
1359         ++WeakCrossingSIVindependence;
1360         return true;
1361       }
1362       Result.DV[Level].Splitable = false;
1363       Result.DV[Level].Distance = SE->getZero(Delta->getType());
1364       return false;
1365     }
1366   }
1367 
1368   // check that Coeff divides Delta
1369   APInt APDelta = ConstDelta->getAPInt();
1370   APInt APCoeff = ConstCoeff->getAPInt();
1371   APInt Distance = APDelta; // these need to be initialzed
1372   APInt Remainder = APDelta;
1373   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1374   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1375   if (Remainder != 0) {
1376     // Coeff doesn't divide Delta, no dependence
1377     ++WeakCrossingSIVindependence;
1378     ++WeakCrossingSIVsuccesses;
1379     return true;
1380   }
1381   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1382 
1383   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1384   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1385   Remainder = Distance.srem(Two);
1386   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1387   if (Remainder != 0) {
1388     // Equal direction isn't possible
1389     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1390     ++WeakCrossingSIVsuccesses;
1391   }
1392   return false;
1393 }
1394 
1395 
1396 // Kirch's algorithm, from
1397 //
1398 //        Optimizing Supercompilers for Supercomputers
1399 //        Michael Wolfe
1400 //        MIT Press, 1989
1401 //
1402 // Program 2.1, page 29.
1403 // Computes the GCD of AM and BM.
1404 // Also finds a solution to the equation ax - by = gcd(a, b).
1405 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1406 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1407                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1408   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1409   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1410   APInt G0 = AM.abs();
1411   APInt G1 = BM.abs();
1412   APInt Q = G0; // these need to be initialized
1413   APInt R = G0;
1414   APInt::sdivrem(G0, G1, Q, R);
1415   while (R != 0) {
1416     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1417     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1418     G0 = G1; G1 = R;
1419     APInt::sdivrem(G0, G1, Q, R);
1420   }
1421   G = G1;
1422   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1423   X = AM.slt(0) ? -A1 : A1;
1424   Y = BM.slt(0) ? B1 : -B1;
1425 
1426   // make sure gcd divides Delta
1427   R = Delta.srem(G);
1428   if (R != 0)
1429     return true; // gcd doesn't divide Delta, no dependence
1430   Q = Delta.sdiv(G);
1431   X *= Q;
1432   Y *= Q;
1433   return false;
1434 }
1435 
1436 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1437   APInt Q = A; // these need to be initialized
1438   APInt R = A;
1439   APInt::sdivrem(A, B, Q, R);
1440   if (R == 0)
1441     return Q;
1442   if ((A.sgt(0) && B.sgt(0)) ||
1443       (A.slt(0) && B.slt(0)))
1444     return Q;
1445   else
1446     return Q - 1;
1447 }
1448 
1449 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1450   APInt Q = A; // these need to be initialized
1451   APInt R = A;
1452   APInt::sdivrem(A, B, Q, R);
1453   if (R == 0)
1454     return Q;
1455   if ((A.sgt(0) && B.sgt(0)) ||
1456       (A.slt(0) && B.slt(0)))
1457     return Q + 1;
1458   else
1459     return Q;
1460 }
1461 
1462 // exactSIVtest -
1463 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1464 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1465 // and a2 are constant, we can solve it exactly using an algorithm developed
1466 // by Banerjee and Wolfe. See Section 2.5.3 in
1467 //
1468 //        Optimizing Supercompilers for Supercomputers
1469 //        Michael Wolfe
1470 //        MIT Press, 1989
1471 //
1472 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1473 // so use them if possible. They're also a bit better with symbolics and,
1474 // in the case of the strong SIV test, can compute Distances.
1475 //
1476 // Return true if dependence disproved.
1477 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1478                                   const SCEV *SrcConst, const SCEV *DstConst,
1479                                   const Loop *CurLoop, unsigned Level,
1480                                   FullDependence &Result,
1481                                   Constraint &NewConstraint) const {
1482   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1483   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1484   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1485   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1486   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1487   ++ExactSIVapplications;
1488   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1489   Level--;
1490   Result.Consistent = false;
1491   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1492   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1493   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1494                         Delta, CurLoop);
1495   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1496   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1497   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1498   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1499     return false;
1500 
1501   // find gcd
1502   APInt G, X, Y;
1503   APInt AM = ConstSrcCoeff->getAPInt();
1504   APInt BM = ConstDstCoeff->getAPInt();
1505   unsigned Bits = AM.getBitWidth();
1506   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1507     // gcd doesn't divide Delta, no dependence
1508     ++ExactSIVindependence;
1509     ++ExactSIVsuccesses;
1510     return true;
1511   }
1512 
1513   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1514 
1515   // since SCEV construction normalizes, LM = 0
1516   APInt UM(Bits, 1, true);
1517   bool UMvalid = false;
1518   // UM is perhaps unavailable, let's check
1519   if (const SCEVConstant *CUB =
1520       collectConstantUpperBound(CurLoop, Delta->getType())) {
1521     UM = CUB->getAPInt();
1522     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1523     UMvalid = true;
1524   }
1525 
1526   APInt TU(APInt::getSignedMaxValue(Bits));
1527   APInt TL(APInt::getSignedMinValue(Bits));
1528 
1529   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1530   APInt TMUL = BM.sdiv(G);
1531   if (TMUL.sgt(0)) {
1532     TL = APIntOps::smax(TL, ceilingOfQuotient(-X, TMUL));
1533     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1534     if (UMvalid) {
1535       TU = APIntOps::smin(TU, floorOfQuotient(UM - X, TMUL));
1536       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1537     }
1538   }
1539   else {
1540     TU = APIntOps::smin(TU, floorOfQuotient(-X, TMUL));
1541     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1542     if (UMvalid) {
1543       TL = APIntOps::smax(TL, ceilingOfQuotient(UM - X, TMUL));
1544       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1545     }
1546   }
1547 
1548   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1549   TMUL = AM.sdiv(G);
1550   if (TMUL.sgt(0)) {
1551     TL = APIntOps::smax(TL, ceilingOfQuotient(-Y, TMUL));
1552     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1553     if (UMvalid) {
1554       TU = APIntOps::smin(TU, floorOfQuotient(UM - Y, TMUL));
1555       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1556     }
1557   }
1558   else {
1559     TU = APIntOps::smin(TU, floorOfQuotient(-Y, TMUL));
1560     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1561     if (UMvalid) {
1562       TL = APIntOps::smax(TL, ceilingOfQuotient(UM - Y, TMUL));
1563       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1564     }
1565   }
1566   if (TL.sgt(TU)) {
1567     ++ExactSIVindependence;
1568     ++ExactSIVsuccesses;
1569     return true;
1570   }
1571 
1572   // explore directions
1573   unsigned NewDirection = Dependence::DVEntry::NONE;
1574 
1575   // less than
1576   APInt SaveTU(TU); // save these
1577   APInt SaveTL(TL);
1578   LLVM_DEBUG(dbgs() << "\t    exploring LT direction\n");
1579   TMUL = AM - BM;
1580   if (TMUL.sgt(0)) {
1581     TL = APIntOps::smax(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1582     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1583   }
1584   else {
1585     TU = APIntOps::smin(TU, floorOfQuotient(X - Y + 1, TMUL));
1586     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1587   }
1588   if (TL.sle(TU)) {
1589     NewDirection |= Dependence::DVEntry::LT;
1590     ++ExactSIVsuccesses;
1591   }
1592 
1593   // equal
1594   TU = SaveTU; // restore
1595   TL = SaveTL;
1596   LLVM_DEBUG(dbgs() << "\t    exploring EQ direction\n");
1597   if (TMUL.sgt(0)) {
1598     TL = APIntOps::smax(TL, ceilingOfQuotient(X - Y, TMUL));
1599     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1600   }
1601   else {
1602     TU = APIntOps::smin(TU, floorOfQuotient(X - Y, TMUL));
1603     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1604   }
1605   TMUL = BM - AM;
1606   if (TMUL.sgt(0)) {
1607     TL = APIntOps::smax(TL, ceilingOfQuotient(Y - X, TMUL));
1608     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1609   }
1610   else {
1611     TU = APIntOps::smin(TU, floorOfQuotient(Y - X, TMUL));
1612     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1613   }
1614   if (TL.sle(TU)) {
1615     NewDirection |= Dependence::DVEntry::EQ;
1616     ++ExactSIVsuccesses;
1617   }
1618 
1619   // greater than
1620   TU = SaveTU; // restore
1621   TL = SaveTL;
1622   LLVM_DEBUG(dbgs() << "\t    exploring GT direction\n");
1623   if (TMUL.sgt(0)) {
1624     TL = APIntOps::smax(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1625     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1626   }
1627   else {
1628     TU = APIntOps::smin(TU, floorOfQuotient(Y - X + 1, TMUL));
1629     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1630   }
1631   if (TL.sle(TU)) {
1632     NewDirection |= Dependence::DVEntry::GT;
1633     ++ExactSIVsuccesses;
1634   }
1635 
1636   // finished
1637   Result.DV[Level].Direction &= NewDirection;
1638   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1639     ++ExactSIVindependence;
1640   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1641 }
1642 
1643 
1644 
1645 // Return true if the divisor evenly divides the dividend.
1646 static
1647 bool isRemainderZero(const SCEVConstant *Dividend,
1648                      const SCEVConstant *Divisor) {
1649   const APInt &ConstDividend = Dividend->getAPInt();
1650   const APInt &ConstDivisor = Divisor->getAPInt();
1651   return ConstDividend.srem(ConstDivisor) == 0;
1652 }
1653 
1654 
1655 // weakZeroSrcSIVtest -
1656 // From the paper, Practical Dependence Testing, Section 4.2.2
1657 //
1658 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1659 // where i is an induction variable, c1 and c2 are loop invariant,
1660 // and a is a constant, we can solve it exactly using the
1661 // Weak-Zero SIV test.
1662 //
1663 // Given
1664 //
1665 //    c1 = c2 + a*i
1666 //
1667 // we get
1668 //
1669 //    (c1 - c2)/a = i
1670 //
1671 // If i is not an integer, there's no dependence.
1672 // If i < 0 or > UB, there's no dependence.
1673 // If i = 0, the direction is >= and peeling the
1674 // 1st iteration will break the dependence.
1675 // If i = UB, the direction is <= and peeling the
1676 // last iteration will break the dependence.
1677 // Otherwise, the direction is *.
1678 //
1679 // Can prove independence. Failing that, we can sometimes refine
1680 // the directions. Can sometimes show that first or last
1681 // iteration carries all the dependences (so worth peeling).
1682 //
1683 // (see also weakZeroDstSIVtest)
1684 //
1685 // Return true if dependence disproved.
1686 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1687                                         const SCEV *SrcConst,
1688                                         const SCEV *DstConst,
1689                                         const Loop *CurLoop, unsigned Level,
1690                                         FullDependence &Result,
1691                                         Constraint &NewConstraint) const {
1692   // For the WeakSIV test, it's possible the loop isn't common to
1693   // the Src and Dst loops. If it isn't, then there's no need to
1694   // record a direction.
