1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
12 // described in
13 //
14 //            Practical Dependence Testing
15 //            Goff, Kennedy, Tseng
16 //            PLDI 1991
17 //
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
21 //
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
26 //
27 // Since Clang linearizes some array subscripts, the dependence
28 // analysis is using SCEV->delinearize to recover the representation of multiple
29 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
30 // delinearization is controlled by the flag -da-delinearize.
31 //
32 // We should pay some careful attention to the possibility of integer overflow
33 // in the implementation of the various tests. This could happen with Add,
34 // Subtract, or Multiply, with both APInt's and SCEV's.
35 //
36 // Some non-linear subscript pairs can be handled by the GCD test
37 // (and perhaps other tests).
38 // Should explore how often these things occur.
39 //
40 // Finally, it seems like certain test cases expose weaknesses in the SCEV
41 // simplification, especially in the handling of sign and zero extensions.
42 // It could be useful to spend time exploring these.
43 //
44 // Please note that this is work in progress and the interface is subject to
45 // change.
46 //
47 //===----------------------------------------------------------------------===//
48 //                                                                            //
49 //                   In memory of Ken Kennedy, 1945 - 2007                    //
50 //                                                                            //
51 //===----------------------------------------------------------------------===//
52 
53 #include "llvm/Analysis/DependenceAnalysis.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/Statistic.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/LoopInfo.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/Config/llvm-config.h"
62 #include "llvm/IR/InstIterator.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "da"
73 
74 //===----------------------------------------------------------------------===//
75 // statistics
76 
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109 
110 static cl::opt<bool>
111 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
112             cl::desc("Try to delinearize array references."));
113 
114 //===----------------------------------------------------------------------===//
115 // basics
116 
117 DependenceAnalysis::Result
118 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
119   auto &AA = FAM.getResult<AAManager>(F);
120   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
121   auto &LI = FAM.getResult<LoopAnalysis>(F);
122   return DependenceInfo(&F, &AA, &SE, &LI);
123 }
124 
125 AnalysisKey DependenceAnalysis::Key;
126 
127 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
128                       "Dependence Analysis", true, true)
129 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
130 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
132 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
133                     true, true)
134 
135 char DependenceAnalysisWrapperPass::ID = 0;
136 
137 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
138   return new DependenceAnalysisWrapperPass();
139 }
140 
141 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
142   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
143   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
144   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
145   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
146   return false;
147 }
148 
149 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
150 
151 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
152 
153 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
154   AU.setPreservesAll();
155   AU.addRequiredTransitive<AAResultsWrapperPass>();
156   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
157   AU.addRequiredTransitive<LoopInfoWrapperPass>();
158 }
159 
160 
161 // Used to test the dependence analyzer.
162 // Looks through the function, noting loads and stores.
163 // Calls depends() on every possible pair and prints out the result.
164 // Ignores all other instructions.
165 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
166   auto *F = DA->getFunction();
167   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
168        ++SrcI) {
169     if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
170       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
171            DstI != DstE; ++DstI) {
172         if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
173           OS << "da analyze - ";
174           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
175             D->dump(OS);
176             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
177               if (D->isSplitable(Level)) {
178                 OS << "da analyze - split level = " << Level;
179                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
180                 OS << "!\n";
181               }
182             }
183           }
184           else
185             OS << "none!\n";
186         }
187       }
188     }
189   }
190 }
191 
192 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
193                                           const Module *) const {
194   dumpExampleDependence(OS, info.get());
195 }
196 
197 //===----------------------------------------------------------------------===//
198 // Dependence methods
199 
200 // Returns true if this is an input dependence.
201 bool Dependence::isInput() const {
202   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
203 }
204 
205 
206 // Returns true if this is an output dependence.
207 bool Dependence::isOutput() const {
208   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
209 }
210 
211 
212 // Returns true if this is an flow (aka true)  dependence.
213 bool Dependence::isFlow() const {
214   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
215 }
216 
217 
218 // Returns true if this is an anti dependence.
219 bool Dependence::isAnti() const {
220   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
221 }
222 
223 
224 // Returns true if a particular level is scalar; that is,
225 // if no subscript in the source or destination mention the induction
226 // variable associated with the loop at this level.
227 // Leave this out of line, so it will serve as a virtual method anchor
228 bool Dependence::isScalar(unsigned level) const {
229   return false;
230 }
231 
232 
233 //===----------------------------------------------------------------------===//
234 // FullDependence methods
235 
236 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
237                                bool PossiblyLoopIndependent,
238                                unsigned CommonLevels)
239     : Dependence(Source, Destination), Levels(CommonLevels),
240       LoopIndependent(PossiblyLoopIndependent) {
241   Consistent = true;
242   if (CommonLevels)
243     DV = make_unique<DVEntry[]>(CommonLevels);
244 }
245 
246 // The rest are simple getters that hide the implementation.
247 
248 // getDirection - Returns the direction associated with a particular level.
249 unsigned FullDependence::getDirection(unsigned Level) const {
250   assert(0 < Level && Level <= Levels && "Level out of range");
251   return DV[Level - 1].Direction;
252 }
253 
254 
255 // Returns the distance (or NULL) associated with a particular level.
256 const SCEV *FullDependence::getDistance(unsigned Level) const {
257   assert(0 < Level && Level <= Levels && "Level out of range");
258   return DV[Level - 1].Distance;
259 }
260 
261 
262 // Returns true if a particular level is scalar; that is,
263 // if no subscript in the source or destination mention the induction
264 // variable associated with the loop at this level.
265 bool FullDependence::isScalar(unsigned Level) const {
266   assert(0 < Level && Level <= Levels && "Level out of range");
267   return DV[Level - 1].Scalar;
268 }
269 
270 
271 // Returns true if peeling the first iteration from this loop
272 // will break this dependence.
273 bool FullDependence::isPeelFirst(unsigned Level) const {
274   assert(0 < Level && Level <= Levels && "Level out of range");
275   return DV[Level - 1].PeelFirst;
276 }
277 
278 
279 // Returns true if peeling the last iteration from this loop
280 // will break this dependence.
281 bool FullDependence::isPeelLast(unsigned Level) const {
282   assert(0 < Level && Level <= Levels && "Level out of range");
283   return DV[Level - 1].PeelLast;
284 }
285 
286 
287 // Returns true if splitting this loop will break the dependence.
288 bool FullDependence::isSplitable(unsigned Level) const {
289   assert(0 < Level && Level <= Levels && "Level out of range");
290   return DV[Level - 1].Splitable;
291 }
292 
293 
294 //===----------------------------------------------------------------------===//
295 // DependenceInfo::Constraint methods
296 
297 // If constraint is a point <X, Y>, returns X.
298 // Otherwise assert.
299 const SCEV *DependenceInfo::Constraint::getX() const {
300   assert(Kind == Point && "Kind should be Point");
301   return A;
302 }
303 
304 
305 // If constraint is a point <X, Y>, returns Y.
306 // Otherwise assert.
307 const SCEV *DependenceInfo::Constraint::getY() const {
308   assert(Kind == Point && "Kind should be Point");
309   return B;
310 }
311 
312 
313 // If constraint is a line AX + BY = C, returns A.
314 // Otherwise assert.
315 const SCEV *DependenceInfo::Constraint::getA() const {
316   assert((Kind == Line || Kind == Distance) &&
317          "Kind should be Line (or Distance)");
318   return A;
319 }
320 
321 
322 // If constraint is a line AX + BY = C, returns B.
323 // Otherwise assert.
324 const SCEV *DependenceInfo::Constraint::getB() const {
325   assert((Kind == Line || Kind == Distance) &&
326          "Kind should be Line (or Distance)");
327   return B;
328 }
329 
330 
331 // If constraint is a line AX + BY = C, returns C.
332 // Otherwise assert.
333 const SCEV *DependenceInfo::Constraint::getC() const {
334   assert((Kind == Line || Kind == Distance) &&
335          "Kind should be Line (or Distance)");
336   return C;
337 }
338 
339 
340 // If constraint is a distance, returns D.
341 // Otherwise assert.
342 const SCEV *DependenceInfo::Constraint::getD() const {
343   assert(Kind == Distance && "Kind should be Distance");
344   return SE->getNegativeSCEV(C);
345 }
346 
347 
348 // Returns the loop associated with this constraint.
349 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
350   assert((Kind == Distance || Kind == Line || Kind == Point) &&
351          "Kind should be Distance, Line, or Point");
352   return AssociatedLoop;
353 }
354 
355 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
356                                           const Loop *CurLoop) {
357   Kind = Point;
358   A = X;
359   B = Y;
360   AssociatedLoop = CurLoop;
361 }
362 
363 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
364                                          const SCEV *CC, const Loop *CurLoop) {
365   Kind = Line;
366   A = AA;
367   B = BB;
368   C = CC;
369   AssociatedLoop = CurLoop;
370 }
371 
372 void DependenceInfo::Constraint::setDistance(const SCEV *D,
373                                              const Loop *CurLoop) {
374   Kind = Distance;
375   A = SE->getOne(D->getType());
376   B = SE->getNegativeSCEV(A);
377   C = SE->getNegativeSCEV(D);
378   AssociatedLoop = CurLoop;
379 }
380 
381 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
382 
383 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
384   SE = NewSE;
385   Kind = Any;
386 }
387 
388 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
389 // For debugging purposes. Dumps the constraint out to OS.
390 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
391   if (isEmpty())
392     OS << " Empty\n";
393   else if (isAny())
394     OS << " Any\n";
395   else if (isPoint())
396     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
397   else if (isDistance())
398     OS << " Distance is " << *getD() <<
399       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
400   else if (isLine())
401     OS << " Line is " << *getA() << "*X + " <<
402       *getB() << "*Y = " << *getC() << "\n";
403   else
404     llvm_unreachable("unknown constraint type in Constraint::dump");
405 }
406 #endif
407 
408 
409 // Updates X with the intersection
410 // of the Constraints X and Y. Returns true if X has changed.
411 // Corresponds to Figure 4 from the paper
412 //
413 //            Practical Dependence Testing
414 //            Goff, Kennedy, Tseng
415 //            PLDI 1991
416 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
417   ++DeltaApplications;
418   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
419   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
420   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
421   assert(!Y->isPoint() && "Y must not be a Point");
422   if (X->isAny()) {
423     if (Y->isAny())
424       return false;
425     *X = *Y;
426     return true;
427   }
428   if (X->isEmpty())
429     return false;
430   if (Y->isEmpty()) {
431     X->setEmpty();
432     return true;
433   }
434 
435   if (X->isDistance() && Y->isDistance()) {
436     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
437     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
438       return false;
439     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
440       X->setEmpty();
441       ++DeltaSuccesses;
442       return true;
443     }
444     // Hmmm, interesting situation.
445     // I guess if either is constant, keep it and ignore the other.
446     if (isa<SCEVConstant>(Y->getD())) {
447       *X = *Y;
448       return true;
449     }
450     return false;
451   }
452 
453   // At this point, the pseudo-code in Figure 4 of the paper
454   // checks if (X->isPoint() && Y->isPoint()).
455   // This case can't occur in our implementation,
456   // since a Point can only arise as the result of intersecting
457   // two Line constraints, and the right-hand value, Y, is never
458   // the result of an intersection.
459   assert(!(X->isPoint() && Y->isPoint()) &&
460          "We shouldn't ever see X->isPoint() && Y->isPoint()");
461 
462   if (X->isLine() && Y->isLine()) {
463     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
464     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
465     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
466     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
467       // slopes are equal, so lines are parallel
468       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
469       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
470       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
471       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
472         return false;
473       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
474         X->setEmpty();
475         ++DeltaSuccesses;
476         return true;
477       }
478       return false;
479     }
480     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
481       // slopes differ, so lines intersect
482       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
483       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
484       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
485       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
486       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
487       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
488       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
489       const SCEVConstant *C1A2_C2A1 =
490         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
491       const SCEVConstant *C1B2_C2B1 =
492         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
493       const SCEVConstant *A1B2_A2B1 =
494         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
495       const SCEVConstant *A2B1_A1B2 =
496         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
497       if (!C1B2_C2B1 || !C1A2_C2A1 ||
498           !A1B2_A2B1 || !A2B1_A1B2)
499         return false;
500       APInt Xtop = C1B2_C2B1->getAPInt();
501       APInt Xbot = A1B2_A2B1->getAPInt();
502       APInt Ytop = C1A2_C2A1->getAPInt();
503       APInt Ybot = A2B1_A1B2->getAPInt();
504       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
505       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
506       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
507       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
508       APInt Xq = Xtop; // these need to be initialized, even
509       APInt Xr = Xtop; // though they're just going to be overwritten
510       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
511       APInt Yq = Ytop;
512       APInt Yr = Ytop;
513       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
514       if (Xr != 0 || Yr != 0) {
515         X->setEmpty();
516         ++DeltaSuccesses;
517         return true;
518       }
519       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
520       if (Xq.slt(0) || Yq.slt(0)) {
521         X->setEmpty();
522         ++DeltaSuccesses;
523         return true;
524       }
525       if (const SCEVConstant *CUB =
526           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
527         const APInt &UpperBound = CUB->getAPInt();
528         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
529         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
530           X->setEmpty();
531           ++DeltaSuccesses;
532           return true;
533         }
534       }
535       X->setPoint(SE->getConstant(Xq),
536                   SE->getConstant(Yq),
537                   X->getAssociatedLoop());
538       ++DeltaSuccesses;
539       return true;
540     }
541     return false;
542   }
543 
544   // if (X->isLine() && Y->isPoint()) This case can't occur.
545   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
546 
547   if (X->isPoint() && Y->isLine()) {
548     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
549     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
550     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
551     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
552     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
553       return false;
554     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
555       X->setEmpty();
556       ++DeltaSuccesses;
557       return true;
558     }
559     return false;
560   }
561 
562   llvm_unreachable("shouldn't reach the end of Constraint intersection");
563   return false;
564 }
565 
566 
567 //===----------------------------------------------------------------------===//
568 // DependenceInfo methods
569 
570 // For debugging purposes. Dumps a dependence to OS.
571 void Dependence::dump(raw_ostream &OS) const {
572   bool Splitable = false;
573   if (isConfused())
574     OS << "confused";
575   else {
576     if (isConsistent())
577       OS << "consistent ";
578     if (isFlow())
579       OS << "flow";
580     else if (isOutput())
581       OS << "output";
582     else if (isAnti())
583       OS << "anti";
584     else if (isInput())
585       OS << "input";
586     unsigned Levels = getLevels();
587     OS << " [";
588     for (unsigned II = 1; II <= Levels; ++II) {
589       if (isSplitable(II))
590         Splitable = true;
591       if (isPeelFirst(II))
592         OS << 'p';
593       const SCEV *Distance = getDistance(II);
594       if (Distance)
595         OS << *Distance;
596       else if (isScalar(II))
597         OS << "S";
598       else {
599         unsigned Direction = getDirection(II);
600         if (Direction == DVEntry::ALL)
601           OS << "*";
602         else {
603           if (Direction & DVEntry::LT)
604             OS << "<";
605           if (Direction & DVEntry::EQ)
606             OS << "=";
607           if (Direction & DVEntry::GT)
608             OS << ">";
609         }
610       }
611       if (isPeelLast(II))
612         OS << 'p';
613       if (II < Levels)
614         OS << " ";
615     }
616     if (isLoopIndependent())
617       OS << "|<";
618     OS << "]";
619     if (Splitable)
620       OS << " splitable";
621   }
622   OS << "!\n";
623 }
624 
625 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
626 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
627 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
628 // Otherwise the underlying objects are checked to see if they point to
629 // different identifiable objects.
