1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Config/config.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/KnownBits.h" 45 #include "llvm/Support/MathExtras.h" 46 #include <cassert> 47 #include <cerrno> 48 #include <cfenv> 49 #include <cmath> 50 #include <cstddef> 51 #include <cstdint> 52 53 using namespace llvm; 54 55 namespace { 56 57 //===----------------------------------------------------------------------===// 58 // Constant Folding internal helper functions 59 //===----------------------------------------------------------------------===// 60 61 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 62 Constant *C, Type *SrcEltTy, 63 unsigned NumSrcElts, 64 const DataLayout &DL) { 65 // Now that we know that the input value is a vector of integers, just shift 66 // and insert them into our result. 67 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 68 for (unsigned i = 0; i != NumSrcElts; ++i) { 69 Constant *Element; 70 if (DL.isLittleEndian()) 71 Element = C->getAggregateElement(NumSrcElts - i - 1); 72 else 73 Element = C->getAggregateElement(i); 74 75 if (Element && isa<UndefValue>(Element)) { 76 Result <<= BitShift; 77 continue; 78 } 79 80 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 81 if (!ElementCI) 82 return ConstantExpr::getBitCast(C, DestTy); 83 84 Result <<= BitShift; 85 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 86 } 87 88 return nullptr; 89 } 90 91 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 92 /// This always returns a non-null constant, but it may be a 93 /// ConstantExpr if unfoldable. 94 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 95 // Catch the obvious splat cases. 96 if (C->isNullValue() && !DestTy->isX86_MMXTy()) 97 return Constant::getNullValue(DestTy); 98 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && 99 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 100 return Constant::getAllOnesValue(DestTy); 101 102 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 103 // Handle a vector->scalar integer/fp cast. 104 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 105 unsigned NumSrcElts = VTy->getNumElements(); 106 Type *SrcEltTy = VTy->getElementType(); 107 108 // If the vector is a vector of floating point, convert it to vector of int 109 // to simplify things. 110 if (SrcEltTy->isFloatingPointTy()) { 111 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 112 Type *SrcIVTy = 113 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 114 // Ask IR to do the conversion now that #elts line up. 115 C = ConstantExpr::getBitCast(C, SrcIVTy); 116 } 117 118 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 119 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 120 SrcEltTy, NumSrcElts, DL)) 121 return CE; 122 123 if (isa<IntegerType>(DestTy)) 124 return ConstantInt::get(DestTy, Result); 125 126 APFloat FP(DestTy->getFltSemantics(), Result); 127 return ConstantFP::get(DestTy->getContext(), FP); 128 } 129 } 130 131 // The code below only handles casts to vectors currently. 132 auto *DestVTy = dyn_cast<VectorType>(DestTy); 133 if (!DestVTy) 134 return ConstantExpr::getBitCast(C, DestTy); 135 136 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 137 // vector so the code below can handle it uniformly. 138 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 139 Constant *Ops = C; // don't take the address of C! 140 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 141 } 142 143 // If this is a bitcast from constant vector -> vector, fold it. 144 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 145 return ConstantExpr::getBitCast(C, DestTy); 146 147 // If the element types match, IR can fold it. 148 unsigned NumDstElt = DestVTy->getNumElements(); 149 unsigned NumSrcElt = C->getType()->getVectorNumElements(); 150 if (NumDstElt == NumSrcElt) 151 return ConstantExpr::getBitCast(C, DestTy); 152 153 Type *SrcEltTy = C->getType()->getVectorElementType(); 154 Type *DstEltTy = DestVTy->getElementType(); 155 156 // Otherwise, we're changing the number of elements in a vector, which 157 // requires endianness information to do the right thing. For example, 158 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 159 // folds to (little endian): 160 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 161 // and to (big endian): 162 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 163 164 // First thing is first. We only want to think about integer here, so if 165 // we have something in FP form, recast it as integer. 166 if (DstEltTy->isFloatingPointTy()) { 167 // Fold to an vector of integers with same size as our FP type. 168 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 169 Type *DestIVTy = 170 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt); 171 // Recursively handle this integer conversion, if possible. 172 C = FoldBitCast(C, DestIVTy, DL); 173 174 // Finally, IR can handle this now that #elts line up. 175 return ConstantExpr::getBitCast(C, DestTy); 176 } 177 178 // Okay, we know the destination is integer, if the input is FP, convert 179 // it to integer first. 180 if (SrcEltTy->isFloatingPointTy()) { 181 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 182 Type *SrcIVTy = 183 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 184 // Ask IR to do the conversion now that #elts line up. 185 C = ConstantExpr::getBitCast(C, SrcIVTy); 186 // If IR wasn't able to fold it, bail out. 187 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 188 !isa<ConstantDataVector>(C)) 189 return C; 190 } 191 192 // Now we know that the input and output vectors are both integer vectors 193 // of the same size, and that their #elements is not the same. Do the 194 // conversion here, which depends on whether the input or output has 195 // more elements. 196 bool isLittleEndian = DL.isLittleEndian(); 197 198 SmallVector<Constant*, 32> Result; 199 if (NumDstElt < NumSrcElt) { 200 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 201 Constant *Zero = Constant::getNullValue(DstEltTy); 202 unsigned Ratio = NumSrcElt/NumDstElt; 203 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 204 unsigned SrcElt = 0; 205 for (unsigned i = 0; i != NumDstElt; ++i) { 206 // Build each element of the result. 207 Constant *Elt = Zero; 208 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 209 for (unsigned j = 0; j != Ratio; ++j) { 210 Constant *Src = C->getAggregateElement(SrcElt++); 211 if (Src && isa<UndefValue>(Src)) 212 Src = Constant::getNullValue(C->getType()->getVectorElementType()); 213 else 214 Src = dyn_cast_or_null<ConstantInt>(Src); 215 if (!Src) // Reject constantexpr elements. 216 return ConstantExpr::getBitCast(C, DestTy); 217 218 // Zero extend the element to the right size. 219 Src = ConstantExpr::getZExt(Src, Elt->getType()); 220 221 // Shift it to the right place, depending on endianness. 222 Src = ConstantExpr::getShl(Src, 223 ConstantInt::get(Src->getType(), ShiftAmt)); 224 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 225 226 // Mix it in. 227 Elt = ConstantExpr::getOr(Elt, Src); 228 } 229 Result.push_back(Elt); 230 } 231 return ConstantVector::get(Result); 232 } 233 234 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 235 unsigned Ratio = NumDstElt/NumSrcElt; 236 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 237 238 // Loop over each source value, expanding into multiple results. 239 for (unsigned i = 0; i != NumSrcElt; ++i) { 240 auto *Element = C->getAggregateElement(i); 241 242 if (!Element) // Reject constantexpr elements. 243 return ConstantExpr::getBitCast(C, DestTy); 244 245 if (isa<UndefValue>(Element)) { 246 // Correctly Propagate undef values. 247 Result.append(Ratio, UndefValue::get(DstEltTy)); 248 continue; 249 } 250 251 auto *Src = dyn_cast<ConstantInt>(Element); 252 if (!Src) 253 return ConstantExpr::getBitCast(C, DestTy); 254 255 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 256 for (unsigned j = 0; j != Ratio; ++j) { 257 // Shift the piece of the value into the right place, depending on 258 // endianness. 