1 //===---- DemandedBits.cpp - Determine demanded bits ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass implements a demanded bits analysis. A demanded bit is one that 11 // contributes to a result; bits that are not demanded can be either zero or 12 // one without affecting control or data flow. For example in this sequence: 13 // 14 // %1 = add i32 %x, %y 15 // %2 = trunc i32 %1 to i16 16 // 17 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the 18 // trunc. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Analysis/DemandedBits.h" 23 #include "llvm/ADT/DepthFirstIterator.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/InstIterator.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Support/raw_ostream.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "demanded-bits" 45 46 char DemandedBitsWrapperPass::ID = 0; 47 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits", 48 "Demanded bits analysis", false, false) 49 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 50 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 51 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits", 52 "Demanded bits analysis", false, false) 53 54 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) { 55 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry()); 56 } 57 58 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 59 AU.setPreservesCFG(); 60 AU.addRequired<AssumptionCacheTracker>(); 61 AU.addRequired<DominatorTreeWrapperPass>(); 62 AU.setPreservesAll(); 63 } 64 65 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const { 66 DB->print(OS); 67 } 68 69 static bool isAlwaysLive(Instruction *I) { 70 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) || 71 I->isEHPad() || I->mayHaveSideEffects(); 72 } 73 74 void DemandedBits::determineLiveOperandBits( 75 const Instruction *UserI, const Instruction *I, unsigned OperandNo, 76 const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) { 77 unsigned BitWidth = AB.getBitWidth(); 78 79 // We're called once per operand, but for some instructions, we need to 80 // compute known bits of both operands in order to determine the live bits of 81 // either (when both operands are instructions themselves). We don't, 82 // however, want to do this twice, so we cache the result in APInts that live 83 // in the caller. For the two-relevant-operands case, both operand values are 84 // provided here. 85 auto ComputeKnownBits = 86 [&](unsigned BitWidth, const Value *V1, const Value *V2) { 87 const DataLayout &DL = I->getModule()->getDataLayout(); 88 Known = KnownBits(BitWidth); 89 computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); 90 91 if (V2) { 92 Known2 = KnownBits(BitWidth); 93 computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); 94 } 95 }; 96 97 switch (UserI->getOpcode()) { 98 default: break; 99 case Instruction::Call: 100 case Instruction::Invoke: 101 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) 102 switch (II->getIntrinsicID()) { 103 default: break; 104 case Intrinsic::bswap: 105 // The alive bits of the input are the swapped alive bits of 106 // the output. 107 AB = AOut.byteSwap(); 108 break; 109 case Intrinsic::bitreverse: 110 AB = AOut.reverseBits(); 111 break; 112 case Intrinsic::ctlz: 113 if (OperandNo == 0) { 114 // We need some output bits, so we need all bits of the 115 // input to the left of, and including, the leftmost bit 116 // known to be one. 117 ComputeKnownBits(BitWidth, I, nullptr); 118 AB = APInt::getHighBitsSet(BitWidth, 119 std::min(BitWidth, Known.countMaxLeadingZeros()+1)); 120 } 121 break; 122 case Intrinsic::cttz: 123 if (OperandNo == 0) { 124 // We need some output bits, so we need all bits of the 125 // input to the right of, and including, the rightmost bit 126 // known to be one. 127 ComputeKnownBits(BitWidth, I, nullptr); 128 AB = APInt::getLowBitsSet(BitWidth, 129 std::min(BitWidth, Known.countMaxTrailingZeros()+1)); 130 } 131 break; 132 } 133 break; 134 case Instruction::Add: 135 case Instruction::Sub: 136 case Instruction::Mul: 137 // Find the highest live output bit. We don't need any more input 138 // bits than that (adds, and thus subtracts, ripple only to the 139 // left). 