1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
12 //
13 //            Practical Dependence Testing
14 //            Goff, Kennedy, Tseng
15 //            PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
25 //
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
30 //
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
34 //
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
38 //
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
42 //
43 // Please note that this is work in progress and the interface is subject to
44 // change.
45 //
46 //===----------------------------------------------------------------------===//
47 //                                                                            //
48 //                   In memory of Ken Kennedy, 1945 - 2007                    //
49 //                                                                            //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/Analysis/AliasAnalysis.h"
55 #include "llvm/Analysis/Delinearization.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/InstIterator.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "da"
71 
72 //===----------------------------------------------------------------------===//
73 // statistics
74 
75 STATISTIC(TotalArrayPairs, "Array pairs tested");
76 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79 STATISTIC(ZIVapplications, "ZIV applications");
80 STATISTIC(ZIVindependence, "ZIV independence");
81 STATISTIC(StrongSIVapplications, "Strong SIV applications");
82 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83 STATISTIC(StrongSIVindependence, "Strong SIV independence");
84 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87 STATISTIC(ExactSIVapplications, "Exact SIV applications");
88 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89 STATISTIC(ExactSIVindependence, "Exact SIV independence");
90 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97 STATISTIC(DeltaApplications, "Delta applications");
98 STATISTIC(DeltaSuccesses, "Delta successes");
99 STATISTIC(DeltaIndependence, "Delta independence");
100 STATISTIC(DeltaPropagations, "Delta propagations");
101 STATISTIC(GCDapplications, "GCD applications");
102 STATISTIC(GCDsuccesses, "GCD successes");
103 STATISTIC(GCDindependence, "GCD independence");
104 STATISTIC(BanerjeeApplications, "Banerjee applications");
105 STATISTIC(BanerjeeIndependence, "Banerjee independence");
106 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
107 
108 static cl::opt<bool>
109     Delinearize("da-delinearize", cl::init(true), cl::Hidden,
110                 cl::desc("Try to delinearize array references."));
111 static cl::opt<bool> DisableDelinearizationChecks(
112     "da-disable-delinearization-checks", cl::Hidden,
113     cl::desc(
114         "Disable checks that try to statically verify validity of "
115         "delinearized subscripts. Enabling this option may result in incorrect "
116         "dependence vectors for languages that allow the subscript of one "
117         "dimension to underflow or overflow into another dimension."));
118 
119 static cl::opt<unsigned> MIVMaxLevelThreshold(
120     "da-miv-max-level-threshold", cl::init(7), cl::Hidden,
121     cl::desc("Maximum depth allowed for the recursive algorithm used to "
122              "explore MIV direction vectors."));
123 
124 //===----------------------------------------------------------------------===//
125 // basics
126 
127 DependenceAnalysis::Result
128 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
129   auto &AA = FAM.getResult<AAManager>(F);
130   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
131   auto &LI = FAM.getResult<LoopAnalysis>(F);
132   return DependenceInfo(&F, &AA, &SE, &LI);
133 }
134 
135 AnalysisKey DependenceAnalysis::Key;
136 
137 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
138                       "Dependence Analysis", true, true)
139 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
140 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
141 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
142 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
143                     true, true)
144 
145 char DependenceAnalysisWrapperPass::ID = 0;
146 
147 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
148     : FunctionPass(ID) {
149   initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
150 }
151 
152 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
153   return new DependenceAnalysisWrapperPass();
154 }
155 
156 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
157   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
158   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
159   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
160   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
161   return false;
162 }
163 
164 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
165 
166 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
167 
168 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
169   AU.setPreservesAll();
170   AU.addRequiredTransitive<AAResultsWrapperPass>();
171   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
172   AU.addRequiredTransitive<LoopInfoWrapperPass>();
173 }
174 
175 // Used to test the dependence analyzer.
176 // Looks through the function, noting instructions that may access memory.
177 // Calls depends() on every possible pair and prints out the result.
178 // Ignores all other instructions.
179 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
180   auto *F = DA->getFunction();
181   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
182        ++SrcI) {
183     if (SrcI->mayReadOrWriteMemory()) {
184       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
185            DstI != DstE; ++DstI) {
186         if (DstI->mayReadOrWriteMemory()) {
187           OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
188           OS << "  da analyze - ";
189           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
190             D->dump(OS);
191             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
192               if (D->isSplitable(Level)) {
193                 OS << "  da analyze - split level = " << Level;
194                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
195                 OS << "!\n";
196               }
197             }
198           }
199           else
200             OS << "none!\n";
201         }
202       }
203     }
204   }
205 }
206 
207 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
208                                           const Module *) const {
209   dumpExampleDependence(OS, info.get());
210 }
211 
212 PreservedAnalyses
213 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
214   OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
215   dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
216   return PreservedAnalyses::all();
217 }
218 
219 //===----------------------------------------------------------------------===//
220 // Dependence methods
221 
222 // Returns true if this is an input dependence.
223 bool Dependence::isInput() const {
224   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
225 }
226 
227 
228 // Returns true if this is an output dependence.
229 bool Dependence::isOutput() const {
230   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
231 }
232 
233 
234 // Returns true if this is an flow (aka true)  dependence.
235 bool Dependence::isFlow() const {
236   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
237 }
238 
239 
240 // Returns true if this is an anti dependence.
241 bool Dependence::isAnti() const {
242   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
243 }
244 
245 
246 // Returns true if a particular level is scalar; that is,
247 // if no subscript in the source or destination mention the induction
248 // variable associated with the loop at this level.
249 // Leave this out of line, so it will serve as a virtual method anchor
250 bool Dependence::isScalar(unsigned level) const {
251   return false;
252 }
253 
254 
255 //===----------------------------------------------------------------------===//
256 // FullDependence methods
257 
258 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
259                                bool PossiblyLoopIndependent,
260                                unsigned CommonLevels)
261     : Dependence(Source, Destination), Levels(CommonLevels),
262       LoopIndependent(PossiblyLoopIndependent) {
263   Consistent = true;
264   if (CommonLevels)
265     DV = std::make_unique<DVEntry[]>(CommonLevels);
266 }
267 
268 // The rest are simple getters that hide the implementation.
269 
270 // getDirection - Returns the direction associated with a particular level.
271 unsigned FullDependence::getDirection(unsigned Level) const {
272   assert(0 < Level && Level <= Levels && "Level out of range");
273   return DV[Level - 1].Direction;
274 }
275 
276 
277 // Returns the distance (or NULL) associated with a particular level.
278 const SCEV *FullDependence::getDistance(unsigned Level) const {
279   assert(0 < Level && Level <= Levels && "Level out of range");
280   return DV[Level - 1].Distance;
281 }
282 
283 
284 // Returns true if a particular level is scalar; that is,
285 // if no subscript in the source or destination mention the induction
286 // variable associated with the loop at this level.
287 bool FullDependence::isScalar(unsigned Level) const {
288   assert(0 < Level && Level <= Levels && "Level out of range");
289   return DV[Level - 1].Scalar;
290 }
291 
292 
293 // Returns true if peeling the first iteration from this loop
294 // will break this dependence.
295 bool FullDependence::isPeelFirst(unsigned Level) const {
296   assert(0 < Level && Level <= Levels && "Level out of range");
297   return DV[Level - 1].PeelFirst;
298 }
299 
300 
301 // Returns true if peeling the last iteration from this loop
302 // will break this dependence.
303 bool FullDependence::isPeelLast(unsigned Level) const {
304   assert(0 < Level && Level <= Levels && "Level out of range");
305   return DV[Level - 1].PeelLast;
306 }
307 
308 
309 // Returns true if splitting this loop will break the dependence.
310 bool FullDependence::isSplitable(unsigned Level) const {
311   assert(0 < Level && Level <= Levels && "Level out of range");
312   return DV[Level - 1].Splitable;
313 }
314 
315 
316 //===----------------------------------------------------------------------===//
317 // DependenceInfo::Constraint methods
318 
319 // If constraint is a point <X, Y>, returns X.
320 // Otherwise assert.
321 const SCEV *DependenceInfo::Constraint::getX() const {
322   assert(Kind == Point && "Kind should be Point");
323   return A;
324 }
325 
326 
327 // If constraint is a point <X, Y>, returns Y.
328 // Otherwise assert.
329 const SCEV *DependenceInfo::Constraint::getY() const {
330   assert(Kind == Point && "Kind should be Point");
331   return B;
332 }
333 
334 
335 // If constraint is a line AX + BY = C, returns A.
336 // Otherwise assert.
337 const SCEV *DependenceInfo::Constraint::getA() const {
338   assert((Kind == Line || Kind == Distance) &&
339          "Kind should be Line (or Distance)");
340   return A;
341 }
342 
343 
344 // If constraint is a line AX + BY = C, returns B.
345 // Otherwise assert.
346 const SCEV *DependenceInfo::Constraint::getB() const {
347   assert((Kind == Line || Kind == Distance) &&
348          "Kind should be Line (or Distance)");
349   return B;
350 }
351 
352 
353 // If constraint is a line AX + BY = C, returns C.
354 // Otherwise assert.
355 const SCEV *DependenceInfo::Constraint::getC() const {
356   assert((Kind == Line || Kind == Distance) &&
357          "Kind should be Line (or Distance)");
358   return C;
359 }
360 
361 
362 // If constraint is a distance, returns D.
363 // Otherwise assert.
364 const SCEV *DependenceInfo::Constraint::getD() const {
365   assert(Kind == Distance && "Kind should be Distance");
366   return SE->getNegativeSCEV(C);
367 }
368 
369 
370 // Returns the loop associated with this constraint.
371 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
372   assert((Kind == Distance || Kind == Line || Kind == Point) &&
373          "Kind should be Distance, Line, or Point");
374   return AssociatedLoop;
375 }
376 
377 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
378                                           const Loop *CurLoop) {
379   Kind = Point;
380   A = X;
381   B = Y;
382   AssociatedLoop = CurLoop;
383 }
384 
385 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
386                                          const SCEV *CC, const Loop *CurLoop) {
387   Kind = Line;
388   A = AA;
389   B = BB;
390   C = CC;
391   AssociatedLoop = CurLoop;
392 }
393 
394 void DependenceInfo::Constraint::setDistance(const SCEV *D,
395                                              const Loop *CurLoop) {
396   Kind = Distance;
397   A = SE->getOne(D->getType());
398   B = SE->getNegativeSCEV(A);
399   C = SE->getNegativeSCEV(D);
400   AssociatedLoop = CurLoop;
401 }
402 
403 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
404 
405 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
406   SE = NewSE;
407   Kind = Any;
408 }
409 
410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
411 // For debugging purposes. Dumps the constraint out to OS.
412 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
413   if (isEmpty())
414     OS << " Empty\n";
415   else if (isAny())
416     OS << " Any\n";
417   else if (isPoint())
418     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
419   else if (isDistance())
420     OS << " Distance is " << *getD() <<
421       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
422   else if (isLine())
423     OS << " Line is " << *getA() << "*X + " <<
424       *getB() << "*Y = " << *getC() << "\n";
425   else
426     llvm_unreachable("unknown constraint type in Constraint::dump");
427 }
428 #endif
429 
430 
431 // Updates X with the intersection
432 // of the Constraints X and Y. Returns true if X has changed.
433 // Corresponds to Figure 4 from the paper
434 //
435 //            Practical Dependence Testing
436 //            Goff, Kennedy, Tseng
437 //            PLDI 1991
438 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
439   ++DeltaApplications;
440   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
441   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
442   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
443   assert(!Y->isPoint() && "Y must not be a Point");
444   if (X->isAny()) {
445     if (Y->isAny())
446       return false;
447     *X = *Y;
448     return true;
449   }
450   if (X->isEmpty())
451     return false;
452   if (Y->isEmpty()) {
453     X->setEmpty();
454     return true;
455   }
456 
457   if (X->isDistance() && Y->isDistance()) {
458     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
459     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
460       return false;
461     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
462       X->setEmpty();
463       ++DeltaSuccesses;
464       return true;
465     }
466     // Hmmm, interesting situation.
467     // I guess if either is constant, keep it and ignore the other.
468     if (isa<SCEVConstant>(Y->getD())) {
469       *X = *Y;
470       return true;
471     }
472     return false;
473   }
474 
475   // At this point, the pseudo-code in Figure 4 of the paper
476   // checks if (X->isPoint() && Y->isPoint()).
477   // This case can't occur in our implementation,
478   // since a Point can only arise as the result of intersecting
479   // two Line constraints, and the right-hand value, Y, is never
480   // the result of an intersection.
481   assert(!(X->isPoint() && Y->isPoint()) &&
482          "We shouldn't ever see X->isPoint() && Y->isPoint()");
483 
484   if (X->isLine() && Y->isLine()) {
485     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
486     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
487     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
488     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
489       // slopes are equal, so lines are parallel
490       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
491       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
492       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
493       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
494         return false;
495       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
496         X->setEmpty();
497         ++DeltaSuccesses;
498         return true;
499       }
500       return false;
501     }
502     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
503       // slopes differ, so lines intersect
504       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
505       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
506       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
507       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
508       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
509       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
510       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
511       const SCEVConstant *C1A2_C2A1 =
512         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
513       const SCEVConstant *C1B2_C2B1 =
514         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
515       const SCEVConstant *A1B2_A2B1 =
516         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
517       const SCEVConstant *A2B1_A1B2 =
518         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
519       if (!C1B2_C2B1 || !C1A2_C2A1 ||
520           !A1B2_A2B1 || !A2B1_A1B2)
521         return false;
522       APInt Xtop = C1B2_C2B1->getAPInt();
523       APInt Xbot = A1B2_A2B1->getAPInt();
524       APInt Ytop = C1A2_C2A1->getAPInt();
525       APInt Ybot = A2B1_A1B2->getAPInt();
526       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
527       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
528       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
529       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
530       APInt Xq = Xtop; // these need to be initialized, even
531       APInt Xr = Xtop; // though they're just going to be overwritten
532       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
533       APInt Yq = Ytop;
534       APInt Yr = Ytop;
535       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
536       if (Xr != 0 || Yr != 0) {
537         X->setEmpty();
538         ++DeltaSuccesses;
539         return true;
540       }
541       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
542       if (Xq.slt(0) || Yq.slt(0)) {
543         X->setEmpty();
544         ++DeltaSuccesses;
545         return true;
546       }
547       if (const SCEVConstant *CUB =
548           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
549         const APInt &UpperBound = CUB->getAPInt();
550         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
551         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
552           X->setEmpty();
553           ++DeltaSuccesses;
554           return true;
555         }
556       }
557       X->setPoint(SE->getConstant(Xq),
558                   SE->getConstant(Yq),
559                   X->getAssociatedLoop());
560       ++DeltaSuccesses;
561       return true;
562     }
563     return false;
564   }
565 
566   // if (X->isLine() && Y->isPoint()) This case can't occur.
567   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
568 
569   if (X->isPoint() && Y->isLine()) {
570     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
571     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
572     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
573     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
574     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
575       return false;
576     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
577       X->setEmpty();
578       ++DeltaSuccesses;
579       return true;
580     }
581     return false;
582   }
583 
584   llvm_unreachable("shouldn't reach the end of Constraint intersection");
585   return false;
586 }
587 
588 
589 //===----------------------------------------------------------------------===//
590 // DependenceInfo methods
591 
592 // For debugging purposes. Dumps a dependence to OS.
593 void Dependence::dump(raw_ostream &OS) const {
594   bool Splitable = false;
595   if (isConfused())
596     OS << "confused";
597   else {
598     if (isConsistent())
599       OS << "consistent ";
600     if (isFlow())
601       OS << "flow";
602     else if (isOutput())
603       OS << "output";
604     else if (isAnti())
605       OS << "anti";
606     else if (isInput())
607       OS << "input";
608     unsigned Levels = getLevels();
609     OS << " [";
610     for (unsigned II = 1; II <= Levels; ++II) {
611       if (isSplitable(II))
612         Splitable = true;
613       if (isPeelFirst(II))
614         OS << 'p';
615       const SCEV *Distance = getDistance(II);
616       if (Distance)
617         OS << *Distance;
618       else if (isScalar(II))
619         OS << "S";
620       else {
621         unsigned Direction = getDirection(II);
622         if (Direction == DVEntry::ALL)
623           OS << "*";
624         else {
625           if (Direction & DVEntry::LT)
626             OS << "<";
627           if (Direction & DVEntry::EQ)
628             OS << "=";
629           if (Direction & DVEntry::GT)
630             OS << ">";
631         }
632       }
633       if (isPeelLast(II))
634         OS << 'p';
635       if (II < Levels)
636         OS << " ";
637     }
638     if (isLoopIndependent())
639       OS << "|<";
640     OS << "]";
641     if (Splitable)
642       OS << " splitable";
643   }
644   OS << "!\n";
645 }
646 
647 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
648 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
649 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
650 // Otherwise the underlying objects are checked to see if they point to
651 // different identifiable objects.