259 Constant *Elt = ConstantExpr::getLShr(Src, 260 ConstantInt::get(Src->getType(), ShiftAmt)); 261 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 262 263 // Truncate the element to an integer with the same pointer size and 264 // convert the element back to a pointer using a inttoptr. 265 if (DstEltTy->isPointerTy()) { 266 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 267 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 268 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 269 continue; 270 } 271 272 // Truncate and remember this piece. 273 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 274 } 275 } 276 277 return ConstantVector::get(Result); 278 } 279 280 } // end anonymous namespace 281 282 /// If this constant is a constant offset from a global, return the global and 283 /// the constant. Because of constantexprs, this function is recursive. 284 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 285 APInt &Offset, const DataLayout &DL) { 286 // Trivial case, constant is the global. 287 if ((GV = dyn_cast<GlobalValue>(C))) { 288 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 289 Offset = APInt(BitWidth, 0); 290 return true; 291 } 292 293 // Otherwise, if this isn't a constant expr, bail out. 294 auto *CE = dyn_cast<ConstantExpr>(C); 295 if (!CE) return false; 296 297 // Look through ptr->int and ptr->ptr casts. 298 if (CE->getOpcode() == Instruction::PtrToInt || 299 CE->getOpcode() == Instruction::BitCast) 300 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); 301 302 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 303 auto *GEP = dyn_cast<GEPOperator>(CE); 304 if (!GEP) 305 return false; 306 307 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 308 APInt TmpOffset(BitWidth, 0); 309 310 // If the base isn't a global+constant, we aren't either. 311 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) 312 return false; 313 314 // Otherwise, add any offset that our operands provide. 315 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 316 return false; 317 318 Offset = TmpOffset; 319 return true; 320 } 321 322 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 323 const DataLayout &DL) { 324 do { 325 Type *SrcTy = C->getType(); 326 327 // If the type sizes are the same and a cast is legal, just directly 328 // cast the constant. 329 if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) { 330 Instruction::CastOps Cast = Instruction::BitCast; 331 // If we are going from a pointer to int or vice versa, we spell the cast 332 // differently. 333 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 334 Cast = Instruction::IntToPtr; 335 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 336 Cast = Instruction::PtrToInt; 337 338 if (CastInst::castIsValid(Cast, C, DestTy)) 339 return ConstantExpr::getCast(Cast, C, DestTy); 340 } 341 342 // If this isn't an aggregate type, there is nothing we can do to drill down 343 // and find a bitcastable constant. 344 if (!SrcTy->isAggregateType()) 345 return nullptr; 346 347 // We're simulating a load through a pointer that was bitcast to point to 348 // a different type, so we can try to walk down through the initial 349 // elements of an aggregate to see if some part of the aggregate is 350 // castable to implement the "load" semantic model. 351 if (SrcTy->isStructTy()) { 352 // Struct types might have leading zero-length elements like [0 x i32], 353 // which are certainly not what we are looking for, so skip them. 354 unsigned Elem = 0; 355 Constant *ElemC; 356 do { 357 ElemC = C->getAggregateElement(Elem++); 358 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0); 359 C = ElemC; 360 } else { 361 C = C->getAggregateElement(0u); 362 } 363 } while (C); 364 365 return nullptr; 366 } 367 368 namespace { 369 370 /// Recursive helper to read bits out of global. C is the constant being copied 371 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 372 /// results into and BytesLeft is the number of bytes left in 373 /// the CurPtr buffer. DL is the DataLayout. 374 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 375 unsigned BytesLeft, const DataLayout &DL) { 376 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 377 "Out of range access"); 378 379 // If this element is zero or undefined, we can just return since *CurPtr is 380 // zero initialized. 381 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 382 return true; 383 384 if (auto *CI = dyn_cast<ConstantInt>(C)) { 385 if (CI->getBitWidth() > 64 || 386 (CI->getBitWidth() & 7) != 0) 387 return false; 388 389 uint64_t Val = CI->getZExtValue(); 390 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 391 392 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 393 int n = ByteOffset; 394 if (!DL.isLittleEndian()) 395 n = IntBytes - n - 1; 396 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 397 ++ByteOffset; 398 } 399 return true; 400 } 401 402 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 403 if (CFP->getType()->isDoubleTy()) { 404 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 405 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 406 } 407 if (CFP->getType()->isFloatTy()){ 408 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 409 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 410 } 411 if (CFP->getType()->isHalfTy()){ 412 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 413 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 414 } 415 return false; 416 } 417 418 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 419 const StructLayout *SL = DL.getStructLayout(CS->getType()); 420 unsigned Index = SL->getElementContainingOffset(ByteOffset); 421 uint64_t CurEltOffset = SL->getElementOffset(Index); 422 ByteOffset -= CurEltOffset; 423 424 while (true) { 425 // If the element access is to the element itself and not to tail padding, 426 // read the bytes from the element. 427 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 428 429 if (ByteOffset < EltSize && 430 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 431 BytesLeft, DL)) 432 return false; 433 434 ++Index; 435 436 // Check to see if we read from the last struct element, if so we're done. 437 if (Index == CS->getType()->getNumElements()) 438 return true; 439 440 // If we read all of the bytes we needed from this element we're done. 441 uint64_t NextEltOffset = SL->getElementOffset(Index); 442 443 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 444 return true; 445 446 // Move to the next element of the struct. 447 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 448 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 449 ByteOffset = 0; 450 CurEltOffset = NextEltOffset; 451 } 452 // not reached. 453 } 454 455 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 456 isa<ConstantDataSequential>(C)) { 457 Type *EltTy = C->getType()->getSequentialElementType(); 458 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 459 uint64_t Index = ByteOffset / EltSize; 460 uint64_t Offset = ByteOffset - Index * EltSize; 461 uint64_t NumElts; 462 if (auto *AT = dyn_cast<ArrayType>(C->getType())) 463 NumElts = AT->getNumElements(); 464 else 465 NumElts = C->getType()->getVectorNumElements(); 466 467 for (; Index != NumElts; ++Index) { 468 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 469 BytesLeft, DL)) 470 return false; 471 472 uint64_t BytesWritten = EltSize - Offset; 473 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 474 if (BytesWritten >= BytesLeft) 475 return true; 476 477 Offset = 0; 478 BytesLeft -= BytesWritten; 479 CurPtr += BytesWritten; 480 } 481 return true; 482 } 483 484 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 485 if (CE->getOpcode() == Instruction::IntToPtr && 486 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 487 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 488 BytesLeft, DL); 489 } 490 } 491 492 // Otherwise, unknown initializer type. 493 return false; 494 } 495 496 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, 497 const DataLayout &DL) { 498 auto *PTy = cast<PointerType>(C->getType()); 499 auto *IntType = dyn_cast<IntegerType>(LoadTy); 500 501 // If this isn't an integer load we can't fold it directly. 