1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
12 // described in
13 //
14 //            Practical Dependence Testing
15 //            Goff, Kennedy, Tseng
16 //            PLDI 1991
17 //
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
21 //
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
26 //
27 // The implementation depends on the GEP instruction to differentiate
28 // subscripts. Since Clang linearizes some array subscripts, the dependence
29 // analysis is using SCEV->delinearize to recover the representation of multiple
30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
31 // delinearization is controlled by the flag -da-delinearize.
32 //
33 // We should pay some careful attention to the possibility of integer overflow
34 // in the implementation of the various tests. This could happen with Add,
35 // Subtract, or Multiply, with both APInt's and SCEV's.
36 //
37 // Some non-linear subscript pairs can be handled by the GCD test
38 // (and perhaps other tests).
39 // Should explore how often these things occur.
40 //
41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
42 // simplification, especially in the handling of sign and zero extensions.
43 // It could be useful to spend time exploring these.
44 //
45 // Please note that this is work in progress and the interface is subject to
46 // change.
47 //
48 //===----------------------------------------------------------------------===//
49 //                                                                            //
50 //                   In memory of Ken Kennedy, 1945 - 2007                    //
51 //                                                                            //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Analysis/DependenceAnalysis.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/AliasAnalysis.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/ValueTracking.h"
62 #include "llvm/IR/InstIterator.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "da"
73 
74 //===----------------------------------------------------------------------===//
75 // statistics
76 
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109 
110 static cl::opt<bool>
111 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
112             cl::desc("Try to delinearize array references."));
113 
114 //===----------------------------------------------------------------------===//
115 // basics
116 
117 DependenceAnalysis::Result
118 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
119   auto &AA = FAM.getResult<AAManager>(F);
120   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
121   auto &LI = FAM.getResult<LoopAnalysis>(F);
122   return DependenceInfo(&F, &AA, &SE, &LI);
123 }
124 
125 char DependenceAnalysis::PassID;
126 
127 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
128                       "Dependence Analysis", true, true)
129 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
130 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
132 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
133                     true, true)
134 
135 char DependenceAnalysisWrapperPass::ID = 0;
136 
137 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
138   return new DependenceAnalysisWrapperPass();
139 }
140 
141 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
142   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
143   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
144   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
145   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
146   return false;
147 }
148 
149 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
150 
151 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
152 
153 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
154   AU.setPreservesAll();
155   AU.addRequiredTransitive<AAResultsWrapperPass>();
156   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
157   AU.addRequiredTransitive<LoopInfoWrapperPass>();
158 }
159 
160 
161 // Used to test the dependence analyzer.
162 // Looks through the function, noting loads and stores.
163 // Calls depends() on every possible pair and prints out the result.
164 // Ignores all other instructions.
165 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
166   auto *F = DA->getFunction();
167   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
168        ++SrcI) {
169     if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
170       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
171            DstI != DstE; ++DstI) {
172         if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
173           OS << "da analyze - ";
174           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
175             D->dump(OS);
176             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
177               if (D->isSplitable(Level)) {
178                 OS << "da analyze - split level = " << Level;
179                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
180                 OS << "!\n";
181               }
182             }
183           }
184           else
185             OS << "none!\n";
186         }
187       }
188     }
189   }
190 }
191 
192 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
193                                           const Module *) const {
194   dumpExampleDependence(OS, info.get());
195 }
196 
197 //===----------------------------------------------------------------------===//
198 // Dependence methods
199 
200 // Returns true if this is an input dependence.
201 bool Dependence::isInput() const {
202   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
203 }
204 
205 
206 // Returns true if this is an output dependence.
207 bool Dependence::isOutput() const {
208   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
209 }
210 
211 
212 // Returns true if this is an flow (aka true)  dependence.
213 bool Dependence::isFlow() const {
214   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
215 }
216 
217 
218 // Returns true if this is an anti dependence.
219 bool Dependence::isAnti() const {
220   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
221 }
222 
223 
224 // Returns true if a particular level is scalar; that is,
225 // if no subscript in the source or destination mention the induction
226 // variable associated with the loop at this level.
227 // Leave this out of line, so it will serve as a virtual method anchor
228 bool Dependence::isScalar(unsigned level) const {
229   return false;
230 }
231 
232 
233 //===----------------------------------------------------------------------===//
234 // FullDependence methods
235 
236 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
237                                bool PossiblyLoopIndependent,
238                                unsigned CommonLevels)
239     : Dependence(Source, Destination), Levels(CommonLevels),
240       LoopIndependent(PossiblyLoopIndependent) {
241   Consistent = true;
242   if (CommonLevels)
243     DV = make_unique<DVEntry[]>(CommonLevels);
244 }
245 
246 // The rest are simple getters that hide the implementation.
247 
248 // getDirection - Returns the direction associated with a particular level.
249 unsigned FullDependence::getDirection(unsigned Level) const {
250   assert(0 < Level && Level <= Levels && "Level out of range");
251   return DV[Level - 1].Direction;
252 }
253 
254 
255 // Returns the distance (or NULL) associated with a particular level.
256 const SCEV *FullDependence::getDistance(unsigned Level) const {
257   assert(0 < Level && Level <= Levels && "Level out of range");
258   return DV[Level - 1].Distance;
259 }
260 
261 
262 // Returns true if a particular level is scalar; that is,
263 // if no subscript in the source or destination mention the induction
264 // variable associated with the loop at this level.
265 bool FullDependence::isScalar(unsigned Level) const {
266   assert(0 < Level && Level <= Levels && "Level out of range");
267   return DV[Level - 1].Scalar;
268 }
269 
270 
271 // Returns true if peeling the first iteration from this loop
272 // will break this dependence.
273 bool FullDependence::isPeelFirst(unsigned Level) const {
274   assert(0 < Level && Level <= Levels && "Level out of range");
275   return DV[Level - 1].PeelFirst;
276 }
277 
278 
279 // Returns true if peeling the last iteration from this loop
280 // will break this dependence.
281 bool FullDependence::isPeelLast(unsigned Level) const {
282   assert(0 < Level && Level <= Levels && "Level out of range");
283   return DV[Level - 1].PeelLast;
284 }
285 
286 
287 // Returns true if splitting this loop will break the dependence.
288 bool FullDependence::isSplitable(unsigned Level) const {
289   assert(0 < Level && Level <= Levels && "Level out of range");
290   return DV[Level - 1].Splitable;
291 }
292 
293 
294 //===----------------------------------------------------------------------===//
295 // DependenceInfo::Constraint methods
296 
297 // If constraint is a point <X, Y>, returns X.
298 // Otherwise assert.
299 const SCEV *DependenceInfo::Constraint::getX() const {
300   assert(Kind == Point && "Kind should be Point");
301   return A;
302 }
303 
304 
305 // If constraint is a point <X, Y>, returns Y.
306 // Otherwise assert.
307 const SCEV *DependenceInfo::Constraint::getY() const {
308   assert(Kind == Point && "Kind should be Point");
309   return B;
310 }
311 
312 
313 // If constraint is a line AX + BY = C, returns A.
314 // Otherwise assert.
315 const SCEV *DependenceInfo::Constraint::getA() const {
316   assert((Kind == Line || Kind == Distance) &&
317          "Kind should be Line (or Distance)");
318   return A;
319 }
320 
321 
322 // If constraint is a line AX + BY = C, returns B.
323 // Otherwise assert.
324 const SCEV *DependenceInfo::Constraint::getB() const {
325   assert((Kind == Line || Kind == Distance) &&
326          "Kind should be Line (or Distance)");
327   return B;
328 }
329 
330 
331 // If constraint is a line AX + BY = C, returns C.
332 // Otherwise assert.
333 const SCEV *DependenceInfo::Constraint::getC() const {
334   assert((Kind == Line || Kind == Distance) &&
335          "Kind should be Line (or Distance)");
336   return C;
337 }
338 
339 
340 // If constraint is a distance, returns D.
341 // Otherwise assert.
342 const SCEV *DependenceInfo::Constraint::getD() const {
343   assert(Kind == Distance && "Kind should be Distance");
344   return SE->getNegativeSCEV(C);
345 }
346 
347 
348 // Returns the loop associated with this constraint.
349 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
350   assert((Kind == Distance || Kind == Line || Kind == Point) &&
351          "Kind should be Distance, Line, or Point");
352   return AssociatedLoop;
353 }
354 
355 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
356                                           const Loop *CurLoop) {
357   Kind = Point;
358   A = X;
359   B = Y;
360   AssociatedLoop = CurLoop;
361 }
362 
363 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
364                                          const SCEV *CC, const Loop *CurLoop) {
365   Kind = Line;
366   A = AA;
367   B = BB;
368   C = CC;
369   AssociatedLoop = CurLoop;
370 }
371 
372 void DependenceInfo::Constraint::setDistance(const SCEV *D,
373                                              const Loop *CurLoop) {
374   Kind = Distance;
375   A = SE->getOne(D->getType());
376   B = SE->getNegativeSCEV(A);
377   C = SE->getNegativeSCEV(D);
378   AssociatedLoop = CurLoop;
379 }
380 
381 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
382 
383 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
384   SE = NewSE;
385   Kind = Any;
386 }
387 
388 
389 // For debugging purposes. Dumps the constraint out to OS.
390 void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
391   if (isEmpty())
392     OS << " Empty\n";
393   else if (isAny())
394     OS << " Any\n";
395   else if (isPoint())
396     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
397   else if (isDistance())
398     OS << " Distance is " << *getD() <<
399       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
400   else if (isLine())
401     OS << " Line is " << *getA() << "*X + " <<
402       *getB() << "*Y = " << *getC() << "\n";
403   else
404     llvm_unreachable("unknown constraint type in Constraint::dump");
405 }
406 
407 
408 // Updates X with the intersection
409 // of the Constraints X and Y. Returns true if X has changed.
410 // Corresponds to Figure 4 from the paper
411 //
412 //            Practical Dependence Testing
413 //            Goff, Kennedy, Tseng
414 //            PLDI 1991
415 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
416   ++DeltaApplications;
417   DEBUG(dbgs() << "\tintersect constraints\n");
418   DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
419   DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
420   assert(!Y->isPoint() && "Y must not be a Point");
421   if (X->isAny()) {
422     if (Y->isAny())
423       return false;
424     *X = *Y;
425     return true;
426   }
427   if (X->isEmpty())
428     return false;
429   if (Y->isEmpty()) {
430     X->setEmpty();
431     return true;
432   }
433 
434   if (X->isDistance() && Y->isDistance()) {
435     DEBUG(dbgs() << "\t    intersect 2 distances\n");
436     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
437       return false;
438     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
439       X->setEmpty();
440       ++DeltaSuccesses;
441       return true;
442     }
443     // Hmmm, interesting situation.
444     // I guess if either is constant, keep it and ignore the other.
445     if (isa<SCEVConstant>(Y->getD())) {
446       *X = *Y;
447       return true;
448     }
449     return false;
450   }
451 
452   // At this point, the pseudo-code in Figure 4 of the paper
453   // checks if (X->isPoint() && Y->isPoint()).
454   // This case can't occur in our implementation,
455   // since a Point can only arise as the result of intersecting
456   // two Line constraints, and the right-hand value, Y, is never
457   // the result of an intersection.
458   assert(!(X->isPoint() && Y->isPoint()) &&
459          "We shouldn't ever see X->isPoint() && Y->isPoint()");
460 
461   if (X->isLine() && Y->isLine()) {
462     DEBUG(dbgs() << "\t    intersect 2 lines\n");
463     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
464     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
465     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
466       // slopes are equal, so lines are parallel
467       DEBUG(dbgs() << "\t\tsame slope\n");
468       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
469       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
470       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
471         return false;
472       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
473         X->setEmpty();
474         ++DeltaSuccesses;
475         return true;
476       }
477       return false;
478     }
479     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
480       // slopes differ, so lines intersect
481       DEBUG(dbgs() << "\t\tdifferent slopes\n");
482       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
483       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
484       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
485       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
486       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
487       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
488       const SCEVConstant *C1A2_C2A1 =
489         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
490       const SCEVConstant *C1B2_C2B1 =
491         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
492       const SCEVConstant *A1B2_A2B1 =
493         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
494       const SCEVConstant *A2B1_A1B2 =
495         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
496       if (!C1B2_C2B1 || !C1A2_C2A1 ||
497           !A1B2_A2B1 || !A2B1_A1B2)
498         return false;
499       APInt Xtop = C1B2_C2B1->getAPInt();
500       APInt Xbot = A1B2_A2B1->getAPInt();
501       APInt Ytop = C1A2_C2A1->getAPInt();
502       APInt Ybot = A2B1_A1B2->getAPInt();
503       DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
504       DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
505       DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
506       DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
507       APInt Xq = Xtop; // these need to be initialized, even
508       APInt Xr = Xtop; // though they're just going to be overwritten
509       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
510       APInt Yq = Ytop;
511       APInt Yr = Ytop;
512       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
513       if (Xr != 0 || Yr != 0) {
514         X->setEmpty();
515         ++DeltaSuccesses;
516         return true;
517       }
518       DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
519       if (Xq.slt(0) || Yq.slt(0)) {
520         X->setEmpty();
521         ++DeltaSuccesses;
522         return true;
523       }
524       if (const SCEVConstant *CUB =
525           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
526         APInt UpperBound = CUB->getAPInt();
527         DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
528         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
529           X->setEmpty();
530           ++DeltaSuccesses;
531           return true;
532         }
533       }
534       X->setPoint(SE->getConstant(Xq),
535                   SE->getConstant(Yq),
536                   X->getAssociatedLoop());
537       ++DeltaSuccesses;
538       return true;
539     }
540     return false;
541   }
542 
543   // if (X->isLine() && Y->isPoint()) This case can't occur.
544   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
545 
546   if (X->isPoint() && Y->isLine()) {
547     DEBUG(dbgs() << "\t    intersect Point and Line\n");
548     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
549     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
550     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
551     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
552       return false;
553     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
554       X->setEmpty();
555       ++DeltaSuccesses;
556       return true;
557     }
558     return false;
559   }
560 
561   llvm_unreachable("shouldn't reach the end of Constraint intersection");
562   return false;
563 }
564 
565 
566 //===----------------------------------------------------------------------===//
567 // DependenceInfo methods
568 
569 // For debugging purposes. Dumps a dependence to OS.
570 void Dependence::dump(raw_ostream &OS) const {
571   bool Splitable = false;
572   if (isConfused())
573     OS << "confused";
574   else {
575     if (isConsistent())
576       OS << "consistent ";
577     if (isFlow())
578       OS << "flow";
579     else if (isOutput())
580       OS << "output";
581     else if (isAnti())
582       OS << "anti";
583     else if (isInput())
584       OS << "input";
585     unsigned Levels = getLevels();
586     OS << " [";
587     for (unsigned II = 1; II <= Levels; ++II) {
588       if (isSplitable(II))
589         Splitable = true;
590       if (isPeelFirst(II))
591         OS << 'p';
592       const SCEV *Distance = getDistance(II);
593       if (Distance)
594         OS << *Distance;
595       else if (isScalar(II))
596         OS << "S";
597       else {
598         unsigned Direction = getDirection(II);
599         if (Direction == DVEntry::ALL)
600           OS << "*";
601         else {
602           if (Direction & DVEntry::LT)
603             OS << "<";
604           if (Direction & DVEntry::EQ)
605             OS << "=";
606           if (Direction & DVEntry::GT)
607             OS << ">";
608         }
609       }
610       if (isPeelLast(II))
611         OS << 'p';
612       if (II < Levels)
613         OS << " ";
614     }
615     if (isLoopIndependent())
616       OS << "|<";
617     OS << "]";
618     if (Splitable)
619       OS << " splitable";
620   }
621   OS << "!\n";
622 }
623 
624 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
625                                           const DataLayout &DL, const Value *A,
626                                           const Value *B) {
627   const Value *AObj = GetUnderlyingObject(A, DL);
628   const Value *BObj = GetUnderlyingObject(B, DL);
629   return AA->alias(AObj, DL.getTypeStoreSize(AObj->getType()),
630                    BObj, DL.getTypeStoreSize(BObj->getType()));
631 }
632 
633 
634 // Returns true if the load or store can be analyzed. Atomic and volatile
635 // operations have properties which this analysis does not understand.