1695   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1696   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1697   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1698   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1699   ++WeakZeroSIVapplications;
1700   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1701   Level--;
1702   Result.Consistent = false;
1703   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1704   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1705                         CurLoop);
1706   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1707   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1708     if (Level < CommonLevels) {
1709       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1710       Result.DV[Level].PeelFirst = true;
1711       ++WeakZeroSIVsuccesses;
1712     }
1713     return false; // dependences caused by first iteration
1714   }
1715   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1716   if (!ConstCoeff)
1717     return false;
1718   const SCEV *AbsCoeff =
1719     SE->isKnownNegative(ConstCoeff) ?
1720     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1721   const SCEV *NewDelta =
1722     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1723 
1724   // check that Delta/SrcCoeff < iteration count
1725   // really check NewDelta < count*AbsCoeff
1726   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1727     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1728     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1729     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1730       ++WeakZeroSIVindependence;
1731       ++WeakZeroSIVsuccesses;
1732       return true;
1733     }
1734     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1735       // dependences caused by last iteration
1736       if (Level < CommonLevels) {
1737         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1738         Result.DV[Level].PeelLast = true;
1739         ++WeakZeroSIVsuccesses;
1740       }
1741       return false;
1742     }
1743   }
1744 
1745   // check that Delta/SrcCoeff >= 0
1746   // really check that NewDelta >= 0
1747   if (SE->isKnownNegative(NewDelta)) {
1748     // No dependence, newDelta < 0
1749     ++WeakZeroSIVindependence;
1750     ++WeakZeroSIVsuccesses;
1751     return true;
1752   }
1753 
1754   // if SrcCoeff doesn't divide Delta, then no dependence
1755   if (isa<SCEVConstant>(Delta) &&
1756       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1757     ++WeakZeroSIVindependence;
1758     ++WeakZeroSIVsuccesses;
1759     return true;
1760   }
1761   return false;
1762 }
1763 
1764 
1765 // weakZeroDstSIVtest -
1766 // From the paper, Practical Dependence Testing, Section 4.2.2
1767 //
1768 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1769 // where i is an induction variable, c1 and c2 are loop invariant,
1770 // and a is a constant, we can solve it exactly using the
1771 // Weak-Zero SIV test.
1772 //
1773 // Given
1774 //
1775 //    c1 + a*i = c2
1776 //
1777 // we get
1778 //
1779 //    i = (c2 - c1)/a
1780 //
1781 // If i is not an integer, there's no dependence.
1782 // If i < 0 or > UB, there's no dependence.
1783 // If i = 0, the direction is <= and peeling the
1784 // 1st iteration will break the dependence.
1785 // If i = UB, the direction is >= and peeling the
1786 // last iteration will break the dependence.
1787 // Otherwise, the direction is *.
1788 //
1789 // Can prove independence. Failing that, we can sometimes refine
1790 // the directions. Can sometimes show that first or last
1791 // iteration carries all the dependences (so worth peeling).
1792 //
1793 // (see also weakZeroSrcSIVtest)
1794 //
1795 // Return true if dependence disproved.
1796 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1797                                         const SCEV *SrcConst,
1798                                         const SCEV *DstConst,
1799                                         const Loop *CurLoop, unsigned Level,
1800                                         FullDependence &Result,
1801                                         Constraint &NewConstraint) const {
1802   // For the WeakSIV test, it's possible the loop isn't common to the
1803   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1804   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1805   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1806   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1807   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1808   ++WeakZeroSIVapplications;
1809   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1810   Level--;
1811   Result.Consistent = false;
1812   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1813   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1814                         CurLoop);
1815   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1816   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1817     if (Level < CommonLevels) {
1818       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1819       Result.DV[Level].PeelFirst = true;
1820       ++WeakZeroSIVsuccesses;
1821     }
1822     return false; // dependences caused by first iteration
1823   }
1824   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1825   if (!ConstCoeff)
1826     return false;
1827   const SCEV *AbsCoeff =
1828     SE->isKnownNegative(ConstCoeff) ?
1829     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1830   const SCEV *NewDelta =
1831     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1832 
1833   // check that Delta/SrcCoeff < iteration count
1834   // really check NewDelta < count*AbsCoeff
1835   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1836     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1837     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1838     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1839       ++WeakZeroSIVindependence;
1840       ++WeakZeroSIVsuccesses;
1841       return true;
1842     }
1843     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1844       // dependences caused by last iteration
1845       if (Level < CommonLevels) {
1846         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1847         Result.DV[Level].PeelLast = true;
1848         ++WeakZeroSIVsuccesses;
1849       }
1850       return false;
1851     }
1852   }
1853 
1854   // check that Delta/SrcCoeff >= 0
1855   // really check that NewDelta >= 0
1856   if (SE->isKnownNegative(NewDelta)) {
1857     // No dependence, newDelta < 0
1858     ++WeakZeroSIVindependence;
1859     ++WeakZeroSIVsuccesses;
1860     return true;
1861   }
1862 
1863   // if SrcCoeff doesn't divide Delta, then no dependence
1864   if (isa<SCEVConstant>(Delta) &&
1865       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1866     ++WeakZeroSIVindependence;
1867     ++WeakZeroSIVsuccesses;
1868     return true;
1869   }
1870   return false;
1871 }
1872 
1873 
1874 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1875 // Things of the form [c1 + a*i] and [c2 + b*j],
1876 // where i and j are induction variable, c1 and c2 are loop invariant,
1877 // and a and b are constants.
1878 // Returns true if any possible dependence is disproved.
1879 // Marks the result as inconsistent.
1880 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1881 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1882                                    const SCEV *SrcConst, const SCEV *DstConst,
1883                                    const Loop *SrcLoop, const Loop *DstLoop,
1884                                    FullDependence &Result) const {
1885   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1886   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1887   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1888   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1889   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1890   ++ExactRDIVapplications;
1891   Result.Consistent = false;
1892   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1893   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1894   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1895   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1896   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1897   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1898     return false;
1899 
1900   // find gcd
1901   APInt G, X, Y;
1902   APInt AM = ConstSrcCoeff->getAPInt();
1903   APInt BM = ConstDstCoeff->getAPInt();
1904   unsigned Bits = AM.getBitWidth();
1905   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1906     // gcd doesn't divide Delta, no dependence
1907     ++ExactRDIVindependence;
1908     return true;
1909   }
1910 
1911   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1912 
1913   // since SCEV construction seems to normalize, LM = 0
1914   APInt SrcUM(Bits, 1, true);
1915   bool SrcUMvalid = false;
1916   // SrcUM is perhaps unavailable, let's check
1917   if (const SCEVConstant *UpperBound =
1918       collectConstantUpperBound(SrcLoop, Delta->getType())) {
1919     SrcUM = UpperBound->getAPInt();
1920     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1921     SrcUMvalid = true;
1922   }
1923 
1924   APInt DstUM(Bits, 1, true);
1925   bool DstUMvalid = false;
1926   // UM is perhaps unavailable, let's check
1927   if (const SCEVConstant *UpperBound =
1928       collectConstantUpperBound(DstLoop, Delta->getType())) {
1929     DstUM = UpperBound->getAPInt();
1930     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1931     DstUMvalid = true;
1932   }
1933 
1934   APInt TU(APInt::getSignedMaxValue(Bits));
1935   APInt TL(APInt::getSignedMinValue(Bits));
1936 
1937   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1938   APInt TMUL = BM.sdiv(G);
1939   if (TMUL.sgt(0)) {
1940     TL = APIntOps::smax(TL, ceilingOfQuotient(-X, TMUL));
1941     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1942     if (SrcUMvalid) {
1943       TU = APIntOps::smin(TU, floorOfQuotient(SrcUM - X, TMUL));
1944       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1945     }
1946   }
1947   else {
1948     TU = APIntOps::smin(TU, floorOfQuotient(-X, TMUL));
1949     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1950     if (SrcUMvalid) {
1951       TL = APIntOps::smax(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1952       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1953     }
1954   }
1955 
1956   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1957   TMUL = AM.sdiv(G);
1958   if (TMUL.sgt(0)) {
1959     TL = APIntOps::smax(TL, ceilingOfQuotient(-Y, TMUL));
1960     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1961     if (DstUMvalid) {
1962       TU = APIntOps::smin(TU, floorOfQuotient(DstUM - Y, TMUL));
1963       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1964     }
1965   }
1966   else {
1967     TU = APIntOps::smin(TU, floorOfQuotient(-Y, TMUL));
1968     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1969     if (DstUMvalid) {
1970       TL = APIntOps::smax(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1971       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1972     }
1973   }
1974   if (TL.sgt(TU))
1975     ++ExactRDIVindependence;
1976   return TL.sgt(TU);
1977 }
1978 
1979 
1980 // symbolicRDIVtest -
1981 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1982 // introduce a special case of Banerjee's Inequalities (also called the
1983 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1984 // particularly cases with symbolics. Since it's only able to disprove
1985 // dependence (not compute distances or directions), we'll use it as a
1986 // fall back for the other tests.
1987 //
1988 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1989 // where i and j are induction variables and c1 and c2 are loop invariants,
1990 // we can use the symbolic tests to disprove some dependences, serving as a
1991 // backup for the RDIV test. Note that i and j can be the same variable,
1992 // letting this test serve as a backup for the various SIV tests.
1993 //
1994 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1995 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1996 // loop bounds for the i and j loops, respectively. So, ...
1997 //
1998 // c1 + a1*i = c2 + a2*j
1999 // a1*i - a2*j = c2 - c1
2000 //
2001 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2002 // range of the maximum and minimum possible values of a1*i - a2*j.
2003 // Considering the signs of a1 and a2, we have 4 possible cases:
2004 //
2005 // 1) If a1 >= 0 and a2 >= 0, then
2006 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2007 //              -a2*N2 <= c2 - c1 <= a1*N1
2008 //
2009 // 2) If a1 >= 0 and a2 <= 0, then
2010 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2011 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
2012 //
2013 // 3) If a1 <= 0 and a2 >= 0, then
2014 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2015 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
2016 //
2017 // 4) If a1 <= 0 and a2 <= 0, then
2018 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
2019 //        a1*N1         <= c2 - c1 <=       -a2*N2
2020 //
2021 // return true if dependence disproved
2022 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2023                                       const SCEV *C1, const SCEV *C2,
2024                                       const Loop *Loop1,
2025                                       const Loop *Loop2) const {
2026   ++SymbolicRDIVapplications;
2027   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2028   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
2029   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2030   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
2031   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
2032   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
2033   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2034   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2035   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
2036   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
2037   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2038   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2039   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
2040   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
2041   if (SE->isKnownNonNegative(A1)) {
2042     if (SE->isKnownNonNegative(A2)) {
2043       // A1 >= 0 && A2 >= 0
2044       if (N1) {
2045         // make sure that c2 - c1 <= a1*N1
2046         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2047         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2048         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2049           ++SymbolicRDIVindependence;
2050           return true;
2051         }
2052       }
2053       if (N2) {
2054         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2055         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2056         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2057         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2058           ++SymbolicRDIVindependence;
2059           return true;
2060         }
2061       }
2062     }
2063     else if (SE->isKnownNonPositive(A2)) {
2064       // a1 >= 0 && a2 <= 0
2065       if (N1 && N2) {
2066         // make sure that c2 - c1 <= a1*N1 - a2*N2
2067         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2068         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2069         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2070         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2071         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2072           ++SymbolicRDIVindependence;
2073           return true;
2074         }
2075       }
2076       // make sure that 0 <= c2 - c1
2077       if (SE->isKnownNegative(C2_C1)) {
2078         ++SymbolicRDIVindependence;
2079         return true;
2080       }
2081     }
2082   }
2083   else if (SE->isKnownNonPositive(A1)) {
2084     if (SE->isKnownNonNegative(A2)) {
2085       // a1 <= 0 && a2 >= 0
2086       if (N1 && N2) {
2087         // make sure that a1*N1 - a2*N2 <= c2 - c1
2088         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2089         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2090         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2091         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2092         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2093           ++SymbolicRDIVindependence;
2094           return true;
2095         }
2096       }
2097       // make sure that c2 - c1 <= 0
2098       if (SE->isKnownPositive(C2_C1)) {
2099         ++SymbolicRDIVindependence;
2100         return true;
2101       }
2102     }
2103     else if (SE->isKnownNonPositive(A2)) {
2104       // a1 <= 0 && a2 <= 0
2105       if (N1) {
2106         // make sure that a1*N1 <= c2 - c1
2107         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2108         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2109         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2110           ++SymbolicRDIVindependence;
2111           return true;
2112         }
2113       }
2114       if (N2) {
2115         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2116         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2117         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2118         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2119           ++SymbolicRDIVindependence;
2120           return true;
2121         }
2122       }
2123     }
2124   }
2125   return false;
2126 }
2127 
2128 
2129 // testSIV -
2130 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2131 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2132 // a2 are constant, we attack it with an SIV test. While they can all be
2133 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2134 // they apply; they're cheaper and sometimes more precise.
