1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements a demanded bits analysis. A demanded bit is one that 10 // contributes to a result; bits that are not demanded can be either zero or 11 // one without affecting control or data flow. For example in this sequence: 12 // 13 // %1 = add i32 %x, %y 14 // %2 = trunc i32 %1 to i16 15 // 16 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the 17 // trunc. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/Analysis/DemandedBits.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/KnownBits.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cstdint> 51 52 using namespace llvm; 53 using namespace llvm::PatternMatch; 54 55 #define DEBUG_TYPE "demanded-bits" 56 57 char DemandedBitsWrapperPass::ID = 0; 58 59 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits", 60 "Demanded bits analysis", false, false) 61 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 63 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits", 64 "Demanded bits analysis", false, false) 65 66 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) { 67 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry()); 68 } 69 70 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 71 AU.setPreservesCFG(); 72 AU.addRequired<AssumptionCacheTracker>(); 73 AU.addRequired<DominatorTreeWrapperPass>(); 74 AU.setPreservesAll(); 75 } 76 77 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const { 78 DB->print(OS); 79 } 80 81 static bool isAlwaysLive(Instruction *I) { 82 return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() || 83 I->mayHaveSideEffects(); 84 } 85 86 void DemandedBits::determineLiveOperandBits( 87 const Instruction *UserI, const Value *Val, unsigned OperandNo, 88 const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2, 89 bool &KnownBitsComputed) { 90 unsigned BitWidth = AB.getBitWidth(); 91 92 // We're called once per operand, but for some instructions, we need to 93 // compute known bits of both operands in order to determine the live bits of 94 // either (when both operands are instructions themselves). We don't, 95 // however, want to do this twice, so we cache the result in APInts that live 96 // in the caller. For the two-relevant-operands case, both operand values are 97 // provided here. 98 auto ComputeKnownBits = 99 [&](unsigned BitWidth, const Value *V1, const Value *V2) { 100 if (KnownBitsComputed) 101 return; 102 KnownBitsComputed = true; 103 104 const DataLayout &DL = UserI->getModule()->getDataLayout(); 105 Known = KnownBits(BitWidth); 106 computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); 107 108 if (V2) { 109 Known2 = KnownBits(BitWidth); 110 computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); 111 } 112 }; 113 114 switch (UserI->getOpcode()) { 115 default: break; 116 case Instruction::Call: 117 case Instruction::Invoke: 118 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) 119 switch (II->getIntrinsicID()) { 120 default: break; 121 case Intrinsic::bswap: 122 // The alive bits of the input are the swapped alive bits of 123 // the output. 124 AB = AOut.byteSwap(); 125 break; 126 case Intrinsic::bitreverse: 127 // The alive bits of the input are the reversed alive bits of 128 // the output. 129 AB = AOut.reverseBits(); 130 break; 131 case Intrinsic::ctlz: 132 if (OperandNo == 0) { 133 // We need some output bits, so we need all bits of the 134 // input to the left of, and including, the leftmost bit 135 // known to be one. 136 ComputeKnownBits(BitWidth, Val, nullptr); 137 AB = APInt::getHighBitsSet(BitWidth, 138 std::min(BitWidth, Known.countMaxLeadingZeros()+1)); 139 } 140 break; 141 case Intrinsic::cttz: 142 if (OperandNo == 0) { 143 // We need some output bits, so we need all bits of the 144 // input to the right of, and including, the rightmost bit 145 // known to be one. 146 ComputeKnownBits(BitWidth, Val, nullptr); 147 AB = APInt::getLowBitsSet(BitWidth, 148 std::min(BitWidth, Known.countMaxTrailingZeros()+1)); 149 } 150 break; 151 case Intrinsic::fshl: 152 case Intrinsic::fshr: { 153 const APInt *SA; 154 if (OperandNo == 2) { 155 // Shift amount is modulo the bitwidth. For powers of two we have 156 // SA % BW == SA & (BW - 1). 