636 static
637 bool isLoadOrStore(const Instruction *I) {
638   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
639     return LI->isUnordered();
640   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
641     return SI->isUnordered();
642   return false;
643 }
644 
645 
646 static
647 Value *getPointerOperand(Instruction *I) {
648   if (LoadInst *LI = dyn_cast<LoadInst>(I))
649     return LI->getPointerOperand();
650   if (StoreInst *SI = dyn_cast<StoreInst>(I))
651     return SI->getPointerOperand();
652   llvm_unreachable("Value is not load or store instruction");
653   return nullptr;
654 }
655 
656 
657 // Examines the loop nesting of the Src and Dst
658 // instructions and establishes their shared loops. Sets the variables
659 // CommonLevels, SrcLevels, and MaxLevels.
660 // The source and destination instructions needn't be contained in the same
661 // loop. The routine establishNestingLevels finds the level of most deeply
662 // nested loop that contains them both, CommonLevels. An instruction that's
663 // not contained in a loop is at level = 0. MaxLevels is equal to the level
664 // of the source plus the level of the destination, minus CommonLevels.
665 // This lets us allocate vectors MaxLevels in length, with room for every
666 // distinct loop referenced in both the source and destination subscripts.
667 // The variable SrcLevels is the nesting depth of the source instruction.
668 // It's used to help calculate distinct loops referenced by the destination.
669 // Here's the map from loops to levels:
670 //            0 - unused
671 //            1 - outermost common loop
672 //          ... - other common loops
673 // CommonLevels - innermost common loop
674 //          ... - loops containing Src but not Dst
675 //    SrcLevels - innermost loop containing Src but not Dst
676 //          ... - loops containing Dst but not Src
677 //    MaxLevels - innermost loops containing Dst but not Src
678 // Consider the follow code fragment:
679 //   for (a = ...) {
680 //     for (b = ...) {
681 //       for (c = ...) {
682 //         for (d = ...) {
683 //           A[] = ...;
684 //         }
685 //       }
686 //       for (e = ...) {
687 //         for (f = ...) {
688 //           for (g = ...) {
689 //             ... = A[];
690 //           }
691 //         }
692 //       }
693 //     }
694 //   }
695 // If we're looking at the possibility of a dependence between the store
696 // to A (the Src) and the load from A (the Dst), we'll note that they
697 // have 2 loops in common, so CommonLevels will equal 2 and the direction
698 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
699 // A map from loop names to loop numbers would look like
700 //     a - 1
701 //     b - 2 = CommonLevels
702 //     c - 3
703 //     d - 4 = SrcLevels
704 //     e - 5
705 //     f - 6
706 //     g - 7 = MaxLevels
707 void DependenceInfo::establishNestingLevels(const Instruction *Src,
708                                             const Instruction *Dst) {
709   const BasicBlock *SrcBlock = Src->getParent();
710   const BasicBlock *DstBlock = Dst->getParent();
711   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
712   unsigned DstLevel = LI->getLoopDepth(DstBlock);
713   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
714   const Loop *DstLoop = LI->getLoopFor(DstBlock);
715   SrcLevels = SrcLevel;
716   MaxLevels = SrcLevel + DstLevel;
717   while (SrcLevel > DstLevel) {
718     SrcLoop = SrcLoop->getParentLoop();
719     SrcLevel--;
720   }
721   while (DstLevel > SrcLevel) {
722     DstLoop = DstLoop->getParentLoop();
723     DstLevel--;
724   }
725   while (SrcLoop != DstLoop) {
726     SrcLoop = SrcLoop->getParentLoop();
727     DstLoop = DstLoop->getParentLoop();
728     SrcLevel--;
729   }
730   CommonLevels = SrcLevel;
731   MaxLevels -= CommonLevels;
732 }
733 
734 
735 // Given one of the loops containing the source, return
736 // its level index in our numbering scheme.
737 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
738   return SrcLoop->getLoopDepth();
739 }
740 
741 
742 // Given one of the loops containing the destination,
743 // return its level index in our numbering scheme.
744 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
745   unsigned D = DstLoop->getLoopDepth();
746   if (D > CommonLevels)
747     return D - CommonLevels + SrcLevels;
748   else
749     return D;
750 }
751 
752 
753 // Returns true if Expression is loop invariant in LoopNest.
754 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
755                                      const Loop *LoopNest) const {
756   if (!LoopNest)
757     return true;
758   return SE->isLoopInvariant(Expression, LoopNest) &&
759     isLoopInvariant(Expression, LoopNest->getParentLoop());
760 }
761 
762 
763 
764 // Finds the set of loops from the LoopNest that
765 // have a level <= CommonLevels and are referred to by the SCEV Expression.
766 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
767                                         const Loop *LoopNest,
768                                         SmallBitVector &Loops) const {
769   while (LoopNest) {
770     unsigned Level = LoopNest->getLoopDepth();
771     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
772       Loops.set(Level);
773     LoopNest = LoopNest->getParentLoop();
774   }
775 }
776 
777 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
778 
779   unsigned widestWidthSeen = 0;
780   Type *widestType;
781 
782   // Go through each pair and find the widest bit to which we need
783   // to extend all of them.
784   for (unsigned i = 0; i < Pairs.size(); i++) {
785     const SCEV *Src = Pairs[i]->Src;
786     const SCEV *Dst = Pairs[i]->Dst;
787     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
788     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
789     if (SrcTy == nullptr || DstTy == nullptr) {
790       assert(SrcTy == DstTy && "This function only unify integer types and "
791              "expect Src and Dst share the same type "
792              "otherwise.");
793       continue;
794     }
795     if (SrcTy->getBitWidth() > widestWidthSeen) {
796       widestWidthSeen = SrcTy->getBitWidth();
797       widestType = SrcTy;
798     }
799     if (DstTy->getBitWidth() > widestWidthSeen) {
800       widestWidthSeen = DstTy->getBitWidth();
801       widestType = DstTy;
802     }
803   }
804 
805 
806   assert(widestWidthSeen > 0);
807 
808   // Now extend each pair to the widest seen.
809   for (unsigned i = 0; i < Pairs.size(); i++) {
810     const SCEV *Src = Pairs[i]->Src;
811     const SCEV *Dst = Pairs[i]->Dst;
812     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
813     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
814     if (SrcTy == nullptr || DstTy == nullptr) {
815       assert(SrcTy == DstTy && "This function only unify integer types and "
816              "expect Src and Dst share the same type "
817              "otherwise.");
818       continue;
819     }
820     if (SrcTy->getBitWidth() < widestWidthSeen)
821       // Sign-extend Src to widestType
822       Pairs[i]->Src = SE->getSignExtendExpr(Src, widestType);
823     if (DstTy->getBitWidth() < widestWidthSeen) {
824       // Sign-extend Dst to widestType
825       Pairs[i]->Dst = SE->getSignExtendExpr(Dst, widestType);
826     }
827   }
828 }
829 
830 // removeMatchingExtensions - Examines a subscript pair.
831 // If the source and destination are identically sign (or zero)
832 // extended, it strips off the extension in an effect to simplify
833 // the actual analysis.
834 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
835   const SCEV *Src = Pair->Src;
836   const SCEV *Dst = Pair->Dst;
837   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
838       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
839     const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
840     const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
841     const SCEV *SrcCastOp = SrcCast->getOperand();
842     const SCEV *DstCastOp = DstCast->getOperand();
843     if (SrcCastOp->getType() == DstCastOp->getType()) {
844       Pair->Src = SrcCastOp;
845       Pair->Dst = DstCastOp;
846     }
847   }
848 }
849 
850 
851 // Examine the scev and return true iff it's linear.
852 // Collect any loops mentioned in the set of "Loops".
853 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
854                                        SmallBitVector &Loops) {
855   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
856   if (!AddRec)
857     return isLoopInvariant(Src, LoopNest);
858   const SCEV *Start = AddRec->getStart();
859   const SCEV *Step = AddRec->getStepRecurrence(*SE);
860   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
861   if (!isa<SCEVCouldNotCompute>(UB)) {
862     if (SE->getTypeSizeInBits(Start->getType()) <
863         SE->getTypeSizeInBits(UB->getType())) {
864       if (!AddRec->getNoWrapFlags())
865         return false;
866     }
867   }
868   if (!isLoopInvariant(Step, LoopNest))
869     return false;
870   Loops.set(mapSrcLoop(AddRec->getLoop()));
871   return checkSrcSubscript(Start, LoopNest, Loops);
872 }
873 
874 
875 
876 // Examine the scev and return true iff it's linear.
877 // Collect any loops mentioned in the set of "Loops".
878 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
879                                        SmallBitVector &Loops) {
880   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
881   if (!AddRec)
882     return isLoopInvariant(Dst, LoopNest);
883   const SCEV *Start = AddRec->getStart();
884   const SCEV *Step = AddRec->getStepRecurrence(*SE);
885   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
886   if (!isa<SCEVCouldNotCompute>(UB)) {
887     if (SE->getTypeSizeInBits(Start->getType()) <
888         SE->getTypeSizeInBits(UB->getType())) {
889       if (!AddRec->getNoWrapFlags())
890         return false;
891     }
892   }
893   if (!isLoopInvariant(Step, LoopNest))
894     return false;
895   Loops.set(mapDstLoop(AddRec->getLoop()));
896   return checkDstSubscript(Start, LoopNest, Loops);
897 }
898 
899 
900 // Examines the subscript pair (the Src and Dst SCEVs)
901 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
902 // Collects the associated loops in a set.
903 DependenceInfo::Subscript::ClassificationKind
904 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
905                              const SCEV *Dst, const Loop *DstLoopNest,
906                              SmallBitVector &Loops) {
907   SmallBitVector SrcLoops(MaxLevels + 1);
908   SmallBitVector DstLoops(MaxLevels + 1);
909   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
910     return Subscript::NonLinear;
911   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
912     return Subscript::NonLinear;
913   Loops = SrcLoops;
914   Loops |= DstLoops;
915   unsigned N = Loops.count();
916   if (N == 0)
917     return Subscript::ZIV;
918   if (N == 1)
919     return Subscript::SIV;
920   if (N == 2 && (SrcLoops.count() == 0 ||
921                  DstLoops.count() == 0 ||
922                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
923     return Subscript::RDIV;
924   return Subscript::MIV;
925 }
926 
927 
928 // A wrapper around SCEV::isKnownPredicate.
929 // Looks for cases where we're interested in comparing for equality.
930 // If both X and Y have been identically sign or zero extended,
931 // it strips off the (confusing) extensions before invoking
932 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
933 // will be similarly updated.
934 //
935 // If SCEV::isKnownPredicate can't prove the predicate,
936 // we try simple subtraction, which seems to help in some cases
937 // involving symbolics.
938 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
939                                       const SCEV *Y) const {
940   if (Pred == CmpInst::ICMP_EQ ||
941       Pred == CmpInst::ICMP_NE) {
942     if ((isa<SCEVSignExtendExpr>(X) &&
943          isa<SCEVSignExtendExpr>(Y)) ||
944         (isa<SCEVZeroExtendExpr>(X) &&
945          isa<SCEVZeroExtendExpr>(Y))) {
946       const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
947       const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
948       const SCEV *Xop = CX->getOperand();
949       const SCEV *Yop = CY->getOperand();
950       if (Xop->getType() == Yop->getType()) {
951         X = Xop;
952         Y = Yop;
953       }
954     }
955   }
956   if (SE->isKnownPredicate(Pred, X, Y))
957     return true;
958   // If SE->isKnownPredicate can't prove the condition,
959   // we try the brute-force approach of subtracting
960   // and testing the difference.
961   // By testing with SE->isKnownPredicate first, we avoid
962   // the possibility of overflow when the arguments are constants.
963   const SCEV *Delta = SE->getMinusSCEV(X, Y);
964   switch (Pred) {
965   case CmpInst::ICMP_EQ:
966     return Delta->isZero();
967   case CmpInst::ICMP_NE:
968     return SE->isKnownNonZero(Delta);
969   case CmpInst::ICMP_SGE:
970     return SE->isKnownNonNegative(Delta);
971   case CmpInst::ICMP_SLE:
972     return SE->isKnownNonPositive(Delta);
973   case CmpInst::ICMP_SGT:
974     return SE->isKnownPositive(Delta);
975   case CmpInst::ICMP_SLT:
976     return SE->isKnownNegative(Delta);
977   default:
978     llvm_unreachable("unexpected predicate in isKnownPredicate");
979   }
980 }
981 
982 
983 // All subscripts are all the same type.
984 // Loop bound may be smaller (e.g., a char).
985 // Should zero extend loop bound, since it's always >= 0.
986 // This routine collects upper bound and extends or truncates if needed.
987 // Truncating is safe when subscripts are known not to wrap. Cases without
988 // nowrap flags should have been rejected earlier.
989 // Return null if no bound available.
990 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
991   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
992     const SCEV *UB = SE->getBackedgeTakenCount(L);
993     return SE->getTruncateOrZeroExtend(UB, T);
994   }
995   return nullptr;
996 }
997 
998 
999 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1000 // If the cast fails, returns NULL.
1001 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1002                                                               Type *T) const {
1003   if (const SCEV *UB = collectUpperBound(L, T))
1004     return dyn_cast<SCEVConstant>(UB);
1005   return nullptr;
1006 }
1007 
1008 
1009 // testZIV -
1010 // When we have a pair of subscripts of the form [c1] and [c2],
1011 // where c1 and c2 are both loop invariant, we attack it using
1012 // the ZIV test. Basically, we test by comparing the two values,
1013 // but there are actually three possible results:
1014 // 1) the values are equal, so there's a dependence
1015 // 2) the values are different, so there's no dependence
1016 // 3) the values might be equal, so we have to assume a dependence.
1017 //
1018 // Return true if dependence disproved.
1019 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1020                              FullDependence &Result) const {
1021   DEBUG(dbgs() << "    src = " << *Src << "\n");
1022   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1023   ++ZIVapplications;
1024   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1025     DEBUG(dbgs() << "    provably dependent\n");
1026     return false; // provably dependent
1027   }
1028   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1029     DEBUG(dbgs() << "    provably independent\n");
1030     ++ZIVindependence;
1031     return true; // provably independent
1032   }
1033   DEBUG(dbgs() << "    possibly dependent\n");
1034   Result.Consistent = false;
1035   return false; // possibly dependent
1036 }
1037 
1038 
1039 // strongSIVtest -
1040 // From the paper, Practical Dependence Testing, Section 4.2.1
1041 //
1042 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1043 // where i is an induction variable, c1 and c2 are loop invariant,
1044 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1045 //
1046 // Can prove independence. Failing that, can compute distance (and direction).
1047 // In the presence of symbolic terms, we can sometimes make progress.