652 static AliasResult underlyingObjectsAlias(AAResults *AA,
653                                           const DataLayout &DL,
654                                           const MemoryLocation &LocA,
655                                           const MemoryLocation &LocB) {
656   // Check the original locations (minus size) for noalias, which can happen for
657   // tbaa, incompatible underlying object locations, etc.
658   MemoryLocation LocAS =
659       MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
660   MemoryLocation LocBS =
661       MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
662   if (AA->isNoAlias(LocAS, LocBS))
663     return AliasResult::NoAlias;
664 
665   // Check the underlying objects are the same
666   const Value *AObj = getUnderlyingObject(LocA.Ptr);
667   const Value *BObj = getUnderlyingObject(LocB.Ptr);
668 
669   // If the underlying objects are the same, they must alias
670   if (AObj == BObj)
671     return AliasResult::MustAlias;
672 
673   // We may have hit the recursion limit for underlying objects, or have
674   // underlying objects where we don't know they will alias.
675   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
676     return AliasResult::MayAlias;
677 
678   // Otherwise we know the objects are different and both identified objects so
679   // must not alias.
680   return AliasResult::NoAlias;
681 }
682 
683 
684 // Returns true if the load or store can be analyzed. Atomic and volatile
685 // operations have properties which this analysis does not understand.
686 static
687 bool isLoadOrStore(const Instruction *I) {
688   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
689     return LI->isUnordered();
690   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
691     return SI->isUnordered();
692   return false;
693 }
694 
695 
696 // Examines the loop nesting of the Src and Dst
697 // instructions and establishes their shared loops. Sets the variables
698 // CommonLevels, SrcLevels, and MaxLevels.
699 // The source and destination instructions needn't be contained in the same
700 // loop. The routine establishNestingLevels finds the level of most deeply
701 // nested loop that contains them both, CommonLevels. An instruction that's
702 // not contained in a loop is at level = 0. MaxLevels is equal to the level
703 // of the source plus the level of the destination, minus CommonLevels.
704 // This lets us allocate vectors MaxLevels in length, with room for every
705 // distinct loop referenced in both the source and destination subscripts.
706 // The variable SrcLevels is the nesting depth of the source instruction.
707 // It's used to help calculate distinct loops referenced by the destination.
708 // Here's the map from loops to levels:
709 //            0 - unused
710 //            1 - outermost common loop
711 //          ... - other common loops
712 // CommonLevels - innermost common loop
713 //          ... - loops containing Src but not Dst
714 //    SrcLevels - innermost loop containing Src but not Dst
715 //          ... - loops containing Dst but not Src
716 //    MaxLevels - innermost loops containing Dst but not Src
717 // Consider the follow code fragment:
718 //   for (a = ...) {
719 //     for (b = ...) {
720 //       for (c = ...) {
721 //         for (d = ...) {
722 //           A[] = ...;
723 //         }
724 //       }
725 //       for (e = ...) {
726 //         for (f = ...) {
727 //           for (g = ...) {
728 //             ... = A[];
729 //           }
730 //         }
731 //       }
732 //     }
733 //   }
734 // If we're looking at the possibility of a dependence between the store
735 // to A (the Src) and the load from A (the Dst), we'll note that they
736 // have 2 loops in common, so CommonLevels will equal 2 and the direction
737 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
738 // A map from loop names to loop numbers would look like
739 //     a - 1
740 //     b - 2 = CommonLevels
741 //     c - 3
742 //     d - 4 = SrcLevels
743 //     e - 5
744 //     f - 6
745 //     g - 7 = MaxLevels
746 void DependenceInfo::establishNestingLevels(const Instruction *Src,
747                                             const Instruction *Dst) {
748   const BasicBlock *SrcBlock = Src->getParent();
749   const BasicBlock *DstBlock = Dst->getParent();
750   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
751   unsigned DstLevel = LI->getLoopDepth(DstBlock);
752   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
753   const Loop *DstLoop = LI->getLoopFor(DstBlock);
754   SrcLevels = SrcLevel;
755   MaxLevels = SrcLevel + DstLevel;
756   while (SrcLevel > DstLevel) {
757     SrcLoop = SrcLoop->getParentLoop();
758     SrcLevel--;
759   }
760   while (DstLevel > SrcLevel) {
761     DstLoop = DstLoop->getParentLoop();
762     DstLevel--;
763   }
764   while (SrcLoop != DstLoop) {
765     SrcLoop = SrcLoop->getParentLoop();
766     DstLoop = DstLoop->getParentLoop();
767     SrcLevel--;
768   }
769   CommonLevels = SrcLevel;
770   MaxLevels -= CommonLevels;
771 }
772 
773 
774 // Given one of the loops containing the source, return
775 // its level index in our numbering scheme.
776 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
777   return SrcLoop->getLoopDepth();
778 }
779 
780 
781 // Given one of the loops containing the destination,
782 // return its level index in our numbering scheme.
783 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
784   unsigned D = DstLoop->getLoopDepth();
785   if (D > CommonLevels)
786     // This tries to make sure that we assign unique numbers to src and dst when
787     // the memory accesses reside in different loops that have the same depth.
788     return D - CommonLevels + SrcLevels;
789   else
790     return D;
791 }
792 
793 
794 // Returns true if Expression is loop invariant in LoopNest.
795 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
796                                      const Loop *LoopNest) const {
797   // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of
798   // any loop as invariant, because we only consier expression evaluation at a
799   // specific position (where the array access takes place), and not across the
800   // entire function.
801   if (!LoopNest)
802     return true;
803 
804   // If the expression is invariant in the outermost loop of the loop nest, it
805   // is invariant anywhere in the loop nest.
806   const Loop *OutermostLoop = LoopNest;
807   while (OutermostLoop->getParentLoop())
808     OutermostLoop = OutermostLoop->getParentLoop();
809   return SE->isLoopInvariant(Expression, OutermostLoop);
810 }
811 
812 
813 
814 // Finds the set of loops from the LoopNest that
815 // have a level <= CommonLevels and are referred to by the SCEV Expression.
816 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
817                                         const Loop *LoopNest,
818                                         SmallBitVector &Loops) const {
819   while (LoopNest) {
820     unsigned Level = LoopNest->getLoopDepth();
821     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
822       Loops.set(Level);
823     LoopNest = LoopNest->getParentLoop();
824   }
825 }
826 
827 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
828 
829   unsigned widestWidthSeen = 0;
830   Type *widestType;
831 
832   // Go through each pair and find the widest bit to which we need
833   // to extend all of them.
834   for (Subscript *Pair : Pairs) {
835     const SCEV *Src = Pair->Src;
836     const SCEV *Dst = Pair->Dst;
837     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
838     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
839     if (SrcTy == nullptr || DstTy == nullptr) {
840       assert(SrcTy == DstTy && "This function only unify integer types and "
841              "expect Src and Dst share the same type "
842              "otherwise.");
843       continue;
844     }
845     if (SrcTy->getBitWidth() > widestWidthSeen) {
846       widestWidthSeen = SrcTy->getBitWidth();
847       widestType = SrcTy;
848     }
849     if (DstTy->getBitWidth() > widestWidthSeen) {
850       widestWidthSeen = DstTy->getBitWidth();
851       widestType = DstTy;
852     }
853   }
854 
855 
856   assert(widestWidthSeen > 0);
857 
858   // Now extend each pair to the widest seen.
859   for (Subscript *Pair : Pairs) {
860     const SCEV *Src = Pair->Src;
861     const SCEV *Dst = Pair->Dst;
862     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
863     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
864     if (SrcTy == nullptr || DstTy == nullptr) {
865       assert(SrcTy == DstTy && "This function only unify integer types and "
866              "expect Src and Dst share the same type "
867              "otherwise.");
868       continue;
869     }
870     if (SrcTy->getBitWidth() < widestWidthSeen)
871       // Sign-extend Src to widestType
872       Pair->Src = SE->getSignExtendExpr(Src, widestType);
873     if (DstTy->getBitWidth() < widestWidthSeen) {
874       // Sign-extend Dst to widestType
875       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
876     }
877   }
878 }
879 
880 // removeMatchingExtensions - Examines a subscript pair.
881 // If the source and destination are identically sign (or zero)
882 // extended, it strips off the extension in an effect to simplify
883 // the actual analysis.
884 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
885   const SCEV *Src = Pair->Src;
886   const SCEV *Dst = Pair->Dst;
887   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
888       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
889     const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
890     const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
891     const SCEV *SrcCastOp = SrcCast->getOperand();
892     const SCEV *DstCastOp = DstCast->getOperand();
893     if (SrcCastOp->getType() == DstCastOp->getType()) {
894       Pair->Src = SrcCastOp;
895       Pair->Dst = DstCastOp;
896     }
897   }
898 }
899 
900 // Examine the scev and return true iff it's affine.
901 // Collect any loops mentioned in the set of "Loops".
902 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
903                                     SmallBitVector &Loops, bool IsSrc) {
904   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
905   if (!AddRec)
906     return isLoopInvariant(Expr, LoopNest);
907 
908   // The AddRec must depend on one of the containing loops. Otherwise,
909   // mapSrcLoop and mapDstLoop return indices outside the intended range. This
910   // can happen when a subscript in one loop references an IV from a sibling
911   // loop that could not be replaced with a concrete exit value by
912   // getSCEVAtScope.
913   const Loop *L = LoopNest;
914   while (L && AddRec->getLoop() != L)
915     L = L->getParentLoop();
916   if (!L)
917     return false;
918 
919   const SCEV *Start = AddRec->getStart();
920   const SCEV *Step = AddRec->getStepRecurrence(*SE);
921   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
922   if (!isa<SCEVCouldNotCompute>(UB)) {
923     if (SE->getTypeSizeInBits(Start->getType()) <
924         SE->getTypeSizeInBits(UB->getType())) {
925       if (!AddRec->getNoWrapFlags())
926         return false;
927     }
928   }
929   if (!isLoopInvariant(Step, LoopNest))
930     return false;
931   if (IsSrc)
932     Loops.set(mapSrcLoop(AddRec->getLoop()));
933   else
934     Loops.set(mapDstLoop(AddRec->getLoop()));
935   return checkSubscript(Start, LoopNest, Loops, IsSrc);
936 }
937 
938 // Examine the scev and return true iff it's linear.
939 // Collect any loops mentioned in the set of "Loops".
940 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
941                                        SmallBitVector &Loops) {
942   return checkSubscript(Src, LoopNest, Loops, true);
943 }
944 
945 // Examine the scev and return true iff it's linear.
946 // Collect any loops mentioned in the set of "Loops".
947 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
948                                        SmallBitVector &Loops) {
949   return checkSubscript(Dst, LoopNest, Loops, false);
950 }
951 
952 
953 // Examines the subscript pair (the Src and Dst SCEVs)
954 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
955 // Collects the associated loops in a set.
956 DependenceInfo::Subscript::ClassificationKind
957 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
958                              const SCEV *Dst, const Loop *DstLoopNest,
959                              SmallBitVector &Loops) {
960   SmallBitVector SrcLoops(MaxLevels + 1);
961   SmallBitVector DstLoops(MaxLevels + 1);
962   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
963     return Subscript::NonLinear;
964   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
965     return Subscript::NonLinear;
966   Loops = SrcLoops;
967   Loops |= DstLoops;
968   unsigned N = Loops.count();
969   if (N == 0)
970     return Subscript::ZIV;
971   if (N == 1)
972     return Subscript::SIV;
973   if (N == 2 && (SrcLoops.count() == 0 ||
974                  DstLoops.count() == 0 ||
975                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
976     return Subscript::RDIV;
977   return Subscript::MIV;
978 }
979 
980 
981 // A wrapper around SCEV::isKnownPredicate.
982 // Looks for cases where we're interested in comparing for equality.
983 // If both X and Y have been identically sign or zero extended,
984 // it strips off the (confusing) extensions before invoking
985 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
986 // will be similarly updated.
987 //
988 // If SCEV::isKnownPredicate can't prove the predicate,
989 // we try simple subtraction, which seems to help in some cases
990 // involving symbolics.
991 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
992                                       const SCEV *Y) const {
993   if (Pred == CmpInst::ICMP_EQ ||
994       Pred == CmpInst::ICMP_NE) {
995     if ((isa<SCEVSignExtendExpr>(X) &&
996          isa<SCEVSignExtendExpr>(Y)) ||
997         (isa<SCEVZeroExtendExpr>(X) &&
998          isa<SCEVZeroExtendExpr>(Y))) {
999       const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
1000       const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
1001       const SCEV *Xop = CX->getOperand();
1002       const SCEV *Yop = CY->getOperand();
1003       if (Xop->getType() == Yop->getType()) {
1004         X = Xop;
1005         Y = Yop;
1006       }
1007     }
1008   }
1009   if (SE->isKnownPredicate(Pred, X, Y))
1010     return true;
1011   // If SE->isKnownPredicate can't prove the condition,
1012   // we try the brute-force approach of subtracting
1013   // and testing the difference.
1014   // By testing with SE->isKnownPredicate first, we avoid
1015   // the possibility of overflow when the arguments are constants.
1016   const SCEV *Delta = SE->getMinusSCEV(X, Y);
1017   switch (Pred) {
1018   case CmpInst::ICMP_EQ:
1019     return Delta->isZero();
1020   case CmpInst::ICMP_NE:
1021     return SE->isKnownNonZero(Delta);
1022   case CmpInst::ICMP_SGE:
1023     return SE->isKnownNonNegative(Delta);
1024   case CmpInst::ICMP_SLE:
1025     return SE->isKnownNonPositive(Delta);
1026   case CmpInst::ICMP_SGT:
1027     return SE->isKnownPositive(Delta);
1028   case CmpInst::ICMP_SLT:
1029     return SE->isKnownNegative(Delta);
1030   default:
1031     llvm_unreachable("unexpected predicate in isKnownPredicate");
1032   }
1033 }
1034 
1035 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1036 /// with some extra checking if S is an AddRec and we can prove less-than using
1037 /// the loop bounds.
1038 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1039   // First unify to the same type
1040   auto *SType = dyn_cast<IntegerType>(S->getType());
1041   auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1042   if (!SType || !SizeType)
1043     return false;
1044   Type *MaxType =
1045       (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1046   S = SE->getTruncateOrZeroExtend(S, MaxType);
1047   Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1048 
1049   // Special check for addrecs using BE taken count
1050   const SCEV *Bound = SE->getMinusSCEV(S, Size);
1051   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1052     if (AddRec->isAffine()) {
1053       const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1054       if (!isa<SCEVCouldNotCompute>(BECount)) {
1055         const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1056         if (SE->isKnownNegative(Limit))
1057           return true;
1058       }
1059     }
1060   }
1061 
1062   // Check using normal isKnownNegative
1063   const SCEV *LimitedBound =
1064       SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1065   return SE->isKnownNegative(LimitedBound);
1066 }
1067 
1068 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1069   bool Inbounds = false;
1070   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1071     Inbounds = SrcGEP->isInBounds();
1072   if (Inbounds) {
1073     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1074       if (AddRec->isAffine()) {
1075         // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1076         // If both parts are NonNegative, the end result will be NonNegative
1077         if (SE->isKnownNonNegative(AddRec->getStart()) &&
1078             SE->isKnownNonNegative(AddRec->getOperand(1)))
1079           return true;
1080       }
1081     }
1082   }
1083 
1084   return SE->isKnownNonNegative(S);
1085 }
1086 
1087 // All subscripts are all the same type.
1088 // Loop bound may be smaller (e.g., a char).
1089 // Should zero extend loop bound, since it's always >= 0.
1090 // This routine collects upper bound and extends or truncates if needed.
1091 // Truncating is safe when subscripts are known not to wrap. Cases without
1092 // nowrap flags should have been rejected earlier.
1093 // Return null if no bound available.
1094 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1095   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1096     const SCEV *UB = SE->getBackedgeTakenCount(L);
1097     return SE->getTruncateOrZeroExtend(UB, T);
1098   }
1099   return nullptr;
1100 }
1101 
1102 
1103 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1104 // If the cast fails, returns NULL.