157 if (isPowerOf2_32(BitWidth)) 158 AB = BitWidth - 1; 159 } else if (match(II->getOperand(2), m_APInt(SA))) { 160 // Normalize to funnel shift left. APInt shifts of BitWidth are well- 161 // defined, so no need to special-case zero shifts here. 162 uint64_t ShiftAmt = SA->urem(BitWidth); 163 if (II->getIntrinsicID() == Intrinsic::fshr) 164 ShiftAmt = BitWidth - ShiftAmt; 165 166 if (OperandNo == 0) 167 AB = AOut.lshr(ShiftAmt); 168 else if (OperandNo == 1) 169 AB = AOut.shl(BitWidth - ShiftAmt); 170 } 171 break; 172 } 173 } 174 break; 175 case Instruction::Add: 176 if (AOut.isMask()) { 177 AB = AOut; 178 } else { 179 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 180 AB = determineLiveOperandBitsAdd(OperandNo, AOut, Known, Known2); 181 } 182 break; 183 case Instruction::Sub: 184 if (AOut.isMask()) { 185 AB = AOut; 186 } else { 187 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 188 AB = determineLiveOperandBitsSub(OperandNo, AOut, Known, Known2); 189 } 190 break; 191 case Instruction::Mul: 192 // Find the highest live output bit. We don't need any more input 193 // bits than that (adds, and thus subtracts, ripple only to the 194 // left). 195 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); 196 break; 197 case Instruction::Shl: 198 if (OperandNo == 0) { 199 const APInt *ShiftAmtC; 200 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 201 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 202 AB = AOut.lshr(ShiftAmt); 203 204 // If the shift is nuw/nsw, then the high bits are not dead 205 // (because we've promised that they *must* be zero). 206 const ShlOperator *S = cast<ShlOperator>(UserI); 207 if (S->hasNoSignedWrap()) 208 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 209 else if (S->hasNoUnsignedWrap()) 210 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 211 } 212 } 213 break; 214 case Instruction::LShr: 215 if (OperandNo == 0) { 216 const APInt *ShiftAmtC; 217 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 218 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 219 AB = AOut.shl(ShiftAmt); 220 221 // If the shift is exact, then the low bits are not dead 222 // (they must be zero). 223 if (cast<LShrOperator>(UserI)->isExact()) 224 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 225 } 226 } 227 break; 228 case Instruction::AShr: 229 if (OperandNo == 0) { 230 const APInt *ShiftAmtC; 231 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { 232 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); 233 AB = AOut.shl(ShiftAmt); 234 // Because the high input bit is replicated into the 235 // high-order bits of the result, if we need any of those 236 // bits, then we must keep the highest input bit. 237 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) 238 .getBoolValue()) 239 AB.setSignBit(); 240 241 // If the shift is exact, then the low bits are not dead 242 // (they must be zero). 243 if (cast<AShrOperator>(UserI)->isExact()) 244 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 245 } 246 } 247 break; 248 case Instruction::And: 249 AB = AOut; 250 251 // For bits that are known zero, the corresponding bits in the 252 // other operand are dead (unless they're both zero, in which 253 // case they can't both be dead, so just mark the LHS bits as 254 // dead). 255 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 256 if (OperandNo == 0) 257 AB &= ~Known2.Zero; 258 else 259 AB &= ~(Known.Zero & ~Known2.Zero); 260 break; 261 case Instruction::Or: 262 AB = AOut; 263 264 // For bits that are known one, the corresponding bits in the 265 // other operand are dead (unless they're both one, in which 266 // case they can't both be dead, so just mark the LHS bits as 267 // dead). 268 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); 269 if (OperandNo == 0) 270 AB &= ~Known2.One; 271 else 272 AB &= ~(Known.One & ~Known2.One); 273 break; 274 case Instruction::Xor: 275 case Instruction::PHI: 276 AB = AOut; 277 break; 278 case Instruction::Trunc: 279 AB = AOut.zext(BitWidth); 280 break; 281 case Instruction::ZExt: 282 AB = AOut.trunc(BitWidth); 283 break; 284 case Instruction::SExt: 285 AB = AOut.trunc(BitWidth); 286 // Because the high input bit is replicated into the 287 // high-order bits of the result, if we need any of those 288 // bits, then we must keep the highest input bit. 289 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), 290 AOut.getBitWidth() - BitWidth)) 291 .getBoolValue()) 292 AB.setSignBit(); 293 break; 294 case Instruction::Select: 295 if (OperandNo != 0) 296 AB = AOut; 297 break; 298 case Instruction::ExtractElement: 299 if (OperandNo == 0) 300 AB = AOut; 301 break; 302 case Instruction::InsertElement: 303 case Instruction::ShuffleVector: 304 if (OperandNo == 0 || OperandNo == 1) 305 AB = AOut; 306 break; 307 } 308 } 309 310 bool DemandedBitsWrapperPass::runOnFunction(Function &F) { 311 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 312 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 313 DB.emplace(F, AC, DT); 314 return false; 315 } 316 317 void DemandedBitsWrapperPass::releaseMemory() { 318 DB.reset(); 319 } 320 321 void DemandedBits::performAnalysis() { 322 if (Analyzed) 323 // Analysis already completed for this function. 