1 //===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements a demanded bits analysis. A demanded bit is one that
11 // contributes to a result; bits that are not demanded can be either zero or
12 // one without affecting control or data flow. For example in this sequence:
13 //
14 //   %1 = add i32 %x, %y
15 //   %2 = trunc i32 %1 to i16
16 //
17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18 // trunc.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Analysis/DemandedBits.h"
23 #include "llvm/ADT/DepthFirstIterator.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/InstIterator.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "demanded-bits"
45 
46 char DemandedBitsWrapperPass::ID = 0;
47 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
48                       "Demanded bits analysis", false, false)
49 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
50 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
51 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
52                     "Demanded bits analysis", false, false)
53 
54 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
55   initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
56 }
57 
58 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
59   AU.setPreservesCFG();
60   AU.addRequired<AssumptionCacheTracker>();
61   AU.addRequired<DominatorTreeWrapperPass>();
62   AU.setPreservesAll();
63 }
64 
65 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
66   DB->print(OS);
67 }
68 
69 static bool isAlwaysLive(Instruction *I) {
70   return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
71       I->isEHPad() || I->mayHaveSideEffects();
72 }
73 
74 void DemandedBits::determineLiveOperandBits(
75     const Instruction *UserI, const Instruction *I, unsigned OperandNo,
76     const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) {
77   unsigned BitWidth = AB.getBitWidth();
78 
79   // We're called once per operand, but for some instructions, we need to
80   // compute known bits of both operands in order to determine the live bits of
81   // either (when both operands are instructions themselves). We don't,
82   // however, want to do this twice, so we cache the result in APInts that live
83   // in the caller. For the two-relevant-operands case, both operand values are
84   // provided here.
85   auto ComputeKnownBits =
86       [&](unsigned BitWidth, const Value *V1, const Value *V2) {
87         const DataLayout &DL = I->getModule()->getDataLayout();
88         Known = KnownBits(BitWidth);
89         computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
90 
91         if (V2) {
92           Known2 = KnownBits(BitWidth);
93           computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
94         }
95       };
96 
97   switch (UserI->getOpcode()) {
98   default: break;
99   case Instruction::Call:
100   case Instruction::Invoke:
101     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
102       switch (II->getIntrinsicID()) {
103       default: break;
104       case Intrinsic::bswap:
105         // The alive bits of the input are the swapped alive bits of
106         // the output.
107         AB = AOut.byteSwap();
108         break;
109       case Intrinsic::bitreverse:
110         AB = AOut.reverseBits();
111         break;
112       case Intrinsic::ctlz:
113         if (OperandNo == 0) {
114           // We need some output bits, so we need all bits of the
115           // input to the left of, and including, the leftmost bit
116           // known to be one.
117           ComputeKnownBits(BitWidth, I, nullptr);
118           AB = APInt::getHighBitsSet(BitWidth,
119                  std::min(BitWidth, Known.countMaxLeadingZeros()+1));
120         }
121         break;
122       case Intrinsic::cttz:
123         if (OperandNo == 0) {
124           // We need some output bits, so we need all bits of the
125           // input to the right of, and including, the rightmost bit
126           // known to be one.
127           ComputeKnownBits(BitWidth, I, nullptr);
128           AB = APInt::getLowBitsSet(BitWidth,
129                  std::min(BitWidth, Known.countMaxTrailingZeros()+1));
130         }
131         break;
132       }
133     break;
134   case Instruction::Add:
135   case Instruction::Sub:
136   case Instruction::Mul:
137     // Find the highest live output bit. We don't need any more input
138     // bits than that (adds, and thus subtracts, ripple only to the
139     // left).
140     AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
141     break;
142   case Instruction::Shl:
143     if (OperandNo == 0)
144       if (ConstantInt *CI =
145             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
146         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
147         AB = AOut.lshr(ShiftAmt);
148 
149         // If the shift is nuw/nsw, then the high bits are not dead
150         // (because we've promised that they *must* be zero).