2135 //
2136 // Return true if dependence disproved.
2137 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2138                              FullDependence &Result, Constraint &NewConstraint,
2139                              const SCEV *&SplitIter) const {
2140   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2141   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2142   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2143   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2144   if (SrcAddRec && DstAddRec) {
2145     const SCEV *SrcConst = SrcAddRec->getStart();
2146     const SCEV *DstConst = DstAddRec->getStart();
2147     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2148     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2149     const Loop *CurLoop = SrcAddRec->getLoop();
2150     assert(CurLoop == DstAddRec->getLoop() &&
2151            "both loops in SIV should be same");
2152     Level = mapSrcLoop(CurLoop);
2153     bool disproven;
2154     if (SrcCoeff == DstCoeff)
2155       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2156                                 Level, Result, NewConstraint);
2157     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2158       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2159                                       Level, Result, NewConstraint, SplitIter);
2160     else
2161       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2162                                Level, Result, NewConstraint);
2163     return disproven ||
2164       gcdMIVtest(Src, Dst, Result) ||
2165       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2166   }
2167   if (SrcAddRec) {
2168     const SCEV *SrcConst = SrcAddRec->getStart();
2169     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2170     const SCEV *DstConst = Dst;
2171     const Loop *CurLoop = SrcAddRec->getLoop();
2172     Level = mapSrcLoop(CurLoop);
2173     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2174                               Level, Result, NewConstraint) ||
2175       gcdMIVtest(Src, Dst, Result);
2176   }
2177   if (DstAddRec) {
2178     const SCEV *DstConst = DstAddRec->getStart();
2179     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2180     const SCEV *SrcConst = Src;
2181     const Loop *CurLoop = DstAddRec->getLoop();
2182     Level = mapDstLoop(CurLoop);
2183     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2184                               CurLoop, Level, Result, NewConstraint) ||
2185       gcdMIVtest(Src, Dst, Result);
2186   }
2187   llvm_unreachable("SIV test expected at least one AddRec");
2188   return false;
2189 }
2190 
2191 
2192 // testRDIV -
2193 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2194 // where i and j are induction variables, c1 and c2 are loop invariant,
2195 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2196 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2197 // It doesn't make sense to talk about distance or direction in this case,
2198 // so there's no point in making special versions of the Strong SIV test or
2199 // the Weak-crossing SIV test.
2200 //
2201 // With minor algebra, this test can also be used for things like
2202 // [c1 + a1*i + a2*j][c2].
2203 //
2204 // Return true if dependence disproved.
2205 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2206                               FullDependence &Result) const {
2207   // we have 3 possible situations here:
2208   //   1) [a*i + b] and [c*j + d]
2209   //   2) [a*i + c*j + b] and [d]
2210   //   3) [b] and [a*i + c*j + d]
2211   // We need to find what we've got and get organized
2212 
2213   const SCEV *SrcConst, *DstConst;
2214   const SCEV *SrcCoeff, *DstCoeff;
2215   const Loop *SrcLoop, *DstLoop;
2216 
2217   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2218   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2219   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2220   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2221   if (SrcAddRec && DstAddRec) {
2222     SrcConst = SrcAddRec->getStart();
2223     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2224     SrcLoop = SrcAddRec->getLoop();
2225     DstConst = DstAddRec->getStart();
2226     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2227     DstLoop = DstAddRec->getLoop();
2228   }
2229   else if (SrcAddRec) {
2230     if (const SCEVAddRecExpr *tmpAddRec =
2231         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2232       SrcConst = tmpAddRec->getStart();
2233       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2234       SrcLoop = tmpAddRec->getLoop();
2235       DstConst = Dst;
2236       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2237       DstLoop = SrcAddRec->getLoop();
2238     }
2239     else
2240       llvm_unreachable("RDIV reached by surprising SCEVs");
2241   }
2242   else if (DstAddRec) {
2243     if (const SCEVAddRecExpr *tmpAddRec =
2244         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2245       DstConst = tmpAddRec->getStart();
2246       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2247       DstLoop = tmpAddRec->getLoop();
2248       SrcConst = Src;
2249       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2250       SrcLoop = DstAddRec->getLoop();
2251     }
2252     else
2253       llvm_unreachable("RDIV reached by surprising SCEVs");
2254   }
2255   else
2256     llvm_unreachable("RDIV expected at least one AddRec");
2257   return exactRDIVtest(SrcCoeff, DstCoeff,
2258                        SrcConst, DstConst,
2259                        SrcLoop, DstLoop,
2260                        Result) ||
2261     gcdMIVtest(Src, Dst, Result) ||
2262     symbolicRDIVtest(SrcCoeff, DstCoeff,
2263                      SrcConst, DstConst,
2264                      SrcLoop, DstLoop);
2265 }
2266 
2267 
2268 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2269 // Return true if dependence disproved.
2270 // Can sometimes refine direction vectors.
2271 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2272                              const SmallBitVector &Loops,
2273                              FullDependence &Result) const {
2274   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2275   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2276   Result.Consistent = false;
2277   return gcdMIVtest(Src, Dst, Result) ||
2278     banerjeeMIVtest(Src, Dst, Loops, Result);
2279 }
2280 
2281 
2282 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2283 // in this case 10. If there is no constant part, returns NULL.
2284 static
2285 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2286   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2287     return Constant;
2288   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2289     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2290       return Constant;
2291   return nullptr;
2292 }
2293 
2294 
2295 //===----------------------------------------------------------------------===//
2296 // gcdMIVtest -
2297 // Tests an MIV subscript pair for dependence.
2298 // Returns true if any possible dependence is disproved.
2299 // Marks the result as inconsistent.
2300 // Can sometimes disprove the equal direction for 1 or more loops,
2301 // as discussed in Michael Wolfe's book,
2302 // High Performance Compilers for Parallel Computing, page 235.
2303 //
2304 // We spend some effort (code!) to handle cases like
2305 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2306 // but M and N are just loop-invariant variables.
2307 // This should help us handle linearized subscripts;
2308 // also makes this test a useful backup to the various SIV tests.
2309 //
2310 // It occurs to me that the presence of loop-invariant variables
2311 // changes the nature of the test from "greatest common divisor"
2312 // to "a common divisor".
2313 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2314                                 FullDependence &Result) const {
2315   LLVM_DEBUG(dbgs() << "starting gcd\n");
2316   ++GCDapplications;
2317   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2318   APInt RunningGCD = APInt::getNullValue(BitWidth);
2319 
2320   // Examine Src coefficients.
2321   // Compute running GCD and record source constant.
2322   // Because we're looking for the constant at the end of the chain,
2323   // we can't quit the loop just because the GCD == 1.
2324   const SCEV *Coefficients = Src;
2325   while (const SCEVAddRecExpr *AddRec =
2326          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2327     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2328     // If the coefficient is the product of a constant and other stuff,
2329     // we can use the constant in the GCD computation.
2330     const auto *Constant = getConstantPart(Coeff);
2331     if (!Constant)
2332       return false;
2333     APInt ConstCoeff = Constant->getAPInt();
2334     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2335     Coefficients = AddRec->getStart();
2336   }
2337   const SCEV *SrcConst = Coefficients;
2338 
2339   // Examine Dst coefficients.
2340   // Compute running GCD and record destination constant.
2341   // Because we're looking for the constant at the end of the chain,
2342   // we can't quit the loop just because the GCD == 1.
2343   Coefficients = Dst;
2344   while (const SCEVAddRecExpr *AddRec =
2345          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2346     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2347     // If the coefficient is the product of a constant and other stuff,
2348     // we can use the constant in the GCD computation.
2349     const auto *Constant = getConstantPart(Coeff);
2350     if (!Constant)
2351       return false;
2352     APInt ConstCoeff = Constant->getAPInt();
2353     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2354     Coefficients = AddRec->getStart();
2355   }
2356   const SCEV *DstConst = Coefficients;
2357 
2358   APInt ExtraGCD = APInt::getNullValue(BitWidth);
2359   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2360   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2361   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2362   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2363     // If Delta is a sum of products, we may be able to make further progress.
2364     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2365       const SCEV *Operand = Sum->getOperand(Op);
2366       if (isa<SCEVConstant>(Operand)) {
2367         assert(!Constant && "Surprised to find multiple constants");
2368         Constant = cast<SCEVConstant>(Operand);
2369       }
2370       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2371         // Search for constant operand to participate in GCD;
2372         // If none found; return false.
2373         const SCEVConstant *ConstOp = getConstantPart(Product);
2374         if (!ConstOp)
2375           return false;
2376         APInt ConstOpValue = ConstOp->getAPInt();
2377         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2378                                                    ConstOpValue.abs());
2379       }
2380       else
2381         return false;
2382     }
2383   }
2384   if (!Constant)
2385     return false;
2386   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2387   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2388   if (ConstDelta == 0)
2389     return false;
2390   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2391   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2392   APInt Remainder = ConstDelta.srem(RunningGCD);
2393   if (Remainder != 0) {
2394     ++GCDindependence;
2395     return true;
2396   }
2397 
2398   // Try to disprove equal directions.
2399   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2400   // the code above can't disprove the dependence because the GCD = 1.
2401   // So we consider what happen if i = i' and what happens if j = j'.
2402   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2403   // which is infeasible, so we can disallow the = direction for the i level.
2404   // Setting j = j' doesn't help matters, so we end up with a direction vector
2405   // of [<>, *]
2406   //
2407   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2408   // we need to remember that the constant part is 5 and the RunningGCD should
2409   // be initialized to ExtraGCD = 30.