1048 //
1049 // If there's a dependence,
1050 //
1051 //    c1 + a*i = c2 + a*i'
1052 //
1053 // The dependence distance is
1054 //
1055 //    d = i' - i = (c1 - c2)/a
1056 //
1057 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1058 // loop's upper bound. If a dependence exists, the dependence direction is
1059 // defined as
1060 //
1061 //                { < if d > 0
1062 //    direction = { = if d = 0
1063 //                { > if d < 0
1064 //
1065 // Return true if dependence disproved.
1066 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1067                                    const SCEV *DstConst, const Loop *CurLoop,
1068                                    unsigned Level, FullDependence &Result,
1069                                    Constraint &NewConstraint) const {
1070   DEBUG(dbgs() << "\tStrong SIV test\n");
1071   DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1072   DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1073   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1074   DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1075   DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1076   DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1077   ++StrongSIVapplications;
1078   assert(0 < Level && Level <= CommonLevels && "level out of range");
1079   Level--;
1080 
1081   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1082   DEBUG(dbgs() << "\t    Delta = " << *Delta);
1083   DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1084 
1085   // check that |Delta| < iteration count
1086   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1087     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1088     DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1089     const SCEV *AbsDelta =
1090       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1091     const SCEV *AbsCoeff =
1092       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1093     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1094     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1095       // Distance greater than trip count - no dependence
1096       ++StrongSIVindependence;
1097       ++StrongSIVsuccesses;
1098       return true;
1099     }
1100   }
1101 
1102   // Can we compute distance?
1103   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1104     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1105     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1106     APInt Distance  = ConstDelta; // these need to be initialized
1107     APInt Remainder = ConstDelta;
1108     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1109     DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1110     DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1111     // Make sure Coeff divides Delta exactly
1112     if (Remainder != 0) {
1113       // Coeff doesn't divide Distance, no dependence
1114       ++StrongSIVindependence;
1115       ++StrongSIVsuccesses;
1116       return true;
1117     }
1118     Result.DV[Level].Distance = SE->getConstant(Distance);
1119     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1120     if (Distance.sgt(0))
1121       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1122     else if (Distance.slt(0))
1123       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1124     else
1125       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1126     ++StrongSIVsuccesses;
1127   }
1128   else if (Delta->isZero()) {
1129     // since 0/X == 0
1130     Result.DV[Level].Distance = Delta;
1131     NewConstraint.setDistance(Delta, CurLoop);
1132     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1133     ++StrongSIVsuccesses;
1134   }
1135   else {
1136     if (Coeff->isOne()) {
1137       DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1138       Result.DV[Level].Distance = Delta; // since X/1 == X
1139       NewConstraint.setDistance(Delta, CurLoop);
1140     }
1141     else {
1142       Result.Consistent = false;
1143       NewConstraint.setLine(Coeff,
1144                             SE->getNegativeSCEV(Coeff),
1145                             SE->getNegativeSCEV(Delta), CurLoop);
1146     }
1147 
1148     // maybe we can get a useful direction
1149     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1150     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1151     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1152     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1153     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1154     // The double negatives above are confusing.
1155     // It helps to read !SE->isKnownNonZero(Delta)
1156     // as "Delta might be Zero"
1157     unsigned NewDirection = Dependence::DVEntry::NONE;
1158     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1159         (DeltaMaybeNegative && CoeffMaybeNegative))
1160       NewDirection = Dependence::DVEntry::LT;
1161     if (DeltaMaybeZero)
1162       NewDirection |= Dependence::DVEntry::EQ;
1163     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1164         (DeltaMaybePositive && CoeffMaybeNegative))
1165       NewDirection |= Dependence::DVEntry::GT;
1166     if (NewDirection < Result.DV[Level].Direction)
1167       ++StrongSIVsuccesses;
1168     Result.DV[Level].Direction &= NewDirection;
1169   }
1170   return false;
1171 }
1172 
1173 
1174 // weakCrossingSIVtest -
1175 // From the paper, Practical Dependence Testing, Section 4.2.2
1176 //
1177 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1178 // where i is an induction variable, c1 and c2 are loop invariant,
1179 // and a is a constant, we can solve it exactly using the
1180 // Weak-Crossing SIV test.
1181 //
1182 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1183 // the two lines, where i = i', yielding
1184 //
1185 //    c1 + a*i = c2 - a*i
1186 //    2a*i = c2 - c1
1187 //    i = (c2 - c1)/2a
1188 //
1189 // If i < 0, there is no dependence.
1190 // If i > upperbound, there is no dependence.
1191 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1192 // If i = upperbound, there's a dependence with distance = 0.
1193 // If i is integral, there's a dependence (all directions).
1194 // If the non-integer part = 1/2, there's a dependence (<> directions).
1195 // Otherwise, there's no dependence.
1196 //
1197 // Can prove independence. Failing that,
1198 // can sometimes refine the directions.
1199 // Can determine iteration for splitting.
1200 //
1201 // Return true if dependence disproved.
1202 bool DependenceInfo::weakCrossingSIVtest(
1203     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1204     const Loop *CurLoop, unsigned Level, FullDependence &Result,
1205     Constraint &NewConstraint, const SCEV *&SplitIter) const {
1206   DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1207   DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1208   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1209   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1210   ++WeakCrossingSIVapplications;
1211   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1212   Level--;
1213   Result.Consistent = false;
1214   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1215   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1216   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1217   if (Delta->isZero()) {
1218     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1219     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1220     ++WeakCrossingSIVsuccesses;
1221     if (!Result.DV[Level].Direction) {
1222       ++WeakCrossingSIVindependence;
1223       return true;
1224     }
1225     Result.DV[Level].Distance = Delta; // = 0
1226     return false;
1227   }
1228   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1229   if (!ConstCoeff)
1230     return false;
1231 
1232   Result.DV[Level].Splitable = true;
1233   if (SE->isKnownNegative(ConstCoeff)) {
1234     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1235     assert(ConstCoeff &&
1236            "dynamic cast of negative of ConstCoeff should yield constant");
1237     Delta = SE->getNegativeSCEV(Delta);
1238   }
1239   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1240 
1241   // compute SplitIter for use by DependenceInfo::getSplitIteration()
1242   SplitIter = SE->getUDivExpr(
1243       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1244       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1245   DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1246 
1247   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1248   if (!ConstDelta)
1249     return false;
1250 
1251   // We're certain that ConstCoeff > 0; therefore,
1252   // if Delta < 0, then no dependence.
1253   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1254   DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1255   if (SE->isKnownNegative(Delta)) {
1256     // No dependence, Delta < 0
1257     ++WeakCrossingSIVindependence;
1258     ++WeakCrossingSIVsuccesses;
1259     return true;
1260   }
1261 
1262   // We're certain that Delta > 0 and ConstCoeff > 0.
1263   // Check Delta/(2*ConstCoeff) against upper loop bound
1264   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1265     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1266     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1267     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1268                                     ConstantTwo);
1269     DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1270     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1271       // Delta too big, no dependence
1272       ++WeakCrossingSIVindependence;
1273       ++WeakCrossingSIVsuccesses;
1274       return true;
1275     }
1276     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1277       // i = i' = UB
1278       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1279       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1280       ++WeakCrossingSIVsuccesses;
1281       if (!Result.DV[Level].Direction) {
1282         ++WeakCrossingSIVindependence;
1283         return true;
1284       }
1285       Result.DV[Level].Splitable = false;
1286       Result.DV[Level].Distance = SE->getZero(Delta->getType());
1287       return false;
1288     }
1289   }
1290 
1291   // check that Coeff divides Delta
1292   APInt APDelta = ConstDelta->getAPInt();
1293   APInt APCoeff = ConstCoeff->getAPInt();
1294   APInt Distance = APDelta; // these need to be initialzed
1295   APInt Remainder = APDelta;
1296   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1297   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1298   if (Remainder != 0) {
1299     // Coeff doesn't divide Delta, no dependence
1300     ++WeakCrossingSIVindependence;
1301     ++WeakCrossingSIVsuccesses;
1302     return true;
1303   }
1304   DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1305 
1306   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1307   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1308   Remainder = Distance.srem(Two);
1309   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1310   if (Remainder != 0) {
1311     // Equal direction isn't possible
1312     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1313     ++WeakCrossingSIVsuccesses;
1314   }
1315   return false;
1316 }
1317 
1318 
1319 // Kirch's algorithm, from
1320 //
1321 //        Optimizing Supercompilers for Supercomputers
1322 //        Michael Wolfe
1323 //        MIT Press, 1989
1324 //
1325 // Program 2.1, page 29.
1326 // Computes the GCD of AM and BM.
1327 // Also finds a solution to the equation ax - by = gcd(a, b).
1328 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1329 static
1330 bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1331              APInt &G, APInt &X, APInt &Y) {
1332   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1333   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1334   APInt G0 = AM.abs();
1335   APInt G1 = BM.abs();
1336   APInt Q = G0; // these need to be initialized
1337   APInt R = G0;
1338   APInt::sdivrem(G0, G1, Q, R);
1339   while (R != 0) {
1340     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1341     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1342     G0 = G1; G1 = R;
1343     APInt::sdivrem(G0, G1, Q, R);
1344   }
1345   G = G1;
1346   DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1347   X = AM.slt(0) ? -A1 : A1;
1348   Y = BM.slt(0) ? B1 : -B1;
1349 
1350   // make sure gcd divides Delta
1351   R = Delta.srem(G);
1352   if (R != 0)
1353     return true; // gcd doesn't divide Delta, no dependence
1354   Q = Delta.sdiv(G);
1355   X *= Q;
1356   Y *= Q;
1357   return false;
1358 }
1359 
1360 
1361 static
1362 APInt floorOfQuotient(APInt A, APInt B) {
1363   APInt Q = A; // these need to be initialized
1364   APInt R = A;
1365   APInt::sdivrem(A, B, Q, R);
1366   if (R == 0)
1367     return Q;
1368   if ((A.sgt(0) && B.sgt(0)) ||
1369       (A.slt(0) && B.slt(0)))
1370     return Q;
1371   else
1372     return Q - 1;
1373 }
1374 
1375 
1376 static
1377 APInt ceilingOfQuotient(APInt A, APInt B) {
1378   APInt Q = A; // these need to be initialized
1379   APInt R = A;
1380   APInt::sdivrem(A, B, Q, R);
1381   if (R == 0)
1382     return Q;
1383   if ((A.sgt(0) && B.sgt(0)) ||
1384       (A.slt(0) && B.slt(0)))
1385     return Q + 1;
1386   else
1387     return Q;
1388 }
1389 
1390 
1391 static
1392 APInt maxAPInt(APInt A, APInt B) {
1393   return A.sgt(B) ? A : B;
1394 }
1395 
1396 
1397 static
1398 APInt minAPInt(APInt A, APInt B) {
1399   return A.slt(B) ? A : B;
1400 }
1401 
1402 
1403 // exactSIVtest -
1404 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1405 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1406 // and a2 are constant, we can solve it exactly using an algorithm developed
1407 // by Banerjee and Wolfe. See Section 2.5.3 in
1408 //
1409 //        Optimizing Supercompilers for Supercomputers
1410 //        Michael Wolfe
1411 //        MIT Press, 1989
1412 //
1413 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1414 // so use them if possible. They're also a bit better with symbolics and,
1415 // in the case of the strong SIV test, can compute Distances.
1416 //
1417 // Return true if dependence disproved.
1418 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1419                                   const SCEV *SrcConst, const SCEV *DstConst,
1420                                   const Loop *CurLoop, unsigned Level,
1421                                   FullDependence &Result,
1422                                   Constraint &NewConstraint) const {
1423   DEBUG(dbgs() << "\tExact SIV test\n");
1424   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1425   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1426   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1427   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1428   ++ExactSIVapplications;
1429   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1430   Level--;
1431   Result.Consistent = false;
1432   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1433   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1434   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1435                         Delta, CurLoop);
1436   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1437   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1438   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1439   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1440     return false;
1441 
1442   // find gcd
1443   APInt G, X, Y;
1444   APInt AM = ConstSrcCoeff->getAPInt();
1445   APInt BM = ConstDstCoeff->getAPInt();
1446   unsigned Bits = AM.getBitWidth();
1447   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1448     // gcd doesn't divide Delta, no dependence
1449     ++ExactSIVindependence;
1450     ++ExactSIVsuccesses;
1451     return true;
1452   }
1453 
1454   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1455 
1456   // since SCEV construction normalizes, LM = 0
1457   APInt UM(Bits, 1, true);
1458   bool UMvalid = false;
1459   // UM is perhaps unavailable, let's check
1460   if (const SCEVConstant *CUB =
1461       collectConstantUpperBound(CurLoop, Delta->getType())) {
1462     UM = CUB->getAPInt();
1463     DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1464     UMvalid = true;
1465   }
1466 
1467   APInt TU(APInt::getSignedMaxValue(Bits));
1468   APInt TL(APInt::getSignedMinValue(Bits));
1469 
1470   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1471   APInt TMUL = BM.sdiv(G);
1472   if (TMUL.sgt(0)) {
1473     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1474     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1475     if (UMvalid) {
1476       TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1477       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1478     }
1479   }
1480   else {
1481     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1482     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1483     if (UMvalid) {
1484       TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1485       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1486     }
1487   }
1488 
1489   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1490   TMUL = AM.sdiv(G);
1491   if (TMUL.sgt(0)) {
1492     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1493     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1494     if (UMvalid) {
1495       TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1496       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1497     }
1498   }
1499   else {
1500     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1501     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1502     if (UMvalid) {
1503       TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1504       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1505     }
1506   }
1507   if (TL.sgt(TU)) {
1508     ++ExactSIVindependence;
1509     ++ExactSIVsuccesses;
1510     return true;
1511   }
1512 
1513   // explore directions
1514   unsigned NewDirection = Dependence::DVEntry::NONE;
1515 
1516   // less than
1517   APInt SaveTU(TU); // save these
1518   APInt SaveTL(TL);
1519   DEBUG(dbgs() << "\t    exploring LT direction\n");
1520   TMUL = AM - BM;
1521   if (TMUL.sgt(0)) {
1522     TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1523     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1524   }
1525   else {
1526     TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1527     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1528   }
1529   if (TL.sle(TU)) {
1530     NewDirection |= Dependence::DVEntry::LT;
1531     ++ExactSIVsuccesses;
1532   }
1533 
1534   // equal
1535   TU = SaveTU; // restore
1536   TL = SaveTL;
1537   DEBUG(dbgs() << "\t    exploring EQ direction\n");
1538   if (TMUL.sgt(0)) {
1539     TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1540     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1541   }
1542   else {
1543     TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1544     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1545   }
1546   TMUL = BM - AM;
1547   if (TMUL.sgt(0)) {
1548     TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1549     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1550   }
1551   else {
1552     TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1553     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1554   }
1555   if (TL.sle(TU)) {
1556     NewDirection |= Dependence::DVEntry::EQ;
1557     ++ExactSIVsuccesses;
1558   }
1559 
1560   // greater than
1561   TU = SaveTU; // restore
1562   TL = SaveTL;
1563   DEBUG(dbgs() << "\t    exploring GT direction\n");
1564   if (TMUL.sgt(0)) {
1565     TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1566     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1567   }
1568   else {
1569     TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1570     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1571   }
1572   if (TL.sle(TU)) {
1573     NewDirection |= Dependence::DVEntry::GT;
1574     ++ExactSIVsuccesses;
1575   }
1576 
1577   // finished
1578   Result.DV[Level].Direction &= NewDirection;
1579   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1580     ++ExactSIVindependence;
1581   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1582 }
1583 
1584 
1585 
1586 // Return true if the divisor evenly divides the dividend.