502 if (!IntType) { 503 unsigned AS = PTy->getAddressSpace(); 504 505 // If this is a float/double load, we can try folding it as an int32/64 load 506 // and then bitcast the result. This can be useful for union cases. Note 507 // that address spaces don't matter here since we're not going to result in 508 // an actual new load. 509 Type *MapTy; 510 if (LoadTy->isHalfTy()) 511 MapTy = Type::getInt16Ty(C->getContext()); 512 else if (LoadTy->isFloatTy()) 513 MapTy = Type::getInt32Ty(C->getContext()); 514 else if (LoadTy->isDoubleTy()) 515 MapTy = Type::getInt64Ty(C->getContext()); 516 else if (LoadTy->isVectorTy()) { 517 MapTy = PointerType::getIntNTy(C->getContext(), 518 DL.getTypeAllocSizeInBits(LoadTy)); 519 } else 520 return nullptr; 521 522 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); 523 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) 524 return FoldBitCast(Res, LoadTy, DL); 525 return nullptr; 526 } 527 528 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 529 if (BytesLoaded > 32 || BytesLoaded == 0) 530 return nullptr; 531 532 GlobalValue *GVal; 533 APInt OffsetAI; 534 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) 535 return nullptr; 536 537 auto *GV = dyn_cast<GlobalVariable>(GVal); 538 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 539 !GV->getInitializer()->getType()->isSized()) 540 return nullptr; 541 542 int64_t Offset = OffsetAI.getSExtValue(); 543 int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType()); 544 545 // If we're not accessing anything in this constant, the result is undefined. 546 if (Offset + BytesLoaded <= 0) 547 return UndefValue::get(IntType); 548 549 // If we're not accessing anything in this constant, the result is undefined. 550 if (Offset >= InitializerSize) 551 return UndefValue::get(IntType); 552 553 unsigned char RawBytes[32] = {0}; 554 unsigned char *CurPtr = RawBytes; 555 unsigned BytesLeft = BytesLoaded; 556 557 // If we're loading off the beginning of the global, some bytes may be valid. 558 if (Offset < 0) { 559 CurPtr += -Offset; 560 BytesLeft += Offset; 561 Offset = 0; 562 } 563 564 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) 565 return nullptr; 566 567 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 568 if (DL.isLittleEndian()) { 569 ResultVal = RawBytes[BytesLoaded - 1]; 570 for (unsigned i = 1; i != BytesLoaded; ++i) { 571 ResultVal <<= 8; 572 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 573 } 574 } else { 575 ResultVal = RawBytes[0]; 576 for (unsigned i = 1; i != BytesLoaded; ++i) { 577 ResultVal <<= 8; 578 ResultVal |= RawBytes[i]; 579 } 580 } 581 582 return ConstantInt::get(IntType->getContext(), ResultVal); 583 } 584 585 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, 586 const DataLayout &DL) { 587 auto *SrcPtr = CE->getOperand(0); 588 auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); 589 if (!SrcPtrTy) 590 return nullptr; 591 Type *SrcTy = SrcPtrTy->getPointerElementType(); 592 593 Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); 594 if (!C) 595 return nullptr; 596 597 return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); 598 } 599 600 } // end anonymous namespace 601 602 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 603 const DataLayout &DL) { 604 // First, try the easy cases: 605 if (auto *GV = dyn_cast<GlobalVariable>(C)) 606 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 607 return GV->getInitializer(); 608 609 if (auto *GA = dyn_cast<GlobalAlias>(C)) 610 if (GA->getAliasee() && !GA->isInterposable()) 611 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); 612 613 // If the loaded value isn't a constant expr, we can't handle it. 614 auto *CE = dyn_cast<ConstantExpr>(C); 615 if (!CE) 616 return nullptr; 617 618 if (CE->getOpcode() == Instruction::GetElementPtr) { 619 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { 620 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 621 if (Constant *V = 622 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) 623 return V; 624 } 625 } 626 } 627 628 if (CE->getOpcode() == Instruction::BitCast) 629 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) 630 return LoadedC; 631 632 // Instead of loading constant c string, use corresponding integer value 633 // directly if string length is small enough. 634 StringRef Str; 635 if (getConstantStringInfo(CE, Str) && !Str.empty()) { 636 size_t StrLen = Str.size(); 637 unsigned NumBits = Ty->getPrimitiveSizeInBits(); 638 // Replace load with immediate integer if the result is an integer or fp 639 // value. 640 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && 641 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { 642 APInt StrVal(NumBits, 0); 643 APInt SingleChar(NumBits, 0); 644 if (DL.isLittleEndian()) { 645 for (unsigned char C : reverse(Str.bytes())) { 646 SingleChar = static_cast<uint64_t>(C); 647 StrVal = (StrVal << 8) | SingleChar; 648 } 649 } else { 650 for (unsigned char C : Str.bytes()) { 651 SingleChar = static_cast<uint64_t>(C); 652 StrVal = (StrVal << 8) | SingleChar; 653 } 654 // Append NULL at the end. 655 SingleChar = 0; 656 StrVal = (StrVal << 8) | SingleChar; 657 } 658 659 Constant *Res = ConstantInt::get(CE->getContext(), StrVal); 660 if (Ty->isFloatingPointTy()) 661 Res = ConstantExpr::getBitCast(Res, Ty); 662 return Res; 663 } 664 } 665 666 // If this load comes from anywhere in a constant global, and if the global 667 // is all undef or zero, we know what it loads. 668 if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { 669 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 670 if (GV->getInitializer()->isNullValue()) 671 return Constant::getNullValue(Ty); 672 if (isa<UndefValue>(GV->getInitializer())) 673 return UndefValue::get(Ty); 674 } 675 } 676 677 // Try hard to fold loads from bitcasted strange and non-type-safe things. 678 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); 679 } 680 681 namespace { 682 683 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { 684 if (LI->isVolatile()) return nullptr; 685 686 if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) 687 return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); 688 689 return nullptr; 690 } 691 692 /// One of Op0/Op1 is a constant expression. 693 /// Attempt to symbolically evaluate the result of a binary operator merging 694 /// these together. If target data info is available, it is provided as DL, 695 /// otherwise DL is null. 696 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 697 const DataLayout &DL) { 698 // SROA 699 700 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 701 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 702 // bits. 703 704 if (Opc == Instruction::And) { 705 KnownBits Known0 = computeKnownBits(Op0, DL); 706 KnownBits Known1 = computeKnownBits(Op1, DL); 707 if ((Known1.One | Known0.Zero).isAllOnesValue()) { 708 // All the bits of Op0 that the 'and' could be masking are already zero. 709 return Op0; 710 } 711 if ((Known0.One | Known1.Zero).isAllOnesValue()) { 712 // All the bits of Op1 that the 'and' could be masking are already zero. 713 return Op1; 714 } 715 716 Known0.Zero |= Known1.Zero; 717 Known0.One &= Known1.One; 718 if (Known0.isConstant()) 719 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 720 } 721 722 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 723 // constant. This happens frequently when iterating over a global array. 724 if (Opc == Instruction::Sub) { 725 GlobalValue *GV1, *GV2; 726 APInt Offs1, Offs2; 727 728 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 729 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 730 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 731 732 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 733 // PtrToInt may change the bitwidth so we have convert to the right size 734 // first. 735 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 736 Offs2.zextOrTrunc(OpSize)); 737 } 738 } 739 740 return nullptr; 741 } 742 743 /// If array indices are not pointer-sized integers, explicitly cast them so 744 /// that they aren't implicitly casted by the getelementptr. 