2410   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2411 
2412   bool Improved = false;
2413   Coefficients = Src;
2414   while (const SCEVAddRecExpr *AddRec =
2415          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2416     Coefficients = AddRec->getStart();
2417     const Loop *CurLoop = AddRec->getLoop();
2418     RunningGCD = ExtraGCD;
2419     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2420     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2421     const SCEV *Inner = Src;
2422     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2423       AddRec = cast<SCEVAddRecExpr>(Inner);
2424       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2425       if (CurLoop == AddRec->getLoop())
2426         ; // SrcCoeff == Coeff
2427       else {
2428         // If the coefficient is the product of a constant and other stuff,
2429         // we can use the constant in the GCD computation.
2430         Constant = getConstantPart(Coeff);
2431         if (!Constant)
2432           return false;
2433         APInt ConstCoeff = Constant->getAPInt();
2434         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2435       }
2436       Inner = AddRec->getStart();
2437     }
2438     Inner = Dst;
2439     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2440       AddRec = cast<SCEVAddRecExpr>(Inner);
2441       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2442       if (CurLoop == AddRec->getLoop())
2443         DstCoeff = Coeff;
2444       else {
2445         // If the coefficient is the product of a constant and other stuff,
2446         // we can use the constant in the GCD computation.
2447         Constant = getConstantPart(Coeff);
2448         if (!Constant)
2449           return false;
2450         APInt ConstCoeff = Constant->getAPInt();
2451         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2452       }
2453       Inner = AddRec->getStart();
2454     }
2455     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2456     // If the coefficient is the product of a constant and other stuff,
2457     // we can use the constant in the GCD computation.
2458     Constant = getConstantPart(Delta);
2459     if (!Constant)
2460       // The difference of the two coefficients might not be a product
2461       // or constant, in which case we give up on this direction.
2462       continue;
2463     APInt ConstCoeff = Constant->getAPInt();
2464     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2465     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2466     if (RunningGCD != 0) {
2467       Remainder = ConstDelta.srem(RunningGCD);
2468       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2469       if (Remainder != 0) {
2470         unsigned Level = mapSrcLoop(CurLoop);
2471         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2472         Improved = true;
2473       }
2474     }
2475   }
2476   if (Improved)
2477     ++GCDsuccesses;
2478   LLVM_DEBUG(dbgs() << "all done\n");
2479   return false;
2480 }
2481 
2482 
2483 //===----------------------------------------------------------------------===//
2484 // banerjeeMIVtest -
2485 // Use Banerjee's Inequalities to test an MIV subscript pair.
2486 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2487 // Generally follows the discussion in Section 2.5.2 of
2488 //
2489 //    Optimizing Supercompilers for Supercomputers
2490 //    Michael Wolfe
2491 //
2492 // The inequalities given on page 25 are simplified in that loops are
2493 // normalized so that the lower bound is always 0 and the stride is always 1.
2494 // For example, Wolfe gives
2495 //
2496 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2497 //
2498 // where A_k is the coefficient of the kth index in the source subscript,
2499 // B_k is the coefficient of the kth index in the destination subscript,
2500 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2501 // index, and N_k is the stride of the kth index. Since all loops are normalized
2502 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2503 // equation to
2504 //
2505 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2506 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2507 //
2508 // Similar simplifications are possible for the other equations.
2509 //
2510 // When we can't determine the number of iterations for a loop,
2511 // we use NULL as an indicator for the worst case, infinity.
2512 // When computing the upper bound, NULL denotes +inf;
2513 // for the lower bound, NULL denotes -inf.
2514 //
2515 // Return true if dependence disproved.
2516 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2517                                      const SmallBitVector &Loops,
2518                                      FullDependence &Result) const {
2519   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2520   ++BanerjeeApplications;
2521   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
2522   const SCEV *A0;
2523   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2524   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2525   const SCEV *B0;
2526   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2527   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2528   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2529   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2530 
2531   // Compute bounds for all the * directions.
2532   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2533   for (unsigned K = 1; K <= MaxLevels; ++K) {
2534     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2535     Bound[K].Direction = Dependence::DVEntry::ALL;
2536     Bound[K].DirSet = Dependence::DVEntry::NONE;
2537     findBoundsALL(A, B, Bound, K);
2538 #ifndef NDEBUG
2539     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
2540     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2541       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2542     else
2543       LLVM_DEBUG(dbgs() << "-inf\t");
2544     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2545       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2546     else
2547       LLVM_DEBUG(dbgs() << "+inf\n");
2548 #endif
2549   }
2550 
2551   // Test the *, *, *, ... case.
2552   bool Disproved = false;
2553   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2554     // Explore the direction vector hierarchy.
2555     unsigned DepthExpanded = 0;
2556     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2557                                          Loops, DepthExpanded, Delta);
2558     if (NewDeps > 0) {
2559       bool Improved = false;
2560       for (unsigned K = 1; K <= CommonLevels; ++K) {
2561         if (Loops[K]) {
2562           unsigned Old = Result.DV[K - 1].Direction;
2563           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2564           Improved |= Old != Result.DV[K - 1].Direction;
2565           if (!Result.DV[K - 1].Direction) {
2566             Improved = false;
2567             Disproved = true;
2568             break;
2569           }
2570         }
2571       }
2572       if (Improved)
2573         ++BanerjeeSuccesses;
2574     }
2575     else {
2576       ++BanerjeeIndependence;
2577       Disproved = true;
2578     }
2579   }
2580   else {
2581     ++BanerjeeIndependence;
2582     Disproved = true;
2583   }
2584   delete [] Bound;
2585   delete [] A;
2586   delete [] B;
2587   return Disproved;
2588 }
2589 
2590 
2591 // Hierarchically expands the direction vector
2592 // search space, combining the directions of discovered dependences
2593 // in the DirSet field of Bound. Returns the number of distinct
2594 // dependences discovered. If the dependence is disproved,
2595 // it will return 0.
2596 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2597                                            CoefficientInfo *B, BoundInfo *Bound,
2598                                            const SmallBitVector &Loops,
2599                                            unsigned &DepthExpanded,
2600                                            const SCEV *Delta) const {
2601   if (Level > CommonLevels) {
2602     // record result
2603     LLVM_DEBUG(dbgs() << "\t[");
2604     for (unsigned K = 1; K <= CommonLevels; ++K) {
2605       if (Loops[K]) {
2606         Bound[K].DirSet |= Bound[K].Direction;
2607 #ifndef NDEBUG
2608         switch (Bound[K].Direction) {
2609         case Dependence::DVEntry::LT:
2610           LLVM_DEBUG(dbgs() << " <");
2611           break;
2612         case Dependence::DVEntry::EQ:
2613           LLVM_DEBUG(dbgs() << " =");
2614           break;
2615         case Dependence::DVEntry::GT:
2616           LLVM_DEBUG(dbgs() << " >");
2617           break;
2618         case Dependence::DVEntry::ALL:
2619           LLVM_DEBUG(dbgs() << " *");
2620           break;
2621         default:
2622           llvm_unreachable("unexpected Bound[K].Direction");
2623         }
2624 #endif
2625       }
2626     }
2627     LLVM_DEBUG(dbgs() << " ]\n");
2628     return 1;
2629   }
2630   if (Loops[Level]) {
2631     if (Level > DepthExpanded) {
2632       DepthExpanded = Level;
2633       // compute bounds for <, =, > at current level
2634       findBoundsLT(A, B, Bound, Level);
2635       findBoundsGT(A, B, Bound, Level);
2636       findBoundsEQ(A, B, Bound, Level);
2637 #ifndef NDEBUG
2638       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2639       LLVM_DEBUG(dbgs() << "\t    <\t");
2640       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2641         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2642                           << '\t');
2643       else
2644         LLVM_DEBUG(dbgs() << "-inf\t");
2645       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2646         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2647                           << '\n');
2648       else
2649         LLVM_DEBUG(dbgs() << "+inf\n");
2650       LLVM_DEBUG(dbgs() << "\t    =\t");
2651       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2652         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2653                           << '\t');
2654       else
2655         LLVM_DEBUG(dbgs() << "-inf\t");
2656       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2657         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2658                           << '\n');
2659       else
2660         LLVM_DEBUG(dbgs() << "+inf\n");
2661       LLVM_DEBUG(dbgs() << "\t    >\t");
2662       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2663         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2664                           << '\t');
2665       else
2666         LLVM_DEBUG(dbgs() << "-inf\t");
2667       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2668         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2669                           << '\n');
2670       else
2671         LLVM_DEBUG(dbgs() << "+inf\n");
2672 #endif
2673     }
2674 
2675     unsigned NewDeps = 0;
2676 
2677     // test bounds for <, *, *, ...
2678     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2679       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2680                                    Loops, DepthExpanded, Delta);
2681 
2682     // Test bounds for =, *, *, ...
2683     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2684       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2685                                    Loops, DepthExpanded, Delta);
2686 
2687     // test bounds for >, *, *, ...
2688     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2689       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2690                                    Loops, DepthExpanded, Delta);
2691 
2692     Bound[Level].Direction = Dependence::DVEntry::ALL;
2693     return NewDeps;
2694   }
2695   else
2696     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2697 }
2698 
2699 
2700 // Returns true iff the current bounds are plausible.
2701 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2702                                 BoundInfo *Bound, const SCEV *Delta) const {
2703   Bound[Level].Direction = DirKind;
2704   if (const SCEV *LowerBound = getLowerBound(Bound))
2705     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2706       return false;
2707   if (const SCEV *UpperBound = getUpperBound(Bound))
2708     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2709       return false;
2710   return true;
2711 }
2712 
2713 
2714 // Computes the upper and lower bounds for level K
2715 // using the * direction. Records them in Bound.
2716 // Wolfe gives the equations
2717 //
2718 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2719 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2720 //
2721 // Since we normalize loops, we can simplify these equations to
2722 //
2723 //    LB^*_k = (A^-_k - B^+_k)U_k
2724 //    UB^*_k = (A^+_k - B^-_k)U_k
2725 //
2726 // We must be careful to handle the case where the upper bound is unknown.
2727 // Note that the lower bound is always <= 0
2728 // and the upper bound is always >= 0.
2729 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2730                                    BoundInfo *Bound, unsigned K) const {
2731   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2732   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2733   if (Bound[K].Iterations) {
2734     Bound[K].Lower[Dependence::DVEntry::ALL] =
2735       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2736                      Bound[K].Iterations);
2737     Bound[K].Upper[Dependence::DVEntry::ALL] =
2738       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2739                      Bound[K].Iterations);
2740   }
2741   else {
2742     // If the difference is 0, we won't need to know the number of iterations.
2743     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2744       Bound[K].Lower[Dependence::DVEntry::ALL] =
2745           SE->getZero(A[K].Coeff->getType());
2746     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2747       Bound[K].Upper[Dependence::DVEntry::ALL] =
2748           SE->getZero(A[K].Coeff->getType());
2749   }
2750 }
2751 
2752 
2753 // Computes the upper and lower bounds for level K
2754 // using the = direction. Records them in Bound.
2755 // Wolfe gives the equations
2756 //
2757 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2758 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2759 //
2760 // Since we normalize loops, we can simplify these equations to
2761 //
2762 //    LB^=_k = (A_k - B_k)^- U_k
2763 //    UB^=_k = (A_k - B_k)^+ U_k
2764 //
2765 // We must be careful to handle the case where the upper bound is unknown.