1587 static
1588 bool isRemainderZero(const SCEVConstant *Dividend,
1589                      const SCEVConstant *Divisor) {
1590   APInt ConstDividend = Dividend->getAPInt();
1591   APInt ConstDivisor = Divisor->getAPInt();
1592   return ConstDividend.srem(ConstDivisor) == 0;
1593 }
1594 
1595 
1596 // weakZeroSrcSIVtest -
1597 // From the paper, Practical Dependence Testing, Section 4.2.2
1598 //
1599 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1600 // where i is an induction variable, c1 and c2 are loop invariant,
1601 // and a is a constant, we can solve it exactly using the
1602 // Weak-Zero SIV test.
1603 //
1604 // Given
1605 //
1606 //    c1 = c2 + a*i
1607 //
1608 // we get
1609 //
1610 //    (c1 - c2)/a = i
1611 //
1612 // If i is not an integer, there's no dependence.
1613 // If i < 0 or > UB, there's no dependence.
1614 // If i = 0, the direction is <= and peeling the
1615 // 1st iteration will break the dependence.
1616 // If i = UB, the direction is >= and peeling the
1617 // last iteration will break the dependence.
1618 // Otherwise, the direction is *.
1619 //
1620 // Can prove independence. Failing that, we can sometimes refine
1621 // the directions. Can sometimes show that first or last
1622 // iteration carries all the dependences (so worth peeling).
1623 //
1624 // (see also weakZeroDstSIVtest)
1625 //
1626 // Return true if dependence disproved.
1627 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1628                                         const SCEV *SrcConst,
1629                                         const SCEV *DstConst,
1630                                         const Loop *CurLoop, unsigned Level,
1631                                         FullDependence &Result,
1632                                         Constraint &NewConstraint) const {
1633   // For the WeakSIV test, it's possible the loop isn't common to
1634   // the Src and Dst loops. If it isn't, then there's no need to
1635   // record a direction.
1636   DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1637   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1638   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1639   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1640   ++WeakZeroSIVapplications;
1641   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1642   Level--;
1643   Result.Consistent = false;
1644   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1645   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1646                         CurLoop);
1647   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1648   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1649     if (Level < CommonLevels) {
1650       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1651       Result.DV[Level].PeelFirst = true;
1652       ++WeakZeroSIVsuccesses;
1653     }
1654     return false; // dependences caused by first iteration
1655   }
1656   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1657   if (!ConstCoeff)
1658     return false;
1659   const SCEV *AbsCoeff =
1660     SE->isKnownNegative(ConstCoeff) ?
1661     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1662   const SCEV *NewDelta =
1663     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1664 
1665   // check that Delta/SrcCoeff < iteration count
1666   // really check NewDelta < count*AbsCoeff
1667   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1668     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1669     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1670     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1671       ++WeakZeroSIVindependence;
1672       ++WeakZeroSIVsuccesses;
1673       return true;
1674     }
1675     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1676       // dependences caused by last iteration
1677       if (Level < CommonLevels) {
1678         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1679         Result.DV[Level].PeelLast = true;
1680         ++WeakZeroSIVsuccesses;
1681       }
1682       return false;
1683     }
1684   }
1685 
1686   // check that Delta/SrcCoeff >= 0
1687   // really check that NewDelta >= 0
1688   if (SE->isKnownNegative(NewDelta)) {
1689     // No dependence, newDelta < 0
1690     ++WeakZeroSIVindependence;
1691     ++WeakZeroSIVsuccesses;
1692     return true;
1693   }
1694 
1695   // if SrcCoeff doesn't divide Delta, then no dependence
1696   if (isa<SCEVConstant>(Delta) &&
1697       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1698     ++WeakZeroSIVindependence;
1699     ++WeakZeroSIVsuccesses;
1700     return true;
1701   }
1702   return false;
1703 }
1704 
1705 
1706 // weakZeroDstSIVtest -
1707 // From the paper, Practical Dependence Testing, Section 4.2.2
1708 //
1709 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1710 // where i is an induction variable, c1 and c2 are loop invariant,
1711 // and a is a constant, we can solve it exactly using the
1712 // Weak-Zero SIV test.
1713 //
1714 // Given
1715 //
1716 //    c1 + a*i = c2
1717 //
1718 // we get
1719 //
1720 //    i = (c2 - c1)/a
1721 //
1722 // If i is not an integer, there's no dependence.
1723 // If i < 0 or > UB, there's no dependence.
1724 // If i = 0, the direction is <= and peeling the
1725 // 1st iteration will break the dependence.
1726 // If i = UB, the direction is >= and peeling the
1727 // last iteration will break the dependence.
1728 // Otherwise, the direction is *.
1729 //
1730 // Can prove independence. Failing that, we can sometimes refine
1731 // the directions. Can sometimes show that first or last
1732 // iteration carries all the dependences (so worth peeling).
1733 //
1734 // (see also weakZeroSrcSIVtest)
1735 //
1736 // Return true if dependence disproved.
1737 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1738                                         const SCEV *SrcConst,
1739                                         const SCEV *DstConst,
1740                                         const Loop *CurLoop, unsigned Level,
1741                                         FullDependence &Result,
1742                                         Constraint &NewConstraint) const {
1743   // For the WeakSIV test, it's possible the loop isn't common to the
1744   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1745   DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1746   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1747   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1748   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1749   ++WeakZeroSIVapplications;
1750   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1751   Level--;
1752   Result.Consistent = false;
1753   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1754   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1755                         CurLoop);
1756   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1757   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1758     if (Level < CommonLevels) {
1759       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1760       Result.DV[Level].PeelFirst = true;
1761       ++WeakZeroSIVsuccesses;
1762     }
1763     return false; // dependences caused by first iteration
1764   }
1765   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1766   if (!ConstCoeff)
1767     return false;
1768   const SCEV *AbsCoeff =
1769     SE->isKnownNegative(ConstCoeff) ?
1770     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1771   const SCEV *NewDelta =
1772     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1773 
1774   // check that Delta/SrcCoeff < iteration count
1775   // really check NewDelta < count*AbsCoeff
1776   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1777     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1778     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1779     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1780       ++WeakZeroSIVindependence;
1781       ++WeakZeroSIVsuccesses;
1782       return true;
1783     }
1784     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1785       // dependences caused by last iteration
1786       if (Level < CommonLevels) {
1787         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1788         Result.DV[Level].PeelLast = true;
1789         ++WeakZeroSIVsuccesses;
1790       }
1791       return false;
1792     }
1793   }
1794 
1795   // check that Delta/SrcCoeff >= 0
1796   // really check that NewDelta >= 0
1797   if (SE->isKnownNegative(NewDelta)) {
1798     // No dependence, newDelta < 0
1799     ++WeakZeroSIVindependence;
1800     ++WeakZeroSIVsuccesses;
1801     return true;
1802   }
1803 
1804   // if SrcCoeff doesn't divide Delta, then no dependence
1805   if (isa<SCEVConstant>(Delta) &&
1806       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1807     ++WeakZeroSIVindependence;
1808     ++WeakZeroSIVsuccesses;
1809     return true;
1810   }
1811   return false;
1812 }
1813 
1814 
1815 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1816 // Things of the form [c1 + a*i] and [c2 + b*j],
1817 // where i and j are induction variable, c1 and c2 are loop invariant,
1818 // and a and b are constants.
1819 // Returns true if any possible dependence is disproved.
1820 // Marks the result as inconsistent.
1821 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1822 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1823                                    const SCEV *SrcConst, const SCEV *DstConst,
1824                                    const Loop *SrcLoop, const Loop *DstLoop,
1825                                    FullDependence &Result) const {
1826   DEBUG(dbgs() << "\tExact RDIV test\n");
1827   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1828   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1829   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1830   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1831   ++ExactRDIVapplications;
1832   Result.Consistent = false;
1833   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1834   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1835   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1836   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1837   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1838   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1839     return false;
1840 
1841   // find gcd
1842   APInt G, X, Y;
1843   APInt AM = ConstSrcCoeff->getAPInt();
1844   APInt BM = ConstDstCoeff->getAPInt();
1845   unsigned Bits = AM.getBitWidth();
1846   if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1847     // gcd doesn't divide Delta, no dependence
1848     ++ExactRDIVindependence;
1849     return true;
1850   }
1851 
1852   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1853 
1854   // since SCEV construction seems to normalize, LM = 0
1855   APInt SrcUM(Bits, 1, true);
1856   bool SrcUMvalid = false;
1857   // SrcUM is perhaps unavailable, let's check
1858   if (const SCEVConstant *UpperBound =
1859       collectConstantUpperBound(SrcLoop, Delta->getType())) {
1860     SrcUM = UpperBound->getAPInt();
1861     DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1862     SrcUMvalid = true;
1863   }
1864 
1865   APInt DstUM(Bits, 1, true);
1866   bool DstUMvalid = false;
1867   // UM is perhaps unavailable, let's check
1868   if (const SCEVConstant *UpperBound =
1869       collectConstantUpperBound(DstLoop, Delta->getType())) {
1870     DstUM = UpperBound->getAPInt();
1871     DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1872     DstUMvalid = true;
1873   }
1874 
1875   APInt TU(APInt::getSignedMaxValue(Bits));
1876   APInt TL(APInt::getSignedMinValue(Bits));
1877 
1878   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1879   APInt TMUL = BM.sdiv(G);
1880   if (TMUL.sgt(0)) {
1881     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1882     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1883     if (SrcUMvalid) {
1884       TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1885       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1886     }
1887   }
1888   else {
1889     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1890     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1891     if (SrcUMvalid) {
1892       TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1893       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1894     }
1895   }
1896 
1897   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1898   TMUL = AM.sdiv(G);
1899   if (TMUL.sgt(0)) {
1900     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1901     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1902     if (DstUMvalid) {
1903       TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1904       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1905     }
1906   }
1907   else {
1908     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1909     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1910     if (DstUMvalid) {
1911       TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1912       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1913     }
1914   }
1915   if (TL.sgt(TU))
1916     ++ExactRDIVindependence;
1917   return TL.sgt(TU);
1918 }
1919 
1920 
1921 // symbolicRDIVtest -
1922 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1923 // introduce a special case of Banerjee's Inequalities (also called the
1924 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1925 // particularly cases with symbolics. Since it's only able to disprove
1926 // dependence (not compute distances or directions), we'll use it as a
1927 // fall back for the other tests.
1928 //
1929 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1930 // where i and j are induction variables and c1 and c2 are loop invariants,
1931 // we can use the symbolic tests to disprove some dependences, serving as a
1932 // backup for the RDIV test. Note that i and j can be the same variable,
1933 // letting this test serve as a backup for the various SIV tests.
1934 //
1935 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1936 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1937 // loop bounds for the i and j loops, respectively. So, ...
1938 //
1939 // c1 + a1*i = c2 + a2*j
1940 // a1*i - a2*j = c2 - c1
1941 //
1942 // To test for a dependence, we compute c2 - c1 and make sure it's in the
1943 // range of the maximum and minimum possible values of a1*i - a2*j.
1944 // Considering the signs of a1 and a2, we have 4 possible cases:
1945 //
1946 // 1) If a1 >= 0 and a2 >= 0, then
1947 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1948 //              -a2*N2 <= c2 - c1 <= a1*N1
1949 //
1950 // 2) If a1 >= 0 and a2 <= 0, then
1951 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1952 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
1953 //
1954 // 3) If a1 <= 0 and a2 >= 0, then
1955 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1956 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
1957 //
1958 // 4) If a1 <= 0 and a2 <= 0, then
1959 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
1960 //        a1*N1         <= c2 - c1 <=       -a2*N2
1961 //
1962 // return true if dependence disproved
1963 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
1964                                       const SCEV *C1, const SCEV *C2,
1965                                       const Loop *Loop1,
1966                                       const Loop *Loop2) const {
1967   ++SymbolicRDIVapplications;
1968   DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1969   DEBUG(dbgs() << "\t    A1 = " << *A1);
1970   DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1971   DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
1972   DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
1973   DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
1974   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1975   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1976   DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
1977   DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
1978   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1979   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1980   DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
1981   DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
1982   if (SE->isKnownNonNegative(A1)) {
1983     if (SE->isKnownNonNegative(A2)) {
1984       // A1 >= 0 && A2 >= 0
1985       if (N1) {
1986         // make sure that c2 - c1 <= a1*N1
1987         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1988         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
1989         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1990           ++SymbolicRDIVindependence;
1991           return true;
1992         }
1993       }
1994       if (N2) {
1995         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1996         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1997         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
1998         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1999           ++SymbolicRDIVindependence;
2000           return true;
2001         }
2002       }
2003     }
2004     else if (SE->isKnownNonPositive(A2)) {
2005       // a1 >= 0 && a2 <= 0
2006       if (N1 && N2) {
2007         // make sure that c2 - c1 <= a1*N1 - a2*N2
2008         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2009         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2010         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2011         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2012         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2013           ++SymbolicRDIVindependence;
2014           return true;
2015         }
2016       }
2017       // make sure that 0 <= c2 - c1
2018       if (SE->isKnownNegative(C2_C1)) {
2019         ++SymbolicRDIVindependence;
2020         return true;
2021       }
2022     }
2023   }
2024   else if (SE->isKnownNonPositive(A1)) {
2025     if (SE->isKnownNonNegative(A2)) {
2026       // a1 <= 0 && a2 >= 0
2027       if (N1 && N2) {
2028         // make sure that a1*N1 - a2*N2 <= c2 - c1
2029         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2030         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2031         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2032         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2033         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2034           ++SymbolicRDIVindependence;
2035           return true;
2036         }
2037       }
2038       // make sure that c2 - c1 <= 0
2039       if (SE->isKnownPositive(C2_C1)) {
2040         ++SymbolicRDIVindependence;
2041         return true;
2042       }
2043     }
2044     else if (SE->isKnownNonPositive(A2)) {
2045       // a1 <= 0 && a2 <= 0
2046       if (N1) {
2047         // make sure that a1*N1 <= c2 - c1
2048         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2049         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2050         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2051           ++SymbolicRDIVindependence;
2052           return true;
2053         }
2054       }
2055       if (N2) {
2056         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2057         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2058         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2059         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2060           ++SymbolicRDIVindependence;
2061           return true;
2062         }
2063       }
2064     }
2065   }
2066   return false;
2067 }
2068 
2069 
2070 // testSIV -
2071 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2072 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2073 // a2 are constant, we attack it with an SIV test. While they can all be
2074 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2075 // they apply; they're cheaper and sometimes more precise.
2076 //
2077 // Return true if dependence disproved.