745 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 746 Type *ResultTy, Optional<unsigned> InRangeIndex, 747 const DataLayout &DL, const TargetLibraryInfo *TLI) { 748 Type *IntPtrTy = DL.getIntPtrType(ResultTy); 749 Type *IntPtrScalarTy = IntPtrTy->getScalarType(); 750 751 bool Any = false; 752 SmallVector<Constant*, 32> NewIdxs; 753 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 754 if ((i == 1 || 755 !isa<StructType>(GetElementPtrInst::getIndexedType( 756 SrcElemTy, Ops.slice(1, i - 1)))) && 757 Ops[i]->getType()->getScalarType() != IntPtrScalarTy) { 758 Any = true; 759 Type *NewType = Ops[i]->getType()->isVectorTy() 760 ? IntPtrTy 761 : IntPtrTy->getScalarType(); 762 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 763 true, 764 NewType, 765 true), 766 Ops[i], NewType)); 767 } else 768 NewIdxs.push_back(Ops[i]); 769 } 770 771 if (!Any) 772 return nullptr; 773 774 Constant *C = ConstantExpr::getGetElementPtr( 775 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 776 if (Constant *Folded = ConstantFoldConstant(C, DL, TLI)) 777 C = Folded; 778 779 return C; 780 } 781 782 /// Strip the pointer casts, but preserve the address space information. 783 Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) { 784 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 785 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 786 Ptr = Ptr->stripPointerCasts(); 787 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 788 789 ElemTy = NewPtrTy->getPointerElementType(); 790 791 // Preserve the address space number of the pointer. 792 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 793 NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); 794 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); 795 } 796 return Ptr; 797 } 798 799 /// If we can symbolically evaluate the GEP constant expression, do so. 800 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 801 ArrayRef<Constant *> Ops, 802 const DataLayout &DL, 803 const TargetLibraryInfo *TLI) { 804 const GEPOperator *InnermostGEP = GEP; 805 bool InBounds = GEP->isInBounds(); 806 807 Type *SrcElemTy = GEP->getSourceElementType(); 808 Type *ResElemTy = GEP->getResultElementType(); 809 Type *ResTy = GEP->getType(); 810 if (!SrcElemTy->isSized()) 811 return nullptr; 812 813 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 814 GEP->getInRangeIndex(), DL, TLI)) 815 return C; 816 817 Constant *Ptr = Ops[0]; 818 if (!Ptr->getType()->isPointerTy()) 819 return nullptr; 820 821 Type *IntPtrTy = DL.getIntPtrType(Ptr->getType()); 822 823 // If this is a constant expr gep that is effectively computing an 824 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' 825 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 826 if (!isa<ConstantInt>(Ops[i])) { 827 828 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 829 // "inttoptr (sub (ptrtoint Ptr), V)" 830 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 831 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 832 assert((!CE || CE->getType() == IntPtrTy) && 833 "CastGEPIndices didn't canonicalize index types!"); 834 if (CE && CE->getOpcode() == Instruction::Sub && 835 CE->getOperand(0)->isNullValue()) { 836 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 837 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 838 Res = ConstantExpr::getIntToPtr(Res, ResTy); 839 if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI)) 840 Res = FoldedRes; 841 return Res; 842 } 843 } 844 return nullptr; 845 } 846 847 unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy); 848 APInt Offset = 849 APInt(BitWidth, 850 DL.getIndexedOffsetInType( 851 SrcElemTy, 852 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 853 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 854 855 // If this is a GEP of a GEP, fold it all into a single GEP. 856 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 857 InnermostGEP = GEP; 858 InBounds &= GEP->isInBounds(); 859 860 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 861 862 // Do not try the incorporate the sub-GEP if some index is not a number. 863 bool AllConstantInt = true; 864 for (Value *NestedOp : NestedOps) 865 if (!isa<ConstantInt>(NestedOp)) { 866 AllConstantInt = false; 867 break; 868 } 869 if (!AllConstantInt) 870 break; 871 872 Ptr = cast<Constant>(GEP->getOperand(0)); 873 SrcElemTy = GEP->getSourceElementType(); 874 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 875 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 876 } 877 878 // If the base value for this address is a literal integer value, fold the 879 // getelementptr to the resulting integer value casted to the pointer type. 880 APInt BasePtr(BitWidth, 0); 881 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 882 if (CE->getOpcode() == Instruction::IntToPtr) { 883 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 884 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 885 } 886 } 887 888 auto *PTy = cast<PointerType>(Ptr->getType()); 889 if ((Ptr->isNullValue() || BasePtr != 0) && 890 !DL.isNonIntegralPointerType(PTy)) { 891 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 892 return ConstantExpr::getIntToPtr(C, ResTy); 893 } 894 895 // Otherwise form a regular getelementptr. Recompute the indices so that 896 // we eliminate over-indexing of the notional static type array bounds. 897 // This makes it easy to determine if the getelementptr is "inbounds". 898 // Also, this helps GlobalOpt do SROA on GlobalVariables. 899 Type *Ty = PTy; 900 SmallVector<Constant *, 32> NewIdxs; 901 902 do { 903 if (!Ty->isStructTy()) { 904 if (Ty->isPointerTy()) { 905 // The only pointer indexing we'll do is on the first index of the GEP. 906 if (!NewIdxs.empty()) 907 break; 908 909 Ty = SrcElemTy; 910 911 // Only handle pointers to sized types, not pointers to functions. 912 if (!Ty->isSized()) 913 return nullptr; 914 } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) { 915 Ty = ATy->getElementType(); 916 } else { 917 // We've reached some non-indexable type. 918 break; 919 } 920 921 // Determine which element of the array the offset points into. 922 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); 923 if (ElemSize == 0) { 924 // The element size is 0. This may be [0 x Ty]*, so just use a zero 925 // index for this level and proceed to the next level to see if it can 926 // accommodate the offset. 927 NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0)); 928 } else { 929 // The element size is non-zero divide the offset by the element 930 // size (rounding down), to compute the index at this level. 931 bool Overflow; 932 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); 933 if (Overflow) 934 break; 935 Offset -= NewIdx * ElemSize; 936 NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx)); 937 } 938 } else { 939 auto *STy = cast<StructType>(Ty); 940 // If we end up with an offset that isn't valid for this struct type, we 941 // can't re-form this GEP in a regular form, so bail out. The pointer 942 // operand likely went through casts that are necessary to make the GEP 943 // sensible. 944 const StructLayout &SL = *DL.getStructLayout(STy); 945 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) 946 break; 947 948 // Determine which field of the struct the offset points into. The 949 // getZExtValue is fine as we've already ensured that the offset is 950 // within the range representable by the StructLayout API. 951 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); 952 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 953 ElIdx)); 954 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); 955 Ty = STy->getTypeAtIndex(ElIdx); 956 } 957 } while (Ty != ResElemTy); 958 959 // If we haven't used up the entire offset by descending the static 960 // type, then the offset is pointing into the middle of an indivisible 961 // member, so we can't simplify it. 962 if (Offset != 0) 963 return nullptr; 964 965 // Preserve the inrange index from the innermost GEP if possible. We must 966 // have calculated the same indices up to and including the inrange index. 