2766 // Note that the lower bound is always <= 0
2767 // and the upper bound is always >= 0.
2768 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2769                                   BoundInfo *Bound, unsigned K) const {
2770   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2771   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2772   if (Bound[K].Iterations) {
2773     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2774     const SCEV *NegativePart = getNegativePart(Delta);
2775     Bound[K].Lower[Dependence::DVEntry::EQ] =
2776       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2777     const SCEV *PositivePart = getPositivePart(Delta);
2778     Bound[K].Upper[Dependence::DVEntry::EQ] =
2779       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2780   }
2781   else {
2782     // If the positive/negative part of the difference is 0,
2783     // we won't need to know the number of iterations.
2784     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2785     const SCEV *NegativePart = getNegativePart(Delta);
2786     if (NegativePart->isZero())
2787       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2788     const SCEV *PositivePart = getPositivePart(Delta);
2789     if (PositivePart->isZero())
2790       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2791   }
2792 }
2793 
2794 
2795 // Computes the upper and lower bounds for level K
2796 // using the < direction. Records them in Bound.
2797 // Wolfe gives the equations
2798 //
2799 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2800 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2801 //
2802 // Since we normalize loops, we can simplify these equations to
2803 //
2804 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2805 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2806 //
2807 // We must be careful to handle the case where the upper bound is unknown.
2808 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2809                                   BoundInfo *Bound, unsigned K) const {
2810   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2811   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2812   if (Bound[K].Iterations) {
2813     const SCEV *Iter_1 = SE->getMinusSCEV(
2814         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2815     const SCEV *NegPart =
2816       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2817     Bound[K].Lower[Dependence::DVEntry::LT] =
2818       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2819     const SCEV *PosPart =
2820       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2821     Bound[K].Upper[Dependence::DVEntry::LT] =
2822       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2823   }
2824   else {
2825     // If the positive/negative part of the difference is 0,
2826     // we won't need to know the number of iterations.
2827     const SCEV *NegPart =
2828       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2829     if (NegPart->isZero())
2830       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2831     const SCEV *PosPart =
2832       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2833     if (PosPart->isZero())
2834       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2835   }
2836 }
2837 
2838 
2839 // Computes the upper and lower bounds for level K
2840 // using the > direction. Records them in Bound.
2841 // Wolfe gives the equations
2842 //
2843 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2844 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2845 //
2846 // Since we normalize loops, we can simplify these equations to
2847 //
2848 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2849 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2850 //
2851 // We must be careful to handle the case where the upper bound is unknown.
2852 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2853                                   BoundInfo *Bound, unsigned K) const {
2854   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2855   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2856   if (Bound[K].Iterations) {
2857     const SCEV *Iter_1 = SE->getMinusSCEV(
2858         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2859     const SCEV *NegPart =
2860       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2861     Bound[K].Lower[Dependence::DVEntry::GT] =
2862       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2863     const SCEV *PosPart =
2864       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2865     Bound[K].Upper[Dependence::DVEntry::GT] =
2866       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2867   }
2868   else {
2869     // If the positive/negative part of the difference is 0,
2870     // we won't need to know the number of iterations.
2871     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2872     if (NegPart->isZero())
2873       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2874     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2875     if (PosPart->isZero())
2876       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2877   }
2878 }
2879 
2880 
2881 // X^+ = max(X, 0)
2882 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2883   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2884 }
2885 
2886 
2887 // X^- = min(X, 0)
2888 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2889   return SE->getSMinExpr(X, SE->getZero(X->getType()));
2890 }
2891 
2892 
2893 // Walks through the subscript,
2894 // collecting each coefficient, the associated loop bounds,
2895 // and recording its positive and negative parts for later use.
2896 DependenceInfo::CoefficientInfo *
2897 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2898                                  const SCEV *&Constant) const {
2899   const SCEV *Zero = SE->getZero(Subscript->getType());
2900   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2901   for (unsigned K = 1; K <= MaxLevels; ++K) {
2902     CI[K].Coeff = Zero;
2903     CI[K].PosPart = Zero;
2904     CI[K].NegPart = Zero;
2905     CI[K].Iterations = nullptr;
2906   }
2907   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2908     const Loop *L = AddRec->getLoop();
2909     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2910     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2911     CI[K].PosPart = getPositivePart(CI[K].Coeff);
2912     CI[K].NegPart = getNegativePart(CI[K].Coeff);
2913     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2914     Subscript = AddRec->getStart();
2915   }
2916   Constant = Subscript;
2917 #ifndef NDEBUG
2918   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2919   for (unsigned K = 1; K <= MaxLevels; ++K) {
2920     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2921     LLVM_DEBUG(dbgs() << "\tPos Part = ");
2922     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2923     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2924     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2925     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2926     if (CI[K].Iterations)
2927       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2928     else
2929       LLVM_DEBUG(dbgs() << "+inf");
2930     LLVM_DEBUG(dbgs() << '\n');
2931   }
2932   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2933 #endif
2934   return CI;
2935 }
2936 
2937 
2938 // Looks through all the bounds info and
2939 // computes the lower bound given the current direction settings
2940 // at each level. If the lower bound for any level is -inf,
2941 // the result is -inf.
2942 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2943   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2944   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2945     if (Bound[K].Lower[Bound[K].Direction])
2946       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2947     else
2948       Sum = nullptr;
2949   }
2950   return Sum;
2951 }
2952 
2953 
2954 // Looks through all the bounds info and
2955 // computes the upper bound given the current direction settings
2956 // at each level. If the upper bound at any level is +inf,
2957 // the result is +inf.
2958 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2959   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2960   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2961     if (Bound[K].Upper[Bound[K].Direction])
2962       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2963     else
2964       Sum = nullptr;
2965   }
2966   return Sum;
2967 }
2968 
2969 
2970 //===----------------------------------------------------------------------===//
2971 // Constraint manipulation for Delta test.
2972 
2973 // Given a linear SCEV,
2974 // return the coefficient (the step)
2975 // corresponding to the specified loop.
2976 // If there isn't one, return 0.
2977 // For example, given a*i + b*j + c*k, finding the coefficient
2978 // corresponding to the j loop would yield b.
2979 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2980                                             const Loop *TargetLoop) const {
2981   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2982   if (!AddRec)
2983     return SE->getZero(Expr->getType());
2984   if (AddRec->getLoop() == TargetLoop)
2985     return AddRec->getStepRecurrence(*SE);
2986   return findCoefficient(AddRec->getStart(), TargetLoop);
2987 }
2988 
2989 
2990 // Given a linear SCEV,
2991 // return the SCEV given by zeroing out the coefficient
2992 // corresponding to the specified loop.
2993 // For example, given a*i + b*j + c*k, zeroing the coefficient
2994 // corresponding to the j loop would yield a*i + c*k.
2995 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2996                                             const Loop *TargetLoop) const {
2997   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2998   if (!AddRec)
2999     return Expr; // ignore
3000   if (AddRec->getLoop() == TargetLoop)
3001     return AddRec->getStart();
3002   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3003                            AddRec->getStepRecurrence(*SE),
3004                            AddRec->getLoop(),
3005                            AddRec->getNoWrapFlags());
3006 }
3007 
3008 
3009 // Given a linear SCEV Expr,
3010 // return the SCEV given by adding some Value to the
3011 // coefficient corresponding to the specified TargetLoop.
3012 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3013 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3014 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3015                                              const Loop *TargetLoop,
3016                                              const SCEV *Value) const {
3017   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3018   if (!AddRec) // create a new addRec
3019     return SE->getAddRecExpr(Expr,
3020                              Value,
3021                              TargetLoop,
3022                              SCEV::FlagAnyWrap); // Worst case, with no info.
3023   if (AddRec->getLoop() == TargetLoop) {
3024     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3025     if (Sum->isZero())
3026       return AddRec->getStart();
3027     return SE->getAddRecExpr(AddRec->getStart(),
3028                              Sum,
3029                              AddRec->getLoop(),
3030                              AddRec->getNoWrapFlags());
3031   }
3032   if (SE->isLoopInvariant(AddRec, TargetLoop))
3033     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3034   return SE->getAddRecExpr(
3035       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3036       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3037       AddRec->getNoWrapFlags());
3038 }
3039 
3040 
3041 // Review the constraints, looking for opportunities
3042 // to simplify a subscript pair (Src and Dst).
3043 // Return true if some simplification occurs.
3044 // If the simplification isn't exact (that is, if it is conservative
3045 // in terms of dependence), set consistent to false.
3046 // Corresponds to Figure 5 from the paper
3047 //
3048 //            Practical Dependence Testing
3049 //            Goff, Kennedy, Tseng
3050 //            PLDI 1991
3051 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3052                                SmallBitVector &Loops,
3053                                SmallVectorImpl<Constraint> &Constraints,
3054                                bool &Consistent) {
3055   bool Result = false;
3056   for (unsigned LI : Loops.set_bits()) {
3057     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3058     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3059     if (Constraints[LI].isDistance())
3060       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3061     else if (Constraints[LI].isLine())
3062       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3063     else if (Constraints[LI].isPoint())
3064       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3065   }
3066   return Result;
3067 }
3068 
3069 
3070 // Attempt to propagate a distance
3071 // constraint into a subscript pair (Src and Dst).
3072 // Return true if some simplification occurs.
3073 // If the simplification isn't exact (that is, if it is conservative
3074 // in terms of dependence), set consistent to false.
3075 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3076                                        Constraint &CurConstraint,
3077                                        bool &Consistent) {
3078   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3079   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3080   const SCEV *A_K = findCoefficient(Src, CurLoop);
3081   if (A_K->isZero())
3082     return false;
3083   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3084   Src = SE->getMinusSCEV(Src, DA_K);
3085   Src = zeroCoefficient(Src, CurLoop);
3086   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3087   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3088   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3089   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3090   if (!findCoefficient(Dst, CurLoop)->isZero())
3091     Consistent = false;
3092   return true;
3093 }
3094 
3095 
3096 // Attempt to propagate a line
3097 // constraint into a subscript pair (Src and Dst).
3098 // Return true if some simplification occurs.
3099 // If the simplification isn't exact (that is, if it is conservative
3100 // in terms of dependence), set consistent to false.