324 return; 325 Analyzed = true; 326 327 Visited.clear(); 328 AliveBits.clear(); 329 DeadUses.clear(); 330 331 SmallSetVector<Instruction*, 16> Worklist; 332 333 // Collect the set of "root" instructions that are known live. 334 for (Instruction &I : instructions(F)) { 335 if (!isAlwaysLive(&I)) 336 continue; 337 338 LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); 339 // For integer-valued instructions, set up an initial empty set of alive 340 // bits and add the instruction to the work list. For other instructions 341 // add their operands to the work list (for integer values operands, mark 342 // all bits as live). 343 Type *T = I.getType(); 344 if (T->isIntOrIntVectorTy()) { 345 if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second) 346 Worklist.insert(&I); 347 348 continue; 349 } 350 351 // Non-integer-typed instructions... 352 for (Use &OI : I.operands()) { 353 if (Instruction *J = dyn_cast<Instruction>(OI)) { 354 Type *T = J->getType(); 355 if (T->isIntOrIntVectorTy()) 356 AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits()); 357 else 358 Visited.insert(J); 359 Worklist.insert(J); 360 } 361 } 362 // To save memory, we don't add I to the Visited set here. Instead, we 363 // check isAlwaysLive on every instruction when searching for dead 364 // instructions later (we need to check isAlwaysLive for the 365 // integer-typed instructions anyway). 366 } 367 368 // Propagate liveness backwards to operands. 369 while (!Worklist.empty()) { 370 Instruction *UserI = Worklist.pop_back_val(); 371 372 LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); 373 APInt AOut; 374 bool InputIsKnownDead = false; 375 if (UserI->getType()->isIntOrIntVectorTy()) { 376 AOut = AliveBits[UserI]; 377 LLVM_DEBUG(dbgs() << " Alive Out: 0x" 378 << Twine::utohexstr(AOut.getLimitedValue())); 379 380 // If all bits of the output are dead, then all bits of the input 381 // are also dead. 382 InputIsKnownDead = !AOut && !isAlwaysLive(UserI); 383 } 384 LLVM_DEBUG(dbgs() << "\n"); 385 386 KnownBits Known, Known2; 387 bool KnownBitsComputed = false; 388 // Compute the set of alive bits for each operand. These are anded into the 389 // existing set, if any, and if that changes the set of alive bits, the 390 // operand is added to the work-list. 391 for (Use &OI : UserI->operands()) { 392 // We also want to detect dead uses of arguments, but will only store 393 // demanded bits for instructions. 394 Instruction *I = dyn_cast<Instruction>(OI); 395 if (!I && !isa<Argument>(OI)) 396 continue; 397 398 Type *T = OI->getType(); 399 if (T->isIntOrIntVectorTy()) { 400 unsigned BitWidth = T->getScalarSizeInBits(); 401 APInt AB = APInt::getAllOnesValue(BitWidth); 402 if (InputIsKnownDead) { 403 AB = APInt(BitWidth, 0); 404 } else { 405 // Bits of each operand that are used to compute alive bits of the 406 // output are alive, all others are dead. 407 determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB, 408 Known, Known2, KnownBitsComputed); 409 410 // Keep track of uses which have no demanded bits. 411 if (AB.isNullValue()) 412 DeadUses.insert(&OI); 413 else 414 DeadUses.erase(&OI); 415 } 416 417 if (I) { 418 // If we've added to the set of alive bits (or the operand has not 419 // been previously visited), then re-queue the operand to be visited 420 // again. 421 auto Res = AliveBits.try_emplace(I); 422 if (Res.second || (AB |= Res.first->second) != Res.first->second) { 423 Res.first->second = std::move(AB); 424 Worklist.insert(I); 425 } 426 } 427 } else if (I && Visited.insert(I).second) { 428 Worklist.insert(I); 429 } 430 } 431 } 432 } 433 434 APInt DemandedBits::getDemandedBits(Instruction *I) { 435 performAnalysis(); 436 437 auto Found = AliveBits.find(I); 438 if (Found != AliveBits.end()) 439 return Found->second; 440 441 const DataLayout &DL = I->getModule()->getDataLayout(); 442 return APInt::getAllOnesValue( 443 DL.getTypeSizeInBits(I->getType()->getScalarType())); 444 } 445 446 bool DemandedBits::isInstructionDead(Instruction *I) { 447 performAnalysis(); 448 449 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && 450 !isAlwaysLive(I); 451 } 452 453 bool DemandedBits::isUseDead(Use *U) { 454 // We only track integer uses, everything else is assumed live. 455 if (!