967 Optional<unsigned> InRangeIndex; 968 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 969 if (SrcElemTy == InnermostGEP->getSourceElementType() && 970 NewIdxs.size() > *LastIRIndex) { 971 InRangeIndex = LastIRIndex; 972 for (unsigned I = 0; I <= *LastIRIndex; ++I) 973 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 974 return nullptr; 975 } 976 977 // Create a GEP. 978 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 979 InBounds, InRangeIndex); 980 assert(C->getType()->getPointerElementType() == Ty && 981 "Computed GetElementPtr has unexpected type!"); 982 983 // If we ended up indexing a member with a type that doesn't match 984 // the type of what the original indices indexed, add a cast. 985 if (Ty != ResElemTy) 986 C = FoldBitCast(C, ResTy, DL); 987 988 return C; 989 } 990 991 /// Attempt to constant fold an instruction with the 992 /// specified opcode and operands. If successful, the constant result is 993 /// returned, if not, null is returned. Note that this function can fail when 994 /// attempting to fold instructions like loads and stores, which have no 995 /// constant expression form. 996 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 997 ArrayRef<Constant *> Ops, 998 const DataLayout &DL, 999 const TargetLibraryInfo *TLI) { 1000 Type *DestTy = InstOrCE->getType(); 1001 1002 if (Instruction::isUnaryOp(Opcode)) 1003 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1004 1005 if (Instruction::isBinaryOp(Opcode)) 1006 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1007 1008 if (Instruction::isCast(Opcode)) 1009 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1010 1011 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1012 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1013 return C; 1014 1015 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1016 Ops.slice(1), GEP->isInBounds(), 1017 GEP->getInRangeIndex()); 1018 } 1019 1020 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1021 return CE->getWithOperands(Ops); 1022 1023 switch (Opcode) { 1024 default: return nullptr; 1025 case Instruction::ICmp: 1026 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1027 case Instruction::Call: 1028 if (auto *F = dyn_cast<Function>(Ops.back())) { 1029 const auto *Call = cast<CallBase>(InstOrCE); 1030 if (canConstantFoldCallTo(Call, F)) 1031 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1032 } 1033 return nullptr; 1034 case Instruction::Select: 1035 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1036 case Instruction::ExtractElement: 1037 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1038 case Instruction::InsertElement: 1039 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1040 case Instruction::ShuffleVector: 1041 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); 1042 } 1043 } 1044 1045 } // end anonymous namespace 1046 1047 //===----------------------------------------------------------------------===// 1048 // Constant Folding public APIs 1049 //===----------------------------------------------------------------------===// 1050 1051 namespace { 1052 1053 Constant * 1054 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1055 const TargetLibraryInfo *TLI, 1056 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1057 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1058 return nullptr; 1059 1060 SmallVector<Constant *, 8> Ops; 1061 for (const Use &NewU : C->operands()) { 1062 auto *NewC = cast<Constant>(&NewU); 1063 // Recursively fold the ConstantExpr's operands. If we have already folded 1064 // a ConstantExpr, we don't have to process it again. 1065 if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) { 1066 auto It = FoldedOps.find(NewC); 1067 if (It == FoldedOps.end()) { 1068 if (auto *FoldedC = 1069 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) { 1070 FoldedOps.insert({NewC, FoldedC}); 1071 NewC = FoldedC; 1072 } else { 1073 FoldedOps.insert({NewC, NewC}); 1074 } 1075 } else { 1076 NewC = It->second; 1077 } 1078 } 1079 Ops.push_back(NewC); 1080 } 1081 1082 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1083 if (CE->isCompare()) 1084 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1085 DL, TLI); 1086 1087 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1088 } 1089 1090 assert(isa<ConstantVector>(C)); 1091 return ConstantVector::get(Ops); 1092 } 1093 1094 } // end anonymous namespace 1095 1096 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1097 const TargetLibraryInfo *TLI) { 1098 // Handle PHI nodes quickly here... 1099 if (auto *PN = dyn_cast<PHINode>(I)) { 1100 Constant *CommonValue = nullptr; 1101 1102 SmallDenseMap<Constant *, Constant *> FoldedOps; 1103 for (Value *Incoming : PN->incoming_values()) { 1104 // If the incoming value is undef then skip it. Note that while we could 1105 // skip the value if it is equal to the phi node itself we choose not to 1106 // because that would break the rule that constant folding only applies if 1107 // all operands are constants. 1108 if (isa<UndefValue>(Incoming)) 1109 continue; 1110 // If the incoming value is not a constant, then give up. 1111 auto *C = dyn_cast<Constant>(Incoming); 1112 if (!C) 1113 return nullptr; 1114 // Fold the PHI's operands. 1115 if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps)) 1116 C = FoldedC; 1117 // If the incoming value is a different constant to 1118 // the one we saw previously, then give up. 1119 if (CommonValue && C != CommonValue) 1120 return nullptr; 1121 CommonValue = C; 1122 } 1123 1124 // If we reach here, all incoming values are the same constant or undef. 1125 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1126 } 1127 1128 // Scan the operand list, checking to see if they are all constants, if so, 1129 // hand off to ConstantFoldInstOperandsImpl. 1130 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1131 return nullptr; 1132 1133 SmallDenseMap<Constant *, Constant *> FoldedOps; 1134 SmallVector<Constant *, 8> Ops; 1135 for (const Use &OpU : I->operands()) { 1136 auto *Op = cast<Constant>(&OpU); 1137 // Fold the Instruction's operands. 1138 if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps)) 1139 Op = FoldedOp; 1140 1141 Ops.push_back(Op); 1142 } 1143 1144 if (const auto *CI = dyn_cast<CmpInst>(I)) 1145 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1146 DL, TLI); 1147 1148 if (const auto *LI = dyn_cast<LoadInst>(I)) 1149 return ConstantFoldLoadInst(LI, DL); 1150 1151 if (auto *IVI = dyn_cast<InsertValueInst>(I)) { 1152 return ConstantExpr::getInsertValue( 1153 cast<Constant>(IVI->getAggregateOperand()), 1154 cast<Constant>(IVI->getInsertedValueOperand()), 1155 IVI->getIndices()); 1156 } 1157 1158 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { 1159 return ConstantExpr::getExtractValue( 1160 cast<Constant>(EVI->getAggregateOperand()), 1161 EVI->getIndices()); 1162 } 1163 1164 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1165 } 1166 1167 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1168 const TargetLibraryInfo *TLI) { 1169 SmallDenseMap<Constant *, Constant *> FoldedOps; 1170 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1171 } 1172 1173 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1174 ArrayRef<Constant *> Ops, 1175 const DataLayout &DL, 1176 const TargetLibraryInfo *TLI) { 1177 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1178 } 1179 1180 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1181 Constant *Ops0, Constant *Ops1, 1182 const DataLayout &DL, 1183 const TargetLibraryInfo *TLI) { 1184 // fold: icmp (inttoptr x), null -> icmp x, 0 1185 // fold: icmp null, (inttoptr x) -> icmp 0, x 1186 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1187 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1188 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1189 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1190 // 1191 // FIXME: The following comment is out of data and the DataLayout is here now. 1192 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1193 // around to know if bit truncation is happening. 