2078 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2079                              FullDependence &Result, Constraint &NewConstraint,
2080                              const SCEV *&SplitIter) const {
2081   DEBUG(dbgs() << "    src = " << *Src << "\n");
2082   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2083   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2084   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2085   if (SrcAddRec && DstAddRec) {
2086     const SCEV *SrcConst = SrcAddRec->getStart();
2087     const SCEV *DstConst = DstAddRec->getStart();
2088     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2089     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2090     const Loop *CurLoop = SrcAddRec->getLoop();
2091     assert(CurLoop == DstAddRec->getLoop() &&
2092            "both loops in SIV should be same");
2093     Level = mapSrcLoop(CurLoop);
2094     bool disproven;
2095     if (SrcCoeff == DstCoeff)
2096       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2097                                 Level, Result, NewConstraint);
2098     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2099       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2100                                       Level, Result, NewConstraint, SplitIter);
2101     else
2102       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2103                                Level, Result, NewConstraint);
2104     return disproven ||
2105       gcdMIVtest(Src, Dst, Result) ||
2106       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2107   }
2108   if (SrcAddRec) {
2109     const SCEV *SrcConst = SrcAddRec->getStart();
2110     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2111     const SCEV *DstConst = Dst;
2112     const Loop *CurLoop = SrcAddRec->getLoop();
2113     Level = mapSrcLoop(CurLoop);
2114     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2115                               Level, Result, NewConstraint) ||
2116       gcdMIVtest(Src, Dst, Result);
2117   }
2118   if (DstAddRec) {
2119     const SCEV *DstConst = DstAddRec->getStart();
2120     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2121     const SCEV *SrcConst = Src;
2122     const Loop *CurLoop = DstAddRec->getLoop();
2123     Level = mapDstLoop(CurLoop);
2124     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2125                               CurLoop, Level, Result, NewConstraint) ||
2126       gcdMIVtest(Src, Dst, Result);
2127   }
2128   llvm_unreachable("SIV test expected at least one AddRec");
2129   return false;
2130 }
2131 
2132 
2133 // testRDIV -
2134 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2135 // where i and j are induction variables, c1 and c2 are loop invariant,
2136 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2137 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2138 // It doesn't make sense to talk about distance or direction in this case,
2139 // so there's no point in making special versions of the Strong SIV test or
2140 // the Weak-crossing SIV test.
2141 //
2142 // With minor algebra, this test can also be used for things like
2143 // [c1 + a1*i + a2*j][c2].
2144 //
2145 // Return true if dependence disproved.
2146 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2147                               FullDependence &Result) const {
2148   // we have 3 possible situations here:
2149   //   1) [a*i + b] and [c*j + d]
2150   //   2) [a*i + c*j + b] and [d]
2151   //   3) [b] and [a*i + c*j + d]
2152   // We need to find what we've got and get organized
2153 
2154   const SCEV *SrcConst, *DstConst;
2155   const SCEV *SrcCoeff, *DstCoeff;
2156   const Loop *SrcLoop, *DstLoop;
2157 
2158   DEBUG(dbgs() << "    src = " << *Src << "\n");
2159   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2160   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2161   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2162   if (SrcAddRec && DstAddRec) {
2163     SrcConst = SrcAddRec->getStart();
2164     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2165     SrcLoop = SrcAddRec->getLoop();
2166     DstConst = DstAddRec->getStart();
2167     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2168     DstLoop = DstAddRec->getLoop();
2169   }
2170   else if (SrcAddRec) {
2171     if (const SCEVAddRecExpr *tmpAddRec =
2172         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2173       SrcConst = tmpAddRec->getStart();
2174       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2175       SrcLoop = tmpAddRec->getLoop();
2176       DstConst = Dst;
2177       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2178       DstLoop = SrcAddRec->getLoop();
2179     }
2180     else
2181       llvm_unreachable("RDIV reached by surprising SCEVs");
2182   }
2183   else if (DstAddRec) {
2184     if (const SCEVAddRecExpr *tmpAddRec =
2185         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2186       DstConst = tmpAddRec->getStart();
2187       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2188       DstLoop = tmpAddRec->getLoop();
2189       SrcConst = Src;
2190       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2191       SrcLoop = DstAddRec->getLoop();
2192     }
2193     else
2194       llvm_unreachable("RDIV reached by surprising SCEVs");
2195   }
2196   else
2197     llvm_unreachable("RDIV expected at least one AddRec");
2198   return exactRDIVtest(SrcCoeff, DstCoeff,
2199                        SrcConst, DstConst,
2200                        SrcLoop, DstLoop,
2201                        Result) ||
2202     gcdMIVtest(Src, Dst, Result) ||
2203     symbolicRDIVtest(SrcCoeff, DstCoeff,
2204                      SrcConst, DstConst,
2205                      SrcLoop, DstLoop);
2206 }
2207 
2208 
2209 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2210 // Return true if dependence disproved.
2211 // Can sometimes refine direction vectors.
2212 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2213                              const SmallBitVector &Loops,
2214                              FullDependence &Result) const {
2215   DEBUG(dbgs() << "    src = " << *Src << "\n");
2216   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2217   Result.Consistent = false;
2218   return gcdMIVtest(Src, Dst, Result) ||
2219     banerjeeMIVtest(Src, Dst, Loops, Result);
2220 }
2221 
2222 
2223 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2224 // in this case 10. If there is no constant part, returns NULL.
2225 static
2226 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2227   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2228     return Constant;
2229   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2230     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2231       return Constant;
2232   return nullptr;
2233 }
2234 
2235 
2236 //===----------------------------------------------------------------------===//
2237 // gcdMIVtest -
2238 // Tests an MIV subscript pair for dependence.
2239 // Returns true if any possible dependence is disproved.
2240 // Marks the result as inconsistent.
2241 // Can sometimes disprove the equal direction for 1 or more loops,
2242 // as discussed in Michael Wolfe's book,
2243 // High Performance Compilers for Parallel Computing, page 235.
2244 //
2245 // We spend some effort (code!) to handle cases like
2246 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2247 // but M and N are just loop-invariant variables.
2248 // This should help us handle linearized subscripts;
2249 // also makes this test a useful backup to the various SIV tests.
2250 //
2251 // It occurs to me that the presence of loop-invariant variables
2252 // changes the nature of the test from "greatest common divisor"
2253 // to "a common divisor".
2254 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2255                                 FullDependence &Result) const {
2256   DEBUG(dbgs() << "starting gcd\n");
2257   ++GCDapplications;
2258   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2259   APInt RunningGCD = APInt::getNullValue(BitWidth);
2260 
2261   // Examine Src coefficients.
2262   // Compute running GCD and record source constant.
2263   // Because we're looking for the constant at the end of the chain,
2264   // we can't quit the loop just because the GCD == 1.
2265   const SCEV *Coefficients = Src;
2266   while (const SCEVAddRecExpr *AddRec =
2267          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2268     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2269     // If the coefficient is the product of a constant and other stuff,
2270     // we can use the constant in the GCD computation.
2271     const auto *Constant = getConstantPart(Coeff);
2272     if (!Constant)
2273       return false;
2274     APInt ConstCoeff = Constant->getAPInt();
2275     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2276     Coefficients = AddRec->getStart();
2277   }
2278   const SCEV *SrcConst = Coefficients;
2279 
2280   // Examine Dst coefficients.
2281   // Compute running GCD and record destination constant.
2282   // Because we're looking for the constant at the end of the chain,
2283   // we can't quit the loop just because the GCD == 1.
2284   Coefficients = Dst;
2285   while (const SCEVAddRecExpr *AddRec =
2286          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2287     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2288     // If the coefficient is the product of a constant and other stuff,
2289     // we can use the constant in the GCD computation.
2290     const auto *Constant = getConstantPart(Coeff);
2291     if (!Constant)
2292       return false;
2293     APInt ConstCoeff = Constant->getAPInt();
2294     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2295     Coefficients = AddRec->getStart();
2296   }
2297   const SCEV *DstConst = Coefficients;
2298 
2299   APInt ExtraGCD = APInt::getNullValue(BitWidth);
2300   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2301   DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2302   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2303   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2304     // If Delta is a sum of products, we may be able to make further progress.
2305     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2306       const SCEV *Operand = Sum->getOperand(Op);
2307       if (isa<SCEVConstant>(Operand)) {
2308         assert(!Constant && "Surprised to find multiple constants");
2309         Constant = cast<SCEVConstant>(Operand);
2310       }
2311       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2312         // Search for constant operand to participate in GCD;
2313         // If none found; return false.
2314         const SCEVConstant *ConstOp = getConstantPart(Product);
2315         if (!ConstOp)
2316           return false;
2317         APInt ConstOpValue = ConstOp->getAPInt();
2318         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2319                                                    ConstOpValue.abs());
2320       }
2321       else
2322         return false;
2323     }
2324   }
2325   if (!Constant)
2326     return false;
2327   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2328   DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2329   if (ConstDelta == 0)
2330     return false;
2331   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2332   DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2333   APInt Remainder = ConstDelta.srem(RunningGCD);
2334   if (Remainder != 0) {
2335     ++GCDindependence;
2336     return true;
2337   }
2338 
2339   // Try to disprove equal directions.
2340   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2341   // the code above can't disprove the dependence because the GCD = 1.
2342   // So we consider what happen if i = i' and what happens if j = j'.
2343   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2344   // which is infeasible, so we can disallow the = direction for the i level.
2345   // Setting j = j' doesn't help matters, so we end up with a direction vector
2346   // of [<>, *]
2347   //
2348   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2349   // we need to remember that the constant part is 5 and the RunningGCD should
2350   // be initialized to ExtraGCD = 30.
2351   DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2352 
2353   bool Improved = false;
2354   Coefficients = Src;
2355   while (const SCEVAddRecExpr *AddRec =
2356          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2357     Coefficients = AddRec->getStart();
2358     const Loop *CurLoop = AddRec->getLoop();
2359     RunningGCD = ExtraGCD;
2360     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2361     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2362     const SCEV *Inner = Src;
2363     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2364       AddRec = cast<SCEVAddRecExpr>(Inner);
2365       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2366       if (CurLoop == AddRec->getLoop())
2367         ; // SrcCoeff == Coeff
2368       else {
2369         // If the coefficient is the product of a constant and other stuff,
2370         // we can use the constant in the GCD computation.
2371         Constant = getConstantPart(Coeff);
2372         if (!Constant)
2373           return false;
2374         APInt ConstCoeff = Constant->getAPInt();
2375         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2376       }
2377       Inner = AddRec->getStart();
2378     }
2379     Inner = Dst;
2380     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2381       AddRec = cast<SCEVAddRecExpr>(Inner);
2382       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2383       if (CurLoop == AddRec->getLoop())
2384         DstCoeff = Coeff;
2385       else {
2386         // If the coefficient is the product of a constant and other stuff,
2387         // we can use the constant in the GCD computation.
2388         Constant = getConstantPart(Coeff);
2389         if (!Constant)
2390           return false;
2391         APInt ConstCoeff = Constant->getAPInt();
2392         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2393       }
2394       Inner = AddRec->getStart();
2395     }
2396     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2397     // If the coefficient is the product of a constant and other stuff,
2398     // we can use the constant in the GCD computation.
2399     Constant = getConstantPart(Delta);
2400     if (!Constant)
2401       // The difference of the two coefficients might not be a product
2402       // or constant, in which case we give up on this direction.
2403       continue;
2404     APInt ConstCoeff = Constant->getAPInt();
2405     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2406     DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2407     if (RunningGCD != 0) {
2408       Remainder = ConstDelta.srem(RunningGCD);
2409       DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2410       if (Remainder != 0) {
2411         unsigned Level = mapSrcLoop(CurLoop);
2412         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2413         Improved = true;
2414       }
2415     }
2416   }
2417   if (Improved)
2418     ++GCDsuccesses;
2419   DEBUG(dbgs() << "all done\n");
2420   return false;
2421 }
2422 
2423 
2424 //===----------------------------------------------------------------------===//
2425 // banerjeeMIVtest -
2426 // Use Banerjee's Inequalities to test an MIV subscript pair.
2427 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2428 // Generally follows the discussion in Section 2.5.2 of
2429 //
2430 //    Optimizing Supercompilers for Supercomputers
2431 //    Michael Wolfe
2432 //
2433 // The inequalities given on page 25 are simplified in that loops are
2434 // normalized so that the lower bound is always 0 and the stride is always 1.
2435 // For example, Wolfe gives
2436 //
2437 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2438 //
2439 // where A_k is the coefficient of the kth index in the source subscript,
2440 // B_k is the coefficient of the kth index in the destination subscript,
2441 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2442 // index, and N_k is the stride of the kth index. Since all loops are normalized
2443 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2444 // equation to
2445 //
2446 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2447 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2448 //
2449 // Similar simplifications are possible for the other equations.
2450 //
2451 // When we can't determine the number of iterations for a loop,
2452 // we use NULL as an indicator for the worst case, infinity.
2453 // When computing the upper bound, NULL denotes +inf;
2454 // for the lower bound, NULL denotes -inf.
2455 //
2456 // Return true if dependence disproved.
2457 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2458                                      const SmallBitVector &Loops,
2459                                      FullDependence &Result) const {
2460   DEBUG(dbgs() << "starting Banerjee\n");
2461   ++BanerjeeApplications;
2462   DEBUG(dbgs() << "    Src = " << *Src << '\n');
2463   const SCEV *A0;
2464   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2465   DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2466   const SCEV *B0;
2467   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2468   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2469   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2470   DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2471 
2472   // Compute bounds for all the * directions.
2473   DEBUG(dbgs() << "\tBounds[*]\n");
2474   for (unsigned K = 1; K <= MaxLevels; ++K) {
2475     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2476     Bound[K].Direction = Dependence::DVEntry::ALL;
2477     Bound[K].DirSet = Dependence::DVEntry::NONE;
2478     findBoundsALL(A, B, Bound, K);
2479 #ifndef NDEBUG
2480     DEBUG(dbgs() << "\t    " << K << '\t');
2481     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2482       DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2483     else
2484       DEBUG(dbgs() << "-inf\t");
2485     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2486       DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2487     else
2488       DEBUG(dbgs() << "+inf\n");
2489 #endif
2490   }
2491 
2492   // Test the *, *, *, ... case.
2493   bool Disproved = false;
2494   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2495     // Explore the direction vector hierarchy.
2496     unsigned DepthExpanded = 0;
2497     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2498                                          Loops, DepthExpanded, Delta);
2499     if (NewDeps > 0) {
2500       bool Improved = false;
2501       for (unsigned K = 1; K <= CommonLevels; ++K) {
2502         if (Loops[K]) {
2503           unsigned Old = Result.DV[K - 1].Direction;
2504           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2505           Improved |= Old != Result.DV[K - 1].Direction;
2506           if (!Result.DV[K - 1].Direction) {
2507             Improved = false;
2508             Disproved = true;
2509             break;
2510           }
2511         }
2512       }
2513       if (Improved)
2514         ++BanerjeeSuccesses;
2515     }
2516     else {
2517       ++BanerjeeIndependence;
2518       Disproved = true;
2519     }
2520   }
2521   else {
2522     ++BanerjeeIndependence;
2523     Disproved = true;
2524   }
2525   delete [] Bound;
2526   delete [] A;
2527   delete [] B;
2528   return Disproved;
2529 }
2530 
2531 
2532 // Hierarchically expands the direction vector
2533 // search space, combining the directions of discovered dependences
2534 // in the DirSet field of Bound. Returns the number of distinct
2535 // dependences discovered. If the dependence is disproved,
2536 // it will return 0.