151         const ShlOperator *S = cast<ShlOperator>(UserI);
152         if (S->hasNoSignedWrap())
153           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
154         else if (S->hasNoUnsignedWrap())
155           AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
156       }
157     break;
158   case Instruction::LShr:
159     if (OperandNo == 0)
160       if (ConstantInt *CI =
161             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
162         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
163         AB = AOut.shl(ShiftAmt);
164 
165         // If the shift is exact, then the low bits are not dead
166         // (they must be zero).
167         if (cast<LShrOperator>(UserI)->isExact())
168           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
169       }
170     break;
171   case Instruction::AShr:
172     if (OperandNo == 0)
173       if (ConstantInt *CI =
174             dyn_cast<ConstantInt>(UserI->getOperand(1))) {
175         uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
176         AB = AOut.shl(ShiftAmt);
177         // Because the high input bit is replicated into the
178         // high-order bits of the result, if we need any of those
179         // bits, then we must keep the highest input bit.
180         if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
181             .getBoolValue())
182           AB.setSignBit();
183 
184         // If the shift is exact, then the low bits are not dead
185         // (they must be zero).
186         if (cast<AShrOperator>(UserI)->isExact())
187           AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
188       }
189     break;
190   case Instruction::And:
191     AB = AOut;
192 
193     // For bits that are known zero, the corresponding bits in the
194     // other operand are dead (unless they're both zero, in which
195     // case they can't both be dead, so just mark the LHS bits as
196     // dead).
197     if (OperandNo == 0) {
198       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
199       AB &= ~Known2.Zero;
200     } else {
201       if (!isa<Instruction>(UserI->getOperand(0)))
202         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
203       AB &= ~(Known.Zero & ~Known2.Zero);
204     }
205     break;
206   case Instruction::Or:
207     AB = AOut;
208 
209     // For bits that are known one, the corresponding bits in the
210     // other operand are dead (unless they're both one, in which
211     // case they can't both be dead, so just mark the LHS bits as
212     // dead).
213     if (OperandNo == 0) {
214       ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
215       AB &= ~Known2.One;
216     } else {
217       if (!isa<Instruction>(UserI->getOperand(0)))
218         ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
219       AB &= ~(Known.One & ~Known2.One);
220     }
221     break;
222   case Instruction::Xor:
223   case Instruction::PHI:
224     AB = AOut;
225     break;
226   case Instruction::Trunc:
227     AB = AOut.zext(BitWidth);
228     break;
229   case Instruction::ZExt:
230     AB = AOut.trunc(BitWidth);
231     break;
232   case Instruction::SExt:
233     AB = AOut.trunc(BitWidth);
234     // Because the high input bit is replicated into the
235     // high-order bits of the result, if we need any of those
236     // bits, then we must keep the highest input bit.
237     if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
238                                       AOut.getBitWidth() - BitWidth))
239         .getBoolValue())
240       AB.setSignBit();
241     break;
242   case Instruction::Select:
243     if (OperandNo != 0)
244       AB = AOut;
245     break;
246   }
247 }
248 
249 bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
250   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
251   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
252   DB.emplace(F, AC, DT);
253   return false;
254 }
255 
256 void DemandedBitsWrapperPass::releaseMemory() {
257   DB.reset();
258 }
259 
260 void DemandedBits::performAnalysis() {
261   if (Analyzed)
262     // Analysis already completed for this function.
263     return;
264   Analyzed = true;
265 
266   Visited.clear();
267   AliveBits.clear();
268 
269   SmallVector<Instruction*, 128> Worklist;
270 
271   // Collect the set of "root" instructions that are known live.
272   for (Instruction &I : instructions(F)) {
273     if (!isAlwaysLive(&I))
274       continue;
275 
276     DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
277     // For integer-valued instructions, set up an initial empty set of alive
278     // bits and add the instruction to the work list. For other instructions
279     // add their operands to the work list (for integer values operands, mark
280     // all bits as live).