1105 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1106                                                               Type *T) const {
1107   if (const SCEV *UB = collectUpperBound(L, T))
1108     return dyn_cast<SCEVConstant>(UB);
1109   return nullptr;
1110 }
1111 
1112 
1113 // testZIV -
1114 // When we have a pair of subscripts of the form [c1] and [c2],
1115 // where c1 and c2 are both loop invariant, we attack it using
1116 // the ZIV test. Basically, we test by comparing the two values,
1117 // but there are actually three possible results:
1118 // 1) the values are equal, so there's a dependence
1119 // 2) the values are different, so there's no dependence
1120 // 3) the values might be equal, so we have to assume a dependence.
1121 //
1122 // Return true if dependence disproved.
1123 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1124                              FullDependence &Result) const {
1125   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
1126   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1127   ++ZIVapplications;
1128   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1129     LLVM_DEBUG(dbgs() << "    provably dependent\n");
1130     return false; // provably dependent
1131   }
1132   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1133     LLVM_DEBUG(dbgs() << "    provably independent\n");
1134     ++ZIVindependence;
1135     return true; // provably independent
1136   }
1137   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
1138   Result.Consistent = false;
1139   return false; // possibly dependent
1140 }
1141 
1142 
1143 // strongSIVtest -
1144 // From the paper, Practical Dependence Testing, Section 4.2.1
1145 //
1146 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1147 // where i is an induction variable, c1 and c2 are loop invariant,
1148 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1149 //
1150 // Can prove independence. Failing that, can compute distance (and direction).
1151 // In the presence of symbolic terms, we can sometimes make progress.
1152 //
1153 // If there's a dependence,
1154 //
1155 //    c1 + a*i = c2 + a*i'
1156 //
1157 // The dependence distance is
1158 //
1159 //    d = i' - i = (c1 - c2)/a
1160 //
1161 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1162 // loop's upper bound. If a dependence exists, the dependence direction is
1163 // defined as
1164 //
1165 //                { < if d > 0
1166 //    direction = { = if d = 0
1167 //                { > if d < 0
1168 //
1169 // Return true if dependence disproved.
1170 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1171                                    const SCEV *DstConst, const Loop *CurLoop,
1172                                    unsigned Level, FullDependence &Result,
1173                                    Constraint &NewConstraint) const {
1174   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1175   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1176   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1177   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1178   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1179   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1180   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1181   ++StrongSIVapplications;
1182   assert(0 < Level && Level <= CommonLevels && "level out of range");
1183   Level--;
1184 
1185   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1186   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
1187   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1188 
1189   // check that |Delta| < iteration count
1190   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1191     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1192     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1193     const SCEV *AbsDelta =
1194       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1195     const SCEV *AbsCoeff =
1196       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1197     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1198     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1199       // Distance greater than trip count - no dependence
1200       ++StrongSIVindependence;
1201       ++StrongSIVsuccesses;
1202       return true;
1203     }
1204   }
1205 
1206   // Can we compute distance?
1207   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1208     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1209     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1210     APInt Distance  = ConstDelta; // these need to be initialized
1211     APInt Remainder = ConstDelta;
1212     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1213     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1214     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1215     // Make sure Coeff divides Delta exactly
1216     if (Remainder != 0) {
1217       // Coeff doesn't divide Distance, no dependence
1218       ++StrongSIVindependence;
1219       ++StrongSIVsuccesses;
1220       return true;
1221     }
1222     Result.DV[Level].Distance = SE->getConstant(Distance);
1223     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1224     if (Distance.sgt(0))
1225       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1226     else if (Distance.slt(0))
1227       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1228     else
1229       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1230     ++StrongSIVsuccesses;
1231   }
1232   else if (Delta->isZero()) {
1233     // since 0/X == 0
1234     Result.DV[Level].Distance = Delta;
1235     NewConstraint.setDistance(Delta, CurLoop);
1236     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1237     ++StrongSIVsuccesses;
1238   }
1239   else {
1240     if (Coeff->isOne()) {
1241       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1242       Result.DV[Level].Distance = Delta; // since X/1 == X
1243       NewConstraint.setDistance(Delta, CurLoop);
1244     }
1245     else {
1246       Result.Consistent = false;
1247       NewConstraint.setLine(Coeff,
1248                             SE->getNegativeSCEV(Coeff),
1249                             SE->getNegativeSCEV(Delta), CurLoop);
1250     }
1251 
1252     // maybe we can get a useful direction
1253     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1254     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1255     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1256     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1257     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1258     // The double negatives above are confusing.
1259     // It helps to read !SE->isKnownNonZero(Delta)
1260     // as "Delta might be Zero"
1261     unsigned NewDirection = Dependence::DVEntry::NONE;
1262     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1263         (DeltaMaybeNegative && CoeffMaybeNegative))
1264       NewDirection = Dependence::DVEntry::LT;
1265     if (DeltaMaybeZero)
1266       NewDirection |= Dependence::DVEntry::EQ;
1267     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1268         (DeltaMaybePositive && CoeffMaybeNegative))
1269       NewDirection |= Dependence::DVEntry::GT;
1270     if (NewDirection < Result.DV[Level].Direction)
1271       ++StrongSIVsuccesses;
1272     Result.DV[Level].Direction &= NewDirection;
1273   }
1274   return false;
1275 }
1276 
1277 
1278 // weakCrossingSIVtest -
1279 // From the paper, Practical Dependence Testing, Section 4.2.2
1280 //
1281 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1282 // where i is an induction variable, c1 and c2 are loop invariant,
1283 // and a is a constant, we can solve it exactly using the
1284 // Weak-Crossing SIV test.
1285 //
1286 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1287 // the two lines, where i = i', yielding
1288 //
1289 //    c1 + a*i = c2 - a*i
1290 //    2a*i = c2 - c1
1291 //    i = (c2 - c1)/2a
1292 //
1293 // If i < 0, there is no dependence.
1294 // If i > upperbound, there is no dependence.
1295 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1296 // If i = upperbound, there's a dependence with distance = 0.
1297 // If i is integral, there's a dependence (all directions).
1298 // If the non-integer part = 1/2, there's a dependence (<> directions).
1299 // Otherwise, there's no dependence.
1300 //
1301 // Can prove independence. Failing that,
1302 // can sometimes refine the directions.
1303 // Can determine iteration for splitting.
1304 //
1305 // Return true if dependence disproved.
1306 bool DependenceInfo::weakCrossingSIVtest(
1307     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1308     const Loop *CurLoop, unsigned Level, FullDependence &Result,
1309     Constraint &NewConstraint, const SCEV *&SplitIter) const {
1310   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1311   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1312   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1313   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1314   ++WeakCrossingSIVapplications;
1315   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1316   Level--;
1317   Result.Consistent = false;
1318   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1319   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1320   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1321   if (Delta->isZero()) {
1322     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1323     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1324     ++WeakCrossingSIVsuccesses;
1325     if (!Result.DV[Level].Direction) {
1326       ++WeakCrossingSIVindependence;
1327       return true;
1328     }
1329     Result.DV[Level].Distance = Delta; // = 0
1330     return false;
1331   }
1332   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1333   if (!ConstCoeff)
1334     return false;
1335 
1336   Result.DV[Level].Splitable = true;
1337   if (SE->isKnownNegative(ConstCoeff)) {
1338     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1339     assert(ConstCoeff &&
1340            "dynamic cast of negative of ConstCoeff should yield constant");
1341     Delta = SE->getNegativeSCEV(Delta);
1342   }
1343   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1344 
1345   // compute SplitIter for use by DependenceInfo::getSplitIteration()
1346   SplitIter = SE->getUDivExpr(
1347       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1348       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1349   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1350 
1351   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1352   if (!ConstDelta)
1353     return false;
1354 
1355   // We're certain that ConstCoeff > 0; therefore,
1356   // if Delta < 0, then no dependence.
1357   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1358   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1359   if (SE->isKnownNegative(Delta)) {
1360     // No dependence, Delta < 0
1361     ++WeakCrossingSIVindependence;
1362     ++WeakCrossingSIVsuccesses;
1363     return true;
1364   }
1365 
1366   // We're certain that Delta > 0 and ConstCoeff > 0.
1367   // Check Delta/(2*ConstCoeff) against upper loop bound
1368   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1369     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1370     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1371     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1372                                     ConstantTwo);
1373     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1374     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1375       // Delta too big, no dependence
1376       ++WeakCrossingSIVindependence;
1377       ++WeakCrossingSIVsuccesses;
1378       return true;
1379     }
1380     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1381       // i = i' = UB
1382       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1383       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1384       ++WeakCrossingSIVsuccesses;
1385       if (!Result.DV[Level].Direction) {
1386         ++WeakCrossingSIVindependence;
1387         return true;
1388       }
1389       Result.DV[Level].Splitable = false;
1390       Result.DV[Level].Distance = SE->getZero(Delta->getType());
1391       return false;
1392     }
1393   }
1394 
1395   // check that Coeff divides Delta
1396   APInt APDelta = ConstDelta->getAPInt();
1397   APInt APCoeff = ConstCoeff->getAPInt();
1398   APInt Distance = APDelta; // these need to be initialzed
1399   APInt Remainder = APDelta;
1400   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1401   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1402   if (Remainder != 0) {
1403     // Coeff doesn't divide Delta, no dependence
1404     ++WeakCrossingSIVindependence;
1405     ++WeakCrossingSIVsuccesses;
1406     return true;
1407   }
1408   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1409 
1410   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1411   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1412   Remainder = Distance.srem(Two);
1413   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1414   if (Remainder != 0) {
1415     // Equal direction isn't possible
1416     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1417     ++WeakCrossingSIVsuccesses;
1418   }
1419   return false;
1420 }
1421 
1422 
1423 // Kirch's algorithm, from
1424 //
1425 //        Optimizing Supercompilers for Supercomputers
1426 //        Michael Wolfe
1427 //        MIT Press, 1989
1428 //
1429 // Program 2.1, page 29.
1430 // Computes the GCD of AM and BM.
1431 // Also finds a solution to the equation ax - by = gcd(a, b).
1432 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1433 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1434                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1435   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1436   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1437   APInt G0 = AM.abs();
1438   APInt G1 = BM.abs();
1439   APInt Q = G0; // these need to be initialized
1440   APInt R = G0;
1441   APInt::sdivrem(G0, G1, Q, R);
1442   while (R != 0) {
1443     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1444     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1445     G0 = G1; G1 = R;
1446     APInt::sdivrem(G0, G1, Q, R);
1447   }
1448   G = G1;
1449   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1450   X = AM.slt(0) ? -A1 : A1;
1451   Y = BM.slt(0) ? B1 : -B1;
1452 
1453   // make sure gcd divides Delta
1454   R = Delta.srem(G);
1455   if (R != 0)
1456     return true; // gcd doesn't divide Delta, no dependence
1457   Q = Delta.sdiv(G);
1458   return false;
1459 }
1460 
1461 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1462   APInt Q = A; // these need to be initialized
1463   APInt R = A;
1464   APInt::sdivrem(A, B, Q, R);
1465   if (R == 0)
1466     return Q;
1467   if ((A.sgt(0) && B.sgt(0)) ||
1468       (A.slt(0) && B.slt(0)))
1469     return Q;
1470   else
1471     return Q - 1;
1472 }
1473 
1474 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1475   APInt Q = A; // these need to be initialized
1476   APInt R = A;
1477   APInt::sdivrem(A, B, Q, R);
1478   if (R == 0)
1479     return Q;
1480   if ((A.sgt(0) && B.sgt(0)) ||
1481       (A.slt(0) && B.slt(0)))
1482     return Q + 1;
1483   else
1484     return Q;
1485 }
1486 
1487 // exactSIVtest -
1488 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1489 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1490 // and a2 are constant, we can solve it exactly using an algorithm developed
1491 // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
1492 //
1493 //        Dependence Analysis for Supercomputing
1494 //        Utpal Banerjee
1495 //        Kluwer Academic Publishers, 1988
1496 //
1497 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1498 // so use them if possible. They're also a bit better with symbolics and,
1499 // in the case of the strong SIV test, can compute Distances.
1500 //
1501 // Return true if dependence disproved.
1502 //
1503 // This is a modified version of the original Banerjee algorithm. The original
1504 // only tested whether Dst depends on Src. This algorithm extends that and
1505 // returns all the dependencies that exist between Dst and Src.
1506 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1507                                   const SCEV *SrcConst, const SCEV *DstConst,
1508                                   const Loop *CurLoop, unsigned Level,
1509                                   FullDependence &Result,
1510                                   Constraint &NewConstraint) const {
1511   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1512   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1513   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1514   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1515   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1516   ++ExactSIVapplications;
1517   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1518   Level--;
1519   Result.Consistent = false;
1520   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1521   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1522   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
1523                         CurLoop);
1524   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1525   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1526   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1527   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1528     return false;
1529 
1530   // find gcd
1531   APInt G, X, Y;
1532   APInt AM = ConstSrcCoeff->getAPInt();
1533   APInt BM = ConstDstCoeff->getAPInt();
1534   APInt CM = ConstDelta->getAPInt();
1535   unsigned Bits = AM.getBitWidth();
1536   if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1537     // gcd doesn't divide Delta, no dependence
1538     ++ExactSIVindependence;
1539     ++ExactSIVsuccesses;
1540     return true;
1541   }
1542 
1543   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1544 
1545   // since SCEV construction normalizes, LM = 0
1546   APInt UM(Bits, 1, true);
1547   bool UMValid = false;
1548   // UM is perhaps unavailable, let's check
1549   if (const SCEVConstant *CUB =
1550           collectConstantUpperBound(CurLoop, Delta->getType())) {
1551     UM = CUB->getAPInt();
1552     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1553     UMValid = true;
1554   }
1555 
1556   APInt TU(APInt::getSignedMaxValue(Bits));
1557   APInt TL(APInt::getSignedMinValue(Bits));
1558   APInt TC = CM.sdiv(G);
1559   APInt TX = X * TC;
1560   APInt TY = Y * TC;
1561   LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
1562   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
1563   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
1564 
1565   SmallVector<APInt, 2> TLVec, TUVec;
1566   APInt TB = BM.sdiv(G);
1567   if (TB.sgt(0)) {
1568     TLVec.push_back(ceilingOfQuotient(-TX, TB));
1569     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1570     // New bound check - modification to Banerjee's e3 check
1571     if (UMValid) {
1572       TUVec.push_back(floorOfQuotient(UM - TX, TB));
1573       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1574     }
1575   } else {
1576     TUVec.push_back(floorOfQuotient(-TX, TB));
1577     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1578     // New bound check - modification to Banerjee's e3 check
1579     if (UMValid) {
1580       TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
1581       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1582     }
1583   }
1584 
1585   APInt TA = AM.sdiv(G);
1586   if (TA.sgt(0)) {
1587     if (UMValid) {
1588       TUVec.push_back(floorOfQuotient(UM - TY, TA));
1589       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1590     }
1591     // New bound check - modification to Banerjee's e3 check
1592     TLVec.push_back(ceilingOfQuotient(-TY, TA));
1593     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1594   } else {
1595     if (UMValid) {
1596       TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
1597       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1598     }
1599     // New bound check - modification to Banerjee's e3 check
1600     TUVec.push_back(floorOfQuotient(-TY, TA));
1601     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1602   }
1603 
1604   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
1605   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
1606 
1607   if (TLVec.empty() || TUVec.empty())
1608     return false;
1609   TL = APIntOps::smax(TLVec.front(), TLVec.back());
1610   TU = APIntOps::smin(TUVec.front(), TUVec.back());
1611   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1612   LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1613 
1614   if (TL.sgt(TU)) {
1615     ++ExactSIVindependence;
1616     ++ExactSIVsuccesses;
1617     return true;
1618   }
1619 
1620   // explore directions
1621   unsigned NewDirection = Dependence::DVEntry::NONE;
1622   APInt LowerDistance, UpperDistance;
1623   if (TA.sgt(TB)) {
1624     LowerDistance = (TY - TX) + (TA - TB) * TL;
1625     UpperDistance = (TY - TX) + (TA - TB) * TU;
1626   } else {
1627     LowerDistance = (TY - TX) + (TA - TB) * TU;
1628     UpperDistance = (TY - TX) + (TA - TB) * TL;
1629   }
1630 
1631   LLVM_DEBUG(dbgs() << "\t    LowerDistance = " << LowerDistance << "\n");
1632   LLVM_DEBUG(dbgs() << "\t    UpperDistance = " << UpperDistance << "\n");
1633 
1634   APInt Zero(Bits, 0, true);
1635   if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
1636     NewDirection |= Dependence::DVEntry::EQ;
1637     ++ExactSIVsuccesses;
1638   }
1639   if (LowerDistance.slt(0)) {
1640     NewDirection |= Dependence::DVEntry::GT;
1641     ++ExactSIVsuccesses;
1642   }
1643   if (UpperDistance.sgt(0)) {
1644     NewDirection |= Dependence::DVEntry::LT;
1645     ++ExactSIVsuccesses;
1646   }
1647 
1648   // finished
1649   Result.DV[Level].Direction &= NewDirection;
1650   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1651     ++ExactSIVindependence;
1652   LLVM_DEBUG(dbgs() << "\t    Result = ");
1653   LLVM_DEBUG(Result.dump(dbgs()));
1654   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1655 }
1656 
1657 
1658 // Return true if the divisor evenly divides the dividend.