2537 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2538                                            CoefficientInfo *B, BoundInfo *Bound,
2539                                            const SmallBitVector &Loops,
2540                                            unsigned &DepthExpanded,
2541                                            const SCEV *Delta) const {
2542   if (Level > CommonLevels) {
2543     // record result
2544     DEBUG(dbgs() << "\t[");
2545     for (unsigned K = 1; K <= CommonLevels; ++K) {
2546       if (Loops[K]) {
2547         Bound[K].DirSet |= Bound[K].Direction;
2548 #ifndef NDEBUG
2549         switch (Bound[K].Direction) {
2550         case Dependence::DVEntry::LT:
2551           DEBUG(dbgs() << " <");
2552           break;
2553         case Dependence::DVEntry::EQ:
2554           DEBUG(dbgs() << " =");
2555           break;
2556         case Dependence::DVEntry::GT:
2557           DEBUG(dbgs() << " >");
2558           break;
2559         case Dependence::DVEntry::ALL:
2560           DEBUG(dbgs() << " *");
2561           break;
2562         default:
2563           llvm_unreachable("unexpected Bound[K].Direction");
2564         }
2565 #endif
2566       }
2567     }
2568     DEBUG(dbgs() << " ]\n");
2569     return 1;
2570   }
2571   if (Loops[Level]) {
2572     if (Level > DepthExpanded) {
2573       DepthExpanded = Level;
2574       // compute bounds for <, =, > at current level
2575       findBoundsLT(A, B, Bound, Level);
2576       findBoundsGT(A, B, Bound, Level);
2577       findBoundsEQ(A, B, Bound, Level);
2578 #ifndef NDEBUG
2579       DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2580       DEBUG(dbgs() << "\t    <\t");
2581       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2582         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2583       else
2584         DEBUG(dbgs() << "-inf\t");
2585       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2586         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2587       else
2588         DEBUG(dbgs() << "+inf\n");
2589       DEBUG(dbgs() << "\t    =\t");
2590       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2591         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2592       else
2593         DEBUG(dbgs() << "-inf\t");
2594       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2595         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2596       else
2597         DEBUG(dbgs() << "+inf\n");
2598       DEBUG(dbgs() << "\t    >\t");
2599       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2600         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2601       else
2602         DEBUG(dbgs() << "-inf\t");
2603       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2604         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2605       else
2606         DEBUG(dbgs() << "+inf\n");
2607 #endif
2608     }
2609 
2610     unsigned NewDeps = 0;
2611 
2612     // test bounds for <, *, *, ...
2613     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2614       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2615                                    Loops, DepthExpanded, Delta);
2616 
2617     // Test bounds for =, *, *, ...
2618     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2619       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2620                                    Loops, DepthExpanded, Delta);
2621 
2622     // test bounds for >, *, *, ...
2623     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2624       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2625                                    Loops, DepthExpanded, Delta);
2626 
2627     Bound[Level].Direction = Dependence::DVEntry::ALL;
2628     return NewDeps;
2629   }
2630   else
2631     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2632 }
2633 
2634 
2635 // Returns true iff the current bounds are plausible.
2636 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2637                                 BoundInfo *Bound, const SCEV *Delta) const {
2638   Bound[Level].Direction = DirKind;
2639   if (const SCEV *LowerBound = getLowerBound(Bound))
2640     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2641       return false;
2642   if (const SCEV *UpperBound = getUpperBound(Bound))
2643     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2644       return false;
2645   return true;
2646 }
2647 
2648 
2649 // Computes the upper and lower bounds for level K
2650 // using the * direction. Records them in Bound.
2651 // Wolfe gives the equations
2652 //
2653 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2654 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2655 //
2656 // Since we normalize loops, we can simplify these equations to
2657 //
2658 //    LB^*_k = (A^-_k - B^+_k)U_k
2659 //    UB^*_k = (A^+_k - B^-_k)U_k
2660 //
2661 // We must be careful to handle the case where the upper bound is unknown.
2662 // Note that the lower bound is always <= 0
2663 // and the upper bound is always >= 0.
2664 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2665                                    BoundInfo *Bound, unsigned K) const {
2666   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2667   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2668   if (Bound[K].Iterations) {
2669     Bound[K].Lower[Dependence::DVEntry::ALL] =
2670       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2671                      Bound[K].Iterations);
2672     Bound[K].Upper[Dependence::DVEntry::ALL] =
2673       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2674                      Bound[K].Iterations);
2675   }
2676   else {
2677     // If the difference is 0, we won't need to know the number of iterations.
2678     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2679       Bound[K].Lower[Dependence::DVEntry::ALL] =
2680           SE->getZero(A[K].Coeff->getType());
2681     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2682       Bound[K].Upper[Dependence::DVEntry::ALL] =
2683           SE->getZero(A[K].Coeff->getType());
2684   }
2685 }
2686 
2687 
2688 // Computes the upper and lower bounds for level K
2689 // using the = direction. Records them in Bound.
2690 // Wolfe gives the equations
2691 //
2692 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2693 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2694 //
2695 // Since we normalize loops, we can simplify these equations to
2696 //
2697 //    LB^=_k = (A_k - B_k)^- U_k
2698 //    UB^=_k = (A_k - B_k)^+ U_k
2699 //
2700 // We must be careful to handle the case where the upper bound is unknown.
2701 // Note that the lower bound is always <= 0
2702 // and the upper bound is always >= 0.
2703 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2704                                   BoundInfo *Bound, unsigned K) const {
2705   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2706   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2707   if (Bound[K].Iterations) {
2708     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2709     const SCEV *NegativePart = getNegativePart(Delta);
2710     Bound[K].Lower[Dependence::DVEntry::EQ] =
2711       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2712     const SCEV *PositivePart = getPositivePart(Delta);
2713     Bound[K].Upper[Dependence::DVEntry::EQ] =
2714       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2715   }
2716   else {
2717     // If the positive/negative part of the difference is 0,
2718     // we won't need to know the number of iterations.
2719     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2720     const SCEV *NegativePart = getNegativePart(Delta);
2721     if (NegativePart->isZero())
2722       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2723     const SCEV *PositivePart = getPositivePart(Delta);
2724     if (PositivePart->isZero())
2725       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2726   }
2727 }
2728 
2729 
2730 // Computes the upper and lower bounds for level K
2731 // using the < direction. Records them in Bound.
2732 // Wolfe gives the equations
2733 //
2734 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2735 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2736 //
2737 // Since we normalize loops, we can simplify these equations to
2738 //
2739 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2740 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2741 //
2742 // We must be careful to handle the case where the upper bound is unknown.
2743 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2744                                   BoundInfo *Bound, unsigned K) const {
2745   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2746   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2747   if (Bound[K].Iterations) {
2748     const SCEV *Iter_1 = SE->getMinusSCEV(
2749         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2750     const SCEV *NegPart =
2751       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2752     Bound[K].Lower[Dependence::DVEntry::LT] =
2753       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2754     const SCEV *PosPart =
2755       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2756     Bound[K].Upper[Dependence::DVEntry::LT] =
2757       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2758   }
2759   else {
2760     // If the positive/negative part of the difference is 0,
2761     // we won't need to know the number of iterations.
2762     const SCEV *NegPart =
2763       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2764     if (NegPart->isZero())
2765       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2766     const SCEV *PosPart =
2767       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2768     if (PosPart->isZero())
2769       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2770   }
2771 }
2772 
2773 
2774 // Computes the upper and lower bounds for level K
2775 // using the > direction. Records them in Bound.
2776 // Wolfe gives the equations
2777 //
2778 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2779 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2780 //
2781 // Since we normalize loops, we can simplify these equations to
2782 //
2783 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2784 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2785 //
2786 // We must be careful to handle the case where the upper bound is unknown.
2787 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2788                                   BoundInfo *Bound, unsigned K) const {
2789   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2790   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2791   if (Bound[K].Iterations) {
2792     const SCEV *Iter_1 = SE->getMinusSCEV(
2793         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2794     const SCEV *NegPart =
2795       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2796     Bound[K].Lower[Dependence::DVEntry::GT] =
2797       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2798     const SCEV *PosPart =
2799       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2800     Bound[K].Upper[Dependence::DVEntry::GT] =
2801       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2802   }
2803   else {
2804     // If the positive/negative part of the difference is 0,
2805     // we won't need to know the number of iterations.
2806     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2807     if (NegPart->isZero())
2808       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2809     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2810     if (PosPart->isZero())
2811       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2812   }
2813 }
2814 
2815 
2816 // X^+ = max(X, 0)
2817 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2818   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2819 }
2820 
2821 
2822 // X^- = min(X, 0)
2823 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2824   return SE->getSMinExpr(X, SE->getZero(X->getType()));
2825 }
2826 
2827 
2828 // Walks through the subscript,
2829 // collecting each coefficient, the associated loop bounds,
2830 // and recording its positive and negative parts for later use.
2831 DependenceInfo::CoefficientInfo *
2832 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2833                                  const SCEV *&Constant) const {
2834   const SCEV *Zero = SE->getZero(Subscript->getType());
2835   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2836   for (unsigned K = 1; K <= MaxLevels; ++K) {
2837     CI[K].Coeff = Zero;
2838     CI[K].PosPart = Zero;
2839     CI[K].NegPart = Zero;
2840     CI[K].Iterations = nullptr;
2841   }
2842   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2843     const Loop *L = AddRec->getLoop();
2844     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2845     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2846     CI[K].PosPart = getPositivePart(CI[K].Coeff);
2847     CI[K].NegPart = getNegativePart(CI[K].Coeff);
2848     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2849     Subscript = AddRec->getStart();
2850   }
2851   Constant = Subscript;
2852 #ifndef NDEBUG
2853   DEBUG(dbgs() << "\tCoefficient Info\n");
2854   for (unsigned K = 1; K <= MaxLevels; ++K) {
2855     DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2856     DEBUG(dbgs() << "\tPos Part = ");
2857     DEBUG(dbgs() << *CI[K].PosPart);
2858     DEBUG(dbgs() << "\tNeg Part = ");
2859     DEBUG(dbgs() << *CI[K].NegPart);
2860     DEBUG(dbgs() << "\tUpper Bound = ");
2861     if (CI[K].Iterations)
2862       DEBUG(dbgs() << *CI[K].Iterations);
2863     else
2864       DEBUG(dbgs() << "+inf");
2865     DEBUG(dbgs() << '\n');
2866   }
2867   DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2868 #endif
2869   return CI;
2870 }
2871 
2872 
2873 // Looks through all the bounds info and
2874 // computes the lower bound given the current direction settings
2875 // at each level. If the lower bound for any level is -inf,
2876 // the result is -inf.
2877 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2878   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2879   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2880     if (Bound[K].Lower[Bound[K].Direction])
2881       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2882     else
2883       Sum = nullptr;
2884   }
2885   return Sum;
2886 }
2887 
2888 
2889 // Looks through all the bounds info and
2890 // computes the upper bound given the current direction settings
2891 // at each level. If the upper bound at any level is +inf,
2892 // the result is +inf.
2893 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2894   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2895   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2896     if (Bound[K].Upper[Bound[K].Direction])
2897       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2898     else
2899       Sum = nullptr;
2900   }
2901   return Sum;
2902 }
2903 
2904 
2905 //===----------------------------------------------------------------------===//
2906 // Constraint manipulation for Delta test.
2907 
2908 // Given a linear SCEV,
2909 // return the coefficient (the step)
2910 // corresponding to the specified loop.
2911 // If there isn't one, return 0.
2912 // For example, given a*i + b*j + c*k, finding the coefficient
2913 // corresponding to the j loop would yield b.
2914 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2915                                             const Loop *TargetLoop) const {
2916   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2917   if (!AddRec)
2918     return SE->getZero(Expr->getType());
2919   if (AddRec->getLoop() == TargetLoop)
2920     return AddRec->getStepRecurrence(*SE);
2921   return findCoefficient(AddRec->getStart(), TargetLoop);
2922 }
2923 
2924 
2925 // Given a linear SCEV,
2926 // return the SCEV given by zeroing out the coefficient
2927 // corresponding to the specified loop.
2928 // For example, given a*i + b*j + c*k, zeroing the coefficient
2929 // corresponding to the j loop would yield a*i + c*k.
2930 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
2931                                             const Loop *TargetLoop) const {
2932   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2933   if (!AddRec)
2934     return Expr; // ignore
2935   if (AddRec->getLoop() == TargetLoop)
2936     return AddRec->getStart();
2937   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2938                            AddRec->getStepRecurrence(*SE),
2939                            AddRec->getLoop(),
2940                            AddRec->getNoWrapFlags());
2941 }
2942 
2943 
2944 // Given a linear SCEV Expr,
2945 // return the SCEV given by adding some Value to the
2946 // coefficient corresponding to the specified TargetLoop.
2947 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
2948 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
2949 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
2950                                              const Loop *TargetLoop,
2951                                              const SCEV *Value) const {
2952   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2953   if (!AddRec) // create a new addRec
2954     return SE->getAddRecExpr(Expr,
2955                              Value,
2956                              TargetLoop,
2957                              SCEV::FlagAnyWrap); // Worst case, with no info.
2958   if (AddRec->getLoop() == TargetLoop) {
2959     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2960     if (Sum->isZero())
2961       return AddRec->getStart();
2962     return SE->getAddRecExpr(AddRec->getStart(),
2963                              Sum,
2964                              AddRec->getLoop(),
2965                              AddRec->getNoWrapFlags());
2966   }
2967   if (SE->isLoopInvariant(AddRec, TargetLoop))
2968     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
2969   return SE->getAddRecExpr(
2970       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
2971       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
2972       AddRec->getNoWrapFlags());
2973 }
2974 
2975 
2976 // Review the constraints, looking for opportunities
2977 // to simplify a subscript pair (Src and Dst).
2978 // Return true if some simplification occurs.
2979 // If the simplification isn't exact (that is, if it is conservative
2980 // in terms of dependence), set consistent to false.
2981 // Corresponds to Figure 5 from the paper
2982 //
2983 //            Practical Dependence Testing
2984 //            Goff, Kennedy, Tseng
2985 //            PLDI 1991
2986 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
2987                                SmallBitVector &Loops,
2988                                SmallVectorImpl<Constraint> &Constraints,
2989                                bool &Consistent) {
2990   bool Result = false;
2991   for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
2992     DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
2993     DEBUG(Constraints[LI].dump(dbgs()));
2994     if (Constraints[LI].isDistance())
2995       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2996     else if (Constraints[LI].isLine())
2997       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2998     else if (Constraints[LI].isPoint())
2999       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3000   }
3001   return Result;
3002 }
3003 
3004 
3005 // Attempt to propagate a distance
3006 // constraint into a subscript pair (Src and Dst).
3007 // Return true if some simplification occurs.
3008 // If the simplification isn't exact (that is, if it is conservative
3009 // in terms of dependence), set consistent to false.
3010 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3011                                        Constraint &CurConstraint,
3012                                        bool &Consistent) {
3013   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3014   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3015   const SCEV *A_K = findCoefficient(Src, CurLoop);
3016   if (A_K->isZero())
3017     return false;
3018   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3019   Src = SE->getMinusSCEV(Src, DA_K);
3020   Src = zeroCoefficient(Src, CurLoop);
3021   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3022   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3023   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3024   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3025   if (!findCoefficient(Dst, CurLoop)->isZero())
3026     Consistent = false;
3027   return true;
3028 }
3029 
3030 
3031 // Attempt to propagate a line
3032 // constraint into a subscript pair (Src and Dst).
3033 // Return true if some simplification occurs.
3034 // If the simplification isn't exact (that is, if it is conservative
3035 // in terms of dependence), set consistent to false.