281     if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
282       if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second)
283         Worklist.push_back(&I);
284 
285       continue;
286     }
287 
288     // Non-integer-typed instructions...
289     for (Use &OI : I.operands()) {
290       if (Instruction *J = dyn_cast<Instruction>(OI)) {
291         if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
292           AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
293         Worklist.push_back(J);
294       }
295     }
296     // To save memory, we don't add I to the Visited set here. Instead, we
297     // check isAlwaysLive on every instruction when searching for dead
298     // instructions later (we need to check isAlwaysLive for the
299     // integer-typed instructions anyway).
300   }
301 
302   // Propagate liveness backwards to operands.
303   while (!Worklist.empty()) {
304     Instruction *UserI = Worklist.pop_back_val();
305 
306     DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
307     APInt AOut;
308     if (UserI->getType()->isIntegerTy()) {
309       AOut = AliveBits[UserI];
310       DEBUG(dbgs() << " Alive Out: " << AOut);
311     }
312     DEBUG(dbgs() << "\n");
313 
314     if (!UserI->getType()->isIntegerTy())
315       Visited.insert(UserI);
316 
317     KnownBits Known, Known2;
318     // Compute the set of alive bits for each operand. These are anded into the
319     // existing set, if any, and if that changes the set of alive bits, the
320     // operand is added to the work-list.
321     for (Use &OI : UserI->operands()) {
322       if (Instruction *I = dyn_cast<Instruction>(OI)) {
323         if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
324           unsigned BitWidth = IT->getBitWidth();
325           APInt AB = APInt::getAllOnesValue(BitWidth);
326           if (UserI->getType()->isIntegerTy() && !AOut &&
327               !isAlwaysLive(UserI)) {
328             AB = APInt(BitWidth, 0);
329           } else {
330             // If all bits of the output are dead, then all bits of the input
331             // Bits of each operand that are used to compute alive bits of the
332             // output are alive, all others are dead.
333             determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
334                                      Known, Known2);
335           }
336 
337           // If we've added to the set of alive bits (or the operand has not
338           // been previously visited), then re-queue the operand to be visited
339           // again.
340           APInt ABPrev(BitWidth, 0);
341           auto ABI = AliveBits.find(I);
342           if (ABI != AliveBits.end())
343             ABPrev = ABI->second;
344 
345           APInt ABNew = AB | ABPrev;
346           if (ABNew != ABPrev || ABI == AliveBits.end()) {
347             AliveBits[I] = std::move(ABNew);
348             Worklist.push_back(I);
349           }
350         } else if (!Visited.count(I)) {
351           Worklist.push_back(I);
352         }
353       }
354     }
355   }
356 }
357 
358 APInt DemandedBits::getDemandedBits(Instruction *I) {
359   performAnalysis();
360 
361   const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
362   auto Found = AliveBits.find(I);
363   if (Found != AliveBits.end())
364     return Found->second;
365   return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
366 }
367 
368 bool DemandedBits::isInstructionDead(Instruction *I) {
369   performAnalysis();
370 
371   return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
372     !isAlwaysLive(I);
373 }
374 
375 void DemandedBits::print(raw_ostream &OS) {
376   performAnalysis();
377   for (auto &KV : AliveBits) {
378     OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
379        << *KV.first << "\n";
380   }
381 }
382 
383 FunctionPass *llvm::createDemandedBitsWrapperPass() {
384   return new DemandedBitsWrapperPass();
385 }
386 
387 AnalysisKey DemandedBitsAnalysis::Key;
388 
389 DemandedBits DemandedBitsAnalysis::run(Function &F,
390                                              FunctionAnalysisManager &AM) {
391   auto &AC = AM.getResult<AssumptionAnalysis>(F);
392   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
393   return DemandedBits(F, AC, DT);
394 }
395 
396 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
397                                                FunctionAnalysisManager &AM) {
398   AM.getResult<DemandedBitsAnalysis>(F).print(OS);
399   return PreservedAnalyses::all();
400 }
401