630 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
631                                           const DataLayout &DL,
632                                           const MemoryLocation &LocA,
633                                           const MemoryLocation &LocB) {
634   // Check the original locations (minus size) for noalias, which can happen for
635   // tbaa, incompatible underlying object locations, etc.
636   MemoryLocation LocAS(LocA.Ptr, MemoryLocation::UnknownSize, LocA.AATags);
637   MemoryLocation LocBS(LocB.Ptr, MemoryLocation::UnknownSize, LocB.AATags);
638   if (AA->alias(LocAS, LocBS) == NoAlias)
639     return NoAlias;
640 
641   // Check the underlying objects are the same
642   const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL);
643   const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL);
644 
645   // If the underlying objects are the same, they must alias
646   if (AObj == BObj)
647     return MustAlias;
648 
649   // We may have hit the recursion limit for underlying objects, or have
650   // underlying objects where we don't know they will alias.
651   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
652     return MayAlias;
653 
654   // Otherwise we know the objects are different and both identified objects so
655   // must not alias.
656   return NoAlias;
657 }
658 
659 
660 // Returns true if the load or store can be analyzed. Atomic and volatile
661 // operations have properties which this analysis does not understand.
662 static
663 bool isLoadOrStore(const Instruction *I) {
664   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
665     return LI->isUnordered();
666   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
667     return SI->isUnordered();
668   return false;
669 }
670 
671 
672 // Examines the loop nesting of the Src and Dst
673 // instructions and establishes their shared loops. Sets the variables
674 // CommonLevels, SrcLevels, and MaxLevels.
675 // The source and destination instructions needn't be contained in the same
676 // loop. The routine establishNestingLevels finds the level of most deeply
677 // nested loop that contains them both, CommonLevels. An instruction that's
678 // not contained in a loop is at level = 0. MaxLevels is equal to the level
679 // of the source plus the level of the destination, minus CommonLevels.
680 // This lets us allocate vectors MaxLevels in length, with room for every
681 // distinct loop referenced in both the source and destination subscripts.
682 // The variable SrcLevels is the nesting depth of the source instruction.
683 // It's used to help calculate distinct loops referenced by the destination.
684 // Here's the map from loops to levels:
685 //            0 - unused
686 //            1 - outermost common loop
687 //          ... - other common loops
688 // CommonLevels - innermost common loop
689 //          ... - loops containing Src but not Dst
690 //    SrcLevels - innermost loop containing Src but not Dst
691 //          ... - loops containing Dst but not Src
692 //    MaxLevels - innermost loops containing Dst but not Src
693 // Consider the follow code fragment:
694 //   for (a = ...) {
695 //     for (b = ...) {
696 //       for (c = ...) {
697 //         for (d = ...) {
698 //           A[] = ...;
699 //         }
700 //       }
701 //       for (e = ...) {
702 //         for (f = ...) {
703 //           for (g = ...) {
704 //             ... = A[];
705 //           }
706 //         }
707 //       }
708 //     }
709 //   }
710 // If we're looking at the possibility of a dependence between the store
711 // to A (the Src) and the load from A (the Dst), we'll note that they
712 // have 2 loops in common, so CommonLevels will equal 2 and the direction
713 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
714 // A map from loop names to loop numbers would look like
715 //     a - 1
716 //     b - 2 = CommonLevels
717 //     c - 3
718 //     d - 4 = SrcLevels
719 //     e - 5
720 //     f - 6
721 //     g - 7 = MaxLevels
722 void DependenceInfo::establishNestingLevels(const Instruction *Src,
723                                             const Instruction *Dst) {
724   const BasicBlock *SrcBlock = Src->getParent();
725   const BasicBlock *DstBlock = Dst->getParent();
726   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
727   unsigned DstLevel = LI->getLoopDepth(DstBlock);
728   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
729   const Loop *DstLoop = LI->getLoopFor(DstBlock);
730   SrcLevels = SrcLevel;
731   MaxLevels = SrcLevel + DstLevel;
732   while (SrcLevel > DstLevel) {
733     SrcLoop = SrcLoop->getParentLoop();
734     SrcLevel--;
735   }
736   while (DstLevel > SrcLevel) {
737     DstLoop = DstLoop->getParentLoop();
738     DstLevel--;
739   }
740   while (SrcLoop != DstLoop) {
741     SrcLoop = SrcLoop->getParentLoop();
742     DstLoop = DstLoop->getParentLoop();
743     SrcLevel--;
744   }
745   CommonLevels = SrcLevel;
746   MaxLevels -= CommonLevels;
747 }
748 
749 
750 // Given one of the loops containing the source, return
751 // its level index in our numbering scheme.
752 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
753   return SrcLoop->getLoopDepth();
754 }
755 
756 
757 // Given one of the loops containing the destination,
758 // return its level index in our numbering scheme.
759 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
760   unsigned D = DstLoop->getLoopDepth();
761   if (D > CommonLevels)
762     return D - CommonLevels + SrcLevels;
763   else
764     return D;
765 }
766 
767 
768 // Returns true if Expression is loop invariant in LoopNest.
769 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
770                                      const Loop *LoopNest) const {
771   if (!LoopNest)
772     return true;
773   return SE->isLoopInvariant(Expression, LoopNest) &&
774     isLoopInvariant(Expression, LoopNest->getParentLoop());
775 }
776 
777 
778 
779 // Finds the set of loops from the LoopNest that
780 // have a level <= CommonLevels and are referred to by the SCEV Expression.
781 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
782                                         const Loop *LoopNest,
783                                         SmallBitVector &Loops) const {
784   while (LoopNest) {
785     unsigned Level = LoopNest->getLoopDepth();
786     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
787       Loops.set(Level);
788     LoopNest = LoopNest->getParentLoop();
789   }
790 }
791 
792 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
793 
794   unsigned widestWidthSeen = 0;
795   Type *widestType;
796 
797   // Go through each pair and find the widest bit to which we need
798   // to extend all of them.
799   for (Subscript *Pair : Pairs) {
800     const SCEV *Src = Pair->Src;
801     const SCEV *Dst = Pair->Dst;
802     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
803     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
804     if (SrcTy == nullptr || DstTy == nullptr) {
805       assert(SrcTy == DstTy && "This function only unify integer types and "
806              "expect Src and Dst share the same type "
807              "otherwise.");
808       continue;
809     }
810     if (SrcTy->getBitWidth() > widestWidthSeen) {
811       widestWidthSeen = SrcTy->getBitWidth();
812       widestType = SrcTy;
813     }
814     if (DstTy->getBitWidth() > widestWidthSeen) {
815       widestWidthSeen = DstTy->getBitWidth();
816       widestType = DstTy;
817     }
818   }
819 
820 
821   assert(widestWidthSeen > 0);
822 
823   // Now extend each pair to the widest seen.
824   for (Subscript *Pair : Pairs) {
825     const SCEV *Src = Pair->Src;
826     const SCEV *Dst = Pair->Dst;
827     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
828     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
829     if (SrcTy == nullptr || DstTy == nullptr) {
830       assert(SrcTy == DstTy && "This function only unify integer types and "
831              "expect Src and Dst share the same type "
832              "otherwise.");
833       continue;
834     }
835     if (SrcTy->getBitWidth() < widestWidthSeen)
836       // Sign-extend Src to widestType
837       Pair->Src = SE->getSignExtendExpr(Src, widestType);
838     if (DstTy->getBitWidth() < widestWidthSeen) {
839       // Sign-extend Dst to widestType
840       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
841     }
842   }
843 }
844 
845 // removeMatchingExtensions - Examines a subscript pair.
846 // If the source and destination are identically sign (or zero)
847 // extended, it strips off the extension in an effect to simplify
848 // the actual analysis.
849 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
850   const SCEV *Src = Pair->Src;
851   const SCEV *Dst = Pair->Dst;
852   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
853       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
854     const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
855     const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
856     const SCEV *SrcCastOp = SrcCast->getOperand();
857     const SCEV *DstCastOp = DstCast->getOperand();
858     if (SrcCastOp->getType() == DstCastOp->getType()) {
859       Pair->Src = SrcCastOp;
860       Pair->Dst = DstCastOp;
861     }
862   }
863 }
864 
865 
866 // Examine the scev and return true iff it's linear.
867 // Collect any loops mentioned in the set of "Loops".
868 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
869                                        SmallBitVector &Loops) {
870   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
871   if (!AddRec)
872     return isLoopInvariant(Src, LoopNest);
873   const SCEV *Start = AddRec->getStart();
874   const SCEV *Step = AddRec->getStepRecurrence(*SE);
875   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
876   if (!isa<SCEVCouldNotCompute>(UB)) {
877     if (SE->getTypeSizeInBits(Start->getType()) <
878         SE->getTypeSizeInBits(UB->getType())) {
879       if (!AddRec->getNoWrapFlags())
880         return false;
881     }
882   }
883   if (!isLoopInvariant(Step, LoopNest))
884     return false;
885   Loops.set(mapSrcLoop(AddRec->getLoop()));
886   return checkSrcSubscript(Start, LoopNest, Loops);
887 }
888 
889 
890 
891 // Examine the scev and return true iff it's linear.
892 // Collect any loops mentioned in the set of "Loops".
893 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
894                                        SmallBitVector &Loops) {
895   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
896   if (!AddRec)
897     return isLoopInvariant(Dst, LoopNest);
898   const SCEV *Start = AddRec->getStart();
899   const SCEV *Step = AddRec->getStepRecurrence(*SE);
900   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
901   if (!isa<SCEVCouldNotCompute>(UB)) {
902     if (SE->getTypeSizeInBits(Start->getType()) <
903         SE->getTypeSizeInBits(UB->getType())) {
904       if (!AddRec->getNoWrapFlags())
905         return false;
906     }
907   }
908   if (!isLoopInvariant(Step, LoopNest))
909     return false;
910   Loops.set(mapDstLoop(AddRec->getLoop()));
911   return checkDstSubscript(Start, LoopNest, Loops);
912 }
913 
914 
915 // Examines the subscript pair (the Src and Dst SCEVs)
916 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
917 // Collects the associated loops in a set.
918 DependenceInfo::Subscript::ClassificationKind
919 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
920                              const SCEV *Dst, const Loop *DstLoopNest,
921                              SmallBitVector &Loops) {
922   SmallBitVector SrcLoops(MaxLevels + 1);
923   SmallBitVector DstLoops(MaxLevels + 1);
924   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
925     return Subscript::NonLinear;
926   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
927     return Subscript::NonLinear;
928   Loops = SrcLoops;
929   Loops |= DstLoops;
930   unsigned N = Loops.count();
931   if (N == 0)
932     return Subscript::ZIV;
933   if (N == 1)
934     return Subscript::SIV;
935   if (N == 2 && (SrcLoops.count() == 0 ||
936                  DstLoops.count() == 0 ||
937                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
938     return Subscript::RDIV;
939   return Subscript::MIV;
940 }
941 
942 
943 // A wrapper around SCEV::isKnownPredicate.
944 // Looks for cases where we're interested in comparing for equality.
945 // If both X and Y have been identically sign or zero extended,
946 // it strips off the (confusing) extensions before invoking
947 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
948 // will be similarly updated.
949 //
950 // If SCEV::isKnownPredicate can't prove the predicate,
951 // we try simple subtraction, which seems to help in some cases
952 // involving symbolics.
953 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
954                                       const SCEV *Y) const {
955   if (Pred == CmpInst::ICMP_EQ ||
956       Pred == CmpInst::ICMP_NE) {
957     if ((isa<SCEVSignExtendExpr>(X) &&
958          isa<SCEVSignExtendExpr>(Y)) ||
959         (isa<SCEVZeroExtendExpr>(X) &&
960          isa<SCEVZeroExtendExpr>(Y))) {
961       const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
962       const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
963       const SCEV *Xop = CX->getOperand();
964       const SCEV *Yop = CY->getOperand();
965       if (Xop->getType() == Yop->getType()) {
966         X = Xop;
967         Y = Yop;
968       }
969     }
970   }
971   if (SE->isKnownPredicate(Pred, X, Y))
972     return true;
973   // If SE->isKnownPredicate can't prove the condition,
974   // we try the brute-force approach of subtracting
975   // and testing the difference.
976   // By testing with SE->isKnownPredicate first, we avoid
977   // the possibility of overflow when the arguments are constants.
978   const SCEV *Delta = SE->getMinusSCEV(X, Y);
979   switch (Pred) {
980   case CmpInst::ICMP_EQ:
981     return Delta->isZero();
982   case CmpInst::ICMP_NE:
983     return SE->isKnownNonZero(Delta);
984   case CmpInst::ICMP_SGE:
985     return SE->isKnownNonNegative(Delta);
986   case CmpInst::ICMP_SLE:
987     return SE->isKnownNonPositive(Delta);
988   case CmpInst::ICMP_SGT:
989     return SE->isKnownPositive(Delta);
990   case CmpInst::ICMP_SLT:
991     return SE->isKnownNegative(Delta);
992   default:
993     llvm_unreachable("unexpected predicate in isKnownPredicate");
994   }
995 }
996 
997 
998 // All subscripts are all the same type.
999 // Loop bound may be smaller (e.g., a char).
1000 // Should zero extend loop bound, since it's always >= 0.
1001 // This routine collects upper bound and extends or truncates if needed.
1002 // Truncating is safe when subscripts are known not to wrap. Cases without
1003 // nowrap flags should have been rejected earlier.
1004 // Return null if no bound available.
1005 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1006   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1007     const SCEV *UB = SE->getBackedgeTakenCount(L);
1008     return SE->getTruncateOrZeroExtend(UB, T);
1009   }
1010   return nullptr;
1011 }
1012 
1013 
1014 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1015 // If the cast fails, returns NULL.
1016 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1017                                                               Type *T) const {
1018   if (const SCEV *UB = collectUpperBound(L, T))
1019     return dyn_cast<SCEVConstant>(UB);
1020   return nullptr;
1021 }
1022 
1023 
1024 // testZIV -
1025 // When we have a pair of subscripts of the form [c1] and [c2],
1026 // where c1 and c2 are both loop invariant, we attack it using
1027 // the ZIV test. Basically, we test by comparing the two values,
1028 // but there are actually three possible results:
1029 // 1) the values are equal, so there's a dependence
1030 // 2) the values are different, so there's no dependence
1031 // 3) the values might be equal, so we have to assume a dependence.
1032 //
1033 // Return true if dependence disproved.
1034 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1035                              FullDependence &Result) const {
1036   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
1037   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1038   ++ZIVapplications;
1039   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1040     LLVM_DEBUG(dbgs() << "    provably dependent\n");
1041     return false; // provably dependent
1042   }
1043   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1044     LLVM_DEBUG(dbgs() << "    provably independent\n");
1045     ++ZIVindependence;
1046     return true; // provably independent
1047   }
1048   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
1049   Result.Consistent = false;
1050   return false; // possibly dependent
1051 }
1052 
1053 
1054 // strongSIVtest -
1055 // From the paper, Practical Dependence Testing, Section 4.2.1
1056 //
1057 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1058 // where i is an induction variable, c1 and c2 are loop invariant,
1059 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1060 //
1061 // Can prove independence. Failing that, can compute distance (and direction).