1194 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1195 if (Ops1->isNullValue()) { 1196 if (CE0->getOpcode() == Instruction::IntToPtr) { 1197 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1198 // Convert the integer value to the right size to ensure we get the 1199 // proper extension or truncation. 1200 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1201 IntPtrTy, false); 1202 Constant *Null = Constant::getNullValue(C->getType()); 1203 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1204 } 1205 1206 // Only do this transformation if the int is intptrty in size, otherwise 1207 // there is a truncation or extension that we aren't modeling. 1208 if (CE0->getOpcode() == Instruction::PtrToInt) { 1209 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1210 if (CE0->getType() == IntPtrTy) { 1211 Constant *C = CE0->getOperand(0); 1212 Constant *Null = Constant::getNullValue(C->getType()); 1213 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1214 } 1215 } 1216 } 1217 1218 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1219 if (CE0->getOpcode() == CE1->getOpcode()) { 1220 if (CE0->getOpcode() == Instruction::IntToPtr) { 1221 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1222 1223 // Convert the integer value to the right size to ensure we get the 1224 // proper extension or truncation. 1225 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1226 IntPtrTy, false); 1227 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1228 IntPtrTy, false); 1229 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1230 } 1231 1232 // Only do this transformation if the int is intptrty in size, otherwise 1233 // there is a truncation or extension that we aren't modeling. 1234 if (CE0->getOpcode() == Instruction::PtrToInt) { 1235 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1236 if (CE0->getType() == IntPtrTy && 1237 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1238 return ConstantFoldCompareInstOperands( 1239 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1240 } 1241 } 1242 } 1243 } 1244 1245 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1246 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1247 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1248 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1249 Constant *LHS = ConstantFoldCompareInstOperands( 1250 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1251 Constant *RHS = ConstantFoldCompareInstOperands( 1252 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1253 unsigned OpC = 1254 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1255 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1256 } 1257 } else if (isa<ConstantExpr>(Ops1)) { 1258 // If RHS is a constant expression, but the left side isn't, swap the 1259 // operands and try again. 1260 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1261 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1262 } 1263 1264 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1265 } 1266 1267 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1268 const DataLayout &DL) { 1269 assert(Instruction::isUnaryOp(Opcode)); 1270 1271 return ConstantExpr::get(Opcode, Op); 1272 } 1273 1274 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1275 Constant *RHS, 1276 const DataLayout &DL) { 1277 assert(Instruction::isBinaryOp(Opcode)); 1278 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1279 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1280 return C; 1281 1282 return ConstantExpr::get(Opcode, LHS, RHS); 1283 } 1284 1285 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1286 Type *DestTy, const DataLayout &DL) { 1287 assert(Instruction::isCast(Opcode)); 1288 switch (Opcode) { 1289 default: 1290 llvm_unreachable("Missing case"); 1291 case Instruction::PtrToInt: 1292 // If the input is a inttoptr, eliminate the pair. This requires knowing 1293 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1294 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1295 if (CE->getOpcode() == Instruction::IntToPtr) { 1296 Constant *Input = CE->getOperand(0); 1297 unsigned InWidth = Input->getType()->getScalarSizeInBits(); 1298 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); 1299 if (PtrWidth < InWidth) { 1300 Constant *Mask = 1301 ConstantInt::get(CE->getContext(), 1302 APInt::getLowBitsSet(InWidth, PtrWidth)); 1303 Input = ConstantExpr::getAnd(Input, Mask); 1304 } 1305 // Do a zext or trunc to get to the dest size. 1306 return ConstantExpr::getIntegerCast(Input, DestTy, false); 1307 } 1308 } 1309 return ConstantExpr::getCast(Opcode, C, DestTy); 1310 case Instruction::IntToPtr: 1311 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1312 // the int size is >= the ptr size and the address spaces are the same. 1313 // This requires knowing the width of a pointer, so it can't be done in 1314 // ConstantExpr::getCast. 1315 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1316 if (CE->getOpcode() == Instruction::PtrToInt) { 1317 Constant *SrcPtr = CE->getOperand(0); 1318 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1319 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1320 1321 if (MidIntSize >= SrcPtrSize) { 1322 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1323 if (SrcAS == DestTy->getPointerAddressSpace()) 1324 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1325 } 1326 } 1327 } 1328 1329 return ConstantExpr::getCast(Opcode, C, DestTy); 1330 case Instruction::Trunc: 1331 case Instruction::ZExt: 1332 case Instruction::SExt: 1333 case Instruction::FPTrunc: 1334 case Instruction::FPExt: 1335 case Instruction::UIToFP: 1336 case Instruction::SIToFP: 1337 case Instruction::FPToUI: 1338 case Instruction::FPToSI: 1339 case Instruction::AddrSpaceCast: 1340 return ConstantExpr::getCast(Opcode, C, DestTy); 1341 case Instruction::BitCast: 1342 return FoldBitCast(C, DestTy, DL); 1343 } 1344 } 1345 1346 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1347 ConstantExpr *CE) { 1348 if (!CE->getOperand(1)->isNullValue()) 1349 return nullptr; // Do not allow stepping over the value! 1350 1351 // Loop over all of the operands, tracking down which value we are 1352 // addressing. 1353 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1354 C = C->getAggregateElement(CE->getOperand(i)); 1355 if (!C) 1356 return nullptr; 1357 } 1358 return C; 1359 } 1360 1361 Constant * 1362 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, 1363 ArrayRef<Constant *> Indices) { 1364 // Loop over all of the operands, tracking down which value we are 1365 // addressing. 1366 for (Constant *Index : Indices) { 1367 C = C->getAggregateElement(Index); 1368 if (!C) 1369 return nullptr; 1370 } 1371 return C; 1372 } 1373 1374 //===----------------------------------------------------------------------===// 1375 // Constant Folding for Calls 1376 // 1377 1378 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1379 if (Call->isNoBuiltin() || Call->isStrictFP()) 1380 return false; 1381 switch (F->getIntrinsicID()) { 1382 case Intrinsic::fabs: 1383 case Intrinsic::minnum: 1384 case Intrinsic::maxnum: 1385 case Intrinsic::minimum: 1386 case Intrinsic::maximum: 1387 case Intrinsic::log: 1388 case Intrinsic::log2: 1389 case Intrinsic::log10: 1390 case Intrinsic::exp: 1391 case Intrinsic::exp2: 1392 case Intrinsic::floor: 1393 case Intrinsic::ceil: 1394 case Intrinsic::sqrt: 1395 case Intrinsic::sin: 1396 case Intrinsic::cos: 1397 case Intrinsic::trunc: 1398 case Intrinsic::rint: 1399 case Intrinsic::nearbyint: 1400 case Intrinsic::pow: 1401 case Intrinsic::powi: 1402 case Intrinsic::bswap: 1403 case Intrinsic::ctpop: 1404 case Intrinsic::ctlz: 1405 case Intrinsic::cttz: 1406 case Intrinsic::fshl: 1407 case Intrinsic::fshr: 1408 case Intrinsic::fma: 1409 case Intrinsic::fmuladd: 1410 case Intrinsic::copysign: 1411 case Intrinsic::launder_invariant_group: 1412 case Intrinsic::strip_invariant_group: 1413 case Intrinsic::round: 1414 case Intrinsic::masked_load: 1415 case Intrinsic::sadd_with_overflow: 1416 case Intrinsic::uadd_with_overflow: 1417 case Intrinsic::ssub_with_overflow: 1418 case Intrinsic::usub_with_overflow: 1419 case