(*U)->getType()->isIntOrIntVectorTy()) 456 return false; 457 458 // Uses by always-live instructions are never dead. 459 Instruction *UserI = cast<Instruction>(U->getUser()); 460 if (isAlwaysLive(UserI)) 461 return false; 462 463 performAnalysis(); 464 if (DeadUses.count(U)) 465 return true; 466 467 // If no output bits are demanded, no input bits are demanded and the use 468 // is dead. These uses might not be explicitly present in the DeadUses map. 469 if (UserI->getType()->isIntOrIntVectorTy()) { 470 auto Found = AliveBits.find(UserI); 471 if (Found != AliveBits.end() && Found->second.isNullValue()) 472 return true; 473 } 474 475 return false; 476 } 477 478 void DemandedBits::print(raw_ostream &OS) { 479 performAnalysis(); 480 for (auto &KV : AliveBits) { 481 OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue()) 482 << " for " << *KV.first << '\n'; 483 } 484 } 485 486 static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo, 487 const APInt &AOut, 488 const KnownBits &LHS, 489 const KnownBits &RHS, 490 bool CarryZero, bool CarryOne) { 491 assert(!(CarryZero && CarryOne) && 492 "Carry can't be zero and one at the same time"); 493 494 // The following check should be done by the caller, as it also indicates 495 // that LHS and RHS don't need to be computed. 496 // 497 // if (AOut.isMask()) 498 // return AOut; 499 500 // Boundary bits' carry out is unaffected by their carry in. 501 APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One); 502 503 // First, the alive carry bits are determined from the alive output bits: 504 // Let demand ripple to the right but only up to any set bit in Bound. 505 // AOut = -1---- 506 // Bound = ----1- 507 // ACarry&~AOut = --111- 508 APInt RBound = Bound.reverseBits(); 509 APInt RAOut = AOut.reverseBits(); 510 APInt RProp = RAOut + (RAOut | ~RBound); 511 APInt RACarry = RProp ^ ~RBound; 512 APInt ACarry = RACarry.reverseBits(); 513 514 // Then, the alive input bits are determined from the alive carry bits: 515 APInt NeededToMaintainCarryZero; 516 APInt NeededToMaintainCarryOne; 517 if (OperandNo == 0) { 518 NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero; 519 NeededToMaintainCarryOne = LHS.One | ~RHS.One; 520 } else { 521 NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero; 522 NeededToMaintainCarryOne = RHS.One | ~LHS.One; 523 } 524 525 // As in computeForAddCarry 526 APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero; 527 APInt PossibleSumOne = LHS.One + RHS.One + CarryOne; 528 529 // The below is simplified from 530 // 531 // APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); 532 // APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; 533 // APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne); 534 // 535 // APInt NeededToMaintainCarry = 536 // (CarryKnownZero & NeededToMaintainCarryZero) | 537 // (CarryKnownOne & NeededToMaintainCarryOne) | 538 // CarryUnknown; 539 540 APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) & 541 (PossibleSumOne | NeededToMaintainCarryOne); 542 543 APInt AB = AOut | (ACarry & NeededToMaintainCarry); 544 return AB; 545 } 546 547 APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo, 548 const APInt &AOut, 549 const KnownBits &LHS, 550 const KnownBits &RHS) { 551 return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, true, 552 false); 553 } 554 555 APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo, 556 const APInt &AOut, 557 const KnownBits &LHS, 558 const KnownBits &RHS) { 559 KnownBits NRHS; 560 NRHS.Zero = RHS.One; 561 NRHS.One = RHS.Zero; 562 return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, NRHS, false, 563 true); 564 } 565 566 FunctionPass *llvm::createDemandedBitsWrapperPass() { 567 return new DemandedBitsWrapperPass(); 568 } 569 570 AnalysisKey DemandedBitsAnalysis::Key; 571 572 DemandedBits DemandedBitsAnalysis::run(Function &F, 573 FunctionAnalysisManager &AM) { 574 auto &AC = AM.getResult<AssumptionAnalysis>(F); 575 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 576 return DemandedBits(F, AC, DT); 577 } 578 579 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, 580 FunctionAnalysisManager &AM) { 581 AM.getResult<DemandedBitsAnalysis>(F).print(OS); 582 return PreservedAnalyses::all(); 583 } 584