1659 static
1660 bool isRemainderZero(const SCEVConstant *Dividend,
1661                      const SCEVConstant *Divisor) {
1662   const APInt &ConstDividend = Dividend->getAPInt();
1663   const APInt &ConstDivisor = Divisor->getAPInt();
1664   return ConstDividend.srem(ConstDivisor) == 0;
1665 }
1666 
1667 
1668 // weakZeroSrcSIVtest -
1669 // From the paper, Practical Dependence Testing, Section 4.2.2
1670 //
1671 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1672 // where i is an induction variable, c1 and c2 are loop invariant,
1673 // and a is a constant, we can solve it exactly using the
1674 // Weak-Zero SIV test.
1675 //
1676 // Given
1677 //
1678 //    c1 = c2 + a*i
1679 //
1680 // we get
1681 //
1682 //    (c1 - c2)/a = i
1683 //
1684 // If i is not an integer, there's no dependence.
1685 // If i < 0 or > UB, there's no dependence.
1686 // If i = 0, the direction is >= and peeling the
1687 // 1st iteration will break the dependence.
1688 // If i = UB, the direction is <= and peeling the
1689 // last iteration will break the dependence.
1690 // Otherwise, the direction is *.
1691 //
1692 // Can prove independence. Failing that, we can sometimes refine
1693 // the directions. Can sometimes show that first or last
1694 // iteration carries all the dependences (so worth peeling).
1695 //
1696 // (see also weakZeroDstSIVtest)
1697 //
1698 // Return true if dependence disproved.
1699 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1700                                         const SCEV *SrcConst,
1701                                         const SCEV *DstConst,
1702                                         const Loop *CurLoop, unsigned Level,
1703                                         FullDependence &Result,
1704                                         Constraint &NewConstraint) const {
1705   // For the WeakSIV test, it's possible the loop isn't common to
1706   // the Src and Dst loops. If it isn't, then there's no need to
1707   // record a direction.
1708   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1709   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1710   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1711   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1712   ++WeakZeroSIVapplications;
1713   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1714   Level--;
1715   Result.Consistent = false;
1716   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1717   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1718                         CurLoop);
1719   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1720   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1721     if (Level < CommonLevels) {
1722       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1723       Result.DV[Level].PeelFirst = true;
1724       ++WeakZeroSIVsuccesses;
1725     }
1726     return false; // dependences caused by first iteration
1727   }
1728   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1729   if (!ConstCoeff)
1730     return false;
1731   const SCEV *AbsCoeff =
1732     SE->isKnownNegative(ConstCoeff) ?
1733     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1734   const SCEV *NewDelta =
1735     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1736 
1737   // check that Delta/SrcCoeff < iteration count
1738   // really check NewDelta < count*AbsCoeff
1739   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1740     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1741     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1742     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1743       ++WeakZeroSIVindependence;
1744       ++WeakZeroSIVsuccesses;
1745       return true;
1746     }
1747     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1748       // dependences caused by last iteration
1749       if (Level < CommonLevels) {
1750         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1751         Result.DV[Level].PeelLast = true;
1752         ++WeakZeroSIVsuccesses;
1753       }
1754       return false;
1755     }
1756   }
1757 
1758   // check that Delta/SrcCoeff >= 0
1759   // really check that NewDelta >= 0
1760   if (SE->isKnownNegative(NewDelta)) {
1761     // No dependence, newDelta < 0
1762     ++WeakZeroSIVindependence;
1763     ++WeakZeroSIVsuccesses;
1764     return true;
1765   }
1766 
1767   // if SrcCoeff doesn't divide Delta, then no dependence
1768   if (isa<SCEVConstant>(Delta) &&
1769       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1770     ++WeakZeroSIVindependence;
1771     ++WeakZeroSIVsuccesses;
1772     return true;
1773   }
1774   return false;
1775 }
1776 
1777 
1778 // weakZeroDstSIVtest -
1779 // From the paper, Practical Dependence Testing, Section 4.2.2
1780 //
1781 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1782 // where i is an induction variable, c1 and c2 are loop invariant,
1783 // and a is a constant, we can solve it exactly using the
1784 // Weak-Zero SIV test.
1785 //
1786 // Given
1787 //
1788 //    c1 + a*i = c2
1789 //
1790 // we get
1791 //
1792 //    i = (c2 - c1)/a
1793 //
1794 // If i is not an integer, there's no dependence.
1795 // If i < 0 or > UB, there's no dependence.
1796 // If i = 0, the direction is <= and peeling the
1797 // 1st iteration will break the dependence.
1798 // If i = UB, the direction is >= and peeling the
1799 // last iteration will break the dependence.
1800 // Otherwise, the direction is *.
1801 //
1802 // Can prove independence. Failing that, we can sometimes refine
1803 // the directions. Can sometimes show that first or last
1804 // iteration carries all the dependences (so worth peeling).
1805 //
1806 // (see also weakZeroSrcSIVtest)
1807 //
1808 // Return true if dependence disproved.
1809 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1810                                         const SCEV *SrcConst,
1811                                         const SCEV *DstConst,
1812                                         const Loop *CurLoop, unsigned Level,
1813                                         FullDependence &Result,
1814                                         Constraint &NewConstraint) const {
1815   // For the WeakSIV test, it's possible the loop isn't common to the
1816   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1817   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1818   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1819   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1820   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1821   ++WeakZeroSIVapplications;
1822   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1823   Level--;
1824   Result.Consistent = false;
1825   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1826   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1827                         CurLoop);
1828   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1829   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1830     if (Level < CommonLevels) {
1831       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1832       Result.DV[Level].PeelFirst = true;
1833       ++WeakZeroSIVsuccesses;
1834     }
1835     return false; // dependences caused by first iteration
1836   }
1837   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1838   if (!ConstCoeff)
1839     return false;
1840   const SCEV *AbsCoeff =
1841     SE->isKnownNegative(ConstCoeff) ?
1842     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1843   const SCEV *NewDelta =
1844     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1845 
1846   // check that Delta/SrcCoeff < iteration count
1847   // really check NewDelta < count*AbsCoeff
1848   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1849     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1850     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1851     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1852       ++WeakZeroSIVindependence;
1853       ++WeakZeroSIVsuccesses;
1854       return true;
1855     }
1856     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1857       // dependences caused by last iteration
1858       if (Level < CommonLevels) {
1859         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1860         Result.DV[Level].PeelLast = true;
1861         ++WeakZeroSIVsuccesses;
1862       }
1863       return false;
1864     }
1865   }
1866 
1867   // check that Delta/SrcCoeff >= 0
1868   // really check that NewDelta >= 0
1869   if (SE->isKnownNegative(NewDelta)) {
1870     // No dependence, newDelta < 0
1871     ++WeakZeroSIVindependence;
1872     ++WeakZeroSIVsuccesses;
1873     return true;
1874   }
1875 
1876   // if SrcCoeff doesn't divide Delta, then no dependence
1877   if (isa<SCEVConstant>(Delta) &&
1878       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1879     ++WeakZeroSIVindependence;
1880     ++WeakZeroSIVsuccesses;
1881     return true;
1882   }
1883   return false;
1884 }
1885 
1886 
1887 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1888 // Things of the form [c1 + a*i] and [c2 + b*j],
1889 // where i and j are induction variable, c1 and c2 are loop invariant,
1890 // and a and b are constants.
1891 // Returns true if any possible dependence is disproved.
1892 // Marks the result as inconsistent.
1893 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1894 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1895                                    const SCEV *SrcConst, const SCEV *DstConst,
1896                                    const Loop *SrcLoop, const Loop *DstLoop,
1897                                    FullDependence &Result) const {
1898   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1899   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1900   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1901   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1902   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1903   ++ExactRDIVapplications;
1904   Result.Consistent = false;
1905   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1906   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1907   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1908   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1909   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1910   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1911     return false;
1912 
1913   // find gcd
1914   APInt G, X, Y;
1915   APInt AM = ConstSrcCoeff->getAPInt();
1916   APInt BM = ConstDstCoeff->getAPInt();
1917   APInt CM = ConstDelta->getAPInt();
1918   unsigned Bits = AM.getBitWidth();
1919   if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1920     // gcd doesn't divide Delta, no dependence
1921     ++ExactRDIVindependence;
1922     return true;
1923   }
1924 
1925   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1926 
1927   // since SCEV construction seems to normalize, LM = 0
1928   APInt SrcUM(Bits, 1, true);
1929   bool SrcUMvalid = false;
1930   // SrcUM is perhaps unavailable, let's check
1931   if (const SCEVConstant *UpperBound =
1932           collectConstantUpperBound(SrcLoop, Delta->getType())) {
1933     SrcUM = UpperBound->getAPInt();
1934     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1935     SrcUMvalid = true;
1936   }
1937 
1938   APInt DstUM(Bits, 1, true);
1939   bool DstUMvalid = false;
1940   // UM is perhaps unavailable, let's check
1941   if (const SCEVConstant *UpperBound =
1942           collectConstantUpperBound(DstLoop, Delta->getType())) {
1943     DstUM = UpperBound->getAPInt();
1944     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1945     DstUMvalid = true;
1946   }
1947 
1948   APInt TU(APInt::getSignedMaxValue(Bits));
1949   APInt TL(APInt::getSignedMinValue(Bits));
1950   APInt TC = CM.sdiv(G);
1951   APInt TX = X * TC;
1952   APInt TY = Y * TC;
1953   LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
1954   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
1955   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
1956 
1957   SmallVector<APInt, 2> TLVec, TUVec;
1958   APInt TB = BM.sdiv(G);
1959   if (TB.sgt(0)) {
1960     TLVec.push_back(ceilingOfQuotient(-TX, TB));
1961     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1962     if (SrcUMvalid) {
1963       TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
1964       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1965     }
1966   } else {
1967     TUVec.push_back(floorOfQuotient(-TX, TB));
1968     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1969     if (SrcUMvalid) {
1970       TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
1971       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1972     }
1973   }
1974 
1975   APInt TA = AM.sdiv(G);
1976   if (TA.sgt(0)) {
1977     TLVec.push_back(ceilingOfQuotient(-TY, TA));
1978     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1979     if (DstUMvalid) {
1980       TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
1981       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1982     }
1983   } else {
1984     TUVec.push_back(floorOfQuotient(-TY, TA));
1985     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1986     if (DstUMvalid) {
1987       TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
1988       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1989     }
1990   }
1991 
1992   if (TLVec.empty() || TUVec.empty())
1993     return false;
1994 
1995   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
1996   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
1997 
1998   TL = APIntOps::smax(TLVec.front(), TLVec.back());
1999   TU = APIntOps::smin(TUVec.front(), TUVec.back());
2000   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
2001   LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
2002 
2003   if (TL.sgt(TU))
2004     ++ExactRDIVindependence;
2005   return TL.sgt(TU);
2006 }
2007 
2008 
2009 // symbolicRDIVtest -
2010 // In Section 4.5 of the Practical Dependence Testing paper,the authors
2011 // introduce a special case of Banerjee's Inequalities (also called the
2012 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
2013 // particularly cases with symbolics. Since it's only able to disprove
2014 // dependence (not compute distances or directions), we'll use it as a
2015 // fall back for the other tests.
2016 //
2017 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2018 // where i and j are induction variables and c1 and c2 are loop invariants,
2019 // we can use the symbolic tests to disprove some dependences, serving as a
2020 // backup for the RDIV test. Note that i and j can be the same variable,
2021 // letting this test serve as a backup for the various SIV tests.
2022 //
2023 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2024 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2025 // loop bounds for the i and j loops, respectively. So, ...
2026 //
2027 // c1 + a1*i = c2 + a2*j
2028 // a1*i - a2*j = c2 - c1
2029 //
2030 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2031 // range of the maximum and minimum possible values of a1*i - a2*j.
2032 // Considering the signs of a1 and a2, we have 4 possible cases:
2033 //
2034 // 1) If a1 >= 0 and a2 >= 0, then
2035 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2036 //              -a2*N2 <= c2 - c1 <= a1*N1
2037 //
2038 // 2) If a1 >= 0 and a2 <= 0, then
2039 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2040 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
2041 //
2042 // 3) If a1 <= 0 and a2 >= 0, then
2043 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2044 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
2045 //
2046 // 4) If a1 <= 0 and a2 <= 0, then
2047 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
2048 //        a1*N1         <= c2 - c1 <=       -a2*N2
2049 //
2050 // return true if dependence disproved
2051 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2052                                       const SCEV *C1, const SCEV *C2,
2053                                       const Loop *Loop1,
2054                                       const Loop *Loop2) const {
2055   ++SymbolicRDIVapplications;
2056   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2057   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
2058   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2059   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
2060   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
2061   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
2062   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2063   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2064   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
2065   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
2066   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2067   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2068   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
2069   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
2070   if (SE->isKnownNonNegative(A1)) {
2071     if (SE->isKnownNonNegative(A2)) {
2072       // A1 >= 0 && A2 >= 0
2073       if (N1) {
2074         // make sure that c2 - c1 <= a1*N1
2075         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2076         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2077         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2078           ++SymbolicRDIVindependence;
2079           return true;
2080         }
2081       }
2082       if (N2) {
2083         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2084         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2085         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2086         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2087           ++SymbolicRDIVindependence;
2088           return true;
2089         }
2090       }
2091     }
2092     else if (SE->isKnownNonPositive(A2)) {
2093       // a1 >= 0 && a2 <= 0
2094       if (N1 && N2) {
2095         // make sure that c2 - c1 <= a1*N1 - a2*N2
2096         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2097         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2098         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2099         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2100         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2101           ++SymbolicRDIVindependence;
2102           return true;
2103         }
2104       }
2105       // make sure that 0 <= c2 - c1
2106       if (SE->isKnownNegative(C2_C1)) {
2107         ++SymbolicRDIVindependence;
2108         return true;
2109       }
2110     }
2111   }
2112   else if (SE->isKnownNonPositive(A1)) {
2113     if (SE->isKnownNonNegative(A2)) {
2114       // a1 <= 0 && a2 >= 0
2115       if (N1 && N2) {
2116         // make sure that a1*N1 - a2*N2 <= c2 - c1
2117         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2118         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2119         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2120         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2121         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2122           ++SymbolicRDIVindependence;
2123           return true;
2124         }
2125       }
2126       // make sure that c2 - c1 <= 0
2127       if (SE->isKnownPositive(C2_C1)) {
2128         ++SymbolicRDIVindependence;
2129         return true;
2130       }
2131     }
2132     else if (SE->isKnownNonPositive(A2)) {
2133       // a1 <= 0 && a2 <= 0
2134       if (N1) {
2135         // make sure that a1*N1 <= c2 - c1
2136         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2137         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2138         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2139           ++SymbolicRDIVindependence;
2140           return true;
2141         }
2142       }
2143       if (N2) {
2144         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2145         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2146         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2147         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2148           ++SymbolicRDIVindependence;
2149           return true;
2150         }
2151       }
2152     }
2153   }
2154   return false;
2155 }
2156 
2157 
2158 // testSIV -
2159 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2160 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2161 // a2 are constant, we attack it with an SIV test. While they can all be
2162 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2163 // they apply; they're cheaper and sometimes more precise.
2164 //
2165 // Return true if dependence disproved.