Intrinsic::smul_with_overflow: 1420 case Intrinsic::umul_with_overflow: 1421 case Intrinsic::sadd_sat: 1422 case Intrinsic::uadd_sat: 1423 case Intrinsic::ssub_sat: 1424 case Intrinsic::usub_sat: 1425 case Intrinsic::convert_from_fp16: 1426 case Intrinsic::convert_to_fp16: 1427 case Intrinsic::bitreverse: 1428 case Intrinsic::x86_sse_cvtss2si: 1429 case Intrinsic::x86_sse_cvtss2si64: 1430 case Intrinsic::x86_sse_cvttss2si: 1431 case Intrinsic::x86_sse_cvttss2si64: 1432 case Intrinsic::x86_sse2_cvtsd2si: 1433 case Intrinsic::x86_sse2_cvtsd2si64: 1434 case Intrinsic::x86_sse2_cvttsd2si: 1435 case Intrinsic::x86_sse2_cvttsd2si64: 1436 case Intrinsic::x86_avx512_vcvtss2si32: 1437 case Intrinsic::x86_avx512_vcvtss2si64: 1438 case Intrinsic::x86_avx512_cvttss2si: 1439 case Intrinsic::x86_avx512_cvttss2si64: 1440 case Intrinsic::x86_avx512_vcvtsd2si32: 1441 case Intrinsic::x86_avx512_vcvtsd2si64: 1442 case Intrinsic::x86_avx512_cvttsd2si: 1443 case Intrinsic::x86_avx512_cvttsd2si64: 1444 case Intrinsic::x86_avx512_vcvtss2usi32: 1445 case Intrinsic::x86_avx512_vcvtss2usi64: 1446 case Intrinsic::x86_avx512_cvttss2usi: 1447 case Intrinsic::x86_avx512_cvttss2usi64: 1448 case Intrinsic::x86_avx512_vcvtsd2usi32: 1449 case Intrinsic::x86_avx512_vcvtsd2usi64: 1450 case Intrinsic::x86_avx512_cvttsd2usi: 1451 case Intrinsic::x86_avx512_cvttsd2usi64: 1452 case Intrinsic::is_constant: 1453 return true; 1454 default: 1455 return false; 1456 case Intrinsic::not_intrinsic: break; 1457 } 1458 1459 if (!F->hasName()) 1460 return false; 1461 StringRef Name = F->getName(); 1462 1463 // In these cases, the check of the length is required. We don't want to 1464 // return true for a name like "cos\0blah" which strcmp would return equal to 1465 // "cos", but has length 8. 1466 switch (Name[0]) { 1467 default: 1468 return false; 1469 case 'a': 1470 return Name == "acos" || Name == "asin" || Name == "atan" || 1471 Name == "atan2" || Name == "acosf" || Name == "asinf" || 1472 Name == "atanf" || Name == "atan2f"; 1473 case 'c': 1474 return Name == "ceil" || Name == "cos" || Name == "cosh" || 1475 Name == "ceilf" || Name == "cosf" || Name == "coshf"; 1476 case 'e': 1477 return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f"; 1478 case 'f': 1479 return Name == "fabs" || Name == "floor" || Name == "fmod" || 1480 Name == "fabsf" || Name == "floorf" || Name == "fmodf"; 1481 case 'l': 1482 return Name == "log" || Name == "log10" || Name == "logf" || 1483 Name == "log10f"; 1484 case 'p': 1485 return Name == "pow" || Name == "powf"; 1486 case 'r': 1487 return Name == "round" || Name == "roundf"; 1488 case 's': 1489 return Name == "sin" || Name == "sinh" || Name == "sqrt" || 1490 Name == "sinf" || Name == "sinhf" || Name == "sqrtf"; 1491 case 't': 1492 return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf"; 1493 case '_': 1494 1495 // Check for various function names that get used for the math functions 1496 // when the header files are preprocessed with the macro 1497 // __FINITE_MATH_ONLY__ enabled. 1498 // The '12' here is the length of the shortest name that can match. 1499 // We need to check the size before looking at Name[1] and Name[2] 1500 // so we may as well check a limit that will eliminate mismatches. 1501 if (Name.size() < 12 || Name[1] != '_') 1502 return false; 1503 switch (Name[2]) { 1504 default: 1505 return false; 1506 case 'a': 1507 return Name == "__acos_finite" || Name == "__acosf_finite" || 1508 Name == "__asin_finite" || Name == "__asinf_finite" || 1509 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1510 case 'c': 1511 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1512 case 'e': 1513 return Name == "__exp_finite" || Name == "__expf_finite" || 1514 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1515 case 'l': 1516 return Name == "__log_finite" || Name == "__logf_finite" || 1517 Name == "__log10_finite" || Name == "__log10f_finite"; 1518 case 'p': 1519 return Name == "__pow_finite" || Name == "__powf_finite"; 1520 case 's': 1521 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1522 } 1523 } 1524 } 1525 1526 namespace { 1527 1528 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1529 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1530 APFloat APF(V); 1531 bool unused; 1532 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1533 return ConstantFP::get(Ty->getContext(), APF); 1534 } 1535 if (Ty->isDoubleTy()) 1536 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1537 llvm_unreachable("Can only constant fold half/float/double"); 1538 } 1539 1540 /// Clear the floating-point exception state. 1541 inline void llvm_fenv_clearexcept() { 1542 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1543 feclearexcept(FE_ALL_EXCEPT); 1544 #endif 1545 errno = 0; 1546 } 1547 1548 /// Test if a floating-point exception was raised. 1549 inline bool llvm_fenv_testexcept() { 1550 int errno_val = errno; 1551 if (errno_val == ERANGE || errno_val == EDOM) 1552 return true; 1553 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1554 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1555 return true; 1556 #endif 1557 return false; 1558 } 1559 1560 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { 1561 llvm_fenv_clearexcept(); 1562 V = NativeFP(V); 1563 if (llvm_fenv_testexcept()) { 1564 llvm_fenv_clearexcept(); 1565 return nullptr; 1566 } 1567 1568 return GetConstantFoldFPValue(V, Ty); 1569 } 1570 1571 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, 1572 double W, Type *Ty) { 1573 llvm_fenv_clearexcept(); 1574 V = NativeFP(V, W); 1575 if (llvm_fenv_testexcept()) { 1576 llvm_fenv_clearexcept(); 1577 return nullptr; 1578 } 1579 1580 return GetConstantFoldFPValue(V, Ty); 1581 } 1582 1583 /// Attempt to fold an SSE floating point to integer conversion of a constant 1584 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1585 /// used (toward nearest, ties to even). This matches the behavior of the 1586 /// non-truncating SSE instructions in the default rounding mode. The desired 1587 /// integer type Ty is used to select how many bits are available for the 1588 /// result. Returns null if the conversion cannot be performed, otherwise 1589 /// returns the Constant value resulting from the conversion. 1590 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1591 Type *Ty, bool IsSigned) { 1592 // All of these conversion intrinsics form an integer of at most 64bits. 1593 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1594 assert(ResultWidth <= 64 && 1595 "Can only constant fold conversions to 64 and 32 bit ints"); 1596 1597 uint64_t UIntVal; 1598 bool isExact = false; 1599 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1600 : APFloat::rmNearestTiesToEven; 1601 APFloat::opStatus status = 1602 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1603 IsSigned, mode, &isExact); 1604 if (status != APFloat::opOK && 1605 (!roundTowardZero || status != APFloat::opInexact)) 1606 return nullptr; 1607 return ConstantInt::get(Ty, UIntVal, IsSigned); 1608 } 1609 1610 double getValueAsDouble(ConstantFP *Op) { 1611 Type *Ty = Op->getType(); 1612 1613 if (Ty->isFloatTy()) 1614 return Op->getValueAPF().convertToFloat(); 1615 1616 if (Ty->isDoubleTy()) 1617 return Op->getValueAPF().convertToDouble(); 1618 1619 bool unused; 1620 APFloat APF = Op->getValueAPF(); 1621 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1622 return APF.convertToDouble(); 1623 } 1624 1625 static bool isManifestConstant(const Constant *c) { 1626 if (isa<ConstantData>(c)) { 1627 return true; 1628 } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) { 1629 for (const Value *subc : c->operand_values()) { 1630 if (!isManifestConstant(cast<Constant>(subc))) 1631 return false; 1632 } 1633 return true; 1634 } 1635 return false; 1636 } 1637 1638 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1639 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1640 C = &CI->getValue(); 1641 return true; 1642 } 1643 if (isa<UndefValue>(Op)) { 1644 C = nullptr; 1645 return true; 1646 } 1647 return false; 1648 } 1649 1650 Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty, 