1062 // In the presence of symbolic terms, we can sometimes make progress.
1063 //
1064 // If there's a dependence,
1065 //
1066 //    c1 + a*i = c2 + a*i'
1067 //
1068 // The dependence distance is
1069 //
1070 //    d = i' - i = (c1 - c2)/a
1071 //
1072 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1073 // loop's upper bound. If a dependence exists, the dependence direction is
1074 // defined as
1075 //
1076 //                { < if d > 0
1077 //    direction = { = if d = 0
1078 //                { > if d < 0
1079 //
1080 // Return true if dependence disproved.
1081 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1082                                    const SCEV *DstConst, const Loop *CurLoop,
1083                                    unsigned Level, FullDependence &Result,
1084                                    Constraint &NewConstraint) const {
1085   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1086   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1087   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1088   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1089   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1090   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1091   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1092   ++StrongSIVapplications;
1093   assert(0 < Level && Level <= CommonLevels && "level out of range");
1094   Level--;
1095 
1096   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1097   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
1098   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1099 
1100   // check that |Delta| < iteration count
1101   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1102     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1103     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1104     const SCEV *AbsDelta =
1105       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1106     const SCEV *AbsCoeff =
1107       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1108     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1109     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1110       // Distance greater than trip count - no dependence
1111       ++StrongSIVindependence;
1112       ++StrongSIVsuccesses;
1113       return true;
1114     }
1115   }
1116 
1117   // Can we compute distance?
1118   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1119     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1120     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1121     APInt Distance  = ConstDelta; // these need to be initialized
1122     APInt Remainder = ConstDelta;
1123     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1124     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1125     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1126     // Make sure Coeff divides Delta exactly
1127     if (Remainder != 0) {
1128       // Coeff doesn't divide Distance, no dependence
1129       ++StrongSIVindependence;
1130       ++StrongSIVsuccesses;
1131       return true;
1132     }
1133     Result.DV[Level].Distance = SE->getConstant(Distance);
1134     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1135     if (Distance.sgt(0))
1136       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1137     else if (Distance.slt(0))
1138       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1139     else
1140       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1141     ++StrongSIVsuccesses;
1142   }
1143   else if (Delta->isZero()) {
1144     // since 0/X == 0
1145     Result.DV[Level].Distance = Delta;
1146     NewConstraint.setDistance(Delta, CurLoop);
1147     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1148     ++StrongSIVsuccesses;
1149   }
1150   else {
1151     if (Coeff->isOne()) {
1152       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1153       Result.DV[Level].Distance = Delta; // since X/1 == X
1154       NewConstraint.setDistance(Delta, CurLoop);
1155     }
1156     else {
1157       Result.Consistent = false;
1158       NewConstraint.setLine(Coeff,
1159                             SE->getNegativeSCEV(Coeff),
1160                             SE->getNegativeSCEV(Delta), CurLoop);
1161     }
1162 
1163     // maybe we can get a useful direction
1164     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1165     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1166     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1167     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1168     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1169     // The double negatives above are confusing.
1170     // It helps to read !SE->isKnownNonZero(Delta)
1171     // as "Delta might be Zero"
1172     unsigned NewDirection = Dependence::DVEntry::NONE;
1173     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1174         (DeltaMaybeNegative && CoeffMaybeNegative))
1175       NewDirection = Dependence::DVEntry::LT;
1176     if (DeltaMaybeZero)
1177       NewDirection |= Dependence::DVEntry::EQ;
1178     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1179         (DeltaMaybePositive && CoeffMaybeNegative))
1180       NewDirection |= Dependence::DVEntry::GT;
1181     if (NewDirection < Result.DV[Level].Direction)
1182       ++StrongSIVsuccesses;
1183     Result.DV[Level].Direction &= NewDirection;
1184   }
1185   return false;
1186 }
1187 
1188 
1189 // weakCrossingSIVtest -
1190 // From the paper, Practical Dependence Testing, Section 4.2.2
1191 //
1192 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1193 // where i is an induction variable, c1 and c2 are loop invariant,
1194 // and a is a constant, we can solve it exactly using the
1195 // Weak-Crossing SIV test.
1196 //
1197 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1198 // the two lines, where i = i', yielding
1199 //
1200 //    c1 + a*i = c2 - a*i
1201 //    2a*i = c2 - c1
1202 //    i = (c2 - c1)/2a
1203 //
1204 // If i < 0, there is no dependence.
1205 // If i > upperbound, there is no dependence.
1206 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1207 // If i = upperbound, there's a dependence with distance = 0.
1208 // If i is integral, there's a dependence (all directions).
1209 // If the non-integer part = 1/2, there's a dependence (<> directions).
1210 // Otherwise, there's no dependence.
1211 //
1212 // Can prove independence. Failing that,
1213 // can sometimes refine the directions.
1214 // Can determine iteration for splitting.
1215 //
1216 // Return true if dependence disproved.
1217 bool DependenceInfo::weakCrossingSIVtest(
1218     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1219     const Loop *CurLoop, unsigned Level, FullDependence &Result,
1220     Constraint &NewConstraint, const SCEV *&SplitIter) const {
1221   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1222   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1223   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1224   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1225   ++WeakCrossingSIVapplications;
1226   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1227   Level--;
1228   Result.Consistent = false;
1229   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1230   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1231   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1232   if (Delta->isZero()) {
1233     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1234     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1235     ++WeakCrossingSIVsuccesses;
1236     if (!Result.DV[Level].Direction) {
1237       ++WeakCrossingSIVindependence;
1238       return true;
1239     }
1240     Result.DV[Level].Distance = Delta; // = 0
1241     return false;
1242   }
1243   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1244   if (!ConstCoeff)
1245     return false;
1246 
1247   Result.DV[Level].Splitable = true;
1248   if (SE->isKnownNegative(ConstCoeff)) {
1249     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1250     assert(ConstCoeff &&
1251            "dynamic cast of negative of ConstCoeff should yield constant");
1252     Delta = SE->getNegativeSCEV(Delta);
1253   }
1254   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1255 
1256   // compute SplitIter for use by DependenceInfo::getSplitIteration()
1257   SplitIter = SE->getUDivExpr(
1258       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1259       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1260   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1261 
1262   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1263   if (!ConstDelta)
1264     return false;
1265 
1266   // We're certain that ConstCoeff > 0; therefore,
1267   // if Delta < 0, then no dependence.
1268   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1269   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1270   if (SE->isKnownNegative(Delta)) {
1271     // No dependence, Delta < 0
1272     ++WeakCrossingSIVindependence;
1273     ++WeakCrossingSIVsuccesses;
1274     return true;
1275   }
1276 
1277   // We're certain that Delta > 0 and ConstCoeff > 0.
1278   // Check Delta/(2*ConstCoeff) against upper loop bound
1279   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1280     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1281     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1282     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1283                                     ConstantTwo);
1284     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1285     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1286       // Delta too big, no dependence
1287       ++WeakCrossingSIVindependence;
1288       ++WeakCrossingSIVsuccesses;
1289       return true;
1290     }
1291     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1292       // i = i' = UB
1293       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1294       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1295       ++WeakCrossingSIVsuccesses;
1296       if (!Result.DV[Level].Direction) {
1297         ++WeakCrossingSIVindependence;
1298         return true;
1299       }
1300       Result.DV[Level].Splitable = false;
1301       Result.DV[Level].Distance = SE->getZero(Delta->getType());
1302       return false;
1303     }
1304   }
1305 
1306   // check that Coeff divides Delta
1307   APInt APDelta = ConstDelta->getAPInt();
1308   APInt APCoeff = ConstCoeff->getAPInt();
1309   APInt Distance = APDelta; // these need to be initialzed
1310   APInt Remainder = APDelta;
1311   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1312   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1313   if (Remainder != 0) {
1314     // Coeff doesn't divide Delta, no dependence
1315     ++WeakCrossingSIVindependence;
1316     ++WeakCrossingSIVsuccesses;
1317     return true;
1318   }
1319   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1320 
1321   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1322   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1323   Remainder = Distance.srem(Two);
1324   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1325   if (Remainder != 0) {
1326     // Equal direction isn't possible
1327     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1328     ++WeakCrossingSIVsuccesses;
1329   }
1330   return false;
1331 }
1332 
1333 
1334 // Kirch's algorithm, from
1335 //
1336 //        Optimizing Supercompilers for Supercomputers
1337 //        Michael Wolfe
1338 //        MIT Press, 1989
1339 //
1340 // Program 2.1, page 29.
1341 // Computes the GCD of AM and BM.
1342 // Also finds a solution to the equation ax - by = gcd(a, b).
1343 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1344 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1345                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1346   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1347   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1348   APInt G0 = AM.abs();
1349   APInt G1 = BM.abs();
1350   APInt Q = G0; // these need to be initialized
1351   APInt R = G0;
1352   APInt::sdivrem(G0, G1, Q, R);
1353   while (R != 0) {
1354     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1355     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1356     G0 = G1; G1 = R;
1357     APInt::sdivrem(G0, G1, Q, R);
1358   }
1359   G = G1;
1360   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1361   X = AM.slt(0) ? -A1 : A1;
1362   Y = BM.slt(0) ? B1 : -B1;
1363 
1364   // make sure gcd divides Delta
1365   R = Delta.srem(G);
1366   if (R != 0)
1367     return true; // gcd doesn't divide Delta, no dependence
1368   Q = Delta.sdiv(G);
1369   X *= Q;
1370   Y *= Q;
1371   return false;
1372 }
1373 
1374 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1375   APInt Q = A; // these need to be initialized
1376   APInt R = A;
1377   APInt::sdivrem(A, B, Q, R);
1378   if (R == 0)
1379     return Q;
1380   if ((A.sgt(0) && B.sgt(0)) ||
1381       (A.slt(0) && B.slt(0)))
1382     return Q;
1383   else
1384     return Q - 1;
1385 }
1386 
1387 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1388   APInt Q = A; // these need to be initialized
1389   APInt R = A;
1390   APInt::sdivrem(A, B, Q, R);
1391   if (R == 0)
1392     return Q;
1393   if ((A.sgt(0) && B.sgt(0)) ||
1394       (A.slt(0) && B.slt(0)))
1395     return Q + 1;
1396   else
1397     return Q;
1398 }
1399 
1400 
1401 static
1402 APInt maxAPInt(APInt A, APInt B) {
1403   return A.sgt(B) ? A : B;
1404 }
1405 
1406 
1407 static
1408 APInt minAPInt(APInt A, APInt B) {
1409   return A.slt(B) ? A : B;
1410 }
1411 
1412 
1413 // exactSIVtest -
1414 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1415 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1416 // and a2 are constant, we can solve it exactly using an algorithm developed
1417 // by Banerjee and Wolfe. See Section 2.5.3 in
1418 //
1419 //        Optimizing Supercompilers for Supercomputers
1420 //        Michael Wolfe
1421 //        MIT Press, 1989
1422 //
1423 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1424 // so use them if possible. They're also a bit better with symbolics and,
1425 // in the case of the strong SIV test, can compute Distances.
1426 //
1427 // Return true if dependence disproved.
1428 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1429                                   const SCEV *SrcConst, const SCEV *DstConst,
1430                                   const Loop *CurLoop, unsigned Level,
1431                                   FullDependence &Result,
1432                                   Constraint &NewConstraint) const {
1433   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1434   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1435   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1436   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1437   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1438   ++ExactSIVapplications;
1439   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1440   Level--;
1441   Result.Consistent = false;
1442   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1443   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1444   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1445                         Delta, CurLoop);
1446   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1447   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1448   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1449   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1450     return false;
1451 
1452   // find gcd
1453   APInt G, X, Y;
1454   APInt AM = ConstSrcCoeff->getAPInt();
1455   APInt BM = ConstDstCoeff->getAPInt();
1456   unsigned Bits = AM.getBitWidth();
1457   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1458     // gcd doesn't divide Delta, no dependence
1459     ++ExactSIVindependence;
1460     ++ExactSIVsuccesses;
1461     return true;
1462   }
1463 
1464   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1465 
1466   // since SCEV construction normalizes, LM = 0
1467   APInt UM(Bits, 1, true);
1468   bool UMvalid = false;
1469   // UM is perhaps unavailable, let's check
1470   if (const SCEVConstant *CUB =
1471       collectConstantUpperBound(CurLoop, Delta->getType())) {
1472     UM = CUB->getAPInt();
1473     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1474     UMvalid = true;
1475   }
1476 
1477   APInt TU(APInt::getSignedMaxValue(Bits));
1478   APInt TL(APInt::getSignedMinValue(Bits));
1479 
1480   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1481   APInt TMUL = BM.sdiv(G);
1482   if (TMUL.sgt(0)) {
1483     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1484     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1485     if (UMvalid) {
1486       TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1487       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1488     }
1489   }
1490   else {
1491     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1492     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1493     if (UMvalid) {
1494       TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1495       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1496     }
1497   }
1498 
1499   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1500   TMUL = AM.sdiv(G);
1501   if (TMUL.sgt(0)) {
1502     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1503     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1504     if (UMvalid) {
1505       TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1506       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1507     }
1508   }
1509   else {
1510     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1511     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1512     if (UMvalid) {
1513       TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1514       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1515     }
1516   }
1517   if (TL.sgt(TU)) {
1518     ++ExactSIVindependence;
1519     ++ExactSIVsuccesses;
1520     return true;
1521   }
1522 
1523   // explore directions
1524   unsigned NewDirection = Dependence::DVEntry::NONE;
1525 
1526   // less than
1527   APInt SaveTU(TU); // save these
1528   APInt SaveTL(TL);
1529   LLVM_DEBUG(dbgs() << "\t    exploring LT direction\n");
1530   TMUL = AM - BM;
1531   if (TMUL.sgt(0)) {
1532     TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1533     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1534   }
1535   else {
1536     TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1537     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1538   }
1539   if (TL.sle(TU)) {
1540     NewDirection |= Dependence::DVEntry::LT;
1541     ++ExactSIVsuccesses;
1542   }
1543 
1544   // equal
1545   TU = SaveTU; // restore
1546   TL = SaveTL;
1547   LLVM_DEBUG(dbgs() << "\t    exploring EQ direction\n");
1548   if (TMUL.sgt(0)) {
1549     TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1550     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1551   }
1552   else {
1553     TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1554     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1555   }
1556   TMUL = BM - AM;
1557   if (TMUL.sgt(0)) {
1558     TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1559     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1560   }
1561   else {
1562     TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1563     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1564   }
1565   if (TL.sle(TU)) {
1566     NewDirection |= Dependence::DVEntry::EQ;
1567     ++ExactSIVsuccesses;
1568   }
1569 
1570   // greater than
1571   TU = SaveTU; // restore
1572   TL = SaveTL;
1573   LLVM_DEBUG(dbgs() << "\t    exploring GT direction\n");
1574   if (TMUL.sgt(0)) {
1575     TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1576     LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1577   }
1578   else {
1579     TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1580     LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1581   }
1582   if (TL.sle(TU)) {
1583     NewDirection |= Dependence::DVEntry::GT;
1584     ++ExactSIVsuccesses;
1585   }
1586 
1587   // finished
1588   Result.DV[Level].Direction &= NewDirection;
1589   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1590     ++ExactSIVindependence;
1591   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1592 }
1593 
1594 
1595 
1596 // Return true if the divisor evenly divides the dividend.