2166 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2167                              FullDependence &Result, Constraint &NewConstraint,
2168                              const SCEV *&SplitIter) const {
2169   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2170   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2171   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2172   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2173   if (SrcAddRec && DstAddRec) {
2174     const SCEV *SrcConst = SrcAddRec->getStart();
2175     const SCEV *DstConst = DstAddRec->getStart();
2176     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2177     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2178     const Loop *CurLoop = SrcAddRec->getLoop();
2179     assert(CurLoop == DstAddRec->getLoop() &&
2180            "both loops in SIV should be same");
2181     Level = mapSrcLoop(CurLoop);
2182     bool disproven;
2183     if (SrcCoeff == DstCoeff)
2184       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2185                                 Level, Result, NewConstraint);
2186     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2187       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2188                                       Level, Result, NewConstraint, SplitIter);
2189     else
2190       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2191                                Level, Result, NewConstraint);
2192     return disproven ||
2193       gcdMIVtest(Src, Dst, Result) ||
2194       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2195   }
2196   if (SrcAddRec) {
2197     const SCEV *SrcConst = SrcAddRec->getStart();
2198     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2199     const SCEV *DstConst = Dst;
2200     const Loop *CurLoop = SrcAddRec->getLoop();
2201     Level = mapSrcLoop(CurLoop);
2202     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2203                               Level, Result, NewConstraint) ||
2204       gcdMIVtest(Src, Dst, Result);
2205   }
2206   if (DstAddRec) {
2207     const SCEV *DstConst = DstAddRec->getStart();
2208     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2209     const SCEV *SrcConst = Src;
2210     const Loop *CurLoop = DstAddRec->getLoop();
2211     Level = mapDstLoop(CurLoop);
2212     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2213                               CurLoop, Level, Result, NewConstraint) ||
2214       gcdMIVtest(Src, Dst, Result);
2215   }
2216   llvm_unreachable("SIV test expected at least one AddRec");
2217   return false;
2218 }
2219 
2220 
2221 // testRDIV -
2222 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2223 // where i and j are induction variables, c1 and c2 are loop invariant,
2224 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2225 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2226 // It doesn't make sense to talk about distance or direction in this case,
2227 // so there's no point in making special versions of the Strong SIV test or
2228 // the Weak-crossing SIV test.
2229 //
2230 // With minor algebra, this test can also be used for things like
2231 // [c1 + a1*i + a2*j][c2].
2232 //
2233 // Return true if dependence disproved.
2234 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2235                               FullDependence &Result) const {
2236   // we have 3 possible situations here:
2237   //   1) [a*i + b] and [c*j + d]
2238   //   2) [a*i + c*j + b] and [d]
2239   //   3) [b] and [a*i + c*j + d]
2240   // We need to find what we've got and get organized
2241 
2242   const SCEV *SrcConst, *DstConst;
2243   const SCEV *SrcCoeff, *DstCoeff;
2244   const Loop *SrcLoop, *DstLoop;
2245 
2246   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2247   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2248   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2249   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2250   if (SrcAddRec && DstAddRec) {
2251     SrcConst = SrcAddRec->getStart();
2252     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2253     SrcLoop = SrcAddRec->getLoop();
2254     DstConst = DstAddRec->getStart();
2255     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2256     DstLoop = DstAddRec->getLoop();
2257   }
2258   else if (SrcAddRec) {
2259     if (const SCEVAddRecExpr *tmpAddRec =
2260         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2261       SrcConst = tmpAddRec->getStart();
2262       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2263       SrcLoop = tmpAddRec->getLoop();
2264       DstConst = Dst;
2265       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2266       DstLoop = SrcAddRec->getLoop();
2267     }
2268     else
2269       llvm_unreachable("RDIV reached by surprising SCEVs");
2270   }
2271   else if (DstAddRec) {
2272     if (const SCEVAddRecExpr *tmpAddRec =
2273         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2274       DstConst = tmpAddRec->getStart();
2275       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2276       DstLoop = tmpAddRec->getLoop();
2277       SrcConst = Src;
2278       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2279       SrcLoop = DstAddRec->getLoop();
2280     }
2281     else
2282       llvm_unreachable("RDIV reached by surprising SCEVs");
2283   }
2284   else
2285     llvm_unreachable("RDIV expected at least one AddRec");
2286   return exactRDIVtest(SrcCoeff, DstCoeff,
2287                        SrcConst, DstConst,
2288                        SrcLoop, DstLoop,
2289                        Result) ||
2290     gcdMIVtest(Src, Dst, Result) ||
2291     symbolicRDIVtest(SrcCoeff, DstCoeff,
2292                      SrcConst, DstConst,
2293                      SrcLoop, DstLoop);
2294 }
2295 
2296 
2297 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2298 // Return true if dependence disproved.
2299 // Can sometimes refine direction vectors.
2300 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2301                              const SmallBitVector &Loops,
2302                              FullDependence &Result) const {
2303   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2304   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2305   Result.Consistent = false;
2306   return gcdMIVtest(Src, Dst, Result) ||
2307     banerjeeMIVtest(Src, Dst, Loops, Result);
2308 }
2309 
2310 
2311 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2312 // in this case 10. If there is no constant part, returns NULL.
2313 static
2314 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2315   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2316     return Constant;
2317   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2318     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2319       return Constant;
2320   return nullptr;
2321 }
2322 
2323 
2324 //===----------------------------------------------------------------------===//
2325 // gcdMIVtest -
2326 // Tests an MIV subscript pair for dependence.
2327 // Returns true if any possible dependence is disproved.
2328 // Marks the result as inconsistent.
2329 // Can sometimes disprove the equal direction for 1 or more loops,
2330 // as discussed in Michael Wolfe's book,
2331 // High Performance Compilers for Parallel Computing, page 235.
2332 //
2333 // We spend some effort (code!) to handle cases like
2334 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2335 // but M and N are just loop-invariant variables.
2336 // This should help us handle linearized subscripts;
2337 // also makes this test a useful backup to the various SIV tests.
2338 //
2339 // It occurs to me that the presence of loop-invariant variables
2340 // changes the nature of the test from "greatest common divisor"
2341 // to "a common divisor".
2342 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2343                                 FullDependence &Result) const {
2344   LLVM_DEBUG(dbgs() << "starting gcd\n");
2345   ++GCDapplications;
2346   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2347   APInt RunningGCD = APInt::getZero(BitWidth);
2348 
2349   // Examine Src coefficients.
2350   // Compute running GCD and record source constant.
2351   // Because we're looking for the constant at the end of the chain,
2352   // we can't quit the loop just because the GCD == 1.
2353   const SCEV *Coefficients = Src;
2354   while (const SCEVAddRecExpr *AddRec =
2355          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2356     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2357     // If the coefficient is the product of a constant and other stuff,
2358     // we can use the constant in the GCD computation.
2359     const auto *Constant = getConstantPart(Coeff);
2360     if (!Constant)
2361       return false;
2362     APInt ConstCoeff = Constant->getAPInt();
2363     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2364     Coefficients = AddRec->getStart();
2365   }
2366   const SCEV *SrcConst = Coefficients;
2367 
2368   // Examine Dst coefficients.
2369   // Compute running GCD and record destination constant.
2370   // Because we're looking for the constant at the end of the chain,
2371   // we can't quit the loop just because the GCD == 1.
2372   Coefficients = Dst;
2373   while (const SCEVAddRecExpr *AddRec =
2374          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2375     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2376     // If the coefficient is the product of a constant and other stuff,
2377     // we can use the constant in the GCD computation.
2378     const auto *Constant = getConstantPart(Coeff);
2379     if (!Constant)
2380       return false;
2381     APInt ConstCoeff = Constant->getAPInt();
2382     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2383     Coefficients = AddRec->getStart();
2384   }
2385   const SCEV *DstConst = Coefficients;
2386 
2387   APInt ExtraGCD = APInt::getZero(BitWidth);
2388   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2389   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2390   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2391   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2392     // If Delta is a sum of products, we may be able to make further progress.
2393     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2394       const SCEV *Operand = Sum->getOperand(Op);
2395       if (isa<SCEVConstant>(Operand)) {
2396         assert(!Constant && "Surprised to find multiple constants");
2397         Constant = cast<SCEVConstant>(Operand);
2398       }
2399       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2400         // Search for constant operand to participate in GCD;
2401         // If none found; return false.
2402         const SCEVConstant *ConstOp = getConstantPart(Product);
2403         if (!ConstOp)
2404           return false;
2405         APInt ConstOpValue = ConstOp->getAPInt();
2406         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2407                                                    ConstOpValue.abs());
2408       }
2409       else
2410         return false;
2411     }
2412   }
2413   if (!Constant)
2414     return false;
2415   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2416   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2417   if (ConstDelta == 0)
2418     return false;
2419   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2420   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2421   APInt Remainder = ConstDelta.srem(RunningGCD);
2422   if (Remainder != 0) {
2423     ++GCDindependence;
2424     return true;
2425   }
2426 
2427   // Try to disprove equal directions.
2428   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2429   // the code above can't disprove the dependence because the GCD = 1.
2430   // So we consider what happen if i = i' and what happens if j = j'.
2431   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2432   // which is infeasible, so we can disallow the = direction for the i level.
2433   // Setting j = j' doesn't help matters, so we end up with a direction vector
2434   // of [<>, *]
2435   //
2436   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2437   // we need to remember that the constant part is 5 and the RunningGCD should
2438   // be initialized to ExtraGCD = 30.
2439   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2440 
2441   bool Improved = false;
2442   Coefficients = Src;
2443   while (const SCEVAddRecExpr *AddRec =
2444          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2445     Coefficients = AddRec->getStart();
2446     const Loop *CurLoop = AddRec->getLoop();
2447     RunningGCD = ExtraGCD;
2448     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2449     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2450     const SCEV *Inner = Src;
2451     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2452       AddRec = cast<SCEVAddRecExpr>(Inner);
2453       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2454       if (CurLoop == AddRec->getLoop())
2455         ; // SrcCoeff == Coeff
2456       else {
2457         // If the coefficient is the product of a constant and other stuff,
2458         // we can use the constant in the GCD computation.
2459         Constant = getConstantPart(Coeff);
2460         if (!Constant)
2461           return false;
2462         APInt ConstCoeff = Constant->getAPInt();
2463         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2464       }
2465       Inner = AddRec->getStart();
2466     }
2467     Inner = Dst;
2468     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2469       AddRec = cast<SCEVAddRecExpr>(Inner);
2470       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2471       if (CurLoop == AddRec->getLoop())
2472         DstCoeff = Coeff;
2473       else {
2474         // If the coefficient is the product of a constant and other stuff,
2475         // we can use the constant in the GCD computation.
2476         Constant = getConstantPart(Coeff);
2477         if (!Constant)
2478           return false;
2479         APInt ConstCoeff = Constant->getAPInt();
2480         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2481       }
2482       Inner = AddRec->getStart();
2483     }
2484     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2485     // If the coefficient is the product of a constant and other stuff,
2486     // we can use the constant in the GCD computation.
2487     Constant = getConstantPart(Delta);
2488     if (!Constant)
2489       // The difference of the two coefficients might not be a product
2490       // or constant, in which case we give up on this direction.
2491       continue;
2492     APInt ConstCoeff = Constant->getAPInt();
2493     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2494     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2495     if (RunningGCD != 0) {
2496       Remainder = ConstDelta.srem(RunningGCD);
2497       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2498       if (Remainder != 0) {
2499         unsigned Level = mapSrcLoop(CurLoop);
2500         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2501         Improved = true;
2502       }
2503     }
2504   }
2505   if (Improved)
2506     ++GCDsuccesses;
2507   LLVM_DEBUG(dbgs() << "all done\n");
2508   return false;
2509 }
2510 
2511 
2512 //===----------------------------------------------------------------------===//
2513 // banerjeeMIVtest -
2514 // Use Banerjee's Inequalities to test an MIV subscript pair.
2515 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2516 // Generally follows the discussion in Section 2.5.2 of
2517 //
2518 //    Optimizing Supercompilers for Supercomputers
2519 //    Michael Wolfe
2520 //
2521 // The inequalities given on page 25 are simplified in that loops are
2522 // normalized so that the lower bound is always 0 and the stride is always 1.
2523 // For example, Wolfe gives
2524 //
2525 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2526 //
2527 // where A_k is the coefficient of the kth index in the source subscript,
2528 // B_k is the coefficient of the kth index in the destination subscript,
2529 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2530 // index, and N_k is the stride of the kth index. Since all loops are normalized
2531 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2532 // equation to
2533 //
2534 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2535 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2536 //
2537 // Similar simplifications are possible for the other equations.
2538 //
2539 // When we can't determine the number of iterations for a loop,
2540 // we use NULL as an indicator for the worst case, infinity.
2541 // When computing the upper bound, NULL denotes +inf;
2542 // for the lower bound, NULL denotes -inf.
2543 //
2544 // Return true if dependence disproved.
2545 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2546                                      const SmallBitVector &Loops,
2547                                      FullDependence &Result) const {
2548   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2549   ++BanerjeeApplications;
2550   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
2551   const SCEV *A0;
2552   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2553   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2554   const SCEV *B0;
2555   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2556   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2557   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2558   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2559 
2560   // Compute bounds for all the * directions.
2561   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2562   for (unsigned K = 1; K <= MaxLevels; ++K) {
2563     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2564     Bound[K].Direction = Dependence::DVEntry::ALL;
2565     Bound[K].DirSet = Dependence::DVEntry::NONE;
2566     findBoundsALL(A, B, Bound, K);
2567 #ifndef NDEBUG
2568     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
2569     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2570       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2571     else
2572       LLVM_DEBUG(dbgs() << "-inf\t");
2573     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2574       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2575     else
2576       LLVM_DEBUG(dbgs() << "+inf\n");
2577 #endif
2578   }
2579 
2580   // Test the *, *, *, ... case.
2581   bool Disproved = false;
2582   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2583     // Explore the direction vector hierarchy.
2584     unsigned DepthExpanded = 0;
2585     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2586                                          Loops, DepthExpanded, Delta);
2587     if (NewDeps > 0) {
2588       bool Improved = false;
2589       for (unsigned K = 1; K <= CommonLevels; ++K) {
2590         if (Loops[K]) {
2591           unsigned Old = Result.DV[K - 1].Direction;
2592           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2593           Improved |= Old != Result.DV[K - 1].Direction;
2594           if (!Result.DV[K - 1].Direction) {
2595             Improved = false;
2596             Disproved = true;
2597             break;
2598           }
2599         }
2600       }
2601       if (Improved)
2602         ++BanerjeeSuccesses;
2603     }
2604     else {
2605       ++BanerjeeIndependence;
2606       Disproved = true;
2607     }
2608   }
2609   else {
2610     ++BanerjeeIndependence;
2611     Disproved = true;
2612   }
2613   delete [] Bound;
2614   delete [] A;
2615   delete [] B;
2616   return Disproved;
2617 }
2618 
2619 
2620 // Hierarchically expands the direction vector
2621 // search space, combining the directions of discovered dependences
2622 // in the DirSet field of Bound. Returns the number of distinct
2623 // dependences discovered. If the dependence is disproved,
2624 // it will return 0.
2625 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2626                                            CoefficientInfo *B, BoundInfo *Bound,
2627                                            const SmallBitVector &Loops,
2628                                            unsigned &DepthExpanded,
2629                                            const SCEV *Delta) const {
2630   // This algorithm has worst case complexity of O(3^n), where 'n' is the number
2631   // of common loop levels. To avoid excessive compile-time, pessimize all the
2632   // results and immediately return when the number of common levels is beyond
2633   // the given threshold.
2634   if (CommonLevels > MIVMaxLevelThreshold) {
2635     LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
2636                          "direction exploration is terminated.\n");
2637     for (unsigned K = 1; K <= CommonLevels; ++K)
2638       if (Loops[K])
2639         Bound[K].DirSet = Dependence::DVEntry::ALL;
2640     return 1;
2641   }
2642 
2643   if (Level > CommonLevels) {
2644     // record result
2645     LLVM_DEBUG(dbgs() << "\t[");
2646     for (unsigned K = 1; K <= CommonLevels; ++K) {
2647       if (Loops[K]) {
2648         Bound[K].DirSet |= Bound[K].Direction;
2649 #ifndef NDEBUG
2650         switch (Bound[K].Direction) {
2651         case Dependence::DVEntry::LT:
2652           LLVM_DEBUG(dbgs() << " <");
2653           break;
2654         case Dependence::DVEntry::EQ:
2655           LLVM_DEBUG(dbgs() << " =");
2656           break;
2657         case Dependence::DVEntry::GT:
2658           LLVM_DEBUG(dbgs() << " >");
2659           break;
2660         case Dependence::DVEntry::ALL:
2661           LLVM_DEBUG(dbgs() << " *");
2662           break;
2663         default:
2664           llvm_unreachable("unexpected Bound[K].Direction");
2665         }
2666 #endif
2667       }
2668     }
2669     LLVM_DEBUG(dbgs() << " ]\n");
2670     return 1;
2671   }
2672   if (Loops[Level]) {
2673     if (Level > DepthExpanded) {
2674       DepthExpanded = Level;
2675       // compute bounds for <, =, > at current level
2676       findBoundsLT(A, B, Bound, Level);
2677       findBoundsGT(A, B, Bound, Level);
2678       findBoundsEQ(A, B, Bound, Level);
2679 #ifndef NDEBUG
2680       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2681       LLVM_DEBUG(dbgs() << "\t    <\t");
2682       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2683         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2684                           << '\t');
2685       else
2686         LLVM_DEBUG(dbgs() << "-inf\t");
2687       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2688         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2689                           << '\n');
2690       else
2691         LLVM_DEBUG(dbgs() << "+inf\n");
2692       LLVM_DEBUG(dbgs() << "\t    =\t");
2693       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2694         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2695                           << '\t');
2696       else
2697         LLVM_DEBUG(dbgs() << "-inf\t");
2698       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2699         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2700                           << '\n');
2701       else
2702         LLVM_DEBUG(dbgs() << "+inf\n");
2703       LLVM_DEBUG(dbgs() << "\t    >\t");
2704       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2705         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2706                           << '\t');
2707       else
2708         LLVM_DEBUG(dbgs() << "-inf\t");
2709       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2710         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2711                           << '\n');
2712       else
2713         LLVM_DEBUG(dbgs() << "+inf\n");
2714 #endif
2715     }
2716 
2717     unsigned NewDeps = 0;
2718 
2719     // test bounds for <, *, *, ...