140 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); 141 break; 142 case Instruction::Shl: 143 if (OperandNo == 0) 144 if (ConstantInt *CI = 145 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 146 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 147 AB = AOut.lshr(ShiftAmt); 148 149 // If the shift is nuw/nsw, then the high bits are not dead 150 // (because we've promised that they *must* be zero). 151 const ShlOperator *S = cast<ShlOperator>(UserI); 152 if (S->hasNoSignedWrap()) 153 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); 154 else if (S->hasNoUnsignedWrap()) 155 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 156 } 157 break; 158 case Instruction::LShr: 159 if (OperandNo == 0) 160 if (ConstantInt *CI = 161 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 162 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 163 AB = AOut.shl(ShiftAmt); 164 165 // If the shift is exact, then the low bits are not dead 166 // (they must be zero). 167 if (cast<LShrOperator>(UserI)->isExact()) 168 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 169 } 170 break; 171 case Instruction::AShr: 172 if (OperandNo == 0) 173 if (ConstantInt *CI = 174 dyn_cast<ConstantInt>(UserI->getOperand(1))) { 175 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1); 176 AB = AOut.shl(ShiftAmt); 177 // Because the high input bit is replicated into the 178 // high-order bits of the result, if we need any of those 179 // bits, then we must keep the highest input bit. 180 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) 181 .getBoolValue()) 182 AB.setSignBit(); 183 184 // If the shift is exact, then the low bits are not dead 185 // (they must be zero). 186 if (cast<AShrOperator>(UserI)->isExact()) 187 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); 188 } 189 break; 190 case Instruction::And: 191 AB = AOut; 192 193 // For bits that are known zero, the corresponding bits in the 194 // other operand are dead (unless they're both zero, in which 195 // case they can't both be dead, so just mark the LHS bits as 196 // dead). 197 if (OperandNo == 0) { 198 ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); 199 AB &= ~Known2.Zero; 200 } else { 201 if (!isa<Instruction>(UserI->getOperand(0))) 202 ComputeKnownBits(BitWidth, UserI->getOperand(0), I); 203 AB &= ~(Known.Zero & ~Known2.Zero); 204 } 205 break; 206 case Instruction::Or: 207 AB = AOut; 208 209 // For bits that are known one, the corresponding bits in the 210 // other operand are dead (unless they're both one, in which 211 // case they can't both be dead, so just mark the LHS bits as 212 // dead). 213 if (OperandNo == 0) { 214 ComputeKnownBits(BitWidth, I, UserI->getOperand(1)); 215 AB &= ~Known2.One; 216 } else { 217 if (!isa<Instruction>(UserI->getOperand(0))) 218 ComputeKnownBits(BitWidth, UserI->getOperand(0), I); 219 AB &= ~(Known.One & ~Known2.One); 220 } 221 break; 222 case Instruction::Xor: 223 case Instruction::PHI: 224 AB = AOut; 225 break; 226 case Instruction::Trunc: 227 AB = AOut.zext(BitWidth); 228 break; 229 case Instruction::ZExt: 230 AB = AOut.trunc(BitWidth); 231 break; 232 case Instruction::SExt: 233 AB = AOut.trunc(BitWidth); 234 // Because the high input bit is replicated into the 235 // high-order bits of the result, if we need any of those 236 // bits, then we must keep the highest input bit. 237 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), 238 AOut.getBitWidth() - BitWidth)) 239 .getBoolValue()) 240 AB.setSignBit(); 241 break; 242 case Instruction::Select: 243 if (OperandNo != 0) 244 AB = AOut; 245 break; 246 } 247 } 248 249 bool DemandedBitsWrapperPass::runOnFunction(Function &F) { 250 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 251 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 252 DB.emplace(F, AC, DT); 253 return false; 254 } 255 256 void DemandedBitsWrapperPass::releaseMemory() { 257 DB.reset(); 258 } 259 260 void DemandedBits::performAnalysis() { 261 if (Analyzed) 262 // Analysis already completed for this function. 