1597 static
1598 bool isRemainderZero(const SCEVConstant *Dividend,
1599                      const SCEVConstant *Divisor) {
1600   const APInt &ConstDividend = Dividend->getAPInt();
1601   const APInt &ConstDivisor = Divisor->getAPInt();
1602   return ConstDividend.srem(ConstDivisor) == 0;
1603 }
1604 
1605 
1606 // weakZeroSrcSIVtest -
1607 // From the paper, Practical Dependence Testing, Section 4.2.2
1608 //
1609 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1610 // where i is an induction variable, c1 and c2 are loop invariant,
1611 // and a is a constant, we can solve it exactly using the
1612 // Weak-Zero SIV test.
1613 //
1614 // Given
1615 //
1616 //    c1 = c2 + a*i
1617 //
1618 // we get
1619 //
1620 //    (c1 - c2)/a = i
1621 //
1622 // If i is not an integer, there's no dependence.
1623 // If i < 0 or > UB, there's no dependence.
1624 // If i = 0, the direction is >= and peeling the
1625 // 1st iteration will break the dependence.
1626 // If i = UB, the direction is <= and peeling the
1627 // last iteration will break the dependence.
1628 // Otherwise, the direction is *.
1629 //
1630 // Can prove independence. Failing that, we can sometimes refine
1631 // the directions. Can sometimes show that first or last
1632 // iteration carries all the dependences (so worth peeling).
1633 //
1634 // (see also weakZeroDstSIVtest)
1635 //
1636 // Return true if dependence disproved.
1637 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1638                                         const SCEV *SrcConst,
1639                                         const SCEV *DstConst,
1640                                         const Loop *CurLoop, unsigned Level,
1641                                         FullDependence &Result,
1642                                         Constraint &NewConstraint) const {
1643   // For the WeakSIV test, it's possible the loop isn't common to
1644   // the Src and Dst loops. If it isn't, then there's no need to
1645   // record a direction.
1646   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1647   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1648   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1649   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1650   ++WeakZeroSIVapplications;
1651   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1652   Level--;
1653   Result.Consistent = false;
1654   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1655   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1656                         CurLoop);
1657   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1658   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1659     if (Level < CommonLevels) {
1660       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1661       Result.DV[Level].PeelFirst = true;
1662       ++WeakZeroSIVsuccesses;
1663     }
1664     return false; // dependences caused by first iteration
1665   }
1666   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1667   if (!ConstCoeff)
1668     return false;
1669   const SCEV *AbsCoeff =
1670     SE->isKnownNegative(ConstCoeff) ?
1671     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1672   const SCEV *NewDelta =
1673     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1674 
1675   // check that Delta/SrcCoeff < iteration count
1676   // really check NewDelta < count*AbsCoeff
1677   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1678     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1679     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1680     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1681       ++WeakZeroSIVindependence;
1682       ++WeakZeroSIVsuccesses;
1683       return true;
1684     }
1685     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1686       // dependences caused by last iteration
1687       if (Level < CommonLevels) {
1688         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1689         Result.DV[Level].PeelLast = true;
1690         ++WeakZeroSIVsuccesses;
1691       }
1692       return false;
1693     }
1694   }
1695 
1696   // check that Delta/SrcCoeff >= 0
1697   // really check that NewDelta >= 0
1698   if (SE->isKnownNegative(NewDelta)) {
1699     // No dependence, newDelta < 0
1700     ++WeakZeroSIVindependence;
1701     ++WeakZeroSIVsuccesses;
1702     return true;
1703   }
1704 
1705   // if SrcCoeff doesn't divide Delta, then no dependence
1706   if (isa<SCEVConstant>(Delta) &&
1707       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1708     ++WeakZeroSIVindependence;
1709     ++WeakZeroSIVsuccesses;
1710     return true;
1711   }
1712   return false;
1713 }
1714 
1715 
1716 // weakZeroDstSIVtest -
1717 // From the paper, Practical Dependence Testing, Section 4.2.2
1718 //
1719 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1720 // where i is an induction variable, c1 and c2 are loop invariant,
1721 // and a is a constant, we can solve it exactly using the
1722 // Weak-Zero SIV test.
1723 //
1724 // Given
1725 //
1726 //    c1 + a*i = c2
1727 //
1728 // we get
1729 //
1730 //    i = (c2 - c1)/a
1731 //
1732 // If i is not an integer, there's no dependence.
1733 // If i < 0 or > UB, there's no dependence.
1734 // If i = 0, the direction is <= and peeling the
1735 // 1st iteration will break the dependence.
1736 // If i = UB, the direction is >= and peeling the
1737 // last iteration will break the dependence.
1738 // Otherwise, the direction is *.
1739 //
1740 // Can prove independence. Failing that, we can sometimes refine
1741 // the directions. Can sometimes show that first or last
1742 // iteration carries all the dependences (so worth peeling).
1743 //
1744 // (see also weakZeroSrcSIVtest)
1745 //
1746 // Return true if dependence disproved.
1747 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1748                                         const SCEV *SrcConst,
1749                                         const SCEV *DstConst,
1750                                         const Loop *CurLoop, unsigned Level,
1751                                         FullDependence &Result,
1752                                         Constraint &NewConstraint) const {
1753   // For the WeakSIV test, it's possible the loop isn't common to the
1754   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1755   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1756   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1757   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1758   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1759   ++WeakZeroSIVapplications;
1760   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1761   Level--;
1762   Result.Consistent = false;
1763   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1764   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1765                         CurLoop);
1766   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1767   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1768     if (Level < CommonLevels) {
1769       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1770       Result.DV[Level].PeelFirst = true;
1771       ++WeakZeroSIVsuccesses;
1772     }
1773     return false; // dependences caused by first iteration
1774   }
1775   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1776   if (!ConstCoeff)
1777     return false;
1778   const SCEV *AbsCoeff =
1779     SE->isKnownNegative(ConstCoeff) ?
1780     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1781   const SCEV *NewDelta =
1782     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1783 
1784   // check that Delta/SrcCoeff < iteration count
1785   // really check NewDelta < count*AbsCoeff
1786   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1787     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1788     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1789     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1790       ++WeakZeroSIVindependence;
1791       ++WeakZeroSIVsuccesses;
1792       return true;
1793     }
1794     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1795       // dependences caused by last iteration
1796       if (Level < CommonLevels) {
1797         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1798         Result.DV[Level].PeelLast = true;
1799         ++WeakZeroSIVsuccesses;
1800       }
1801       return false;
1802     }
1803   }
1804 
1805   // check that Delta/SrcCoeff >= 0
1806   // really check that NewDelta >= 0
1807   if (SE->isKnownNegative(NewDelta)) {
1808     // No dependence, newDelta < 0
1809     ++WeakZeroSIVindependence;
1810     ++WeakZeroSIVsuccesses;
1811     return true;
1812   }
1813 
1814   // if SrcCoeff doesn't divide Delta, then no dependence
1815   if (isa<SCEVConstant>(Delta) &&
1816       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1817     ++WeakZeroSIVindependence;
1818     ++WeakZeroSIVsuccesses;
1819     return true;
1820   }
1821   return false;
1822 }
1823 
1824 
1825 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1826 // Things of the form [c1 + a*i] and [c2 + b*j],
1827 // where i and j are induction variable, c1 and c2 are loop invariant,
1828 // and a and b are constants.
1829 // Returns true if any possible dependence is disproved.
1830 // Marks the result as inconsistent.
1831 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1832 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1833                                    const SCEV *SrcConst, const SCEV *DstConst,
1834                                    const Loop *SrcLoop, const Loop *DstLoop,
1835                                    FullDependence &Result) const {
1836   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1837   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1838   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1839   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1840   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1841   ++ExactRDIVapplications;
1842   Result.Consistent = false;
1843   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1844   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1845   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1846   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1847   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1848   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1849     return false;
1850 
1851   // find gcd
1852   APInt G, X, Y;
1853   APInt AM = ConstSrcCoeff->getAPInt();
1854   APInt BM = ConstDstCoeff->getAPInt();
1855   unsigned Bits = AM.getBitWidth();
1856   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1857     // gcd doesn't divide Delta, no dependence
1858     ++ExactRDIVindependence;
1859     return true;
1860   }
1861 
1862   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1863 
1864   // since SCEV construction seems to normalize, LM = 0
1865   APInt SrcUM(Bits, 1, true);
1866   bool SrcUMvalid = false;
1867   // SrcUM is perhaps unavailable, let's check
1868   if (const SCEVConstant *UpperBound =
1869       collectConstantUpperBound(SrcLoop, Delta->getType())) {
1870     SrcUM = UpperBound->getAPInt();
1871     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1872     SrcUMvalid = true;
1873   }
1874 
1875   APInt DstUM(Bits, 1, true);
1876   bool DstUMvalid = false;
1877   // UM is perhaps unavailable, let's check
1878   if (const SCEVConstant *UpperBound =
1879       collectConstantUpperBound(DstLoop, Delta->getType())) {
1880     DstUM = UpperBound->getAPInt();
1881     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1882     DstUMvalid = true;
1883   }
1884 
1885   APInt TU(APInt::getSignedMaxValue(Bits));
1886   APInt TL(APInt::getSignedMinValue(Bits));
1887 
1888   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1889   APInt TMUL = BM.sdiv(G);
1890   if (TMUL.sgt(0)) {
1891     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1892     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1893     if (SrcUMvalid) {
1894       TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1895       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1896     }
1897   }
1898   else {
1899     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1900     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1901     if (SrcUMvalid) {
1902       TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1903       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1904     }
1905   }
1906 
1907   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1908   TMUL = AM.sdiv(G);
1909   if (TMUL.sgt(0)) {
1910     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1911     LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1912     if (DstUMvalid) {
1913       TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1914       LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1915     }
1916   }
1917   else {
1918     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1919     LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1920     if (DstUMvalid) {
1921       TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1922       LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1923     }
1924   }
1925   if (TL.sgt(TU))
1926     ++ExactRDIVindependence;
1927   return TL.sgt(TU);
1928 }
1929 
1930 
1931 // symbolicRDIVtest -
1932 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1933 // introduce a special case of Banerjee's Inequalities (also called the
1934 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1935 // particularly cases with symbolics. Since it's only able to disprove
1936 // dependence (not compute distances or directions), we'll use it as a
1937 // fall back for the other tests.
1938 //
1939 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1940 // where i and j are induction variables and c1 and c2 are loop invariants,
1941 // we can use the symbolic tests to disprove some dependences, serving as a
1942 // backup for the RDIV test. Note that i and j can be the same variable,
1943 // letting this test serve as a backup for the various SIV tests.
1944 //
1945 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1946 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1947 // loop bounds for the i and j loops, respectively. So, ...
1948 //
1949 // c1 + a1*i = c2 + a2*j
1950 // a1*i - a2*j = c2 - c1
1951 //
1952 // To test for a dependence, we compute c2 - c1 and make sure it's in the
1953 // range of the maximum and minimum possible values of a1*i - a2*j.
1954 // Considering the signs of a1 and a2, we have 4 possible cases:
1955 //
1956 // 1) If a1 >= 0 and a2 >= 0, then
1957 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1958 //              -a2*N2 <= c2 - c1 <= a1*N1
1959 //
1960 // 2) If a1 >= 0 and a2 <= 0, then
1961 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1962 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
1963 //
1964 // 3) If a1 <= 0 and a2 >= 0, then
1965 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1966 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
1967 //
1968 // 4) If a1 <= 0 and a2 <= 0, then
1969 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
1970 //        a1*N1         <= c2 - c1 <=       -a2*N2
1971 //
1972 // return true if dependence disproved
1973 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
1974                                       const SCEV *C1, const SCEV *C2,
1975                                       const Loop *Loop1,
1976                                       const Loop *Loop2) const {
1977   ++SymbolicRDIVapplications;
1978   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1979   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
1980   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1981   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
1982   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
1983   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
1984   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1985   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1986   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
1987   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
1988   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1989   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1990   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
1991   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
1992   if (SE->isKnownNonNegative(A1)) {
1993     if (SE->isKnownNonNegative(A2)) {
1994       // A1 >= 0 && A2 >= 0
1995       if (N1) {
1996         // make sure that c2 - c1 <= a1*N1
1997         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1998         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
1999         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2000           ++SymbolicRDIVindependence;
2001           return true;
2002         }
2003       }
2004       if (N2) {
2005         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2006         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2007         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2008         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2009           ++SymbolicRDIVindependence;
2010           return true;
2011         }
2012       }
2013     }
2014     else if (SE->isKnownNonPositive(A2)) {
2015       // a1 >= 0 && a2 <= 0
2016       if (N1 && N2) {
2017         // make sure that c2 - c1 <= a1*N1 - a2*N2
2018         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2019         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2020         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2021         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2022         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2023           ++SymbolicRDIVindependence;
2024           return true;
2025         }
2026       }
2027       // make sure that 0 <= c2 - c1
2028       if (SE->isKnownNegative(C2_C1)) {
2029         ++SymbolicRDIVindependence;
2030         return true;
2031       }
2032     }
2033   }
2034   else if (SE->isKnownNonPositive(A1)) {
2035     if (SE->isKnownNonNegative(A2)) {
2036       // a1 <= 0 && a2 >= 0
2037       if (N1 && N2) {
2038         // make sure that a1*N1 - a2*N2 <= c2 - c1
2039         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2040         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2041         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2042         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2043         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2044           ++SymbolicRDIVindependence;
2045           return true;
2046         }
2047       }
2048       // make sure that c2 - c1 <= 0
2049       if (SE->isKnownPositive(C2_C1)) {
2050         ++SymbolicRDIVindependence;
2051         return true;
2052       }
2053     }
2054     else if (SE->isKnownNonPositive(A2)) {
2055       // a1 <= 0 && a2 <= 0
2056       if (N1) {
2057         // make sure that a1*N1 <= c2 - c1
2058         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2059         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2060         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2061           ++SymbolicRDIVindependence;
2062           return true;
2063         }
2064       }
2065       if (N2) {
2066         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2067         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2068         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2069         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2070           ++SymbolicRDIVindependence;
2071           return true;
2072         }
2073       }
2074     }
2075   }
2076   return false;
2077 }
2078 
2079 
2080 // testSIV -
2081 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2082 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2083 // a2 are constant, we attack it with an SIV test. While they can all be
2084 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2085 // they apply; they're cheaper and sometimes more precise.
2086 //
2087 // Return true if dependence disproved.