2720     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2721       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2722                                    Loops, DepthExpanded, Delta);
2723 
2724     // Test bounds for =, *, *, ...
2725     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2726       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2727                                    Loops, DepthExpanded, Delta);
2728 
2729     // test bounds for >, *, *, ...
2730     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2731       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2732                                    Loops, DepthExpanded, Delta);
2733 
2734     Bound[Level].Direction = Dependence::DVEntry::ALL;
2735     return NewDeps;
2736   }
2737   else
2738     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2739 }
2740 
2741 
2742 // Returns true iff the current bounds are plausible.
2743 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2744                                 BoundInfo *Bound, const SCEV *Delta) const {
2745   Bound[Level].Direction = DirKind;
2746   if (const SCEV *LowerBound = getLowerBound(Bound))
2747     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2748       return false;
2749   if (const SCEV *UpperBound = getUpperBound(Bound))
2750     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2751       return false;
2752   return true;
2753 }
2754 
2755 
2756 // Computes the upper and lower bounds for level K
2757 // using the * direction. Records them in Bound.
2758 // Wolfe gives the equations
2759 //
2760 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2761 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2762 //
2763 // Since we normalize loops, we can simplify these equations to
2764 //
2765 //    LB^*_k = (A^-_k - B^+_k)U_k
2766 //    UB^*_k = (A^+_k - B^-_k)U_k
2767 //
2768 // We must be careful to handle the case where the upper bound is unknown.
2769 // Note that the lower bound is always <= 0
2770 // and the upper bound is always >= 0.
2771 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2772                                    BoundInfo *Bound, unsigned K) const {
2773   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2774   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2775   if (Bound[K].Iterations) {
2776     Bound[K].Lower[Dependence::DVEntry::ALL] =
2777       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2778                      Bound[K].Iterations);
2779     Bound[K].Upper[Dependence::DVEntry::ALL] =
2780       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2781                      Bound[K].Iterations);
2782   }
2783   else {
2784     // If the difference is 0, we won't need to know the number of iterations.
2785     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2786       Bound[K].Lower[Dependence::DVEntry::ALL] =
2787           SE->getZero(A[K].Coeff->getType());
2788     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2789       Bound[K].Upper[Dependence::DVEntry::ALL] =
2790           SE->getZero(A[K].Coeff->getType());
2791   }
2792 }
2793 
2794 
2795 // Computes the upper and lower bounds for level K
2796 // using the = direction. Records them in Bound.
2797 // Wolfe gives the equations
2798 //
2799 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2800 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2801 //
2802 // Since we normalize loops, we can simplify these equations to
2803 //
2804 //    LB^=_k = (A_k - B_k)^- U_k
2805 //    UB^=_k = (A_k - B_k)^+ U_k
2806 //
2807 // We must be careful to handle the case where the upper bound is unknown.
2808 // Note that the lower bound is always <= 0
2809 // and the upper bound is always >= 0.
2810 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2811                                   BoundInfo *Bound, unsigned K) const {
2812   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2813   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2814   if (Bound[K].Iterations) {
2815     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2816     const SCEV *NegativePart = getNegativePart(Delta);
2817     Bound[K].Lower[Dependence::DVEntry::EQ] =
2818       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2819     const SCEV *PositivePart = getPositivePart(Delta);
2820     Bound[K].Upper[Dependence::DVEntry::EQ] =
2821       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2822   }
2823   else {
2824     // If the positive/negative part of the difference is 0,
2825     // we won't need to know the number of iterations.
2826     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2827     const SCEV *NegativePart = getNegativePart(Delta);
2828     if (NegativePart->isZero())
2829       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2830     const SCEV *PositivePart = getPositivePart(Delta);
2831     if (PositivePart->isZero())
2832       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2833   }
2834 }
2835 
2836 
2837 // Computes the upper and lower bounds for level K
2838 // using the < direction. Records them in Bound.
2839 // Wolfe gives the equations
2840 //
2841 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2842 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2843 //
2844 // Since we normalize loops, we can simplify these equations to
2845 //
2846 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2847 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2848 //
2849 // We must be careful to handle the case where the upper bound is unknown.
2850 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2851                                   BoundInfo *Bound, unsigned K) const {
2852   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2853   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2854   if (Bound[K].Iterations) {
2855     const SCEV *Iter_1 = SE->getMinusSCEV(
2856         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2857     const SCEV *NegPart =
2858       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2859     Bound[K].Lower[Dependence::DVEntry::LT] =
2860       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2861     const SCEV *PosPart =
2862       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2863     Bound[K].Upper[Dependence::DVEntry::LT] =
2864       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2865   }
2866   else {
2867     // If the positive/negative part of the difference is 0,
2868     // we won't need to know the number of iterations.
2869     const SCEV *NegPart =
2870       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2871     if (NegPart->isZero())
2872       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2873     const SCEV *PosPart =
2874       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2875     if (PosPart->isZero())
2876       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2877   }
2878 }
2879 
2880 
2881 // Computes the upper and lower bounds for level K
2882 // using the > direction. Records them in Bound.
2883 // Wolfe gives the equations
2884 //
2885 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2886 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2887 //
2888 // Since we normalize loops, we can simplify these equations to
2889 //
2890 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2891 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2892 //
2893 // We must be careful to handle the case where the upper bound is unknown.
2894 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2895                                   BoundInfo *Bound, unsigned K) const {
2896   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2897   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2898   if (Bound[K].Iterations) {
2899     const SCEV *Iter_1 = SE->getMinusSCEV(
2900         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2901     const SCEV *NegPart =
2902       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2903     Bound[K].Lower[Dependence::DVEntry::GT] =
2904       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2905     const SCEV *PosPart =
2906       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2907     Bound[K].Upper[Dependence::DVEntry::GT] =
2908       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2909   }
2910   else {
2911     // If the positive/negative part of the difference is 0,
2912     // we won't need to know the number of iterations.
2913     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2914     if (NegPart->isZero())
2915       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2916     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2917     if (PosPart->isZero())
2918       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2919   }
2920 }
2921 
2922 
2923 // X^+ = max(X, 0)
2924 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2925   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2926 }
2927 
2928 
2929 // X^- = min(X, 0)
2930 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2931   return SE->getSMinExpr(X, SE->getZero(X->getType()));
2932 }
2933 
2934 
2935 // Walks through the subscript,
2936 // collecting each coefficient, the associated loop bounds,
2937 // and recording its positive and negative parts for later use.
2938 DependenceInfo::CoefficientInfo *
2939 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2940                                  const SCEV *&Constant) const {
2941   const SCEV *Zero = SE->getZero(Subscript->getType());
2942   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2943   for (unsigned K = 1; K <= MaxLevels; ++K) {
2944     CI[K].Coeff = Zero;
2945     CI[K].PosPart = Zero;
2946     CI[K].NegPart = Zero;
2947     CI[K].Iterations = nullptr;
2948   }
2949   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2950     const Loop *L = AddRec->getLoop();
2951     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2952     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2953     CI[K].PosPart = getPositivePart(CI[K].Coeff);
2954     CI[K].NegPart = getNegativePart(CI[K].Coeff);
2955     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2956     Subscript = AddRec->getStart();
2957   }
2958   Constant = Subscript;
2959 #ifndef NDEBUG
2960   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2961   for (unsigned K = 1; K <= MaxLevels; ++K) {
2962     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2963     LLVM_DEBUG(dbgs() << "\tPos Part = ");
2964     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2965     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2966     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2967     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2968     if (CI[K].Iterations)
2969       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2970     else
2971       LLVM_DEBUG(dbgs() << "+inf");
2972     LLVM_DEBUG(dbgs() << '\n');
2973   }
2974   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2975 #endif
2976   return CI;
2977 }
2978 
2979 
2980 // Looks through all the bounds info and
2981 // computes the lower bound given the current direction settings
2982 // at each level. If the lower bound for any level is -inf,
2983 // the result is -inf.
2984 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2985   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2986   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2987     if (Bound[K].Lower[Bound[K].Direction])
2988       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2989     else
2990       Sum = nullptr;
2991   }
2992   return Sum;
2993 }
2994 
2995 
2996 // Looks through all the bounds info and
2997 // computes the upper bound given the current direction settings
2998 // at each level. If the upper bound at any level is +inf,
2999 // the result is +inf.
3000 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
3001   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
3002   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3003     if (Bound[K].Upper[Bound[K].Direction])
3004       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
3005     else
3006       Sum = nullptr;
3007   }
3008   return Sum;
3009 }
3010 
3011 
3012 //===----------------------------------------------------------------------===//
3013 // Constraint manipulation for Delta test.
3014 
3015 // Given a linear SCEV,
3016 // return the coefficient (the step)
3017 // corresponding to the specified loop.
3018 // If there isn't one, return 0.
3019 // For example, given a*i + b*j + c*k, finding the coefficient
3020 // corresponding to the j loop would yield b.
3021 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
3022                                             const Loop *TargetLoop) const {
3023   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3024   if (!AddRec)
3025     return SE->getZero(Expr->getType());
3026   if (AddRec->getLoop() == TargetLoop)
3027     return AddRec->getStepRecurrence(*SE);
3028   return findCoefficient(AddRec->getStart(), TargetLoop);
3029 }
3030 
3031 
3032 // Given a linear SCEV,
3033 // return the SCEV given by zeroing out the coefficient
3034 // corresponding to the specified loop.
3035 // For example, given a*i + b*j + c*k, zeroing the coefficient
3036 // corresponding to the j loop would yield a*i + c*k.
3037 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3038                                             const Loop *TargetLoop) const {
3039   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3040   if (!AddRec)
3041     return Expr; // ignore
3042   if (AddRec->getLoop() == TargetLoop)
3043     return AddRec->getStart();
3044   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3045                            AddRec->getStepRecurrence(*SE),
3046                            AddRec->getLoop(),
3047                            AddRec->getNoWrapFlags());
3048 }
3049 
3050 
3051 // Given a linear SCEV Expr,
3052 // return the SCEV given by adding some Value to the
3053 // coefficient corresponding to the specified TargetLoop.
3054 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3055 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3056 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3057                                              const Loop *TargetLoop,
3058                                              const SCEV *Value) const {
3059   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3060   if (!AddRec) // create a new addRec
3061     return SE->getAddRecExpr(Expr,
3062                              Value,
3063                              TargetLoop,
3064                              SCEV::FlagAnyWrap); // Worst case, with no info.
3065   if (AddRec->getLoop() == TargetLoop) {
3066     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3067     if (Sum->isZero())
3068       return AddRec->getStart();
3069     return SE->getAddRecExpr(AddRec->getStart(),
3070                              Sum,
3071                              AddRec->getLoop(),
3072                              AddRec->getNoWrapFlags());
3073   }
3074   if (SE->isLoopInvariant(AddRec, TargetLoop))
3075     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3076   return SE->getAddRecExpr(
3077       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3078       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3079       AddRec->getNoWrapFlags());
3080 }
3081 
3082 
3083 // Review the constraints, looking for opportunities
3084 // to simplify a subscript pair (Src and Dst).
3085 // Return true if some simplification occurs.
3086 // If the simplification isn't exact (that is, if it is conservative
3087 // in terms of dependence), set consistent to false.
3088 // Corresponds to Figure 5 from the paper
3089 //
3090 //            Practical Dependence Testing
3091 //            Goff, Kennedy, Tseng
3092 //            PLDI 1991
3093 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3094                                SmallBitVector &Loops,
3095                                SmallVectorImpl<Constraint> &Constraints,
3096                                bool &Consistent) {
3097   bool Result = false;
3098   for (unsigned LI : Loops.set_bits()) {
3099     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3100     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3101     if (Constraints[LI].isDistance())
3102       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3103     else if (Constraints[LI].isLine())
3104       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3105     else if (Constraints[LI].isPoint())
3106       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3107   }
3108   return Result;
3109 }
3110 
3111 
3112 // Attempt to propagate a distance
3113 // constraint into a subscript pair (Src and Dst).
3114 // Return true if some simplification occurs.
3115 // If the simplification isn't exact (that is, if it is conservative
3116 // in terms of dependence), set consistent to false.
3117 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3118                                        Constraint &CurConstraint,
3119                                        bool &Consistent) {
3120   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3121   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3122   const SCEV *A_K = findCoefficient(Src, CurLoop);
3123   if (A_K->isZero())
3124     return false;
3125   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3126   Src = SE->getMinusSCEV(Src, DA_K);
3127   Src = zeroCoefficient(Src, CurLoop);
3128   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3129   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3130   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3131   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3132   if (!findCoefficient(Dst, CurLoop)->isZero())
3133     Consistent = false;
3134   return true;
3135 }
3136 
3137 
3138 // Attempt to propagate a line
3139 // constraint into a subscript pair (Src and Dst).
3140 // Return true if some simplification occurs.
3141 // If the simplification isn't exact (that is, if it is conservative
3142 // in terms of dependence), set consistent to false.
3143 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3144                                    Constraint &CurConstraint,
3145                                    bool &Consistent) {
3146   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3147   const SCEV *A = CurConstraint.getA();
3148   const SCEV *B = CurConstraint.getB();
3149   const SCEV *C = CurConstraint.getC();
3150   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3151                     << "\n");
3152   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3153   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3154   if (A->isZero()) {
3155     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3156     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3157     if (!Bconst || !Cconst) return false;
3158     APInt Beta = Bconst->getAPInt();
3159     APInt Charlie = Cconst->getAPInt();
3160     APInt CdivB = Charlie.sdiv(Beta);
3161     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3162     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3163     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3164     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3165     Dst = zeroCoefficient(Dst, CurLoop);
3166     if (!findCoefficient(Src, CurLoop)->isZero())
3167       Consistent = false;
3168   }
3169   else if (B->isZero()) {
3170     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3171     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3172     if (!Aconst || !Cconst) return false;
3173     APInt Alpha = Aconst->getAPInt();
3174     APInt Charlie = Cconst->getAPInt();
3175     APInt CdivA = Charlie.sdiv(Alpha);
3176     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3177     const SCEV *A_K = findCoefficient(Src, CurLoop);
3178     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3179     Src = zeroCoefficient(Src, CurLoop);
3180     if (!findCoefficient(Dst, CurLoop)->isZero())
3181       Consistent = false;
3182   }
3183   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3184     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3185     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3186     if (!Aconst || !Cconst) return false;
3187     APInt Alpha = Aconst->getAPInt();
3188     APInt Charlie = Cconst->getAPInt();
3189     APInt CdivA = Charlie.sdiv(Alpha);
3190     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3191     const SCEV *A_K = findCoefficient(Src, CurLoop);
3192     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3193     Src = zeroCoefficient(Src, CurLoop);
3194     Dst = addToCoefficient(Dst, CurLoop, A_K);
3195     if (!findCoefficient(Dst, CurLoop)->isZero())
3196       Consistent = false;
3197   }
3198   else {
3199     // paper is incorrect here, or perhaps just misleading
3200     const SCEV *A_K = findCoefficient(Src, CurLoop);
3201     Src = SE->getMulExpr(Src, A);
3202     Dst = SE->getMulExpr(Dst, A);
3203     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3204     Src = zeroCoefficient(Src, CurLoop);
3205     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3206     if (!findCoefficient(Dst, CurLoop)->isZero())
3207       Consistent = false;
3208   }
3209   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3210   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3211   return true;
3212 }
3213 
3214 
3215 // Attempt to propagate a point
3216 // constraint into a subscript pair (Src and Dst).