3036 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3037                                    Constraint &CurConstraint,
3038                                    bool &Consistent) {
3039   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3040   const SCEV *A = CurConstraint.getA();
3041   const SCEV *B = CurConstraint.getB();
3042   const SCEV *C = CurConstraint.getC();
3043   DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3044   DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3045   DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3046   if (A->isZero()) {
3047     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3048     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3049     if (!Bconst || !Cconst) return false;
3050     APInt Beta = Bconst->getAPInt();
3051     APInt Charlie = Cconst->getAPInt();
3052     APInt CdivB = Charlie.sdiv(Beta);
3053     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3054     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3055     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3056     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3057     Dst = zeroCoefficient(Dst, CurLoop);
3058     if (!findCoefficient(Src, CurLoop)->isZero())
3059       Consistent = false;
3060   }
3061   else if (B->isZero()) {
3062     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3063     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3064     if (!Aconst || !Cconst) return false;
3065     APInt Alpha = Aconst->getAPInt();
3066     APInt Charlie = Cconst->getAPInt();
3067     APInt CdivA = Charlie.sdiv(Alpha);
3068     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3069     const SCEV *A_K = findCoefficient(Src, CurLoop);
3070     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3071     Src = zeroCoefficient(Src, CurLoop);
3072     if (!findCoefficient(Dst, CurLoop)->isZero())
3073       Consistent = false;
3074   }
3075   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3076     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3077     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3078     if (!Aconst || !Cconst) return false;
3079     APInt Alpha = Aconst->getAPInt();
3080     APInt Charlie = Cconst->getAPInt();
3081     APInt CdivA = Charlie.sdiv(Alpha);
3082     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3083     const SCEV *A_K = findCoefficient(Src, CurLoop);
3084     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3085     Src = zeroCoefficient(Src, CurLoop);
3086     Dst = addToCoefficient(Dst, CurLoop, A_K);
3087     if (!findCoefficient(Dst, CurLoop)->isZero())
3088       Consistent = false;
3089   }
3090   else {
3091     // paper is incorrect here, or perhaps just misleading
3092     const SCEV *A_K = findCoefficient(Src, CurLoop);
3093     Src = SE->getMulExpr(Src, A);
3094     Dst = SE->getMulExpr(Dst, A);
3095     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3096     Src = zeroCoefficient(Src, CurLoop);
3097     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3098     if (!findCoefficient(Dst, CurLoop)->isZero())
3099       Consistent = false;
3100   }
3101   DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3102   DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3103   return true;
3104 }
3105 
3106 
3107 // Attempt to propagate a point
3108 // constraint into a subscript pair (Src and Dst).
3109 // Return true if some simplification occurs.
3110 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3111                                     Constraint &CurConstraint) {
3112   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3113   const SCEV *A_K = findCoefficient(Src, CurLoop);
3114   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3115   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3116   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3117   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3118   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3119   Src = zeroCoefficient(Src, CurLoop);
3120   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3121   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3122   Dst = zeroCoefficient(Dst, CurLoop);
3123   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3124   return true;
3125 }
3126 
3127 
3128 // Update direction vector entry based on the current constraint.
3129 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3130                                      const Constraint &CurConstraint) const {
3131   DEBUG(dbgs() << "\tUpdate direction, constraint =");
3132   DEBUG(CurConstraint.dump(dbgs()));
3133   if (CurConstraint.isAny())
3134     ; // use defaults
3135   else if (CurConstraint.isDistance()) {
3136     // this one is consistent, the others aren't
3137     Level.Scalar = false;
3138     Level.Distance = CurConstraint.getD();
3139     unsigned NewDirection = Dependence::DVEntry::NONE;
3140     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3141       NewDirection = Dependence::DVEntry::EQ;
3142     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3143       NewDirection |= Dependence::DVEntry::LT;
3144     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3145       NewDirection |= Dependence::DVEntry::GT;
3146     Level.Direction &= NewDirection;
3147   }
3148   else if (CurConstraint.isLine()) {
3149     Level.Scalar = false;
3150     Level.Distance = nullptr;
3151     // direction should be accurate
3152   }
3153   else if (CurConstraint.isPoint()) {
3154     Level.Scalar = false;
3155     Level.Distance = nullptr;
3156     unsigned NewDirection = Dependence::DVEntry::NONE;
3157     if (!isKnownPredicate(CmpInst::ICMP_NE,
3158                           CurConstraint.getY(),
3159                           CurConstraint.getX()))
3160       // if X may be = Y
3161       NewDirection |= Dependence::DVEntry::EQ;
3162     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3163                           CurConstraint.getY(),
3164                           CurConstraint.getX()))
3165       // if Y may be > X
3166       NewDirection |= Dependence::DVEntry::LT;
3167     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3168                           CurConstraint.getY(),
3169                           CurConstraint.getX()))
3170       // if Y may be < X
3171       NewDirection |= Dependence::DVEntry::GT;
3172     Level.Direction &= NewDirection;
3173   }
3174   else
3175     llvm_unreachable("constraint has unexpected kind");
3176 }
3177 
3178 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3179 /// source and destination array references are recurrences on a nested loop,
3180 /// this function flattens the nested recurrences into separate recurrences
3181 /// for each loop level.
3182 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3183                                     SmallVectorImpl<Subscript> &Pair) {
3184   Value *SrcPtr = getPointerOperand(Src);
3185   Value *DstPtr = getPointerOperand(Dst);
3186 
3187   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3188   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3189 
3190   // Below code mimics the code in Delinearization.cpp
3191   const SCEV *SrcAccessFn =
3192     SE->getSCEVAtScope(SrcPtr, SrcLoop);
3193   const SCEV *DstAccessFn =
3194     SE->getSCEVAtScope(DstPtr, DstLoop);
3195 
3196   const SCEVUnknown *SrcBase =
3197       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3198   const SCEVUnknown *DstBase =
3199       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3200 
3201   if (!SrcBase || !DstBase || SrcBase != DstBase)
3202     return false;
3203 
3204   const SCEV *ElementSize = SE->getElementSize(Src);
3205   if (ElementSize != SE->getElementSize(Dst))
3206     return false;
3207 
3208   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3209   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3210 
3211   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3212   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3213   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3214     return false;
3215 
3216   // First step: collect parametric terms in both array references.
3217   SmallVector<const SCEV *, 4> Terms;
3218   SE->collectParametricTerms(SrcAR, Terms);
3219   SE->collectParametricTerms(DstAR, Terms);
3220 
3221   // Second step: find subscript sizes.
3222   SmallVector<const SCEV *, 4> Sizes;
3223   SE->findArrayDimensions(Terms, Sizes, ElementSize);
3224 
3225   // Third step: compute the access functions for each subscript.
3226   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3227   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3228   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3229 
3230   // Fail when there is only a subscript: that's a linearized access function.
3231   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3232       SrcSubscripts.size() != DstSubscripts.size())
3233     return false;
3234 
3235   int size = SrcSubscripts.size();
3236 
3237   DEBUG({
3238       dbgs() << "\nSrcSubscripts: ";
3239     for (int i = 0; i < size; i++)
3240       dbgs() << *SrcSubscripts[i];
3241     dbgs() << "\nDstSubscripts: ";
3242     for (int i = 0; i < size; i++)
3243       dbgs() << *DstSubscripts[i];
3244     });
3245 
3246   // The delinearization transforms a single-subscript MIV dependence test into
3247   // a multi-subscript SIV dependence test that is easier to compute. So we
3248   // resize Pair to contain as many pairs of subscripts as the delinearization
3249   // has found, and then initialize the pairs following the delinearization.
3250   Pair.resize(size);
3251   for (int i = 0; i < size; ++i) {
3252     Pair[i].Src = SrcSubscripts[i];
3253     Pair[i].Dst = DstSubscripts[i];
3254     unifySubscriptType(&Pair[i]);
3255 
3256     // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3257     // delinearization has found, and add these constraints to the dependence
3258     // check to avoid memory accesses overflow from one dimension into another.
3259     // This is related to the problem of determining the existence of data
3260     // dependences in array accesses using a different number of subscripts: in
3261     // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
3262   }
3263 
3264   return true;
3265 }
3266 
3267 //===----------------------------------------------------------------------===//
3268 
3269 #ifndef NDEBUG
3270 // For debugging purposes, dump a small bit vector to dbgs().
3271 static void dumpSmallBitVector(SmallBitVector &BV) {
3272   dbgs() << "{";
3273   for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3274     dbgs() << VI;
3275     if (BV.find_next(VI) >= 0)
3276       dbgs() << ' ';
3277   }
3278   dbgs() << "}\n";
3279 }
3280 #endif
3281 
3282 // depends -
3283 // Returns NULL if there is no dependence.
3284 // Otherwise, return a Dependence with as many details as possible.
3285 // Corresponds to Section 3.1 in the paper
3286 //
3287 //            Practical Dependence Testing
3288 //            Goff, Kennedy, Tseng
3289 //            PLDI 1991
3290 //
3291 // Care is required to keep the routine below, getSplitIteration(),
3292 // up to date with respect to this routine.
3293 std::unique_ptr<Dependence>
3294 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3295                         bool PossiblyLoopIndependent) {
3296   if (Src == Dst)
3297     PossiblyLoopIndependent = false;
3298 
3299   if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3300       (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3301     // if both instructions don't reference memory, there's no dependence
3302     return nullptr;
3303 
3304   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3305     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3306     DEBUG(dbgs() << "can only handle simple loads and stores\n");
3307     return make_unique<Dependence>(Src, Dst);
3308   }
3309 
3310   Value *SrcPtr = getPointerOperand(Src);
3311   Value *DstPtr = getPointerOperand(Dst);
3312 
3313   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
3314                                  SrcPtr)) {
3315   case MayAlias:
3316   case PartialAlias:
3317     // cannot analyse objects if we don't understand their aliasing.
3318     DEBUG(dbgs() << "can't analyze may or partial alias\n");
3319     return make_unique<Dependence>(Src, Dst);
3320   case NoAlias:
3321     // If the objects noalias, they are distinct, accesses are independent.
3322     DEBUG(dbgs() << "no alias\n");
3323     return nullptr;
3324   case MustAlias:
3325     break; // The underlying objects alias; test accesses for dependence.
3326   }
3327 
3328   // establish loop nesting levels
3329   establishNestingLevels(Src, Dst);
3330   DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3331   DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3332 
3333   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3334   ++TotalArrayPairs;
3335 
3336   // See if there are GEPs we can use.
3337   bool UsefulGEP = false;
3338   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3339   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3340   if (SrcGEP && DstGEP &&
3341       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3342     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3343     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3344     DEBUG(dbgs() << "    SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3345     DEBUG(dbgs() << "    DstPtrSCEV = " << *DstPtrSCEV << "\n");
3346 
3347     UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3348                 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
3349                 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
3350   }
3351   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3352   SmallVector<Subscript, 4> Pair(Pairs);
3353   if (UsefulGEP) {
3354     DEBUG(dbgs() << "    using GEPs\n");
3355     unsigned P = 0;
3356     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3357            SrcEnd = SrcGEP->idx_end(),
3358            DstIdx = DstGEP->idx_begin();
3359          SrcIdx != SrcEnd;
3360          ++SrcIdx, ++DstIdx, ++P) {
3361       Pair[P].Src = SE->getSCEV(*SrcIdx);
3362       Pair[P].Dst = SE->getSCEV(*DstIdx);
3363       unifySubscriptType(&Pair[P]);
3364     }
3365   }
3366   else {
3367     DEBUG(dbgs() << "    ignoring GEPs\n");
3368     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3369     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3370     DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3371     DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3372     Pair[0].Src = SrcSCEV;
3373     Pair[0].Dst = DstSCEV;
3374   }
3375 
3376   if (Delinearize && CommonLevels > 1) {
3377     if (tryDelinearize(Src, Dst, Pair)) {
3378       DEBUG(dbgs() << "    delinerized GEP\n");
3379       Pairs = Pair.size();
3380     }
3381   }
3382 
3383   for (unsigned P = 0; P < Pairs; ++P) {
3384     Pair[P].Loops.resize(MaxLevels + 1);
3385     Pair[P].GroupLoops.resize(MaxLevels + 1);
3386     Pair[P].Group.resize(Pairs);
3387     removeMatchingExtensions(&Pair[P]);
3388     Pair[P].Classification =
3389       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3390                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3391                    Pair[P].Loops);
3392     Pair[P].GroupLoops = Pair[P].Loops;
3393     Pair[P].Group.set(P);
3394     DEBUG(dbgs() << "    subscript " << P << "\n");
3395     DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3396     DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3397     DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3398     DEBUG(dbgs() << "\tloops = ");
3399     DEBUG(dumpSmallBitVector(Pair[P].Loops));
3400   }
3401 
3402   SmallBitVector Separable(Pairs);
3403   SmallBitVector Coupled(Pairs);
3404 
3405   // Partition subscripts into separable and minimally-coupled groups
3406   // Algorithm in paper is algorithmically better;
3407   // this may be faster in practice. Check someday.
3408   //
3409   // Here's an example of how it works. Consider this code:
3410   //
3411   //   for (i = ...) {
3412   //     for (j = ...) {
3413   //       for (k = ...) {
3414   //         for (l = ...) {
3415   //           for (m = ...) {
3416   //             A[i][j][k][m] = ...;
3417   //             ... = A[0][j][l][i + j];
3418   //           }
3419   //         }
3420   //       }
3421   //     }
3422   //   }
3423   //
3424   // There are 4 subscripts here:
3425   //    0 [i] and [0]
3426   //    1 [j] and [j]
3427   //    2 [k] and [l]
3428   //    3 [m] and [i + j]
3429   //
3430   // We've already classified each subscript pair as ZIV, SIV, etc.,
3431   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3432   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3433   // and set Pair[P].Group = {P}.
3434   //
3435   //      Src Dst    Classification Loops  GroupLoops Group
3436   //    0 [i] [0]         SIV       {1}      {1}        {0}
3437   //    1 [j] [j]         SIV       {2}      {2}        {1}
3438   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3439   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3440   //
3441   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3442   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3443   //
3444   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3445   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3446   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3447   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3448   // to either Separable or Coupled).
3449   //
3450   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3451   // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3452   // so Pair[3].Group = {0, 1, 3} and Done = false.
3453   //
3454   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3455   // Since Done remains true, we add 2 to the set of Separable pairs.
3456   //
3457   // Finally, we consider 3. There's nothing to compare it with,
3458   // so Done remains true and we add it to the Coupled set.
3459   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3460   //
3461   // In the end, we've got 1 separable subscript and 1 coupled group.