2088 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2089                              FullDependence &Result, Constraint &NewConstraint,
2090                              const SCEV *&SplitIter) const {
2091   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2092   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2093   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2094   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2095   if (SrcAddRec && DstAddRec) {
2096     const SCEV *SrcConst = SrcAddRec->getStart();
2097     const SCEV *DstConst = DstAddRec->getStart();
2098     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2099     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2100     const Loop *CurLoop = SrcAddRec->getLoop();
2101     assert(CurLoop == DstAddRec->getLoop() &&
2102            "both loops in SIV should be same");
2103     Level = mapSrcLoop(CurLoop);
2104     bool disproven;
2105     if (SrcCoeff == DstCoeff)
2106       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2107                                 Level, Result, NewConstraint);
2108     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2109       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2110                                       Level, Result, NewConstraint, SplitIter);
2111     else
2112       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2113                                Level, Result, NewConstraint);
2114     return disproven ||
2115       gcdMIVtest(Src, Dst, Result) ||
2116       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2117   }
2118   if (SrcAddRec) {
2119     const SCEV *SrcConst = SrcAddRec->getStart();
2120     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2121     const SCEV *DstConst = Dst;
2122     const Loop *CurLoop = SrcAddRec->getLoop();
2123     Level = mapSrcLoop(CurLoop);
2124     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2125                               Level, Result, NewConstraint) ||
2126       gcdMIVtest(Src, Dst, Result);
2127   }
2128   if (DstAddRec) {
2129     const SCEV *DstConst = DstAddRec->getStart();
2130     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2131     const SCEV *SrcConst = Src;
2132     const Loop *CurLoop = DstAddRec->getLoop();
2133     Level = mapDstLoop(CurLoop);
2134     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2135                               CurLoop, Level, Result, NewConstraint) ||
2136       gcdMIVtest(Src, Dst, Result);
2137   }
2138   llvm_unreachable("SIV test expected at least one AddRec");
2139   return false;
2140 }
2141 
2142 
2143 // testRDIV -
2144 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2145 // where i and j are induction variables, c1 and c2 are loop invariant,
2146 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2147 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2148 // It doesn't make sense to talk about distance or direction in this case,
2149 // so there's no point in making special versions of the Strong SIV test or
2150 // the Weak-crossing SIV test.
2151 //
2152 // With minor algebra, this test can also be used for things like
2153 // [c1 + a1*i + a2*j][c2].
2154 //
2155 // Return true if dependence disproved.
2156 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2157                               FullDependence &Result) const {
2158   // we have 3 possible situations here:
2159   //   1) [a*i + b] and [c*j + d]
2160   //   2) [a*i + c*j + b] and [d]
2161   //   3) [b] and [a*i + c*j + d]
2162   // We need to find what we've got and get organized
2163 
2164   const SCEV *SrcConst, *DstConst;
2165   const SCEV *SrcCoeff, *DstCoeff;
2166   const Loop *SrcLoop, *DstLoop;
2167 
2168   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2169   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2170   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2171   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2172   if (SrcAddRec && DstAddRec) {
2173     SrcConst = SrcAddRec->getStart();
2174     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2175     SrcLoop = SrcAddRec->getLoop();
2176     DstConst = DstAddRec->getStart();
2177     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2178     DstLoop = DstAddRec->getLoop();
2179   }
2180   else if (SrcAddRec) {
2181     if (const SCEVAddRecExpr *tmpAddRec =
2182         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2183       SrcConst = tmpAddRec->getStart();
2184       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2185       SrcLoop = tmpAddRec->getLoop();
2186       DstConst = Dst;
2187       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2188       DstLoop = SrcAddRec->getLoop();
2189     }
2190     else
2191       llvm_unreachable("RDIV reached by surprising SCEVs");
2192   }
2193   else if (DstAddRec) {
2194     if (const SCEVAddRecExpr *tmpAddRec =
2195         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2196       DstConst = tmpAddRec->getStart();
2197       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2198       DstLoop = tmpAddRec->getLoop();
2199       SrcConst = Src;
2200       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2201       SrcLoop = DstAddRec->getLoop();
2202     }
2203     else
2204       llvm_unreachable("RDIV reached by surprising SCEVs");
2205   }
2206   else
2207     llvm_unreachable("RDIV expected at least one AddRec");
2208   return exactRDIVtest(SrcCoeff, DstCoeff,
2209                        SrcConst, DstConst,
2210                        SrcLoop, DstLoop,
2211                        Result) ||
2212     gcdMIVtest(Src, Dst, Result) ||
2213     symbolicRDIVtest(SrcCoeff, DstCoeff,
2214                      SrcConst, DstConst,
2215                      SrcLoop, DstLoop);
2216 }
2217 
2218 
2219 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2220 // Return true if dependence disproved.
2221 // Can sometimes refine direction vectors.
2222 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2223                              const SmallBitVector &Loops,
2224                              FullDependence &Result) const {
2225   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2226   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2227   Result.Consistent = false;
2228   return gcdMIVtest(Src, Dst, Result) ||
2229     banerjeeMIVtest(Src, Dst, Loops, Result);
2230 }
2231 
2232 
2233 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2234 // in this case 10. If there is no constant part, returns NULL.
2235 static
2236 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2237   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2238     return Constant;
2239   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2240     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2241       return Constant;
2242   return nullptr;
2243 }
2244 
2245 
2246 //===----------------------------------------------------------------------===//
2247 // gcdMIVtest -
2248 // Tests an MIV subscript pair for dependence.
2249 // Returns true if any possible dependence is disproved.
2250 // Marks the result as inconsistent.
2251 // Can sometimes disprove the equal direction for 1 or more loops,
2252 // as discussed in Michael Wolfe's book,
2253 // High Performance Compilers for Parallel Computing, page 235.
2254 //
2255 // We spend some effort (code!) to handle cases like
2256 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2257 // but M and N are just loop-invariant variables.
2258 // This should help us handle linearized subscripts;
2259 // also makes this test a useful backup to the various SIV tests.
2260 //
2261 // It occurs to me that the presence of loop-invariant variables
2262 // changes the nature of the test from "greatest common divisor"
2263 // to "a common divisor".
2264 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2265                                 FullDependence &Result) const {
2266   LLVM_DEBUG(dbgs() << "starting gcd\n");
2267   ++GCDapplications;
2268   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2269   APInt RunningGCD = APInt::getNullValue(BitWidth);
2270 
2271   // Examine Src coefficients.
2272   // Compute running GCD and record source constant.
2273   // Because we're looking for the constant at the end of the chain,
2274   // we can't quit the loop just because the GCD == 1.
2275   const SCEV *Coefficients = Src;
2276   while (const SCEVAddRecExpr *AddRec =
2277          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2278     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2279     // If the coefficient is the product of a constant and other stuff,
2280     // we can use the constant in the GCD computation.
2281     const auto *Constant = getConstantPart(Coeff);
2282     if (!Constant)
2283       return false;
2284     APInt ConstCoeff = Constant->getAPInt();
2285     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2286     Coefficients = AddRec->getStart();
2287   }
2288   const SCEV *SrcConst = Coefficients;
2289 
2290   // Examine Dst coefficients.
2291   // Compute running GCD and record destination constant.
2292   // Because we're looking for the constant at the end of the chain,
2293   // we can't quit the loop just because the GCD == 1.
2294   Coefficients = Dst;
2295   while (const SCEVAddRecExpr *AddRec =
2296          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2297     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2298     // If the coefficient is the product of a constant and other stuff,
2299     // we can use the constant in the GCD computation.
2300     const auto *Constant = getConstantPart(Coeff);
2301     if (!Constant)
2302       return false;
2303     APInt ConstCoeff = Constant->getAPInt();
2304     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2305     Coefficients = AddRec->getStart();
2306   }
2307   const SCEV *DstConst = Coefficients;
2308 
2309   APInt ExtraGCD = APInt::getNullValue(BitWidth);
2310   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2311   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2312   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2313   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2314     // If Delta is a sum of products, we may be able to make further progress.
2315     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2316       const SCEV *Operand = Sum->getOperand(Op);
2317       if (isa<SCEVConstant>(Operand)) {
2318         assert(!Constant && "Surprised to find multiple constants");
2319         Constant = cast<SCEVConstant>(Operand);
2320       }
2321       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2322         // Search for constant operand to participate in GCD;
2323         // If none found; return false.
2324         const SCEVConstant *ConstOp = getConstantPart(Product);
2325         if (!ConstOp)
2326           return false;
2327         APInt ConstOpValue = ConstOp->getAPInt();
2328         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2329                                                    ConstOpValue.abs());
2330       }
2331       else
2332         return false;
2333     }
2334   }
2335   if (!Constant)
2336     return false;
2337   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2338   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2339   if (ConstDelta == 0)
2340     return false;
2341   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2342   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2343   APInt Remainder = ConstDelta.srem(RunningGCD);
2344   if (Remainder != 0) {
2345     ++GCDindependence;
2346     return true;
2347   }
2348 
2349   // Try to disprove equal directions.
2350   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2351   // the code above can't disprove the dependence because the GCD = 1.
2352   // So we consider what happen if i = i' and what happens if j = j'.
2353   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2354   // which is infeasible, so we can disallow the = direction for the i level.
2355   // Setting j = j' doesn't help matters, so we end up with a direction vector
2356   // of [<>, *]
2357   //
2358   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2359   // we need to remember that the constant part is 5 and the RunningGCD should
2360   // be initialized to ExtraGCD = 30.
2361   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2362 
2363   bool Improved = false;
2364   Coefficients = Src;
2365   while (const SCEVAddRecExpr *AddRec =
2366          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2367     Coefficients = AddRec->getStart();
2368     const Loop *CurLoop = AddRec->getLoop();
2369     RunningGCD = ExtraGCD;
2370     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2371     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2372     const SCEV *Inner = Src;
2373     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2374       AddRec = cast<SCEVAddRecExpr>(Inner);
2375       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2376       if (CurLoop == AddRec->getLoop())
2377         ; // SrcCoeff == Coeff
2378       else {
2379         // If the coefficient is the product of a constant and other stuff,
2380         // we can use the constant in the GCD computation.
2381         Constant = getConstantPart(Coeff);
2382         if (!Constant)
2383           return false;
2384         APInt ConstCoeff = Constant->getAPInt();
2385         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2386       }
2387       Inner = AddRec->getStart();
2388     }
2389     Inner = Dst;
2390     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2391       AddRec = cast<SCEVAddRecExpr>(Inner);
2392       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2393       if (CurLoop == AddRec->getLoop())
2394         DstCoeff = Coeff;
2395       else {
2396         // If the coefficient is the product of a constant and other stuff,
2397         // we can use the constant in the GCD computation.
2398         Constant = getConstantPart(Coeff);
2399         if (!Constant)
2400           return false;
2401         APInt ConstCoeff = Constant->getAPInt();
2402         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2403       }
2404       Inner = AddRec->getStart();
2405     }
2406     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2407     // If the coefficient is the product of a constant and other stuff,
2408     // we can use the constant in the GCD computation.
2409     Constant = getConstantPart(Delta);
2410     if (!Constant)
2411       // The difference of the two coefficients might not be a product
2412       // or constant, in which case we give up on this direction.
2413       continue;
2414     APInt ConstCoeff = Constant->getAPInt();
2415     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2416     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2417     if (RunningGCD != 0) {
2418       Remainder = ConstDelta.srem(RunningGCD);
2419       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2420       if (Remainder != 0) {
2421         unsigned Level = mapSrcLoop(CurLoop);
2422         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2423         Improved = true;
2424       }
2425     }
2426   }
2427   if (Improved)
2428     ++GCDsuccesses;
2429   LLVM_DEBUG(dbgs() << "all done\n");
2430   return false;
2431 }
2432 
2433 
2434 //===----------------------------------------------------------------------===//
2435 // banerjeeMIVtest -
2436 // Use Banerjee's Inequalities to test an MIV subscript pair.
2437 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2438 // Generally follows the discussion in Section 2.5.2 of
2439 //
2440 //    Optimizing Supercompilers for Supercomputers
2441 //    Michael Wolfe
2442 //
2443 // The inequalities given on page 25 are simplified in that loops are
2444 // normalized so that the lower bound is always 0 and the stride is always 1.
2445 // For example, Wolfe gives
2446 //
2447 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2448 //
2449 // where A_k is the coefficient of the kth index in the source subscript,
2450 // B_k is the coefficient of the kth index in the destination subscript,
2451 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2452 // index, and N_k is the stride of the kth index. Since all loops are normalized
2453 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2454 // equation to
2455 //
2456 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2457 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2458 //
2459 // Similar simplifications are possible for the other equations.
2460 //
2461 // When we can't determine the number of iterations for a loop,
2462 // we use NULL as an indicator for the worst case, infinity.
2463 // When computing the upper bound, NULL denotes +inf;
2464 // for the lower bound, NULL denotes -inf.
2465 //
2466 // Return true if dependence disproved.
2467 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2468                                      const SmallBitVector &Loops,
2469                                      FullDependence &Result) const {
2470   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2471   ++BanerjeeApplications;
2472   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
2473   const SCEV *A0;
2474   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2475   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2476   const SCEV *B0;
2477   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2478   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2479   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2480   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2481 
2482   // Compute bounds for all the * directions.
2483   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2484   for (unsigned K = 1; K <= MaxLevels; ++K) {
2485     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2486     Bound[K].Direction = Dependence::DVEntry::ALL;
2487     Bound[K].DirSet = Dependence::DVEntry::NONE;
2488     findBoundsALL(A, B, Bound, K);
2489 #ifndef NDEBUG
2490     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
2491     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2492       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2493     else
2494       LLVM_DEBUG(dbgs() << "-inf\t");
2495     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2496       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2497     else
2498       LLVM_DEBUG(dbgs() << "+inf\n");
2499 #endif
2500   }
2501 
2502   // Test the *, *, *, ... case.
2503   bool Disproved = false;
2504   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2505     // Explore the direction vector hierarchy.
2506     unsigned DepthExpanded = 0;
2507     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2508                                          Loops, DepthExpanded, Delta);
2509     if (NewDeps > 0) {
2510       bool Improved = false;
2511       for (unsigned K = 1; K <= CommonLevels; ++K) {
2512         if (Loops[K]) {
2513           unsigned Old = Result.DV[K - 1].Direction;
2514           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2515           Improved |= Old != Result.DV[K - 1].Direction;
2516           if (!Result.DV[K - 1].Direction) {
2517             Improved = false;
2518             Disproved = true;
2519             break;
2520           }
2521         }
2522       }
2523       if (Improved)
2524         ++BanerjeeSuccesses;
2525     }
2526     else {
2527       ++BanerjeeIndependence;
2528       Disproved = true;
2529     }
2530   }
2531   else {
2532     ++BanerjeeIndependence;
2533     Disproved = true;
2534   }
2535   delete [] Bound;
2536   delete [] A;
2537   delete [] B;
2538   return Disproved;
2539 }
2540 
2541 
2542 // Hierarchically expands the direction vector
2543 // search space, combining the directions of discovered dependences
2544 // in the DirSet field of Bound. Returns the number of distinct
2545 // dependences discovered. If the dependence is disproved,
2546 // it will return 0.