3101 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3102                                    Constraint &CurConstraint,
3103                                    bool &Consistent) {
3104   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3105   const SCEV *A = CurConstraint.getA();
3106   const SCEV *B = CurConstraint.getB();
3107   const SCEV *C = CurConstraint.getC();
3108   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3109                     << "\n");
3110   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3111   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3112   if (A->isZero()) {
3113     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3114     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3115     if (!Bconst || !Cconst) return false;
3116     APInt Beta = Bconst->getAPInt();
3117     APInt Charlie = Cconst->getAPInt();
3118     APInt CdivB = Charlie.sdiv(Beta);
3119     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3120     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3121     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3122     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3123     Dst = zeroCoefficient(Dst, CurLoop);
3124     if (!findCoefficient(Src, CurLoop)->isZero())
3125       Consistent = false;
3126   }
3127   else if (B->isZero()) {
3128     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3129     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3130     if (!Aconst || !Cconst) return false;
3131     APInt Alpha = Aconst->getAPInt();
3132     APInt Charlie = Cconst->getAPInt();
3133     APInt CdivA = Charlie.sdiv(Alpha);
3134     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3135     const SCEV *A_K = findCoefficient(Src, CurLoop);
3136     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3137     Src = zeroCoefficient(Src, CurLoop);
3138     if (!findCoefficient(Dst, CurLoop)->isZero())
3139       Consistent = false;
3140   }
3141   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3142     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3143     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3144     if (!Aconst || !Cconst) return false;
3145     APInt Alpha = Aconst->getAPInt();
3146     APInt Charlie = Cconst->getAPInt();
3147     APInt CdivA = Charlie.sdiv(Alpha);
3148     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3149     const SCEV *A_K = findCoefficient(Src, CurLoop);
3150     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3151     Src = zeroCoefficient(Src, CurLoop);
3152     Dst = addToCoefficient(Dst, CurLoop, A_K);
3153     if (!findCoefficient(Dst, CurLoop)->isZero())
3154       Consistent = false;
3155   }
3156   else {
3157     // paper is incorrect here, or perhaps just misleading
3158     const SCEV *A_K = findCoefficient(Src, CurLoop);
3159     Src = SE->getMulExpr(Src, A);
3160     Dst = SE->getMulExpr(Dst, A);
3161     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3162     Src = zeroCoefficient(Src, CurLoop);
3163     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3164     if (!findCoefficient(Dst, CurLoop)->isZero())
3165       Consistent = false;
3166   }
3167   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3168   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3169   return true;
3170 }
3171 
3172 
3173 // Attempt to propagate a point
3174 // constraint into a subscript pair (Src and Dst).
3175 // Return true if some simplification occurs.
3176 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3177                                     Constraint &CurConstraint) {
3178   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3179   const SCEV *A_K = findCoefficient(Src, CurLoop);
3180   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3181   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3182   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3183   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3184   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3185   Src = zeroCoefficient(Src, CurLoop);
3186   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3187   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3188   Dst = zeroCoefficient(Dst, CurLoop);
3189   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3190   return true;
3191 }
3192 
3193 
3194 // Update direction vector entry based on the current constraint.
3195 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3196                                      const Constraint &CurConstraint) const {
3197   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3198   LLVM_DEBUG(CurConstraint.dump(dbgs()));
3199   if (CurConstraint.isAny())
3200     ; // use defaults
3201   else if (CurConstraint.isDistance()) {
3202     // this one is consistent, the others aren't
3203     Level.Scalar = false;
3204     Level.Distance = CurConstraint.getD();
3205     unsigned NewDirection = Dependence::DVEntry::NONE;
3206     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3207       NewDirection = Dependence::DVEntry::EQ;
3208     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3209       NewDirection |= Dependence::DVEntry::LT;
3210     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3211       NewDirection |= Dependence::DVEntry::GT;
3212     Level.Direction &= NewDirection;
3213   }
3214   else if (CurConstraint.isLine()) {
3215     Level.Scalar = false;
3216     Level.Distance = nullptr;
3217     // direction should be accurate
3218   }
3219   else if (CurConstraint.isPoint()) {
3220     Level.Scalar = false;
3221     Level.Distance = nullptr;
3222     unsigned NewDirection = Dependence::DVEntry::NONE;
3223     if (!isKnownPredicate(CmpInst::ICMP_NE,
3224                           CurConstraint.getY(),
3225                           CurConstraint.getX()))
3226       // if X may be = Y
3227       NewDirection |= Dependence::DVEntry::EQ;
3228     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3229                           CurConstraint.getY(),
3230                           CurConstraint.getX()))
3231       // if Y may be > X
3232       NewDirection |= Dependence::DVEntry::LT;
3233     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3234                           CurConstraint.getY(),
3235                           CurConstraint.getX()))
3236       // if Y may be < X
3237       NewDirection |= Dependence::DVEntry::GT;
3238     Level.Direction &= NewDirection;
3239   }
3240   else
3241     llvm_unreachable("constraint has unexpected kind");
3242 }
3243 
3244 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3245 /// source and destination array references are recurrences on a nested loop,
3246 /// this function flattens the nested recurrences into separate recurrences
3247 /// for each loop level.
3248 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3249                                     SmallVectorImpl<Subscript> &Pair) {
3250   assert(isLoadOrStore(Src) && "instruction is not load or store");
3251   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3252   Value *SrcPtr = getLoadStorePointerOperand(Src);
3253   Value *DstPtr = getLoadStorePointerOperand(Dst);
3254   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3255   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3256   const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3257   const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3258   const SCEVUnknown *SrcBase =
3259       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3260   const SCEVUnknown *DstBase =
3261       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3262 
3263   if (!SrcBase || !DstBase || SrcBase != DstBase)
3264     return false;
3265 
3266   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3267 
3268   if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3269                                SrcSubscripts, DstSubscripts) &&
3270       !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3271                                     SrcSubscripts, DstSubscripts))
3272     return false;
3273 
3274   int Size = SrcSubscripts.size();
3275   LLVM_DEBUG({
3276     dbgs() << "\nSrcSubscripts: ";
3277     for (int I = 0; I < Size; I++)
3278       dbgs() << *SrcSubscripts[I];
3279     dbgs() << "\nDstSubscripts: ";
3280     for (int I = 0; I < Size; I++)
3281       dbgs() << *DstSubscripts[I];
3282   });
3283 
3284   // The delinearization transforms a single-subscript MIV dependence test into
3285   // a multi-subscript SIV dependence test that is easier to compute. So we
3286   // resize Pair to contain as many pairs of subscripts as the delinearization
3287   // has found, and then initialize the pairs following the delinearization.
3288   Pair.resize(Size);
3289   for (int I = 0; I < Size; ++I) {
3290     Pair[I].Src = SrcSubscripts[I];
3291     Pair[I].Dst = DstSubscripts[I];
3292     unifySubscriptType(&Pair[I]);
3293   }
3294 
3295   return true;
3296 }
3297 
3298 bool DependenceInfo::tryDelinearizeFixedSize(
3299     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3300     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3301     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3302 
3303   // In general we cannot safely assume that the subscripts recovered from GEPs
3304   // are in the range of values defined for their corresponding array
3305   // dimensions. For example some C language usage/interpretation make it
3306   // impossible to verify this at compile-time. As such we give up here unless
3307   // we can assume that the subscripts do not overlap into neighboring
3308   // dimensions and that the number of dimensions matches the number of
3309   // subscripts being recovered.
3310   if (!DisableDelinearizationChecks)
3311     return false;
3312 
3313   Value *SrcPtr = getLoadStorePointerOperand(Src);
3314   Value *DstPtr = getLoadStorePointerOperand(Dst);
3315   const SCEVUnknown *SrcBase =
3316       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3317   const SCEVUnknown *DstBase =
3318       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3319   assert(SrcBase && DstBase && SrcBase == DstBase &&
3320          "expected src and dst scev unknowns to be equal");
3321 
3322   // Check the simple case where the array dimensions are fixed size.
3323   auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
3324   auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
3325   if (!SrcGEP || !DstGEP)
3326     return false;
3327 
3328   SmallVector<int, 4> SrcSizes, DstSizes;
3329   SE->getIndexExpressionsFromGEP(SrcGEP, SrcSubscripts, SrcSizes);
3330   SE->getIndexExpressionsFromGEP(DstGEP, DstSubscripts, DstSizes);
3331 
3332   // Check that the two size arrays are non-empty and equal in length and
3333   // value.
3334   if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
3335       SrcSizes.size() != DstSizes.size() ||
3336       !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3337     SrcSubscripts.clear();
3338     DstSubscripts.clear();
3339     return false;
3340   }
3341 
3342   Value *SrcBasePtr = SrcGEP->getOperand(0);
3343   Value *DstBasePtr = DstGEP->getOperand(0);
3344   while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr))
3345     SrcBasePtr = PCast->getOperand(0);
3346   while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr))
3347     DstBasePtr = PCast->getOperand(0);
3348 
3349   // Check that for identical base pointers we do not miss index offsets
3350   // that have been added before this GEP is applied.
3351   if (SrcBasePtr == SrcBase->getValue() && DstBasePtr == DstBase->getValue()) {
3352     assert(SrcSubscripts.size() == DstSubscripts.size() &&
3353            SrcSubscripts.size() == SrcSizes.size() + 1 &&
3354            "Expected equal number of entries in the list of sizes and "
3355            "subscripts.");
3356     LLVM_DEBUG({
3357       dbgs() << "Delinearized subscripts of fixed-size array\n"
3358              << "SrcGEP:" << *SrcGEP << "\n"
3359              << "DstGEP:" << *DstGEP << "\n";
3360     });
3361     return true;
3362   }
3363 
3364   SrcSubscripts.clear();
3365   DstSubscripts.clear();
3366   return false;
3367 }
3368 
3369 bool DependenceInfo::tryDelinearizeParametricSize(
3370     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3371     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3372     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3373 
3374   Value *SrcPtr = getLoadStorePointerOperand(Src);
3375   Value *DstPtr = getLoadStorePointerOperand(Dst);
3376   const SCEVUnknown *SrcBase =
3377       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3378   const SCEVUnknown *DstBase =
3379       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3380   assert(SrcBase && DstBase && SrcBase == DstBase &&
3381          "expected src and dst scev unknowns to be equal");
3382 
3383   const SCEV *ElementSize = SE->getElementSize(Src);
3384   if (ElementSize != SE->getElementSize(Dst))
3385     return false;
3386 
3387   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3388   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3389 
3390   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3391   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3392   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3393     return false;
3394 
3395   // First step: collect parametric terms in both array references.
3396   SmallVector<const SCEV *, 4> Terms;
3397   SE->collectParametricTerms(SrcAR, Terms);
3398   SE->collectParametricTerms(DstAR, Terms);
3399 
3400   // Second step: find subscript sizes.
3401   SmallVector<const SCEV *, 4> Sizes;
3402   SE->findArrayDimensions(Terms, Sizes, ElementSize);
3403 
3404   // Third step: compute the access functions for each subscript.
3405   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3406   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3407 
3408   // Fail when there is only a subscript: that's a linearized access function.
3409   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3410       SrcSubscripts.size() != DstSubscripts.size())
3411     return false;
3412 
3413   size_t Size = SrcSubscripts.size();
3414 
3415   // Statically check that the array bounds are in-range. The first subscript we
3416   // don't have a size for and it cannot overflow into another subscript, so is
3417   // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3418   // and dst.
3419   // FIXME: It may be better to record these sizes and add them as constraints
3420   // to the dependency checks.
3421   if (!DisableDelinearizationChecks)
3422     for (size_t I = 1; I < Size; ++I) {
3423       if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3424         return false;
3425 
3426       if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3427         return false;
3428 
3429       if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3430         return false;
3431 
3432       if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3433         return false;
3434     }
3435 
3436   return true;
3437 }
3438 
3439 //===----------------------------------------------------------------------===//
3440 
3441 #ifndef NDEBUG
3442 // For debugging purposes, dump a small bit vector to dbgs().
3443 static void dumpSmallBitVector(SmallBitVector &BV) {
3444   dbgs() << "{";
3445   for (unsigned VI : BV.set_bits()) {
3446     dbgs() << VI;
3447     if (BV.find_next(VI) >= 0)
3448       dbgs() << ' ';
3449   }
3450   dbgs() << "}\n";
3451 }
3452 #endif
3453 
3454 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3455                                 FunctionAnalysisManager::Invalidator &Inv) {
3456   // Check if the analysis itself has been invalidated.