263 return; 264 Analyzed = true; 265 266 Visited.clear(); 267 AliveBits.clear(); 268 269 SmallVector<Instruction*, 128> Worklist; 270 271 // Collect the set of "root" instructions that are known live. 272 for (Instruction &I : instructions(F)) { 273 if (!isAlwaysLive(&I)) 274 continue; 275 276 DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); 277 // For integer-valued instructions, set up an initial empty set of alive 278 // bits and add the instruction to the work list. For other instructions 279 // add their operands to the work list (for integer values operands, mark 280 // all bits as live). 281 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 282 if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second) 283 Worklist.push_back(&I); 284 285 continue; 286 } 287 288 // Non-integer-typed instructions... 289 for (Use &OI : I.operands()) { 290 if (Instruction *J = dyn_cast<Instruction>(OI)) { 291 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType())) 292 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth()); 293 Worklist.push_back(J); 294 } 295 } 296 // To save memory, we don't add I to the Visited set here. Instead, we 297 // check isAlwaysLive on every instruction when searching for dead 298 // instructions later (we need to check isAlwaysLive for the 299 // integer-typed instructions anyway). 300 } 301 302 // Propagate liveness backwards to operands. 303 while (!Worklist.empty()) { 304 Instruction *UserI = Worklist.pop_back_val(); 305 306 DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); 307 APInt AOut; 308 if (UserI->getType()->isIntegerTy()) { 309 AOut = AliveBits[UserI]; 310 DEBUG(dbgs() << " Alive Out: " << AOut); 311 } 312 DEBUG(dbgs() << "\n"); 313 314 if (!UserI->getType()->isIntegerTy()) 315 Visited.insert(UserI); 316 317 KnownBits Known, Known2; 318 // Compute the set of alive bits for each operand. These are anded into the 319 // existing set, if any, and if that changes the set of alive bits, the 320 // operand is added to the work-list. 321 for (Use &OI : UserI->operands()) { 322 if (Instruction *I = dyn_cast<Instruction>(OI)) { 323 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) { 324 unsigned BitWidth = IT->getBitWidth(); 325 APInt AB = APInt::getAllOnesValue(BitWidth); 326 if (UserI->getType()->isIntegerTy() && !AOut && 327 !isAlwaysLive(UserI)) { 328 AB = APInt(BitWidth, 0); 329 } else { 330 // If all bits of the output are dead, then all bits of the input 331 // Bits of each operand that are used to compute alive bits of the 332 // output are alive, all others are dead. 333 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB, 334 Known, Known2); 335 } 336 337 // If we've added to the set of alive bits (or the operand has not 338 // been previously visited), then re-queue the operand to be visited 339 // again. 340 APInt ABPrev(BitWidth, 0); 341 auto ABI = AliveBits.find(I); 342 if (ABI != AliveBits.end()) 343 ABPrev = ABI->second; 344 345 APInt ABNew = AB | ABPrev; 346 if (ABNew != ABPrev || ABI == AliveBits.end()) { 347 AliveBits[I] = std::move(ABNew); 348 Worklist.push_back(I); 349 } 350 } else if (!Visited.count(I)) { 351 Worklist.push_back(I); 352 } 353 } 354 } 355 } 356 } 357 358 APInt DemandedBits::getDemandedBits(Instruction *I) { 359 performAnalysis(); 360 361 const DataLayout &DL = I->getParent()->getModule()->getDataLayout(); 362 auto Found = AliveBits.find(I); 363 if (Found != AliveBits.end()) 364 return Found->second; 365 return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType())); 366 } 367 368 bool DemandedBits::isInstructionDead(Instruction *I) { 369 performAnalysis(); 370 371 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && 372 !isAlwaysLive(I); 373 } 374 375 void DemandedBits::print(raw_ostream &OS) { 376 performAnalysis(); 377 for (auto &KV : AliveBits) { 378 OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for " 379 << *KV.first << "\n"; 380 } 381 } 382 383 FunctionPass *llvm::createDemandedBitsWrapperPass() { 384 return new DemandedBitsWrapperPass(); 385 } 386 387 AnalysisKey DemandedBitsAnalysis::Key; 388 389 DemandedBits DemandedBitsAnalysis::run(Function &F, 390 FunctionAnalysisManager &AM) { 391 auto &AC = AM.getResult<AssumptionAnalysis>(F); 392 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 393 return DemandedBits(F, AC, DT); 394 } 395 396 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, 397 FunctionAnalysisManager &AM) { 398 AM.getResult<DemandedBitsAnalysis>(F).print(OS); 399 return PreservedAnalyses::all(); 400 } 401