3217 // Return true if some simplification occurs.
3218 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3219                                     Constraint &CurConstraint) {
3220   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3221   const SCEV *A_K = findCoefficient(Src, CurLoop);
3222   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3223   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3224   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3225   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3226   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3227   Src = zeroCoefficient(Src, CurLoop);
3228   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3229   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3230   Dst = zeroCoefficient(Dst, CurLoop);
3231   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3232   return true;
3233 }
3234 
3235 
3236 // Update direction vector entry based on the current constraint.
3237 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3238                                      const Constraint &CurConstraint) const {
3239   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3240   LLVM_DEBUG(CurConstraint.dump(dbgs()));
3241   if (CurConstraint.isAny())
3242     ; // use defaults
3243   else if (CurConstraint.isDistance()) {
3244     // this one is consistent, the others aren't
3245     Level.Scalar = false;
3246     Level.Distance = CurConstraint.getD();
3247     unsigned NewDirection = Dependence::DVEntry::NONE;
3248     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3249       NewDirection = Dependence::DVEntry::EQ;
3250     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3251       NewDirection |= Dependence::DVEntry::LT;
3252     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3253       NewDirection |= Dependence::DVEntry::GT;
3254     Level.Direction &= NewDirection;
3255   }
3256   else if (CurConstraint.isLine()) {
3257     Level.Scalar = false;
3258     Level.Distance = nullptr;
3259     // direction should be accurate
3260   }
3261   else if (CurConstraint.isPoint()) {
3262     Level.Scalar = false;
3263     Level.Distance = nullptr;
3264     unsigned NewDirection = Dependence::DVEntry::NONE;
3265     if (!isKnownPredicate(CmpInst::ICMP_NE,
3266                           CurConstraint.getY(),
3267                           CurConstraint.getX()))
3268       // if X may be = Y
3269       NewDirection |= Dependence::DVEntry::EQ;
3270     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3271                           CurConstraint.getY(),
3272                           CurConstraint.getX()))
3273       // if Y may be > X
3274       NewDirection |= Dependence::DVEntry::LT;
3275     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3276                           CurConstraint.getY(),
3277                           CurConstraint.getX()))
3278       // if Y may be < X
3279       NewDirection |= Dependence::DVEntry::GT;
3280     Level.Direction &= NewDirection;
3281   }
3282   else
3283     llvm_unreachable("constraint has unexpected kind");
3284 }
3285 
3286 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3287 /// source and destination array references are recurrences on a nested loop,
3288 /// this function flattens the nested recurrences into separate recurrences
3289 /// for each loop level.
3290 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3291                                     SmallVectorImpl<Subscript> &Pair) {
3292   assert(isLoadOrStore(Src) && "instruction is not load or store");
3293   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3294   Value *SrcPtr = getLoadStorePointerOperand(Src);
3295   Value *DstPtr = getLoadStorePointerOperand(Dst);
3296   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3297   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3298   const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3299   const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3300   const SCEVUnknown *SrcBase =
3301       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3302   const SCEVUnknown *DstBase =
3303       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3304 
3305   if (!SrcBase || !DstBase || SrcBase != DstBase)
3306     return false;
3307 
3308   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3309 
3310   if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3311                                SrcSubscripts, DstSubscripts) &&
3312       !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3313                                     SrcSubscripts, DstSubscripts))
3314     return false;
3315 
3316   int Size = SrcSubscripts.size();
3317   LLVM_DEBUG({
3318     dbgs() << "\nSrcSubscripts: ";
3319     for (int I = 0; I < Size; I++)
3320       dbgs() << *SrcSubscripts[I];
3321     dbgs() << "\nDstSubscripts: ";
3322     for (int I = 0; I < Size; I++)
3323       dbgs() << *DstSubscripts[I];
3324   });
3325 
3326   // The delinearization transforms a single-subscript MIV dependence test into
3327   // a multi-subscript SIV dependence test that is easier to compute. So we
3328   // resize Pair to contain as many pairs of subscripts as the delinearization
3329   // has found, and then initialize the pairs following the delinearization.
3330   Pair.resize(Size);
3331   for (int I = 0; I < Size; ++I) {
3332     Pair[I].Src = SrcSubscripts[I];
3333     Pair[I].Dst = DstSubscripts[I];
3334     unifySubscriptType(&Pair[I]);
3335   }
3336 
3337   return true;
3338 }
3339 
3340 bool DependenceInfo::tryDelinearizeFixedSize(
3341     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3342     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3343     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3344 
3345   Value *SrcPtr = getLoadStorePointerOperand(Src);
3346   Value *DstPtr = getLoadStorePointerOperand(Dst);
3347   const SCEVUnknown *SrcBase =
3348       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3349   const SCEVUnknown *DstBase =
3350       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3351   assert(SrcBase && DstBase && SrcBase == DstBase &&
3352          "expected src and dst scev unknowns to be equal");
3353 
3354   // Check the simple case where the array dimensions are fixed size.
3355   auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
3356   auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
3357   if (!SrcGEP || !DstGEP)
3358     return false;
3359 
3360   SmallVector<int, 4> SrcSizes, DstSizes;
3361   getIndexExpressionsFromGEP(*SE, SrcGEP, SrcSubscripts, SrcSizes);
3362   getIndexExpressionsFromGEP(*SE, DstGEP, DstSubscripts, DstSizes);
3363 
3364   // Check that the two size arrays are non-empty and equal in length and
3365   // value.
3366   if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
3367       SrcSizes.size() != DstSizes.size() ||
3368       !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3369     SrcSubscripts.clear();
3370     DstSubscripts.clear();
3371     return false;
3372   }
3373 
3374   Value *SrcBasePtr = SrcGEP->getOperand(0)->stripPointerCasts();
3375   Value *DstBasePtr = DstGEP->getOperand(0)->stripPointerCasts();
3376 
3377   // Check that for identical base pointers we do not miss index offsets
3378   // that have been added before this GEP is applied.
3379   if (SrcBasePtr != SrcBase->getValue() || DstBasePtr != DstBase->getValue()) {
3380     SrcSubscripts.clear();
3381     DstSubscripts.clear();
3382     return false;
3383   }
3384 
3385   assert(SrcSubscripts.size() == DstSubscripts.size() &&
3386          SrcSubscripts.size() == SrcSizes.size() + 1 &&
3387          "Expected equal number of entries in the list of sizes and "
3388          "subscripts.");
3389 
3390   // In general we cannot safely assume that the subscripts recovered from GEPs
3391   // are in the range of values defined for their corresponding array
3392   // dimensions. For example some C language usage/interpretation make it
3393   // impossible to verify this at compile-time. As such we can only delinearize
3394   // iff the subscripts are positive and are less than the range of the
3395   // dimension.
3396   if (!DisableDelinearizationChecks) {
3397     auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
3398                                   SmallVectorImpl<const SCEV *> &Subscripts,
3399                                   Value *Ptr) {
3400       size_t SSize = Subscripts.size();
3401       for (size_t I = 1; I < SSize; ++I) {
3402         const SCEV *S = Subscripts[I];
3403         if (!isKnownNonNegative(S, Ptr))
3404           return false;
3405         if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
3406           const SCEV *Range = SE->getConstant(
3407               ConstantInt::get(SType, DimensionSizes[I - 1], false));
3408           if (!isKnownLessThan(S, Range))
3409             return false;
3410         }
3411       }
3412       return true;
3413     };
3414 
3415     if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
3416         !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
3417       SrcSubscripts.clear();
3418       DstSubscripts.clear();
3419       return false;
3420     }
3421   }
3422   LLVM_DEBUG({
3423     dbgs() << "Delinearized subscripts of fixed-size array\n"
3424            << "SrcGEP:" << *SrcGEP << "\n"
3425            << "DstGEP:" << *DstGEP << "\n";
3426   });
3427   return true;
3428 }
3429 
3430 bool DependenceInfo::tryDelinearizeParametricSize(
3431     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3432     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3433     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3434 
3435   Value *SrcPtr = getLoadStorePointerOperand(Src);
3436   Value *DstPtr = getLoadStorePointerOperand(Dst);
3437   const SCEVUnknown *SrcBase =
3438       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3439   const SCEVUnknown *DstBase =
3440       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3441   assert(SrcBase && DstBase && SrcBase == DstBase &&
3442          "expected src and dst scev unknowns to be equal");
3443 
3444   const SCEV *ElementSize = SE->getElementSize(Src);
3445   if (ElementSize != SE->getElementSize(Dst))
3446     return false;
3447 
3448   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3449   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3450 
3451   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3452   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3453   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3454     return false;
3455 
3456   // First step: collect parametric terms in both array references.
3457   SmallVector<const SCEV *, 4> Terms;
3458   collectParametricTerms(*SE, SrcAR, Terms);
3459   collectParametricTerms(*SE, DstAR, Terms);
3460 
3461   // Second step: find subscript sizes.
3462   SmallVector<const SCEV *, 4> Sizes;
3463   findArrayDimensions(*SE, Terms, Sizes, ElementSize);
3464 
3465   // Third step: compute the access functions for each subscript.
3466   computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
3467   computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);
3468 
3469   // Fail when there is only a subscript: that's a linearized access function.
3470   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3471       SrcSubscripts.size() != DstSubscripts.size())
3472     return false;
3473 
3474   size_t Size = SrcSubscripts.size();
3475 
3476   // Statically check that the array bounds are in-range. The first subscript we
3477   // don't have a size for and it cannot overflow into another subscript, so is
3478   // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3479   // and dst.
3480   // FIXME: It may be better to record these sizes and add them as constraints
3481   // to the dependency checks.
3482   if (!DisableDelinearizationChecks)
3483     for (size_t I = 1; I < Size; ++I) {
3484       if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3485         return false;
3486 
3487       if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3488         return false;
3489 
3490       if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3491         return false;
3492 
3493       if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3494         return false;
3495     }
3496 
3497   return true;
3498 }
3499 
3500 //===----------------------------------------------------------------------===//
3501 
3502 #ifndef NDEBUG
3503 // For debugging purposes, dump a small bit vector to dbgs().
3504 static void dumpSmallBitVector(SmallBitVector &BV) {
3505   dbgs() << "{";
3506   for (unsigned VI : BV.set_bits()) {
3507     dbgs() << VI;
3508     if (BV.find_next(VI) >= 0)
3509       dbgs() << ' ';
3510   }
3511   dbgs() << "}\n";
3512 }
3513 #endif
3514 
3515 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3516                                 FunctionAnalysisManager::Invalidator &Inv) {
3517   // Check if the analysis itself has been invalidated.
3518   auto PAC = PA.getChecker<DependenceAnalysis>();
3519   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3520     return true;
3521 
3522   // Check transitive dependencies.
3523   return Inv.invalidate<AAManager>(F, PA) ||
3524          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3525          Inv.invalidate<LoopAnalysis>(F, PA);
3526 }
3527 
3528 // depends -
3529 // Returns NULL if there is no dependence.
3530 // Otherwise, return a Dependence with as many details as possible.
3531 // Corresponds to Section 3.1 in the paper
3532 //
3533 //            Practical Dependence Testing
3534 //            Goff, Kennedy, Tseng
3535 //            PLDI 1991
3536 //
3537 // Care is required to keep the routine below, getSplitIteration(),
3538 // up to date with respect to this routine.
3539 std::unique_ptr<Dependence>
3540 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3541                         bool PossiblyLoopIndependent) {
3542   if (Src == Dst)
3543     PossiblyLoopIndependent = false;
3544 
3545   if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3546     // if both instructions don't reference memory, there's no dependence
3547     return nullptr;
3548 
3549   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3550     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3551     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3552     return std::make_unique<Dependence>(Src, Dst);
3553   }
3554 
3555   assert(isLoadOrStore(Src) && "instruction is not load or store");
3556   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3557   Value *SrcPtr = getLoadStorePointerOperand(Src);
3558   Value *DstPtr = getLoadStorePointerOperand(Dst);
3559 
3560   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3561                                  MemoryLocation::get(Dst),
3562                                  MemoryLocation::get(Src))) {
3563   case AliasResult::MayAlias:
3564   case AliasResult::PartialAlias:
3565     // cannot analyse objects if we don't understand their aliasing.
3566     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3567     return std::make_unique<Dependence>(Src, Dst);
3568   case AliasResult::NoAlias:
3569     // If the objects noalias, they are distinct, accesses are independent.
3570     LLVM_DEBUG(dbgs() << "no alias\n");
3571     return nullptr;
3572   case AliasResult::MustAlias:
3573     break; // The underlying objects alias; test accesses for dependence.
3574   }
3575 
3576   // establish loop nesting levels
3577   establishNestingLevels(Src, Dst);
3578   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3579   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3580 
3581   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3582   ++TotalArrayPairs;
3583 
3584   unsigned Pairs = 1;
3585   SmallVector<Subscript, 2> Pair(Pairs);
3586   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3587   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3588   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3589   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3590   if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
3591     // If two pointers have different bases, trying to analyze indexes won't
3592     // work; we can't compare them to each other. This can happen, for example,
3593     // if one is produced by an LCSSA PHI node.
3594     //
3595     // We check this upfront so we don't crash in cases where getMinusSCEV()
3596     // returns a SCEVCouldNotCompute.
3597     LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
3598     return std::make_unique<Dependence>(Src, Dst);
3599   }
3600   Pair[0].Src = SrcSCEV;
3601   Pair[0].Dst = DstSCEV;
3602 
3603   if (Delinearize) {
3604     if (tryDelinearize(Src, Dst, Pair)) {
3605       LLVM_DEBUG(dbgs() << "    delinearized\n");
3606       Pairs = Pair.size();
3607     }
3608   }
3609 
3610   for (unsigned P = 0; P < Pairs; ++P) {
3611     Pair[P].Loops.resize(MaxLevels + 1);
3612     Pair[P].GroupLoops.resize(MaxLevels + 1);
3613     Pair[P].Group.resize(Pairs);
3614     removeMatchingExtensions(&Pair[P]);
3615     Pair[P].Classification =
3616       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3617                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3618                    Pair[P].Loops);
3619     Pair[P].GroupLoops = Pair[P].Loops;
3620     Pair[P].Group.set(P);
3621     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
3622     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3623     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3624     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3625     LLVM_DEBUG(dbgs() << "\tloops = ");
3626     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3627   }
3628 
3629   SmallBitVector Separable(Pairs);
3630   SmallBitVector Coupled(Pairs);
3631 
3632   // Partition subscripts into separable and minimally-coupled groups
3633   // Algorithm in paper is algorithmically better;
3634   // this may be faster in practice. Check someday.
3635   //
3636   // Here's an example of how it works. Consider this code:
3637   //
3638   //   for (i = ...) {
3639   //     for (j = ...) {
3640   //       for (k = ...) {
3641   //         for (l = ...) {
3642   //           for (m = ...) {
3643   //             A[i][j][k][m] = ...;
3644   //             ... = A[0][j][l][i + j];
3645   //           }
3646   //         }
3647   //       }
3648   //     }
3649   //   }
3650   //
3651   // There are 4 subscripts here:
3652   //    0 [i] and [0]
3653   //    1 [j] and [j]
3654   //    2 [k] and [l]
3655   //    3 [m] and [i + j]
3656   //
3657   // We've already classified each subscript pair as ZIV, SIV, etc.,
3658   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3659   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3660   // and set Pair[P].Group = {P}.
3661   //
3662   //      Src Dst    Classification Loops  GroupLoops Group
3663   //    0 [i] [0]         SIV       {1}      {1}        {0}
3664   //    1 [j] [j]         SIV       {2}      {2}        {1}
3665   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3666   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3667   //
3668   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3669   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3670   //
3671   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3672   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3673   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3674   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3675   // to either Separable or Coupled).
3676   //
3677   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3678   // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3679   // so Pair[3].Group = {0, 1, 3} and Done = false.
3680   //
3681   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3682   // Since Done remains true, we add 2 to the set of Separable pairs.
3683   //
3684   // Finally, we consider 3. There's nothing to compare it with,
3685   // so Done remains true and we add it to the Coupled set.
3686   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3687   //
3688   // In the end, we've got 1 separable subscript and 1 coupled group.