2547 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2548                                            CoefficientInfo *B, BoundInfo *Bound,
2549                                            const SmallBitVector &Loops,
2550                                            unsigned &DepthExpanded,
2551                                            const SCEV *Delta) const {
2552   if (Level > CommonLevels) {
2553     // record result
2554     LLVM_DEBUG(dbgs() << "\t[");
2555     for (unsigned K = 1; K <= CommonLevels; ++K) {
2556       if (Loops[K]) {
2557         Bound[K].DirSet |= Bound[K].Direction;
2558 #ifndef NDEBUG
2559         switch (Bound[K].Direction) {
2560         case Dependence::DVEntry::LT:
2561           LLVM_DEBUG(dbgs() << " <");
2562           break;
2563         case Dependence::DVEntry::EQ:
2564           LLVM_DEBUG(dbgs() << " =");
2565           break;
2566         case Dependence::DVEntry::GT:
2567           LLVM_DEBUG(dbgs() << " >");
2568           break;
2569         case Dependence::DVEntry::ALL:
2570           LLVM_DEBUG(dbgs() << " *");
2571           break;
2572         default:
2573           llvm_unreachable("unexpected Bound[K].Direction");
2574         }
2575 #endif
2576       }
2577     }
2578     LLVM_DEBUG(dbgs() << " ]\n");
2579     return 1;
2580   }
2581   if (Loops[Level]) {
2582     if (Level > DepthExpanded) {
2583       DepthExpanded = Level;
2584       // compute bounds for <, =, > at current level
2585       findBoundsLT(A, B, Bound, Level);
2586       findBoundsGT(A, B, Bound, Level);
2587       findBoundsEQ(A, B, Bound, Level);
2588 #ifndef NDEBUG
2589       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2590       LLVM_DEBUG(dbgs() << "\t    <\t");
2591       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2592         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2593                           << '\t');
2594       else
2595         LLVM_DEBUG(dbgs() << "-inf\t");
2596       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2597         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2598                           << '\n');
2599       else
2600         LLVM_DEBUG(dbgs() << "+inf\n");
2601       LLVM_DEBUG(dbgs() << "\t    =\t");
2602       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2603         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2604                           << '\t');
2605       else
2606         LLVM_DEBUG(dbgs() << "-inf\t");
2607       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2608         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2609                           << '\n');
2610       else
2611         LLVM_DEBUG(dbgs() << "+inf\n");
2612       LLVM_DEBUG(dbgs() << "\t    >\t");
2613       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2614         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2615                           << '\t');
2616       else
2617         LLVM_DEBUG(dbgs() << "-inf\t");
2618       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2619         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2620                           << '\n');
2621       else
2622         LLVM_DEBUG(dbgs() << "+inf\n");
2623 #endif
2624     }
2625 
2626     unsigned NewDeps = 0;
2627 
2628     // test bounds for <, *, *, ...
2629     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2630       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2631                                    Loops, DepthExpanded, Delta);
2632 
2633     // Test bounds for =, *, *, ...
2634     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2635       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2636                                    Loops, DepthExpanded, Delta);
2637 
2638     // test bounds for >, *, *, ...
2639     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2640       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2641                                    Loops, DepthExpanded, Delta);
2642 
2643     Bound[Level].Direction = Dependence::DVEntry::ALL;
2644     return NewDeps;
2645   }
2646   else
2647     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2648 }
2649 
2650 
2651 // Returns true iff the current bounds are plausible.
2652 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2653                                 BoundInfo *Bound, const SCEV *Delta) const {
2654   Bound[Level].Direction = DirKind;
2655   if (const SCEV *LowerBound = getLowerBound(Bound))
2656     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2657       return false;
2658   if (const SCEV *UpperBound = getUpperBound(Bound))
2659     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2660       return false;
2661   return true;
2662 }
2663 
2664 
2665 // Computes the upper and lower bounds for level K
2666 // using the * direction. Records them in Bound.
2667 // Wolfe gives the equations
2668 //
2669 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2670 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2671 //
2672 // Since we normalize loops, we can simplify these equations to
2673 //
2674 //    LB^*_k = (A^-_k - B^+_k)U_k
2675 //    UB^*_k = (A^+_k - B^-_k)U_k
2676 //
2677 // We must be careful to handle the case where the upper bound is unknown.
2678 // Note that the lower bound is always <= 0
2679 // and the upper bound is always >= 0.
2680 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2681                                    BoundInfo *Bound, unsigned K) const {
2682   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2683   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2684   if (Bound[K].Iterations) {
2685     Bound[K].Lower[Dependence::DVEntry::ALL] =
2686       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2687                      Bound[K].Iterations);
2688     Bound[K].Upper[Dependence::DVEntry::ALL] =
2689       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2690                      Bound[K].Iterations);
2691   }
2692   else {
2693     // If the difference is 0, we won't need to know the number of iterations.
2694     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2695       Bound[K].Lower[Dependence::DVEntry::ALL] =
2696           SE->getZero(A[K].Coeff->getType());
2697     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2698       Bound[K].Upper[Dependence::DVEntry::ALL] =
2699           SE->getZero(A[K].Coeff->getType());
2700   }
2701 }
2702 
2703 
2704 // Computes the upper and lower bounds for level K
2705 // using the = direction. Records them in Bound.
2706 // Wolfe gives the equations
2707 //
2708 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2709 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2710 //
2711 // Since we normalize loops, we can simplify these equations to
2712 //
2713 //    LB^=_k = (A_k - B_k)^- U_k
2714 //    UB^=_k = (A_k - B_k)^+ U_k
2715 //
2716 // We must be careful to handle the case where the upper bound is unknown.
2717 // Note that the lower bound is always <= 0
2718 // and the upper bound is always >= 0.
2719 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2720                                   BoundInfo *Bound, unsigned K) const {
2721   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2722   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2723   if (Bound[K].Iterations) {
2724     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2725     const SCEV *NegativePart = getNegativePart(Delta);
2726     Bound[K].Lower[Dependence::DVEntry::EQ] =
2727       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2728     const SCEV *PositivePart = getPositivePart(Delta);
2729     Bound[K].Upper[Dependence::DVEntry::EQ] =
2730       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2731   }
2732   else {
2733     // If the positive/negative part of the difference is 0,
2734     // we won't need to know the number of iterations.
2735     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2736     const SCEV *NegativePart = getNegativePart(Delta);
2737     if (NegativePart->isZero())
2738       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2739     const SCEV *PositivePart = getPositivePart(Delta);
2740     if (PositivePart->isZero())
2741       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2742   }
2743 }
2744 
2745 
2746 // Computes the upper and lower bounds for level K
2747 // using the < direction. Records them in Bound.
2748 // Wolfe gives the equations
2749 //
2750 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2751 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2752 //
2753 // Since we normalize loops, we can simplify these equations to
2754 //
2755 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2756 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2757 //
2758 // We must be careful to handle the case where the upper bound is unknown.
2759 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2760                                   BoundInfo *Bound, unsigned K) const {
2761   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2762   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2763   if (Bound[K].Iterations) {
2764     const SCEV *Iter_1 = SE->getMinusSCEV(
2765         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2766     const SCEV *NegPart =
2767       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2768     Bound[K].Lower[Dependence::DVEntry::LT] =
2769       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2770     const SCEV *PosPart =
2771       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2772     Bound[K].Upper[Dependence::DVEntry::LT] =
2773       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2774   }
2775   else {
2776     // If the positive/negative part of the difference is 0,
2777     // we won't need to know the number of iterations.
2778     const SCEV *NegPart =
2779       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2780     if (NegPart->isZero())
2781       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2782     const SCEV *PosPart =
2783       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2784     if (PosPart->isZero())
2785       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2786   }
2787 }
2788 
2789 
2790 // Computes the upper and lower bounds for level K
2791 // using the > direction. Records them in Bound.
2792 // Wolfe gives the equations
2793 //
2794 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2795 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2796 //
2797 // Since we normalize loops, we can simplify these equations to
2798 //
2799 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2800 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2801 //
2802 // We must be careful to handle the case where the upper bound is unknown.
2803 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2804                                   BoundInfo *Bound, unsigned K) const {
2805   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2806   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2807   if (Bound[K].Iterations) {
2808     const SCEV *Iter_1 = SE->getMinusSCEV(
2809         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2810     const SCEV *NegPart =
2811       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2812     Bound[K].Lower[Dependence::DVEntry::GT] =
2813       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2814     const SCEV *PosPart =
2815       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2816     Bound[K].Upper[Dependence::DVEntry::GT] =
2817       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2818   }
2819   else {
2820     // If the positive/negative part of the difference is 0,
2821     // we won't need to know the number of iterations.
2822     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2823     if (NegPart->isZero())
2824       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2825     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2826     if (PosPart->isZero())
2827       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2828   }
2829 }
2830 
2831 
2832 // X^+ = max(X, 0)
2833 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2834   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2835 }
2836 
2837 
2838 // X^- = min(X, 0)
2839 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2840   return SE->getSMinExpr(X, SE->getZero(X->getType()));
2841 }
2842 
2843 
2844 // Walks through the subscript,
2845 // collecting each coefficient, the associated loop bounds,
2846 // and recording its positive and negative parts for later use.
2847 DependenceInfo::CoefficientInfo *
2848 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2849                                  const SCEV *&Constant) const {
2850   const SCEV *Zero = SE->getZero(Subscript->getType());
2851   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2852   for (unsigned K = 1; K <= MaxLevels; ++K) {
2853     CI[K].Coeff = Zero;
2854     CI[K].PosPart = Zero;
2855     CI[K].NegPart = Zero;
2856     CI[K].Iterations = nullptr;
2857   }
2858   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2859     const Loop *L = AddRec->getLoop();
2860     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2861     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2862     CI[K].PosPart = getPositivePart(CI[K].Coeff);
2863     CI[K].NegPart = getNegativePart(CI[K].Coeff);
2864     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2865     Subscript = AddRec->getStart();
2866   }
2867   Constant = Subscript;
2868 #ifndef NDEBUG
2869   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2870   for (unsigned K = 1; K <= MaxLevels; ++K) {
2871     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2872     LLVM_DEBUG(dbgs() << "\tPos Part = ");
2873     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2874     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2875     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2876     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2877     if (CI[K].Iterations)
2878       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2879     else
2880       LLVM_DEBUG(dbgs() << "+inf");
2881     LLVM_DEBUG(dbgs() << '\n');
2882   }
2883   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2884 #endif
2885   return CI;
2886 }
2887 
2888 
2889 // Looks through all the bounds info and
2890 // computes the lower bound given the current direction settings
2891 // at each level. If the lower bound for any level is -inf,
2892 // the result is -inf.
2893 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2894   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2895   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2896     if (Bound[K].Lower[Bound[K].Direction])
2897       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2898     else
2899       Sum = nullptr;
2900   }
2901   return Sum;
2902 }
2903 
2904 
2905 // Looks through all the bounds info and
2906 // computes the upper bound given the current direction settings
2907 // at each level. If the upper bound at any level is +inf,
2908 // the result is +inf.
2909 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2910   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2911   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2912     if (Bound[K].Upper[Bound[K].Direction])
2913       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2914     else
2915       Sum = nullptr;
2916   }
2917   return Sum;
2918 }
2919 
2920 
2921 //===----------------------------------------------------------------------===//
2922 // Constraint manipulation for Delta test.
2923 
2924 // Given a linear SCEV,
2925 // return the coefficient (the step)
2926 // corresponding to the specified loop.
2927 // If there isn't one, return 0.
2928 // For example, given a*i + b*j + c*k, finding the coefficient
2929 // corresponding to the j loop would yield b.
2930 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2931                                             const Loop *TargetLoop) const {
2932   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2933   if (!AddRec)
2934     return SE->getZero(Expr->getType());
2935   if (AddRec->getLoop() == TargetLoop)
2936     return AddRec->getStepRecurrence(*SE);
2937   return findCoefficient(AddRec->getStart(), TargetLoop);
2938 }
2939 
2940 
2941 // Given a linear SCEV,
2942 // return the SCEV given by zeroing out the coefficient
2943 // corresponding to the specified loop.
2944 // For example, given a*i + b*j + c*k, zeroing the coefficient
2945 // corresponding to the j loop would yield a*i + c*k.
2946 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2947                                             const Loop *TargetLoop) const {
2948   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2949   if (!AddRec)
2950     return Expr; // ignore
2951   if (AddRec->getLoop() == TargetLoop)
2952     return AddRec->getStart();
2953   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2954                            AddRec->getStepRecurrence(*SE),
2955                            AddRec->getLoop(),
2956                            AddRec->getNoWrapFlags());
2957 }
2958 
2959 
2960 // Given a linear SCEV Expr,
2961 // return the SCEV given by adding some Value to the
2962 // coefficient corresponding to the specified TargetLoop.
2963 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
2964 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
2965 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
2966                                              const Loop *TargetLoop,
2967                                              const SCEV *Value) const {
2968   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2969   if (!AddRec) // create a new addRec
2970     return SE->getAddRecExpr(Expr,
2971                              Value,
2972                              TargetLoop,
2973                              SCEV::FlagAnyWrap); // Worst case, with no info.
2974   if (AddRec->getLoop() == TargetLoop) {
2975     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2976     if (Sum->isZero())
2977       return AddRec->getStart();
2978     return SE->getAddRecExpr(AddRec->getStart(),
2979                              Sum,
2980                              AddRec->getLoop(),
2981                              AddRec->getNoWrapFlags());
2982   }
2983   if (SE->isLoopInvariant(AddRec, TargetLoop))
2984     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
2985   return SE->getAddRecExpr(
2986       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
2987       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
2988       AddRec->getNoWrapFlags());
2989 }
2990 
2991 
2992 // Review the constraints, looking for opportunities
2993 // to simplify a subscript pair (Src and Dst).
2994 // Return true if some simplification occurs.
2995 // If the simplification isn't exact (that is, if it is conservative
2996 // in terms of dependence), set consistent to false.
2997 // Corresponds to Figure 5 from the paper
2998 //
2999 //            Practical Dependence Testing
3000 //            Goff, Kennedy, Tseng
3001 //            PLDI 1991
3002 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3003                                SmallBitVector &Loops,
3004                                SmallVectorImpl<Constraint> &Constraints,
3005                                bool &Consistent) {
3006   bool Result = false;
3007   for (unsigned LI : Loops.set_bits()) {
3008     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3009     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3010     if (Constraints[LI].isDistance())
3011       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3012     else if (Constraints[LI].isLine())
3013       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3014     else if (Constraints[LI].isPoint())
3015       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3016   }
3017   return Result;
3018 }
3019 
3020 
3021 // Attempt to propagate a distance
3022 // constraint into a subscript pair (Src and Dst).
3023 // Return true if some simplification occurs.
3024 // If the simplification isn't exact (that is, if it is conservative
3025 // in terms of dependence), set consistent to false.
3026 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3027                                        Constraint &CurConstraint,
3028                                        bool &Consistent) {
3029   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3030   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3031   const SCEV *A_K = findCoefficient(Src, CurLoop);
3032   if (A_K->isZero())
3033     return false;
3034   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3035   Src = SE->getMinusSCEV(Src, DA_K);
3036   Src = zeroCoefficient(Src, CurLoop);
3037   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3038   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3039   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3040   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3041   if (!findCoefficient(Dst, CurLoop)->isZero())
3042     Consistent = false;
3043   return true;
3044 }
3045 
3046 
3047 // Attempt to propagate a line
3048 // constraint into a subscript pair (Src and Dst).
3049 // Return true if some simplification occurs.
3050 // If the simplification isn't exact (that is, if it is conservative
3051 // in terms of dependence), set consistent to false.