3457   auto PAC = PA.getChecker<DependenceAnalysis>();
3458   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3459     return true;
3460 
3461   // Check transitive dependencies.
3462   return Inv.invalidate<AAManager>(F, PA) ||
3463          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3464          Inv.invalidate<LoopAnalysis>(F, PA);
3465 }
3466 
3467 // depends -
3468 // Returns NULL if there is no dependence.
3469 // Otherwise, return a Dependence with as many details as possible.
3470 // Corresponds to Section 3.1 in the paper
3471 //
3472 //            Practical Dependence Testing
3473 //            Goff, Kennedy, Tseng
3474 //            PLDI 1991
3475 //
3476 // Care is required to keep the routine below, getSplitIteration(),
3477 // up to date with respect to this routine.
3478 std::unique_ptr<Dependence>
3479 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3480                         bool PossiblyLoopIndependent) {
3481   if (Src == Dst)
3482     PossiblyLoopIndependent = false;
3483 
3484   if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3485     // if both instructions don't reference memory, there's no dependence
3486     return nullptr;
3487 
3488   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3489     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3490     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3491     return std::make_unique<Dependence>(Src, Dst);
3492   }
3493 
3494   assert(isLoadOrStore(Src) && "instruction is not load or store");
3495   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3496   Value *SrcPtr = getLoadStorePointerOperand(Src);
3497   Value *DstPtr = getLoadStorePointerOperand(Dst);
3498 
3499   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3500                                  MemoryLocation::get(Dst),
3501                                  MemoryLocation::get(Src))) {
3502   case MayAlias:
3503   case PartialAlias:
3504     // cannot analyse objects if we don't understand their aliasing.
3505     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3506     return std::make_unique<Dependence>(Src, Dst);
3507   case NoAlias:
3508     // If the objects noalias, they are distinct, accesses are independent.
3509     LLVM_DEBUG(dbgs() << "no alias\n");
3510     return nullptr;
3511   case MustAlias:
3512     break; // The underlying objects alias; test accesses for dependence.
3513   }
3514 
3515   // establish loop nesting levels
3516   establishNestingLevels(Src, Dst);
3517   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3518   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3519 
3520   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3521   ++TotalArrayPairs;
3522 
3523   unsigned Pairs = 1;
3524   SmallVector<Subscript, 2> Pair(Pairs);
3525   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3526   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3527   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3528   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3529   Pair[0].Src = SrcSCEV;
3530   Pair[0].Dst = DstSCEV;
3531 
3532   if (Delinearize) {
3533     if (tryDelinearize(Src, Dst, Pair)) {
3534       LLVM_DEBUG(dbgs() << "    delinearized\n");
3535       Pairs = Pair.size();
3536     }
3537   }
3538 
3539   for (unsigned P = 0; P < Pairs; ++P) {
3540     Pair[P].Loops.resize(MaxLevels + 1);
3541     Pair[P].GroupLoops.resize(MaxLevels + 1);
3542     Pair[P].Group.resize(Pairs);
3543     removeMatchingExtensions(&Pair[P]);
3544     Pair[P].Classification =
3545       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3546                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3547                    Pair[P].Loops);
3548     Pair[P].GroupLoops = Pair[P].Loops;
3549     Pair[P].Group.set(P);
3550     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
3551     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3552     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3553     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3554     LLVM_DEBUG(dbgs() << "\tloops = ");
3555     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3556   }
3557 
3558   SmallBitVector Separable(Pairs);
3559   SmallBitVector Coupled(Pairs);
3560 
3561   // Partition subscripts into separable and minimally-coupled groups
3562   // Algorithm in paper is algorithmically better;
3563   // this may be faster in practice. Check someday.
3564   //
3565   // Here's an example of how it works. Consider this code:
3566   //
3567   //   for (i = ...) {
3568   //     for (j = ...) {
3569   //       for (k = ...) {
3570   //         for (l = ...) {
3571   //           for (m = ...) {
3572   //             A[i][j][k][m] = ...;
3573   //             ... = A[0][j][l][i + j];
3574   //           }
3575   //         }
3576   //       }
3577   //     }
3578   //   }
3579   //
3580   // There are 4 subscripts here:
3581   //    0 [i] and [0]
3582   //    1 [j] and [j]
3583   //    2 [k] and [l]
3584   //    3 [m] and [i + j]
3585   //
3586   // We've already classified each subscript pair as ZIV, SIV, etc.,
3587   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3588   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3589   // and set Pair[P].Group = {P}.
3590   //
3591   //      Src Dst    Classification Loops  GroupLoops Group
3592   //    0 [i] [0]         SIV       {1}      {1}        {0}
3593   //    1 [j] [j]         SIV       {2}      {2}        {1}
3594   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3595   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3596   //
3597   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3598   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3599   //
3600   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3601   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3602   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3603   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3604   // to either Separable or Coupled).
3605   //
3606   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3607   // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3608   // so Pair[3].Group = {0, 1, 3} and Done = false.
3609   //
3610   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3611   // Since Done remains true, we add 2 to the set of Separable pairs.
3612   //
3613   // Finally, we consider 3. There's nothing to compare it with,
3614   // so Done remains true and we add it to the Coupled set.
3615   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3616   //
3617   // In the end, we've got 1 separable subscript and 1 coupled group.
3618   for (unsigned SI = 0; SI < Pairs; ++SI) {
3619     if (Pair[SI].Classification == Subscript::NonLinear) {
3620       // ignore these, but collect loops for later
3621       ++NonlinearSubscriptPairs;
3622       collectCommonLoops(Pair[SI].Src,
3623                          LI->getLoopFor(Src->getParent()),
3624                          Pair[SI].Loops);
3625       collectCommonLoops(Pair[SI].Dst,
3626                          LI->getLoopFor(Dst->getParent()),
3627                          Pair[SI].Loops);
3628       Result.Consistent = false;
3629     } else if (Pair[SI].Classification == Subscript::ZIV) {
3630       // always separable
3631       Separable.set(SI);
3632     }
3633     else {
3634       // SIV, RDIV, or MIV, so check for coupled group
3635       bool Done = true;
3636       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3637         SmallBitVector Intersection = Pair[SI].GroupLoops;
3638         Intersection &= Pair[SJ].GroupLoops;
3639         if (Intersection.any()) {
3640           // accumulate set of all the loops in group
3641           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3642           // accumulate set of all subscripts in group
3643           Pair[SJ].Group |= Pair[SI].Group;
3644           Done = false;
3645         }
3646       }
3647       if (Done) {
3648         if (Pair[SI].Group.count() == 1) {
3649           Separable.set(SI);
3650           ++SeparableSubscriptPairs;
3651         }
3652         else {
3653           Coupled.set(SI);
3654           ++CoupledSubscriptPairs;
3655         }
3656       }
3657     }
3658   }
3659 
3660   LLVM_DEBUG(dbgs() << "    Separable = ");
3661   LLVM_DEBUG(dumpSmallBitVector(Separable));
3662   LLVM_DEBUG(dbgs() << "    Coupled = ");
3663   LLVM_DEBUG(dumpSmallBitVector(Coupled));
3664 
3665   Constraint NewConstraint;
3666   NewConstraint.setAny(SE);
3667 
3668   // test separable subscripts
3669   for (unsigned SI : Separable.set_bits()) {
3670     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3671     switch (Pair[SI].Classification) {
3672     case Subscript::ZIV:
3673       LLVM_DEBUG(dbgs() << ", ZIV\n");
3674       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3675         return nullptr;
3676       break;
3677     case Subscript::SIV: {
3678       LLVM_DEBUG(dbgs() << ", SIV\n");
3679       unsigned Level;
3680       const SCEV *SplitIter = nullptr;
3681       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3682                   SplitIter))
3683         return nullptr;
3684       break;
3685     }
3686     case Subscript::RDIV:
3687       LLVM_DEBUG(dbgs() << ", RDIV\n");
3688       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3689         return nullptr;
3690       break;
3691     case Subscript::MIV:
3692       LLVM_DEBUG(dbgs() << ", MIV\n");
3693       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3694         return nullptr;
3695       break;
3696     default:
3697       llvm_unreachable("subscript has unexpected classification");
3698     }
3699   }
3700 
3701   if (Coupled.count()) {
3702     // test coupled subscript groups
3703     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3704     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3705     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3706     for (unsigned II = 0; II <= MaxLevels; ++II)
3707       Constraints[II].setAny(SE);
3708     for (unsigned SI : Coupled.set_bits()) {
3709       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3710       SmallBitVector Group(Pair[SI].Group);
3711       SmallBitVector Sivs(Pairs);
3712       SmallBitVector Mivs(Pairs);
3713       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3714       SmallVector<Subscript *, 4> PairsInGroup;
3715       for (unsigned SJ : Group.set_bits()) {
3716         LLVM_DEBUG(dbgs() << SJ << " ");
3717         if (Pair[SJ].Classification == Subscript::SIV)
3718           Sivs.set(SJ);
3719         else
3720           Mivs.set(SJ);
3721         PairsInGroup.push_back(&Pair[SJ]);
3722       }
3723       unifySubscriptType(PairsInGroup);
3724       LLVM_DEBUG(dbgs() << "}\n");
3725       while (Sivs.any()) {
3726         bool Changed = false;
3727         for (unsigned SJ : Sivs.set_bits()) {
3728           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3729           // SJ is an SIV subscript that's part of the current coupled group
3730           unsigned Level;
3731           const SCEV *SplitIter = nullptr;
3732           LLVM_DEBUG(dbgs() << "SIV\n");
3733           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3734                       SplitIter))
3735             return nullptr;
3736           ConstrainedLevels.set(Level);
3737           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3738             if (Constraints[Level].isEmpty()) {
3739               ++DeltaIndependence;
3740               return nullptr;
3741             }
3742             Changed = true;
3743           }
3744           Sivs.reset(SJ);
3745         }
3746         if (Changed) {
3747           // propagate, possibly creating new SIVs and ZIVs
3748           LLVM_DEBUG(dbgs() << "    propagating\n");
3749           LLVM_DEBUG(dbgs() << "\tMivs = ");
3750           LLVM_DEBUG(dumpSmallBitVector(Mivs));
3751           for (unsigned SJ : Mivs.set_bits()) {
3752             // SJ is an MIV subscript that's part of the current coupled group
3753             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3754             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3755                           Constraints, Result.Consistent)) {
3756               LLVM_DEBUG(dbgs() << "\t    Changed\n");
3757               ++DeltaPropagations;
3758               Pair[SJ].Classification =
3759                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3760                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3761                              Pair[SJ].Loops);
3762               switch (Pair[SJ].Classification) {
3763               case Subscript::ZIV:
3764                 LLVM_DEBUG(dbgs() << "ZIV\n");
3765                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3766                   return nullptr;
3767                 Mivs.reset(SJ);
3768                 break;
3769               case Subscript::SIV:
3770                 Sivs.set(SJ);
3771                 Mivs.reset(SJ);
3772                 break;
3773               case Subscript::RDIV:
3774               case Subscript::MIV:
3775                 break;
3776               default:
3777                 llvm_unreachable("bad subscript classification");
3778               }
3779             }
3780           }
3781         }
3782       }
3783 
3784       // test & propagate remaining RDIVs
3785       for (unsigned SJ : Mivs.set_bits()) {
3786         if (Pair[SJ].Classification == Subscript::RDIV) {
3787           LLVM_DEBUG(dbgs() << "RDIV test\n");
3788           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3789             return nullptr;
3790           // I don't yet understand how to propagate RDIV results
3791           Mivs.reset(SJ);
3792         }
3793       }
3794 
3795       // test remaining MIVs
3796       // This code is temporary.