3689   for (unsigned SI = 0; SI < Pairs; ++SI) {
3690     if (Pair[SI].Classification == Subscript::NonLinear) {
3691       // ignore these, but collect loops for later
3692       ++NonlinearSubscriptPairs;
3693       collectCommonLoops(Pair[SI].Src,
3694                          LI->getLoopFor(Src->getParent()),
3695                          Pair[SI].Loops);
3696       collectCommonLoops(Pair[SI].Dst,
3697                          LI->getLoopFor(Dst->getParent()),
3698                          Pair[SI].Loops);
3699       Result.Consistent = false;
3700     } else if (Pair[SI].Classification == Subscript::ZIV) {
3701       // always separable
3702       Separable.set(SI);
3703     }
3704     else {
3705       // SIV, RDIV, or MIV, so check for coupled group
3706       bool Done = true;
3707       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3708         SmallBitVector Intersection = Pair[SI].GroupLoops;
3709         Intersection &= Pair[SJ].GroupLoops;
3710         if (Intersection.any()) {
3711           // accumulate set of all the loops in group
3712           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3713           // accumulate set of all subscripts in group
3714           Pair[SJ].Group |= Pair[SI].Group;
3715           Done = false;
3716         }
3717       }
3718       if (Done) {
3719         if (Pair[SI].Group.count() == 1) {
3720           Separable.set(SI);
3721           ++SeparableSubscriptPairs;
3722         }
3723         else {
3724           Coupled.set(SI);
3725           ++CoupledSubscriptPairs;
3726         }
3727       }
3728     }
3729   }
3730 
3731   LLVM_DEBUG(dbgs() << "    Separable = ");
3732   LLVM_DEBUG(dumpSmallBitVector(Separable));
3733   LLVM_DEBUG(dbgs() << "    Coupled = ");
3734   LLVM_DEBUG(dumpSmallBitVector(Coupled));
3735 
3736   Constraint NewConstraint;
3737   NewConstraint.setAny(SE);
3738 
3739   // test separable subscripts
3740   for (unsigned SI : Separable.set_bits()) {
3741     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3742     switch (Pair[SI].Classification) {
3743     case Subscript::ZIV:
3744       LLVM_DEBUG(dbgs() << ", ZIV\n");
3745       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3746         return nullptr;
3747       break;
3748     case Subscript::SIV: {
3749       LLVM_DEBUG(dbgs() << ", SIV\n");
3750       unsigned Level;
3751       const SCEV *SplitIter = nullptr;
3752       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3753                   SplitIter))
3754         return nullptr;
3755       break;
3756     }
3757     case Subscript::RDIV:
3758       LLVM_DEBUG(dbgs() << ", RDIV\n");
3759       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3760         return nullptr;
3761       break;
3762     case Subscript::MIV:
3763       LLVM_DEBUG(dbgs() << ", MIV\n");
3764       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3765         return nullptr;
3766       break;
3767     default:
3768       llvm_unreachable("subscript has unexpected classification");
3769     }
3770   }
3771 
3772   if (Coupled.count()) {
3773     // test coupled subscript groups
3774     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3775     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3776     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3777     for (unsigned II = 0; II <= MaxLevels; ++II)
3778       Constraints[II].setAny(SE);
3779     for (unsigned SI : Coupled.set_bits()) {
3780       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3781       SmallBitVector Group(Pair[SI].Group);
3782       SmallBitVector Sivs(Pairs);
3783       SmallBitVector Mivs(Pairs);
3784       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3785       SmallVector<Subscript *, 4> PairsInGroup;
3786       for (unsigned SJ : Group.set_bits()) {
3787         LLVM_DEBUG(dbgs() << SJ << " ");
3788         if (Pair[SJ].Classification == Subscript::SIV)
3789           Sivs.set(SJ);
3790         else
3791           Mivs.set(SJ);
3792         PairsInGroup.push_back(&Pair[SJ]);
3793       }
3794       unifySubscriptType(PairsInGroup);
3795       LLVM_DEBUG(dbgs() << "}\n");
3796       while (Sivs.any()) {
3797         bool Changed = false;
3798         for (unsigned SJ : Sivs.set_bits()) {
3799           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3800           // SJ is an SIV subscript that's part of the current coupled group
3801           unsigned Level;
3802           const SCEV *SplitIter = nullptr;
3803           LLVM_DEBUG(dbgs() << "SIV\n");
3804           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3805                       SplitIter))
3806             return nullptr;
3807           ConstrainedLevels.set(Level);
3808           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3809             if (Constraints[Level].isEmpty()) {
3810               ++DeltaIndependence;
3811               return nullptr;
3812             }
3813             Changed = true;
3814           }
3815           Sivs.reset(SJ);
3816         }
3817         if (Changed) {
3818           // propagate, possibly creating new SIVs and ZIVs
3819           LLVM_DEBUG(dbgs() << "    propagating\n");
3820           LLVM_DEBUG(dbgs() << "\tMivs = ");
3821           LLVM_DEBUG(dumpSmallBitVector(Mivs));
3822           for (unsigned SJ : Mivs.set_bits()) {
3823             // SJ is an MIV subscript that's part of the current coupled group
3824             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3825             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3826                           Constraints, Result.Consistent)) {
3827               LLVM_DEBUG(dbgs() << "\t    Changed\n");
3828               ++DeltaPropagations;
3829               Pair[SJ].Classification =
3830                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3831                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3832                              Pair[SJ].Loops);
3833               switch (Pair[SJ].Classification) {
3834               case Subscript::ZIV:
3835                 LLVM_DEBUG(dbgs() << "ZIV\n");
3836                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3837                   return nullptr;
3838                 Mivs.reset(SJ);
3839                 break;
3840               case Subscript::SIV:
3841                 Sivs.set(SJ);
3842                 Mivs.reset(SJ);
3843                 break;
3844               case Subscript::RDIV:
3845               case Subscript::MIV:
3846                 break;
3847               default:
3848                 llvm_unreachable("bad subscript classification");
3849               }
3850             }
3851           }
3852         }
3853       }
3854 
3855       // test & propagate remaining RDIVs
3856       for (unsigned SJ : Mivs.set_bits()) {
3857         if (Pair[SJ].Classification == Subscript::RDIV) {
3858           LLVM_DEBUG(dbgs() << "RDIV test\n");
3859           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3860             return nullptr;
3861           // I don't yet understand how to propagate RDIV results
3862           Mivs.reset(SJ);
3863         }
3864       }
3865 
3866       // test remaining MIVs
3867       // This code is temporary.
3868       // Better to somehow test all remaining subscripts simultaneously.
3869       for (unsigned SJ : Mivs.set_bits()) {
3870         if (Pair[SJ].Classification == Subscript::MIV) {
3871           LLVM_DEBUG(dbgs() << "MIV test\n");
3872           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3873             return nullptr;
3874         }
3875         else
3876           llvm_unreachable("expected only MIV subscripts at this point");
3877       }
3878 
3879       // update Result.DV from constraint vector
3880       LLVM_DEBUG(dbgs() << "    updating\n");
3881       for (unsigned SJ : ConstrainedLevels.set_bits()) {
3882         if (SJ > CommonLevels)
3883           break;
3884         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3885         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3886           return nullptr;
3887       }
3888     }
3889   }
3890 
3891   // Make sure the Scalar flags are set correctly.
3892   SmallBitVector CompleteLoops(MaxLevels + 1);
3893   for (unsigned SI = 0; SI < Pairs; ++SI)
3894     CompleteLoops |= Pair[SI].Loops;
3895   for (unsigned II = 1; II <= CommonLevels; ++II)
3896     if (CompleteLoops[II])
3897       Result.DV[II - 1].Scalar = false;
3898 
3899   if (PossiblyLoopIndependent) {
3900     // Make sure the LoopIndependent flag is set correctly.
3901     // All directions must include equal, otherwise no
3902     // loop-independent dependence is possible.
3903     for (unsigned II = 1; II <= CommonLevels; ++II) {
3904       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3905         Result.LoopIndependent = false;
3906         break;
3907       }
3908     }
3909   }
3910   else {
3911     // On the other hand, if all directions are equal and there's no
3912     // loop-independent dependence possible, then no dependence exists.
3913     bool AllEqual = true;
3914     for (unsigned II = 1; II <= CommonLevels; ++II) {
3915       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3916         AllEqual = false;
3917         break;
3918       }
3919     }
3920     if (AllEqual)
3921       return nullptr;
3922   }
3923 
3924   return std::make_unique<FullDependence>(std::move(Result));
3925 }
3926 
3927 //===----------------------------------------------------------------------===//
3928 // getSplitIteration -
3929 // Rather than spend rarely-used space recording the splitting iteration
3930 // during the Weak-Crossing SIV test, we re-compute it on demand.
3931 // The re-computation is basically a repeat of the entire dependence test,
3932 // though simplified since we know that the dependence exists.
3933 // It's tedious, since we must go through all propagations, etc.
3934 //
3935 // Care is required to keep this code up to date with respect to the routine
3936 // above, depends().
3937 //
3938 // Generally, the dependence analyzer will be used to build
3939 // a dependence graph for a function (basically a map from instructions
3940 // to dependences). Looking for cycles in the graph shows us loops
3941 // that cannot be trivially vectorized/parallelized.
3942 //
3943 // We can try to improve the situation by examining all the dependences
3944 // that make up the cycle, looking for ones we can break.
3945 // Sometimes, peeling the first or last iteration of a loop will break
3946 // dependences, and we've got flags for those possibilities.
3947 // Sometimes, splitting a loop at some other iteration will do the trick,
3948 // and we've got a flag for that case. Rather than waste the space to
3949 // record the exact iteration (since we rarely know), we provide
3950 // a method that calculates the iteration. It's a drag that it must work
3951 // from scratch, but wonderful in that it's possible.
3952 //
3953 // Here's an example:
3954 //
3955 //    for (i = 0; i < 10; i++)
3956 //        A[i] = ...
3957 //        ... = A[11 - i]
3958 //
3959 // There's a loop-carried flow dependence from the store to the load,
3960 // found by the weak-crossing SIV test. The dependence will have a flag,
3961 // indicating that the dependence can be broken by splitting the loop.
3962 // Calling getSplitIteration will return 5.
3963 // Splitting the loop breaks the dependence, like so:
3964 //
3965 //    for (i = 0; i <= 5; i++)
3966 //        A[i] = ...
3967 //        ... = A[11 - i]
3968 //    for (i = 6; i < 10; i++)
3969 //        A[i] = ...
3970 //        ... = A[11 - i]
3971 //
3972 // breaks the dependence and allows us to vectorize/parallelize
3973 // both loops.
3974 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3975                                               unsigned SplitLevel) {
3976   assert(Dep.isSplitable(SplitLevel) &&
3977          "Dep should be splitable at SplitLevel");
3978   Instruction *Src = Dep.getSrc();
3979   Instruction *Dst = Dep.getDst();
3980   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3981   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3982   assert(isLoadOrStore(Src));
3983   assert(isLoadOrStore(Dst));
3984   Value *SrcPtr = getLoadStorePointerOperand(Src);
3985   Value *DstPtr = getLoadStorePointerOperand(Dst);
3986   assert(underlyingObjectsAlias(
3987              AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
3988              MemoryLocation::get(Src)) == AliasResult::MustAlias);
3989 
3990   // establish loop nesting levels
3991   establishNestingLevels(Src, Dst);
3992 
3993   FullDependence Result(Src, Dst, false, CommonLevels);
3994 
3995   unsigned Pairs = 1;
3996   SmallVector<Subscript, 2> Pair(Pairs);
3997   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3998   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3999   Pair[0].Src = SrcSCEV;
4000   Pair[0].Dst = DstSCEV;
4001 
4002   if (Delinearize) {
4003     if (tryDelinearize(Src, Dst, Pair)) {
4004       LLVM_DEBUG(dbgs() << "    delinearized\n");
4005       Pairs = Pair.size();
4006     }
4007   }
4008 
4009   for (unsigned P = 0; P < Pairs; ++P) {
4010     Pair[P].Loops.resize(MaxLevels + 1);
4011     Pair[P].GroupLoops.resize(MaxLevels + 1);
4012     Pair[P].Group.resize(Pairs);
4013     removeMatchingExtensions(&Pair[P]);
4014     Pair[P].Classification =
4015       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
4016                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
4017                    Pair[P].Loops);
4018     Pair[P].GroupLoops = Pair[P].Loops;
4019     Pair[P].Group.set(P);
4020   }
4021 
4022   SmallBitVector Separable(Pairs);
4023   SmallBitVector Coupled(Pairs);
4024 
4025   // partition subscripts into separable and minimally-coupled groups
4026   for (unsigned SI = 0; SI < Pairs; ++SI) {
4027     if (Pair[SI].Classification == Subscript::NonLinear) {
4028       // ignore these, but collect loops for later
4029       collectCommonLoops(Pair[SI].Src,
4030                          LI->getLoopFor(Src->getParent()),
4031                          Pair[SI].Loops);
4032       collectCommonLoops(Pair[SI].Dst,
4033                          LI->getLoopFor(Dst->getParent()),
4034                          Pair[SI].Loops);
4035       Result.Consistent = false;
4036     }
4037     else if (Pair[SI].Classification == Subscript::ZIV)
4038       Separable.set(SI);
4039     else {
4040       // SIV, RDIV, or MIV, so check for coupled group
4041       bool Done = true;
4042       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
4043         SmallBitVector Intersection = Pair[SI].GroupLoops;
4044         Intersection &= Pair[SJ].GroupLoops;
4045         if (Intersection.any()) {
4046           // accumulate set of all the loops in group
4047           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
4048           // accumulate set of all subscripts in group
4049           Pair[SJ].Group |= Pair[SI].Group;
4050           Done = false;
4051         }
4052       }
4053       if (Done) {
4054         if (Pair[SI].Group.count() == 1)
4055           Separable.set(SI);
4056         else
4057           Coupled.set(SI);
4058       }
4059     }
4060   }
4061 
4062   Constraint NewConstraint;
4063   NewConstraint.setAny(SE);
4064 
4065   // test separable subscripts
4066   for (unsigned SI : Separable.set_bits()) {
4067     switch (Pair[SI].Classification) {
4068     case Subscript::SIV: {
4069       unsigned Level;
4070       const SCEV *SplitIter = nullptr;
4071       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4072                      Result, NewConstraint, SplitIter);
4073       if (Level == SplitLevel) {
4074         assert(SplitIter != nullptr);
4075         return SplitIter;
4076       }
4077       break;
4078     }
4079     case Subscript::ZIV:
4080     case Subscript::RDIV:
4081     case Subscript::MIV:
4082       break;
4083     default:
4084       llvm_unreachable("subscript has unexpected classification");
4085     }
4086   }
4087 
4088   if (Coupled.count()) {
4089     // test coupled subscript groups
4090     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4091     for (unsigned II = 0; II <= MaxLevels; ++II)
4092       Constraints[II].setAny(SE);
4093     for (unsigned SI : Coupled.set_bits()) {
4094       SmallBitVector Group(Pair[SI].Group);
4095       SmallBitVector Sivs(Pairs);
4096       SmallBitVector Mivs(Pairs);
4097       SmallBitVector ConstrainedLevels(MaxLevels + 1);
4098       for (unsigned SJ : Group.set_bits()) {
4099         if (Pair[SJ].Classification == Subscript::SIV)
4100           Sivs.set(SJ);
4101         else
4102           Mivs.set(SJ);
4103       }
4104       while (Sivs.any()) {
4105         bool Changed = false;
4106         for (unsigned SJ : Sivs.set_bits()) {
4107           // SJ is an SIV subscript that's part of the current coupled group
4108           unsigned Level;
4109           const SCEV *SplitIter = nullptr;
4110           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4111                          Result, NewConstraint, SplitIter);
4112           if (Level == SplitLevel && SplitIter)
4113             return SplitIter;
4114           ConstrainedLevels.set(Level);
4115           if (intersectConstraints(&Constraints[Level], &NewConstraint))
4116             Changed = true;
4117           Sivs.reset(SJ);
4118         }
4119         if (Changed) {
4120           // propagate, possibly creating new SIVs and ZIVs
4121           for (unsigned SJ : Mivs.set_bits()) {
4122             // SJ is an MIV subscript that's part of the current coupled group
4123             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4124                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
4125               Pair[SJ].Classification =
4126                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4127                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4128                              Pair[SJ].Loops);
4129               switch (Pair[SJ].Classification) {
4130               case Subscript::ZIV:
4131                 Mivs.reset(SJ);
4132                 break;
4133               case Subscript::SIV:
4134                 Sivs.set(SJ);
4135                 Mivs.reset(SJ);
4136                 break;
4137               case Subscript::RDIV:
4138               case Subscript::MIV:
4139                 break;
4140               default:
4141                 llvm_unreachable("bad subscript classification");
4142               }
4143             }
4144           }
4145         }
4146       }
4147     }
4148   }
4149   llvm_unreachable("somehow reached end of routine");
4150   return nullptr;
4151 }
4152