3052 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3053                                    Constraint &CurConstraint,
3054                                    bool &Consistent) {
3055   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3056   const SCEV *A = CurConstraint.getA();
3057   const SCEV *B = CurConstraint.getB();
3058   const SCEV *C = CurConstraint.getC();
3059   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3060                     << "\n");
3061   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3062   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3063   if (A->isZero()) {
3064     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3065     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3066     if (!Bconst || !Cconst) return false;
3067     APInt Beta = Bconst->getAPInt();
3068     APInt Charlie = Cconst->getAPInt();
3069     APInt CdivB = Charlie.sdiv(Beta);
3070     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3071     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3072     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3073     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3074     Dst = zeroCoefficient(Dst, CurLoop);
3075     if (!findCoefficient(Src, CurLoop)->isZero())
3076       Consistent = false;
3077   }
3078   else if (B->isZero()) {
3079     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3080     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3081     if (!Aconst || !Cconst) return false;
3082     APInt Alpha = Aconst->getAPInt();
3083     APInt Charlie = Cconst->getAPInt();
3084     APInt CdivA = Charlie.sdiv(Alpha);
3085     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3086     const SCEV *A_K = findCoefficient(Src, CurLoop);
3087     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3088     Src = zeroCoefficient(Src, CurLoop);
3089     if (!findCoefficient(Dst, CurLoop)->isZero())
3090       Consistent = false;
3091   }
3092   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3093     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3094     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3095     if (!Aconst || !Cconst) return false;
3096     APInt Alpha = Aconst->getAPInt();
3097     APInt Charlie = Cconst->getAPInt();
3098     APInt CdivA = Charlie.sdiv(Alpha);
3099     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3100     const SCEV *A_K = findCoefficient(Src, CurLoop);
3101     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3102     Src = zeroCoefficient(Src, CurLoop);
3103     Dst = addToCoefficient(Dst, CurLoop, A_K);
3104     if (!findCoefficient(Dst, CurLoop)->isZero())
3105       Consistent = false;
3106   }
3107   else {
3108     // paper is incorrect here, or perhaps just misleading
3109     const SCEV *A_K = findCoefficient(Src, CurLoop);
3110     Src = SE->getMulExpr(Src, A);
3111     Dst = SE->getMulExpr(Dst, A);
3112     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3113     Src = zeroCoefficient(Src, CurLoop);
3114     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3115     if (!findCoefficient(Dst, CurLoop)->isZero())
3116       Consistent = false;
3117   }
3118   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3119   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3120   return true;
3121 }
3122 
3123 
3124 // Attempt to propagate a point
3125 // constraint into a subscript pair (Src and Dst).
3126 // Return true if some simplification occurs.
3127 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3128                                     Constraint &CurConstraint) {
3129   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3130   const SCEV *A_K = findCoefficient(Src, CurLoop);
3131   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3132   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3133   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3134   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3135   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3136   Src = zeroCoefficient(Src, CurLoop);
3137   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3138   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3139   Dst = zeroCoefficient(Dst, CurLoop);
3140   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3141   return true;
3142 }
3143 
3144 
3145 // Update direction vector entry based on the current constraint.
3146 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3147                                      const Constraint &CurConstraint) const {
3148   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3149   LLVM_DEBUG(CurConstraint.dump(dbgs()));
3150   if (CurConstraint.isAny())
3151     ; // use defaults
3152   else if (CurConstraint.isDistance()) {
3153     // this one is consistent, the others aren't
3154     Level.Scalar = false;
3155     Level.Distance = CurConstraint.getD();
3156     unsigned NewDirection = Dependence::DVEntry::NONE;
3157     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3158       NewDirection = Dependence::DVEntry::EQ;
3159     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3160       NewDirection |= Dependence::DVEntry::LT;
3161     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3162       NewDirection |= Dependence::DVEntry::GT;
3163     Level.Direction &= NewDirection;
3164   }
3165   else if (CurConstraint.isLine()) {
3166     Level.Scalar = false;
3167     Level.Distance = nullptr;
3168     // direction should be accurate
3169   }
3170   else if (CurConstraint.isPoint()) {
3171     Level.Scalar = false;
3172     Level.Distance = nullptr;
3173     unsigned NewDirection = Dependence::DVEntry::NONE;
3174     if (!isKnownPredicate(CmpInst::ICMP_NE,
3175                           CurConstraint.getY(),
3176                           CurConstraint.getX()))
3177       // if X may be = Y
3178       NewDirection |= Dependence::DVEntry::EQ;
3179     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3180                           CurConstraint.getY(),
3181                           CurConstraint.getX()))
3182       // if Y may be > X
3183       NewDirection |= Dependence::DVEntry::LT;
3184     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3185                           CurConstraint.getY(),
3186                           CurConstraint.getX()))
3187       // if Y may be < X
3188       NewDirection |= Dependence::DVEntry::GT;
3189     Level.Direction &= NewDirection;
3190   }
3191   else
3192     llvm_unreachable("constraint has unexpected kind");
3193 }
3194 
3195 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3196 /// source and destination array references are recurrences on a nested loop,
3197 /// this function flattens the nested recurrences into separate recurrences
3198 /// for each loop level.
3199 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3200                                     SmallVectorImpl<Subscript> &Pair) {
3201   assert(isLoadOrStore(Src) && "instruction is not load or store");
3202   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3203   Value *SrcPtr = getLoadStorePointerOperand(Src);
3204   Value *DstPtr = getLoadStorePointerOperand(Dst);
3205 
3206   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3207   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3208 
3209   // Below code mimics the code in Delinearization.cpp
3210   const SCEV *SrcAccessFn =
3211     SE->getSCEVAtScope(SrcPtr, SrcLoop);
3212   const SCEV *DstAccessFn =
3213     SE->getSCEVAtScope(DstPtr, DstLoop);
3214 
3215   const SCEVUnknown *SrcBase =
3216       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3217   const SCEVUnknown *DstBase =
3218       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3219 
3220   if (!SrcBase || !DstBase || SrcBase != DstBase)
3221     return false;
3222 
3223   const SCEV *ElementSize = SE->getElementSize(Src);
3224   if (ElementSize != SE->getElementSize(Dst))
3225     return false;
3226 
3227   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3228   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3229 
3230   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3231   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3232   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3233     return false;
3234 
3235   // First step: collect parametric terms in both array references.
3236   SmallVector<const SCEV *, 4> Terms;
3237   SE->collectParametricTerms(SrcAR, Terms);
3238   SE->collectParametricTerms(DstAR, Terms);
3239 
3240   // Second step: find subscript sizes.
3241   SmallVector<const SCEV *, 4> Sizes;
3242   SE->findArrayDimensions(Terms, Sizes, ElementSize);
3243 
3244   // Third step: compute the access functions for each subscript.
3245   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3246   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3247   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3248 
3249   // Fail when there is only a subscript: that's a linearized access function.
3250   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3251       SrcSubscripts.size() != DstSubscripts.size())
3252     return false;
3253 
3254   int size = SrcSubscripts.size();
3255 
3256   LLVM_DEBUG({
3257     dbgs() << "\nSrcSubscripts: ";
3258     for (int i = 0; i < size; i++)
3259       dbgs() << *SrcSubscripts[i];
3260     dbgs() << "\nDstSubscripts: ";
3261     for (int i = 0; i < size; i++)
3262       dbgs() << *DstSubscripts[i];
3263   });
3264 
3265   // The delinearization transforms a single-subscript MIV dependence test into
3266   // a multi-subscript SIV dependence test that is easier to compute. So we
3267   // resize Pair to contain as many pairs of subscripts as the delinearization
3268   // has found, and then initialize the pairs following the delinearization.
3269   Pair.resize(size);
3270   for (int i = 0; i < size; ++i) {
3271     Pair[i].Src = SrcSubscripts[i];
3272     Pair[i].Dst = DstSubscripts[i];
3273     unifySubscriptType(&Pair[i]);
3274 
3275     // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3276     // delinearization has found, and add these constraints to the dependence
3277     // check to avoid memory accesses overflow from one dimension into another.
3278     // This is related to the problem of determining the existence of data
3279     // dependences in array accesses using a different number of subscripts: in
3280     // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
3281   }
3282 
3283   return true;
3284 }
3285 
3286 //===----------------------------------------------------------------------===//
3287 
3288 #ifndef NDEBUG
3289 // For debugging purposes, dump a small bit vector to dbgs().
3290 static void dumpSmallBitVector(SmallBitVector &BV) {
3291   dbgs() << "{";
3292   for (unsigned VI : BV.set_bits()) {
3293     dbgs() << VI;
3294     if (BV.find_next(VI) >= 0)
3295       dbgs() << ' ';
3296   }
3297   dbgs() << "}\n";
3298 }
3299 #endif
3300 
3301 // depends -
3302 // Returns NULL if there is no dependence.
3303 // Otherwise, return a Dependence with as many details as possible.
3304 // Corresponds to Section 3.1 in the paper
3305 //
3306 //            Practical Dependence Testing
3307 //            Goff, Kennedy, Tseng
3308 //            PLDI 1991
3309 //
3310 // Care is required to keep the routine below, getSplitIteration(),
3311 // up to date with respect to this routine.
3312 std::unique_ptr<Dependence>
3313 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3314                         bool PossiblyLoopIndependent) {
3315   if (Src == Dst)
3316     PossiblyLoopIndependent = false;
3317 
3318   if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3319       (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3320     // if both instructions don't reference memory, there's no dependence
3321     return nullptr;
3322 
3323   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3324     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3325     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3326     return make_unique<Dependence>(Src, Dst);
3327   }
3328 
3329   assert(isLoadOrStore(Src) && "instruction is not load or store");
3330   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3331   Value *SrcPtr = getLoadStorePointerOperand(Src);
3332   Value *DstPtr = getLoadStorePointerOperand(Dst);
3333 
3334   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3335                                  MemoryLocation::get(Dst),
3336                                  MemoryLocation::get(Src))) {
3337   case MayAlias:
3338   case PartialAlias:
3339     // cannot analyse objects if we don't understand their aliasing.
3340     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3341     return make_unique<Dependence>(Src, Dst);
3342   case NoAlias:
3343     // If the objects noalias, they are distinct, accesses are independent.
3344     LLVM_DEBUG(dbgs() << "no alias\n");
3345     return nullptr;
3346   case MustAlias:
3347     break; // The underlying objects alias; test accesses for dependence.
3348   }
3349 
3350   // establish loop nesting levels
3351   establishNestingLevels(Src, Dst);
3352   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3353   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3354 
3355   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3356   ++TotalArrayPairs;
3357 
3358   unsigned Pairs = 1;
3359   SmallVector<Subscript, 2> Pair(Pairs);
3360   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3361   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3362   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3363   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3364   Pair[0].Src = SrcSCEV;
3365   Pair[0].Dst = DstSCEV;
3366 
3367   if (Delinearize) {
3368     if (tryDelinearize(Src, Dst, Pair)) {
3369       LLVM_DEBUG(dbgs() << "    delinearized\n");
3370       Pairs = Pair.size();
3371     }
3372   }
3373 
3374   for (unsigned P = 0; P < Pairs; ++P) {
3375     Pair[P].Loops.resize(MaxLevels + 1);
3376     Pair[P].GroupLoops.resize(MaxLevels + 1);
3377     Pair[P].Group.resize(Pairs);
3378     removeMatchingExtensions(&Pair[P]);
3379     Pair[P].Classification =
3380       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3381                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3382                    Pair[P].Loops);
3383     Pair[P].GroupLoops = Pair[P].Loops;
3384     Pair[P].Group.set(P);
3385     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
3386     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3387     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3388     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3389     LLVM_DEBUG(dbgs() << "\tloops = ");
3390     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3391   }
3392 
3393   SmallBitVector Separable(Pairs);
3394   SmallBitVector Coupled(Pairs);
3395 
3396   // Partition subscripts into separable and minimally-coupled groups
3397   // Algorithm in paper is algorithmically better;
3398   // this may be faster in practice. Check someday.
3399   //
3400   // Here's an example of how it works. Consider this code:
3401   //
3402   //   for (i = ...) {
3403   //     for (j = ...) {
3404   //       for (k = ...) {
3405   //         for (l = ...) {
3406   //           for (m = ...) {
3407   //             A[i][j][k][m] = ...;
3408   //             ... = A[0][j][l][i + j];
3409   //           }
3410   //         }
3411   //       }
3412   //     }
3413   //   }
3414   //
3415   // There are 4 subscripts here:
3416   //    0 [i] and [0]
3417   //    1 [j] and [j]
3418   //    2 [k] and [l]
3419   //    3 [m] and [i + j]
3420   //
3421   // We've already classified each subscript pair as ZIV, SIV, etc.,
3422   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3423   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3424   // and set Pair[P].Group = {P}.
3425   //
3426   //      Src Dst    Classification Loops  GroupLoops Group
3427   //    0 [i] [0]         SIV       {1}      {1}        {0}
3428   //    1 [j] [j]         SIV       {2}      {2}        {1}
3429   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3430   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3431   //
3432   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3433   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3434   //
3435   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3436   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3437   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3438   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3439   // to either Separable or Coupled).
3440   //
3441   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3442   // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3443   // so Pair[3].Group = {0, 1, 3} and Done = false.
3444   //
3445   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3446   // Since Done remains true, we add 2 to the set of Separable pairs.
3447   //
3448   // Finally, we consider 3. There's nothing to compare it with,
3449   // so Done remains true and we add it to the Coupled set.
3450   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3451   //
3452   // In the end, we've got 1 separable subscript and 1 coupled group.