3462   for (unsigned SI = 0; SI < Pairs; ++SI) {
3463     if (Pair[SI].Classification == Subscript::NonLinear) {
3464       // ignore these, but collect loops for later
3465       ++NonlinearSubscriptPairs;
3466       collectCommonLoops(Pair[SI].Src,
3467                          LI->getLoopFor(Src->getParent()),
3468                          Pair[SI].Loops);
3469       collectCommonLoops(Pair[SI].Dst,
3470                          LI->getLoopFor(Dst->getParent()),
3471                          Pair[SI].Loops);
3472       Result.Consistent = false;
3473     } else if (Pair[SI].Classification == Subscript::ZIV) {
3474       // always separable
3475       Separable.set(SI);
3476     }
3477     else {
3478       // SIV, RDIV, or MIV, so check for coupled group
3479       bool Done = true;
3480       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3481         SmallBitVector Intersection = Pair[SI].GroupLoops;
3482         Intersection &= Pair[SJ].GroupLoops;
3483         if (Intersection.any()) {
3484           // accumulate set of all the loops in group
3485           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3486           // accumulate set of all subscripts in group
3487           Pair[SJ].Group |= Pair[SI].Group;
3488           Done = false;
3489         }
3490       }
3491       if (Done) {
3492         if (Pair[SI].Group.count() == 1) {
3493           Separable.set(SI);
3494           ++SeparableSubscriptPairs;
3495         }
3496         else {
3497           Coupled.set(SI);
3498           ++CoupledSubscriptPairs;
3499         }
3500       }
3501     }
3502   }
3503 
3504   DEBUG(dbgs() << "    Separable = ");
3505   DEBUG(dumpSmallBitVector(Separable));
3506   DEBUG(dbgs() << "    Coupled = ");
3507   DEBUG(dumpSmallBitVector(Coupled));
3508 
3509   Constraint NewConstraint;
3510   NewConstraint.setAny(SE);
3511 
3512   // test separable subscripts
3513   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3514     DEBUG(dbgs() << "testing subscript " << SI);
3515     switch (Pair[SI].Classification) {
3516     case Subscript::ZIV:
3517       DEBUG(dbgs() << ", ZIV\n");
3518       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3519         return nullptr;
3520       break;
3521     case Subscript::SIV: {
3522       DEBUG(dbgs() << ", SIV\n");
3523       unsigned Level;
3524       const SCEV *SplitIter = nullptr;
3525       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3526                   SplitIter))
3527         return nullptr;
3528       break;
3529     }
3530     case Subscript::RDIV:
3531       DEBUG(dbgs() << ", RDIV\n");
3532       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3533         return nullptr;
3534       break;
3535     case Subscript::MIV:
3536       DEBUG(dbgs() << ", MIV\n");
3537       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3538         return nullptr;
3539       break;
3540     default:
3541       llvm_unreachable("subscript has unexpected classification");
3542     }
3543   }
3544 
3545   if (Coupled.count()) {
3546     // test coupled subscript groups
3547     DEBUG(dbgs() << "starting on coupled subscripts\n");
3548     DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3549     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3550     for (unsigned II = 0; II <= MaxLevels; ++II)
3551       Constraints[II].setAny(SE);
3552     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3553       DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3554       SmallBitVector Group(Pair[SI].Group);
3555       SmallBitVector Sivs(Pairs);
3556       SmallBitVector Mivs(Pairs);
3557       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3558       SmallVector<Subscript *, 4> PairsInGroup;
3559       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3560         DEBUG(dbgs() << SJ << " ");
3561         if (Pair[SJ].Classification == Subscript::SIV)
3562           Sivs.set(SJ);
3563         else
3564           Mivs.set(SJ);
3565         PairsInGroup.push_back(&Pair[SJ]);
3566       }
3567       unifySubscriptType(PairsInGroup);
3568       DEBUG(dbgs() << "}\n");
3569       while (Sivs.any()) {
3570         bool Changed = false;
3571         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3572           DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3573           // SJ is an SIV subscript that's part of the current coupled group
3574           unsigned Level;
3575           const SCEV *SplitIter = nullptr;
3576           DEBUG(dbgs() << "SIV\n");
3577           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3578                       SplitIter))
3579             return nullptr;
3580           ConstrainedLevels.set(Level);
3581           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3582             if (Constraints[Level].isEmpty()) {
3583               ++DeltaIndependence;
3584               return nullptr;
3585             }
3586             Changed = true;
3587           }
3588           Sivs.reset(SJ);
3589         }
3590         if (Changed) {
3591           // propagate, possibly creating new SIVs and ZIVs
3592           DEBUG(dbgs() << "    propagating\n");
3593           DEBUG(dbgs() << "\tMivs = ");
3594           DEBUG(dumpSmallBitVector(Mivs));
3595           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3596             // SJ is an MIV subscript that's part of the current coupled group
3597             DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3598             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3599                           Constraints, Result.Consistent)) {
3600               DEBUG(dbgs() << "\t    Changed\n");
3601               ++DeltaPropagations;
3602               Pair[SJ].Classification =
3603                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3604                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3605                              Pair[SJ].Loops);
3606               switch (Pair[SJ].Classification) {
3607               case Subscript::ZIV:
3608                 DEBUG(dbgs() << "ZIV\n");
3609                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3610                   return nullptr;
3611                 Mivs.reset(SJ);
3612                 break;
3613               case Subscript::SIV:
3614                 Sivs.set(SJ);
3615                 Mivs.reset(SJ);
3616                 break;
3617               case Subscript::RDIV:
3618               case Subscript::MIV:
3619                 break;
3620               default:
3621                 llvm_unreachable("bad subscript classification");
3622               }
3623             }
3624           }
3625         }
3626       }
3627 
3628       // test & propagate remaining RDIVs
3629       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3630         if (Pair[SJ].Classification == Subscript::RDIV) {
3631           DEBUG(dbgs() << "RDIV test\n");
3632           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3633             return nullptr;
3634           // I don't yet understand how to propagate RDIV results
3635           Mivs.reset(SJ);
3636         }
3637       }
3638 
3639       // test remaining MIVs
3640       // This code is temporary.
3641       // Better to somehow test all remaining subscripts simultaneously.
3642       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3643         if (Pair[SJ].Classification == Subscript::MIV) {
3644           DEBUG(dbgs() << "MIV test\n");
3645           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3646             return nullptr;
3647         }
3648         else
3649           llvm_unreachable("expected only MIV subscripts at this point");
3650       }
3651 
3652       // update Result.DV from constraint vector
3653       DEBUG(dbgs() << "    updating\n");
3654       for (int SJ = ConstrainedLevels.find_first(); SJ >= 0;
3655            SJ = ConstrainedLevels.find_next(SJ)) {
3656         if (SJ > (int)CommonLevels)
3657           break;
3658         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3659         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3660           return nullptr;
3661       }
3662     }
3663   }
3664 
3665   // Make sure the Scalar flags are set correctly.
3666   SmallBitVector CompleteLoops(MaxLevels + 1);
3667   for (unsigned SI = 0; SI < Pairs; ++SI)
3668     CompleteLoops |= Pair[SI].Loops;
3669   for (unsigned II = 1; II <= CommonLevels; ++II)
3670     if (CompleteLoops[II])
3671       Result.DV[II - 1].Scalar = false;
3672 
3673   if (PossiblyLoopIndependent) {
3674     // Make sure the LoopIndependent flag is set correctly.
3675     // All directions must include equal, otherwise no
3676     // loop-independent dependence is possible.
3677     for (unsigned II = 1; II <= CommonLevels; ++II) {
3678       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3679         Result.LoopIndependent = false;
3680         break;
3681       }
3682     }
3683   }
3684   else {
3685     // On the other hand, if all directions are equal and there's no
3686     // loop-independent dependence possible, then no dependence exists.
3687     bool AllEqual = true;
3688     for (unsigned II = 1; II <= CommonLevels; ++II) {
3689       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3690         AllEqual = false;
3691         break;
3692       }
3693     }
3694     if (AllEqual)
3695       return nullptr;
3696   }
3697 
3698   return make_unique<FullDependence>(std::move(Result));
3699 }
3700 
3701 
3702 
3703 //===----------------------------------------------------------------------===//
3704 // getSplitIteration -
3705 // Rather than spend rarely-used space recording the splitting iteration
3706 // during the Weak-Crossing SIV test, we re-compute it on demand.
3707 // The re-computation is basically a repeat of the entire dependence test,
3708 // though simplified since we know that the dependence exists.
3709 // It's tedious, since we must go through all propagations, etc.
3710 //
3711 // Care is required to keep this code up to date with respect to the routine
3712 // above, depends().
3713 //
3714 // Generally, the dependence analyzer will be used to build
3715 // a dependence graph for a function (basically a map from instructions
3716 // to dependences). Looking for cycles in the graph shows us loops
3717 // that cannot be trivially vectorized/parallelized.
3718 //
3719 // We can try to improve the situation by examining all the dependences
3720 // that make up the cycle, looking for ones we can break.
3721 // Sometimes, peeling the first or last iteration of a loop will break
3722 // dependences, and we've got flags for those possibilities.
3723 // Sometimes, splitting a loop at some other iteration will do the trick,
3724 // and we've got a flag for that case. Rather than waste the space to
3725 // record the exact iteration (since we rarely know), we provide
3726 // a method that calculates the iteration. It's a drag that it must work
3727 // from scratch, but wonderful in that it's possible.
3728 //
3729 // Here's an example:
3730 //
3731 //    for (i = 0; i < 10; i++)
3732 //        A[i] = ...
3733 //        ... = A[11 - i]
3734 //
3735 // There's a loop-carried flow dependence from the store to the load,
3736 // found by the weak-crossing SIV test. The dependence will have a flag,
3737 // indicating that the dependence can be broken by splitting the loop.
3738 // Calling getSplitIteration will return 5.
3739 // Splitting the loop breaks the dependence, like so:
3740 //
3741 //    for (i = 0; i <= 5; i++)
3742 //        A[i] = ...
3743 //        ... = A[11 - i]
3744 //    for (i = 6; i < 10; i++)
3745 //        A[i] = ...
3746 //        ... = A[11 - i]
3747 //
3748 // breaks the dependence and allows us to vectorize/parallelize
3749 // both loops.
3750 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3751                                               unsigned SplitLevel) {
3752   assert(Dep.isSplitable(SplitLevel) &&
3753          "Dep should be splitable at SplitLevel");
3754   Instruction *Src = Dep.getSrc();
3755   Instruction *Dst = Dep.getDst();
3756   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3757   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3758   assert(isLoadOrStore(Src));
3759   assert(isLoadOrStore(Dst));
3760   Value *SrcPtr = getPointerOperand(Src);
3761   Value *DstPtr = getPointerOperand(Dst);
3762   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
3763                                 SrcPtr) == MustAlias);
3764 
3765   // establish loop nesting levels
3766   establishNestingLevels(Src, Dst);
3767 
3768   FullDependence Result(Src, Dst, false, CommonLevels);
3769 
3770   // See if there are GEPs we can use.
3771   bool UsefulGEP = false;
3772   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3773   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3774   if (SrcGEP && DstGEP &&
3775       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3776     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3777     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3778     UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3779                 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
3780                 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
3781   }
3782   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3783   SmallVector<Subscript, 4> Pair(Pairs);
3784   if (UsefulGEP) {
3785     unsigned P = 0;
3786     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3787            SrcEnd = SrcGEP->idx_end(),
3788            DstIdx = DstGEP->idx_begin();
3789          SrcIdx != SrcEnd;
3790          ++SrcIdx, ++DstIdx, ++P) {
3791       Pair[P].Src = SE->getSCEV(*SrcIdx);
3792       Pair[P].Dst = SE->getSCEV(*DstIdx);
3793     }
3794   }
3795   else {
3796     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3797     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3798     Pair[0].Src = SrcSCEV;
3799     Pair[0].Dst = DstSCEV;
3800   }
3801 
3802   if (Delinearize && CommonLevels > 1) {
3803     if (tryDelinearize(Src, Dst, Pair)) {
3804       DEBUG(dbgs() << "    delinerized GEP\n");
3805       Pairs = Pair.size();
3806     }
3807   }
3808 
3809   for (unsigned P = 0; P < Pairs; ++P) {
3810     Pair[P].Loops.resize(MaxLevels + 1);
3811     Pair[P].GroupLoops.resize(MaxLevels + 1);
3812     Pair[P].Group.resize(Pairs);
3813     removeMatchingExtensions(&Pair[P]);
3814     Pair[P].Classification =
3815       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3816                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3817                    Pair[P].Loops);
3818     Pair[P].GroupLoops = Pair[P].Loops;
3819     Pair[P].Group.set(P);
3820   }
3821 
3822   SmallBitVector Separable(Pairs);
3823   SmallBitVector Coupled(Pairs);
3824 
3825   // partition subscripts into separable and minimally-coupled groups
3826   for (unsigned SI = 0; SI < Pairs; ++SI) {
3827     if (Pair[SI].Classification == Subscript::NonLinear) {
3828       // ignore these, but collect loops for later
3829       collectCommonLoops(Pair[SI].Src,
3830                          LI->getLoopFor(Src->getParent()),
3831                          Pair[SI].Loops);
3832       collectCommonLoops(Pair[SI].Dst,
3833                          LI->getLoopFor(Dst->getParent()),
3834                          Pair[SI].Loops);
3835       Result.Consistent = false;
3836     }
3837     else if (Pair[SI].Classification == Subscript::ZIV)
3838       Separable.set(SI);
3839     else {
3840       // SIV, RDIV, or MIV, so check for coupled group
3841       bool Done = true;
3842       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3843         SmallBitVector Intersection = Pair[SI].GroupLoops;
3844         Intersection &= Pair[SJ].GroupLoops;
3845         if (Intersection.any()) {
3846           // accumulate set of all the loops in group
3847           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3848           // accumulate set of all subscripts in group
3849           Pair[SJ].Group |= Pair[SI].Group;
3850           Done = false;
3851         }
3852       }
3853       if (Done) {
3854         if (Pair[SI].Group.count() == 1)
3855           Separable.set(SI);
3856         else
3857           Coupled.set(SI);
3858       }
3859     }
3860   }
3861 
3862   Constraint NewConstraint;
3863   NewConstraint.setAny(SE);
3864 
3865   // test separable subscripts
3866   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3867     switch (Pair[SI].Classification) {
3868     case Subscript::SIV: {
3869       unsigned Level;
3870       const SCEV *SplitIter = nullptr;
3871       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3872                      Result, NewConstraint, SplitIter);
3873       if (Level == SplitLevel) {
3874         assert(SplitIter != nullptr);
3875         return SplitIter;
3876       }
3877       break;
3878     }
3879     case Subscript::ZIV:
3880     case Subscript::RDIV:
3881     case Subscript::MIV:
3882       break;
3883     default:
3884       llvm_unreachable("subscript has unexpected classification");
3885     }
3886   }
3887 
3888   if (Coupled.count()) {
3889     // test coupled subscript groups
3890     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3891     for (unsigned II = 0; II <= MaxLevels; ++II)
3892       Constraints[II].setAny(SE);
3893     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3894       SmallBitVector Group(Pair[SI].Group);
3895       SmallBitVector Sivs(Pairs);
3896       SmallBitVector Mivs(Pairs);
3897       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3898       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3899         if (Pair[SJ].Classification == Subscript::SIV)
3900           Sivs.set(SJ);
3901         else
3902           Mivs.set(SJ);
3903       }
3904       while (Sivs.any()) {
3905         bool Changed = false;
3906         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3907           // SJ is an SIV subscript that's part of the current coupled group
3908           unsigned Level;
3909           const SCEV *SplitIter = nullptr;
3910           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3911                          Result, NewConstraint, SplitIter);
3912           if (Level == SplitLevel && SplitIter)
3913             return SplitIter;
3914           ConstrainedLevels.set(Level);
3915           if (intersectConstraints(&Constraints[Level], &NewConstraint))
3916             Changed = true;
3917           Sivs.reset(SJ);
3918         }
3919         if (Changed) {
3920           // propagate, possibly creating new SIVs and ZIVs
3921           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3922             // SJ is an MIV subscript that's part of the current coupled group
3923             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3924                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
3925               Pair[SJ].Classification =
3926                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3927                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3928                              Pair[SJ].Loops);
3929               switch (Pair[SJ].Classification) {
3930               case Subscript::ZIV:
3931                 Mivs.reset(SJ);
3932                 break;
3933               case Subscript::SIV:
3934                 Sivs.set(SJ);
3935                 Mivs.reset(SJ);
3936                 break;
3937               case Subscript::RDIV:
3938               case Subscript::MIV:
3939                 break;
3940               default:
3941                 llvm_unreachable("bad subscript classification");
3942               }
3943             }
3944           }
3945         }
3946       }
3947     }
3948   }
3949   llvm_unreachable("somehow reached end of routine");
3950   return nullptr;
3951 }
3952