3797       // Better to somehow test all remaining subscripts simultaneously.
3798       for (unsigned SJ : Mivs.set_bits()) {
3799         if (Pair[SJ].Classification == Subscript::MIV) {
3800           LLVM_DEBUG(dbgs() << "MIV test\n");
3801           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3802             return nullptr;
3803         }
3804         else
3805           llvm_unreachable("expected only MIV subscripts at this point");
3806       }
3807 
3808       // update Result.DV from constraint vector
3809       LLVM_DEBUG(dbgs() << "    updating\n");
3810       for (unsigned SJ : ConstrainedLevels.set_bits()) {
3811         if (SJ > CommonLevels)
3812           break;
3813         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3814         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3815           return nullptr;
3816       }
3817     }
3818   }
3819 
3820   // Make sure the Scalar flags are set correctly.
3821   SmallBitVector CompleteLoops(MaxLevels + 1);
3822   for (unsigned SI = 0; SI < Pairs; ++SI)
3823     CompleteLoops |= Pair[SI].Loops;
3824   for (unsigned II = 1; II <= CommonLevels; ++II)
3825     if (CompleteLoops[II])
3826       Result.DV[II - 1].Scalar = false;
3827 
3828   if (PossiblyLoopIndependent) {
3829     // Make sure the LoopIndependent flag is set correctly.
3830     // All directions must include equal, otherwise no
3831     // loop-independent dependence is possible.
3832     for (unsigned II = 1; II <= CommonLevels; ++II) {
3833       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3834         Result.LoopIndependent = false;
3835         break;
3836       }
3837     }
3838   }
3839   else {
3840     // On the other hand, if all directions are equal and there's no
3841     // loop-independent dependence possible, then no dependence exists.
3842     bool AllEqual = true;
3843     for (unsigned II = 1; II <= CommonLevels; ++II) {
3844       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3845         AllEqual = false;
3846         break;
3847       }
3848     }
3849     if (AllEqual)
3850       return nullptr;
3851   }
3852 
3853   return std::make_unique<FullDependence>(std::move(Result));
3854 }
3855 
3856 //===----------------------------------------------------------------------===//
3857 // getSplitIteration -
3858 // Rather than spend rarely-used space recording the splitting iteration
3859 // during the Weak-Crossing SIV test, we re-compute it on demand.
3860 // The re-computation is basically a repeat of the entire dependence test,
3861 // though simplified since we know that the dependence exists.
3862 // It's tedious, since we must go through all propagations, etc.
3863 //
3864 // Care is required to keep this code up to date with respect to the routine
3865 // above, depends().
3866 //
3867 // Generally, the dependence analyzer will be used to build
3868 // a dependence graph for a function (basically a map from instructions
3869 // to dependences). Looking for cycles in the graph shows us loops
3870 // that cannot be trivially vectorized/parallelized.
3871 //
3872 // We can try to improve the situation by examining all the dependences
3873 // that make up the cycle, looking for ones we can break.
3874 // Sometimes, peeling the first or last iteration of a loop will break
3875 // dependences, and we've got flags for those possibilities.
3876 // Sometimes, splitting a loop at some other iteration will do the trick,
3877 // and we've got a flag for that case. Rather than waste the space to
3878 // record the exact iteration (since we rarely know), we provide
3879 // a method that calculates the iteration. It's a drag that it must work
3880 // from scratch, but wonderful in that it's possible.
3881 //
3882 // Here's an example:
3883 //
3884 //    for (i = 0; i < 10; i++)
3885 //        A[i] = ...
3886 //        ... = A[11 - i]
3887 //
3888 // There's a loop-carried flow dependence from the store to the load,
3889 // found by the weak-crossing SIV test. The dependence will have a flag,
3890 // indicating that the dependence can be broken by splitting the loop.
3891 // Calling getSplitIteration will return 5.
3892 // Splitting the loop breaks the dependence, like so:
3893 //
3894 //    for (i = 0; i <= 5; i++)
3895 //        A[i] = ...
3896 //        ... = A[11 - i]
3897 //    for (i = 6; i < 10; i++)
3898 //        A[i] = ...
3899 //        ... = A[11 - i]
3900 //
3901 // breaks the dependence and allows us to vectorize/parallelize
3902 // both loops.
3903 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3904                                               unsigned SplitLevel) {
3905   assert(Dep.isSplitable(SplitLevel) &&
3906          "Dep should be splitable at SplitLevel");
3907   Instruction *Src = Dep.getSrc();
3908   Instruction *Dst = Dep.getDst();
3909   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3910   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3911   assert(isLoadOrStore(Src));
3912   assert(isLoadOrStore(Dst));
3913   Value *SrcPtr = getLoadStorePointerOperand(Src);
3914   Value *DstPtr = getLoadStorePointerOperand(Dst);
3915   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3916                                 MemoryLocation::get(Dst),
3917                                 MemoryLocation::get(Src)) == MustAlias);
3918 
3919   // establish loop nesting levels
3920   establishNestingLevels(Src, Dst);
3921 
3922   FullDependence Result(Src, Dst, false, CommonLevels);
3923 
3924   unsigned Pairs = 1;
3925   SmallVector<Subscript, 2> Pair(Pairs);
3926   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3927   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3928   Pair[0].Src = SrcSCEV;
3929   Pair[0].Dst = DstSCEV;
3930 
3931   if (Delinearize) {
3932     if (tryDelinearize(Src, Dst, Pair)) {
3933       LLVM_DEBUG(dbgs() << "    delinearized\n");
3934       Pairs = Pair.size();
3935     }
3936   }
3937 
3938   for (unsigned P = 0; P < Pairs; ++P) {
3939     Pair[P].Loops.resize(MaxLevels + 1);
3940     Pair[P].GroupLoops.resize(MaxLevels + 1);
3941     Pair[P].Group.resize(Pairs);
3942     removeMatchingExtensions(&Pair[P]);
3943     Pair[P].Classification =
3944       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3945                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3946                    Pair[P].Loops);
3947     Pair[P].GroupLoops = Pair[P].Loops;
3948     Pair[P].Group.set(P);
3949   }
3950 
3951   SmallBitVector Separable(Pairs);
3952   SmallBitVector Coupled(Pairs);
3953 
3954   // partition subscripts into separable and minimally-coupled groups
3955   for (unsigned SI = 0; SI < Pairs; ++SI) {
3956     if (Pair[SI].Classification == Subscript::NonLinear) {
3957       // ignore these, but collect loops for later
3958       collectCommonLoops(Pair[SI].Src,
3959                          LI->getLoopFor(Src->getParent()),
3960                          Pair[SI].Loops);
3961       collectCommonLoops(Pair[SI].Dst,
3962                          LI->getLoopFor(Dst->getParent()),
3963                          Pair[SI].Loops);
3964       Result.Consistent = false;
3965     }
3966     else if (Pair[SI].Classification == Subscript::ZIV)
3967       Separable.set(SI);
3968     else {
3969       // SIV, RDIV, or MIV, so check for coupled group
3970       bool Done = true;
3971       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3972         SmallBitVector Intersection = Pair[SI].GroupLoops;
3973         Intersection &= Pair[SJ].GroupLoops;
3974         if (Intersection.any()) {
3975           // accumulate set of all the loops in group
3976           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3977           // accumulate set of all subscripts in group
3978           Pair[SJ].Group |= Pair[SI].Group;
3979           Done = false;
3980         }
3981       }
3982       if (Done) {
3983         if (Pair[SI].Group.count() == 1)
3984           Separable.set(SI);
3985         else
3986           Coupled.set(SI);
3987       }
3988     }
3989   }
3990 
3991   Constraint NewConstraint;
3992   NewConstraint.setAny(SE);
3993 
3994   // test separable subscripts
3995   for (unsigned SI : Separable.set_bits()) {
3996     switch (Pair[SI].Classification) {
3997     case Subscript::SIV: {
3998       unsigned Level;
3999       const SCEV *SplitIter = nullptr;
4000       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4001                      Result, NewConstraint, SplitIter);
4002       if (Level == SplitLevel) {
4003         assert(SplitIter != nullptr);
4004         return SplitIter;
4005       }
4006       break;
4007     }
4008     case Subscript::ZIV:
4009     case Subscript::RDIV:
4010     case Subscript::MIV:
4011       break;
4012     default:
4013       llvm_unreachable("subscript has unexpected classification");
4014     }
4015   }
4016 
4017   if (Coupled.count()) {
4018     // test coupled subscript groups
4019     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4020     for (unsigned II = 0; II <= MaxLevels; ++II)
4021       Constraints[II].setAny(SE);
4022     for (unsigned SI : Coupled.set_bits()) {
4023       SmallBitVector Group(Pair[SI].Group);
4024       SmallBitVector Sivs(Pairs);
4025       SmallBitVector Mivs(Pairs);
4026       SmallBitVector ConstrainedLevels(MaxLevels + 1);
4027       for (unsigned SJ : Group.set_bits()) {
4028         if (Pair[SJ].Classification == Subscript::SIV)
4029           Sivs.set(SJ);
4030         else
4031           Mivs.set(SJ);
4032       }
4033       while (Sivs.any()) {
4034         bool Changed = false;
4035         for (unsigned SJ : Sivs.set_bits()) {
4036           // SJ is an SIV subscript that's part of the current coupled group
4037           unsigned Level;
4038           const SCEV *SplitIter = nullptr;
4039           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4040                          Result, NewConstraint, SplitIter);
4041           if (Level == SplitLevel && SplitIter)
4042             return SplitIter;
4043           ConstrainedLevels.set(Level);
4044           if (intersectConstraints(&Constraints[Level], &NewConstraint))
4045             Changed = true;
4046           Sivs.reset(SJ);
4047         }
4048         if (Changed) {
4049           // propagate, possibly creating new SIVs and ZIVs
4050           for (unsigned SJ : Mivs.set_bits()) {
4051             // SJ is an MIV subscript that's part of the current coupled group
4052             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4053                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
4054               Pair[SJ].Classification =
4055                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4056                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4057                              Pair[SJ].Loops);
4058               switch (Pair[SJ].Classification) {
4059               case Subscript::ZIV:
4060                 Mivs.reset(SJ);
4061                 break;
4062               case Subscript::SIV:
4063                 Sivs.set(SJ);
4064                 Mivs.reset(SJ);
4065                 break;
4066               case Subscript::RDIV:
4067               case Subscript::MIV:
4068                 break;
4069               default:
4070                 llvm_unreachable("bad subscript classification");
4071               }
4072             }
4073           }
4074         }
4075       }
4076     }
4077   }
4078   llvm_unreachable("somehow reached end of routine");
4079   return nullptr;
4080 }
4081