3453   for (unsigned SI = 0; SI < Pairs; ++SI) {
3454     if (Pair[SI].Classification == Subscript::NonLinear) {
3455       // ignore these, but collect loops for later
3456       ++NonlinearSubscriptPairs;
3457       collectCommonLoops(Pair[SI].Src,
3458                          LI->getLoopFor(Src->getParent()),
3459                          Pair[SI].Loops);
3460       collectCommonLoops(Pair[SI].Dst,
3461                          LI->getLoopFor(Dst->getParent()),
3462                          Pair[SI].Loops);
3463       Result.Consistent = false;
3464     } else if (Pair[SI].Classification == Subscript::ZIV) {
3465       // always separable
3466       Separable.set(SI);
3467     }
3468     else {
3469       // SIV, RDIV, or MIV, so check for coupled group
3470       bool Done = true;
3471       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3472         SmallBitVector Intersection = Pair[SI].GroupLoops;
3473         Intersection &= Pair[SJ].GroupLoops;
3474         if (Intersection.any()) {
3475           // accumulate set of all the loops in group
3476           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3477           // accumulate set of all subscripts in group
3478           Pair[SJ].Group |= Pair[SI].Group;
3479           Done = false;
3480         }
3481       }
3482       if (Done) {
3483         if (Pair[SI].Group.count() == 1) {
3484           Separable.set(SI);
3485           ++SeparableSubscriptPairs;
3486         }
3487         else {
3488           Coupled.set(SI);
3489           ++CoupledSubscriptPairs;
3490         }
3491       }
3492     }
3493   }
3494 
3495   LLVM_DEBUG(dbgs() << "    Separable = ");
3496   LLVM_DEBUG(dumpSmallBitVector(Separable));
3497   LLVM_DEBUG(dbgs() << "    Coupled = ");
3498   LLVM_DEBUG(dumpSmallBitVector(Coupled));
3499 
3500   Constraint NewConstraint;
3501   NewConstraint.setAny(SE);
3502 
3503   // test separable subscripts
3504   for (unsigned SI : Separable.set_bits()) {
3505     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3506     switch (Pair[SI].Classification) {
3507     case Subscript::ZIV:
3508       LLVM_DEBUG(dbgs() << ", ZIV\n");
3509       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3510         return nullptr;
3511       break;
3512     case Subscript::SIV: {
3513       LLVM_DEBUG(dbgs() << ", SIV\n");
3514       unsigned Level;
3515       const SCEV *SplitIter = nullptr;
3516       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3517                   SplitIter))
3518         return nullptr;
3519       break;
3520     }
3521     case Subscript::RDIV:
3522       LLVM_DEBUG(dbgs() << ", RDIV\n");
3523       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3524         return nullptr;
3525       break;
3526     case Subscript::MIV:
3527       LLVM_DEBUG(dbgs() << ", MIV\n");
3528       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3529         return nullptr;
3530       break;
3531     default:
3532       llvm_unreachable("subscript has unexpected classification");
3533     }
3534   }
3535 
3536   if (Coupled.count()) {
3537     // test coupled subscript groups
3538     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3539     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3540     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3541     for (unsigned II = 0; II <= MaxLevels; ++II)
3542       Constraints[II].setAny(SE);
3543     for (unsigned SI : Coupled.set_bits()) {
3544       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3545       SmallBitVector Group(Pair[SI].Group);
3546       SmallBitVector Sivs(Pairs);
3547       SmallBitVector Mivs(Pairs);
3548       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3549       SmallVector<Subscript *, 4> PairsInGroup;
3550       for (unsigned SJ : Group.set_bits()) {
3551         LLVM_DEBUG(dbgs() << SJ << " ");
3552         if (Pair[SJ].Classification == Subscript::SIV)
3553           Sivs.set(SJ);
3554         else
3555           Mivs.set(SJ);
3556         PairsInGroup.push_back(&Pair[SJ]);
3557       }
3558       unifySubscriptType(PairsInGroup);
3559       LLVM_DEBUG(dbgs() << "}\n");
3560       while (Sivs.any()) {
3561         bool Changed = false;
3562         for (unsigned SJ : Sivs.set_bits()) {
3563           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3564           // SJ is an SIV subscript that's part of the current coupled group
3565           unsigned Level;
3566           const SCEV *SplitIter = nullptr;
3567           LLVM_DEBUG(dbgs() << "SIV\n");
3568           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3569                       SplitIter))
3570             return nullptr;
3571           ConstrainedLevels.set(Level);
3572           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3573             if (Constraints[Level].isEmpty()) {
3574               ++DeltaIndependence;
3575               return nullptr;
3576             }
3577             Changed = true;
3578           }
3579           Sivs.reset(SJ);
3580         }
3581         if (Changed) {
3582           // propagate, possibly creating new SIVs and ZIVs
3583           LLVM_DEBUG(dbgs() << "    propagating\n");
3584           LLVM_DEBUG(dbgs() << "\tMivs = ");
3585           LLVM_DEBUG(dumpSmallBitVector(Mivs));
3586           for (unsigned SJ : Mivs.set_bits()) {
3587             // SJ is an MIV subscript that's part of the current coupled group
3588             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3589             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3590                           Constraints, Result.Consistent)) {
3591               LLVM_DEBUG(dbgs() << "\t    Changed\n");
3592               ++DeltaPropagations;
3593               Pair[SJ].Classification =
3594                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3595                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3596                              Pair[SJ].Loops);
3597               switch (Pair[SJ].Classification) {
3598               case Subscript::ZIV:
3599                 LLVM_DEBUG(dbgs() << "ZIV\n");
3600                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3601                   return nullptr;
3602                 Mivs.reset(SJ);
3603                 break;
3604               case Subscript::SIV:
3605                 Sivs.set(SJ);
3606                 Mivs.reset(SJ);
3607                 break;
3608               case Subscript::RDIV:
3609               case Subscript::MIV:
3610                 break;
3611               default:
3612                 llvm_unreachable("bad subscript classification");
3613               }
3614             }
3615           }
3616         }
3617       }
3618 
3619       // test & propagate remaining RDIVs
3620       for (unsigned SJ : Mivs.set_bits()) {
3621         if (Pair[SJ].Classification == Subscript::RDIV) {
3622           LLVM_DEBUG(dbgs() << "RDIV test\n");
3623           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3624             return nullptr;
3625           // I don't yet understand how to propagate RDIV results
3626           Mivs.reset(SJ);
3627         }
3628       }
3629 
3630       // test remaining MIVs
3631       // This code is temporary.
3632       // Better to somehow test all remaining subscripts simultaneously.
3633       for (unsigned SJ : Mivs.set_bits()) {
3634         if (Pair[SJ].Classification == Subscript::MIV) {
3635           LLVM_DEBUG(dbgs() << "MIV test\n");
3636           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3637             return nullptr;
3638         }
3639         else
3640           llvm_unreachable("expected only MIV subscripts at this point");
3641       }
3642 
3643       // update Result.DV from constraint vector
3644       LLVM_DEBUG(dbgs() << "    updating\n");
3645       for (unsigned SJ : ConstrainedLevels.set_bits()) {
3646         if (SJ > CommonLevels)
3647           break;
3648         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3649         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3650           return nullptr;
3651       }
3652     }
3653   }
3654 
3655   // Make sure the Scalar flags are set correctly.
3656   SmallBitVector CompleteLoops(MaxLevels + 1);
3657   for (unsigned SI = 0; SI < Pairs; ++SI)
3658     CompleteLoops |= Pair[SI].Loops;
3659   for (unsigned II = 1; II <= CommonLevels; ++II)
3660     if (CompleteLoops[II])
3661       Result.DV[II - 1].Scalar = false;
3662 
3663   if (PossiblyLoopIndependent) {
3664     // Make sure the LoopIndependent flag is set correctly.
3665     // All directions must include equal, otherwise no
3666     // loop-independent dependence is possible.
3667     for (unsigned II = 1; II <= CommonLevels; ++II) {
3668       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3669         Result.LoopIndependent = false;
3670         break;
3671       }
3672     }
3673   }
3674   else {
3675     // On the other hand, if all directions are equal and there's no
3676     // loop-independent dependence possible, then no dependence exists.
3677     bool AllEqual = true;
3678     for (unsigned II = 1; II <= CommonLevels; ++II) {
3679       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3680         AllEqual = false;
3681         break;
3682       }
3683     }
3684     if (AllEqual)
3685       return nullptr;
3686   }
3687 
3688   return make_unique<FullDependence>(std::move(Result));
3689 }
3690 
3691 
3692 
3693 //===----------------------------------------------------------------------===//
3694 // getSplitIteration -
3695 // Rather than spend rarely-used space recording the splitting iteration
3696 // during the Weak-Crossing SIV test, we re-compute it on demand.
3697 // The re-computation is basically a repeat of the entire dependence test,
3698 // though simplified since we know that the dependence exists.
3699 // It's tedious, since we must go through all propagations, etc.
3700 //
3701 // Care is required to keep this code up to date with respect to the routine
3702 // above, depends().
3703 //
3704 // Generally, the dependence analyzer will be used to build
3705 // a dependence graph for a function (basically a map from instructions
3706 // to dependences). Looking for cycles in the graph shows us loops
3707 // that cannot be trivially vectorized/parallelized.
3708 //
3709 // We can try to improve the situation by examining all the dependences
3710 // that make up the cycle, looking for ones we can break.
3711 // Sometimes, peeling the first or last iteration of a loop will break
3712 // dependences, and we've got flags for those possibilities.
3713 // Sometimes, splitting a loop at some other iteration will do the trick,
3714 // and we've got a flag for that case. Rather than waste the space to
3715 // record the exact iteration (since we rarely know), we provide
3716 // a method that calculates the iteration. It's a drag that it must work
3717 // from scratch, but wonderful in that it's possible.
3718 //
3719 // Here's an example:
3720 //
3721 //    for (i = 0; i < 10; i++)
3722 //        A[i] = ...
3723 //        ... = A[11 - i]
3724 //
3725 // There's a loop-carried flow dependence from the store to the load,
3726 // found by the weak-crossing SIV test. The dependence will have a flag,
3727 // indicating that the dependence can be broken by splitting the loop.
3728 // Calling getSplitIteration will return 5.
3729 // Splitting the loop breaks the dependence, like so:
3730 //
3731 //    for (i = 0; i <= 5; i++)
3732 //        A[i] = ...
3733 //        ... = A[11 - i]
3734 //    for (i = 6; i < 10; i++)
3735 //        A[i] = ...
3736 //        ... = A[11 - i]
3737 //
3738 // breaks the dependence and allows us to vectorize/parallelize
3739 // both loops.
3740 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3741                                               unsigned SplitLevel) {
3742   assert(Dep.isSplitable(SplitLevel) &&
3743          "Dep should be splitable at SplitLevel");
3744   Instruction *Src = Dep.getSrc();
3745   Instruction *Dst = Dep.getDst();
3746   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3747   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3748   assert(isLoadOrStore(Src));
3749   assert(isLoadOrStore(Dst));
3750   Value *SrcPtr = getLoadStorePointerOperand(Src);
3751   Value *DstPtr = getLoadStorePointerOperand(Dst);
3752   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3753                                 MemoryLocation::get(Dst),
3754                                 MemoryLocation::get(Src)) == MustAlias);
3755 
3756   // establish loop nesting levels
3757   establishNestingLevels(Src, Dst);
3758 
3759   FullDependence Result(Src, Dst, false, CommonLevels);
3760 
3761   unsigned Pairs = 1;
3762   SmallVector<Subscript, 2> Pair(Pairs);
3763   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3764   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3765   Pair[0].Src = SrcSCEV;
3766   Pair[0].Dst = DstSCEV;
3767 
3768   if (Delinearize) {
3769     if (tryDelinearize(Src, Dst, Pair)) {
3770       LLVM_DEBUG(dbgs() << "    delinearized\n");
3771       Pairs = Pair.size();
3772     }
3773   }
3774 
3775   for (unsigned P = 0; P < Pairs; ++P) {
3776     Pair[P].Loops.resize(MaxLevels + 1);
3777     Pair[P].GroupLoops.resize(MaxLevels + 1);
3778     Pair[P].Group.resize(Pairs);
3779     removeMatchingExtensions(&Pair[P]);
3780     Pair[P].Classification =
3781       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3782                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3783                    Pair[P].Loops);
3784     Pair[P].GroupLoops = Pair[P].Loops;
3785     Pair[P].Group.set(P);
3786   }
3787 
3788   SmallBitVector Separable(Pairs);
3789   SmallBitVector Coupled(Pairs);
3790 
3791   // partition subscripts into separable and minimally-coupled groups
3792   for (unsigned SI = 0; SI < Pairs; ++SI) {
3793     if (Pair[SI].Classification == Subscript::NonLinear) {
3794       // ignore these, but collect loops for later
3795       collectCommonLoops(Pair[SI].Src,
3796                          LI->getLoopFor(Src->getParent()),
3797                          Pair[SI].Loops);
3798       collectCommonLoops(Pair[SI].Dst,
3799                          LI->getLoopFor(Dst->getParent()),
3800                          Pair[SI].Loops);
3801       Result.Consistent = false;
3802     }
3803     else if (Pair[SI].Classification == Subscript::ZIV)
3804       Separable.set(SI);
3805     else {
3806       // SIV, RDIV, or MIV, so check for coupled group
3807       bool Done = true;
3808       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3809         SmallBitVector Intersection = Pair[SI].GroupLoops;
3810         Intersection &= Pair[SJ].GroupLoops;
3811         if (Intersection.any()) {
3812           // accumulate set of all the loops in group
3813           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3814           // accumulate set of all subscripts in group
3815           Pair[SJ].Group |= Pair[SI].Group;
3816           Done = false;
3817         }
3818       }
3819       if (Done) {
3820         if (Pair[SI].Group.count() == 1)
3821           Separable.set(SI);
3822         else
3823           Coupled.set(SI);
3824       }
3825     }
3826   }
3827 
3828   Constraint NewConstraint;
3829   NewConstraint.setAny(SE);
3830 
3831   // test separable subscripts
3832   for (unsigned SI : Separable.set_bits()) {
3833     switch (Pair[SI].Classification) {
3834     case Subscript::SIV: {
3835       unsigned Level;
3836       const SCEV *SplitIter = nullptr;
3837       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3838                      Result, NewConstraint, SplitIter);
3839       if (Level == SplitLevel) {
3840         assert(SplitIter != nullptr);
3841         return SplitIter;
3842       }
3843       break;
3844     }
3845     case Subscript::ZIV:
3846     case Subscript::RDIV:
3847     case Subscript::MIV:
3848       break;
3849     default:
3850       llvm_unreachable("subscript has unexpected classification");
3851     }
3852   }
3853 
3854   if (Coupled.count()) {
3855     // test coupled subscript groups
3856     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3857     for (unsigned II = 0; II <= MaxLevels; ++II)
3858       Constraints[II].setAny(SE);
3859     for (unsigned SI : Coupled.set_bits()) {
3860       SmallBitVector Group(Pair[SI].Group);
3861       SmallBitVector Sivs(Pairs);
3862       SmallBitVector Mivs(Pairs);
3863       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3864       for (unsigned SJ : Group.set_bits()) {
3865         if (Pair[SJ].Classification == Subscript::SIV)
3866           Sivs.set(SJ);
3867         else
3868           Mivs.set(SJ);
3869       }
3870       while (Sivs.any()) {
3871         bool Changed = false;
3872         for (unsigned SJ : Sivs.set_bits()) {
3873           // SJ is an SIV subscript that's part of the current coupled group
3874           unsigned Level;
3875           const SCEV *SplitIter = nullptr;
3876           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3877                          Result, NewConstraint, SplitIter);
3878           if (Level == SplitLevel && SplitIter)
3879             return SplitIter;
3880           ConstrainedLevels.set(Level);
3881           if (intersectConstraints(&Constraints[Level], &NewConstraint))
3882             Changed = true;
3883           Sivs.reset(SJ);
3884         }
3885         if (Changed) {
3886           // propagate, possibly creating new SIVs and ZIVs
3887           for (unsigned SJ : Mivs.set_bits()) {
3888             // SJ is an MIV subscript that's part of the current coupled group
3889             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3890                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
3891               Pair[SJ].Classification =
3892                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3893                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3894                              Pair[SJ].Loops);
3895               switch (Pair[SJ].Classification) {
3896               case Subscript::ZIV:
3897                 Mivs.reset(SJ);
3898                 break;
3899               case Subscript::SIV:
3900                 Sivs.set(SJ);
3901                 Mivs.reset(SJ);
3902                 break;
3903               case Subscript::RDIV:
3904               case Subscript::MIV:
3905                 break;
3906               default:
3907                 llvm_unreachable("bad subscript classification");
3908               }
3909             }
3910           }
3911         }
3912       }
3913     }
3914   }
3915   llvm_unreachable("somehow reached end of routine");
3916   return nullptr;
3917 }
3918