1651 ArrayRef<Constant *> Operands, 1652 const TargetLibraryInfo *TLI, 1653 const CallBase *Call) { 1654 if (Operands.size() == 1) { 1655 if (IntrinsicID == Intrinsic::is_constant) { 1656 // We know we have a "Constant" argument. But we want to only 1657 // return true for manifest constants, not those that depend on 1658 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1659 if (isManifestConstant(Operands[0])) 1660 return ConstantInt::getTrue(Ty->getContext()); 1661 return nullptr; 1662 } 1663 if (isa<UndefValue>(Operands[0])) { 1664 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1665 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1666 if (IntrinsicID == Intrinsic::cos || 1667 IntrinsicID == Intrinsic::ctpop) 1668 return Constant::getNullValue(Ty); 1669 if (IntrinsicID == Intrinsic::bswap || 1670 IntrinsicID == Intrinsic::bitreverse || 1671 IntrinsicID == Intrinsic::launder_invariant_group || 1672 IntrinsicID == Intrinsic::strip_invariant_group) 1673 return Operands[0]; 1674 } 1675 1676 if (isa<ConstantPointerNull>(Operands[0])) { 1677 // launder(null) == null == strip(null) iff in addrspace 0 1678 if (IntrinsicID == Intrinsic::launder_invariant_group || 1679 IntrinsicID == Intrinsic::strip_invariant_group) { 1680 // If instruction is not yet put in a basic block (e.g. when cloning 1681 // a function during inlining), Call's caller may not be available. 1682 // So check Call's BB first before querying Call->getCaller. 1683 const Function *Caller = 1684 Call->getParent() ? Call->getCaller() : nullptr; 1685 if (Caller && 1686 !NullPointerIsDefined( 1687 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1688 return Operands[0]; 1689 } 1690 return nullptr; 1691 } 1692 } 1693 1694 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1695 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1696 APFloat Val(Op->getValueAPF()); 1697 1698 bool lost = false; 1699 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1700 1701 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1702 } 1703 1704 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1705 return nullptr; 1706 1707 if (IntrinsicID == Intrinsic::round) { 1708 APFloat V = Op->getValueAPF(); 1709 V.roundToIntegral(APFloat::rmNearestTiesToAway); 1710 return ConstantFP::get(Ty->getContext(), V); 1711 } 1712 1713 if (IntrinsicID == Intrinsic::floor) { 1714 APFloat V = Op->getValueAPF(); 1715 V.roundToIntegral(APFloat::rmTowardNegative); 1716 return ConstantFP::get(Ty->getContext(), V); 1717 } 1718 1719 if (IntrinsicID == Intrinsic::ceil) { 1720 APFloat V = Op->getValueAPF(); 1721 V.roundToIntegral(APFloat::rmTowardPositive); 1722 return ConstantFP::get(Ty->getContext(), V); 1723 } 1724 1725 if (IntrinsicID == Intrinsic::trunc) { 1726 APFloat V = Op->getValueAPF(); 1727 V.roundToIntegral(APFloat::rmTowardZero); 1728 return ConstantFP::get(Ty->getContext(), V); 1729 } 1730 1731 if (IntrinsicID == Intrinsic::rint) { 1732 APFloat V = Op->getValueAPF(); 1733 V.roundToIntegral(APFloat::rmNearestTiesToEven); 1734 return ConstantFP::get(Ty->getContext(), V); 1735 } 1736 1737 if (IntrinsicID == Intrinsic::nearbyint) { 1738 APFloat V = Op->getValueAPF(); 1739 V.roundToIntegral(APFloat::rmNearestTiesToEven); 1740 return ConstantFP::get(Ty->getContext(), V); 1741 } 1742 1743 /// We only fold functions with finite arguments. Folding NaN and inf is 1744 /// likely to be aborted with an exception anyway, and some host libms 1745 /// have known errors raising exceptions. 1746 if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity()) 1747 return nullptr; 1748 1749 /// Currently APFloat versions of these functions do not exist, so we use 1750 /// the host native double versions. Float versions are not called 1751 /// directly but for all these it is true (float)(f((double)arg)) == 1752 /// f(arg). Long double not supported yet. 1753 double V = getValueAsDouble(Op); 1754 1755 switch (IntrinsicID) { 1756 default: break; 1757 case Intrinsic::fabs: 1758 return ConstantFoldFP(fabs, V, Ty); 1759 case Intrinsic::log2: 1760 return ConstantFoldFP(Log2, V, Ty); 1761 case Intrinsic::log: 1762 return ConstantFoldFP(log, V, Ty); 1763 case Intrinsic::log10: 1764 return ConstantFoldFP(log10, V, Ty); 1765 case Intrinsic::exp: 1766 return ConstantFoldFP(exp, V, Ty); 1767 case Intrinsic::exp2: 1768 return ConstantFoldFP(exp2, V, Ty); 1769 case Intrinsic::sin: 1770 return ConstantFoldFP(sin, V, Ty); 1771 case Intrinsic::cos: 1772 return ConstantFoldFP(cos, V, Ty); 1773 case Intrinsic::sqrt: 1774 return ConstantFoldFP(sqrt, V, Ty); 1775 } 1776 1777 if (!TLI) 1778 return nullptr; 1779 1780 char NameKeyChar = Name[0]; 1781 if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_') 1782 NameKeyChar = Name[2]; 1783 1784 switch (NameKeyChar) { 1785 case 'a': 1786 if ((Name == "acos" && TLI->has(LibFunc_acos)) || 1787 (Name == "acosf" && TLI->has(LibFunc_acosf)) || 1788 (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) || 1789 (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite))) 1790 return ConstantFoldFP(acos, V, Ty); 1791 else if ((Name == "asin" && TLI->has(LibFunc_asin)) || 1792 (Name == "asinf" && TLI->has(LibFunc_asinf)) || 1793 (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) || 1794 (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite))) 1795 return ConstantFoldFP(asin, V, Ty); 1796 else if ((Name == "atan" && TLI->has(LibFunc_atan)) || 1797 (Name == "atanf" && TLI->has(LibFunc_atanf))) 1798 return ConstantFoldFP(atan, V, Ty); 1799 break; 1800 case 'c': 1801 if ((Name == "ceil" && TLI->has(LibFunc_ceil)) || 1802 (Name == "ceilf" && TLI->has(LibFunc_ceilf))) 1803 return ConstantFoldFP(ceil, V, Ty); 1804 else if ((Name == "cos" && TLI->has(LibFunc_cos)) || 1805 (Name == "cosf" && TLI->has(LibFunc_cosf))) 1806 return ConstantFoldFP(cos, V, Ty); 1807 else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) || 1808 (Name == "coshf" && TLI->has(LibFunc_coshf)) || 1809 (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) || 1810 (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite))) 1811 return ConstantFoldFP(cosh, V, Ty); 1812 break; 1813 case 'e': 1814 if ((Name == "exp" && TLI->has(LibFunc_exp)) || 1815 (Name == "expf" && TLI->has(LibFunc_expf)) || 1816 (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) || 1817 (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite))) 1818 return ConstantFoldFP(exp, V, Ty); 1819 if ((Name == "exp2" && TLI->has(LibFunc_exp2)) || 1820 (Name == "exp2f" && TLI->has(LibFunc_exp2f)) || 1821 (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) || 1822 (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite))) 1823 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a 1824 // C99 library. 1825 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 1826 break; 1827 case 'f': 1828 if ((Name == "fabs" && TLI->has(LibFunc_fabs)) || 1829 (Name == "fabsf" && TLI->has(LibFunc_fabsf))) 1830 return ConstantFoldFP(fabs, V, Ty); 1831 else if ((Name == "floor" && TLI->has(LibFunc_floor)) || 1832 (Name == "floorf" && TLI->has(LibFunc_floorf))) 1833 return ConstantFoldFP(floor, V, Ty); 1834 break; 1835 case 'l': 1836 if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) || 1837 (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) || 1838 (Name == "__log_finite" && V > 0 && 1839 TLI->has(LibFunc_log_finite)) || 1840 (Name == "__logf_finite" && V > 0 && 1841 TLI->has(LibFunc_logf_finite))) 1842 return ConstantFoldFP(log, V, Ty); 1843 else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) || 1844 (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) || 1845 (Name == "__log10_finite" && V > 0 && 1846 TLI->has(LibFunc_log10_finite)) || 1847 (Name == "__log10f_finite" && V > 0 && 1848 TLI->has(LibFunc_log10f_finite))) 1849 return ConstantFoldFP(log10, V, Ty); 1850 break; 1851 case 'r': 1852 if ((Name == "round" && TLI->has(LibFunc_round)) || 1853 (Name == "roundf" && TLI->has(LibFunc_roundf))) 1854 return ConstantFoldFP(round, V, Ty); 1855 break; 1856 case 's': 1857 if ((Name == "sin" && TLI->has(LibFunc_sin)) || 1858 (Name == "sinf" && TLI->has(LibFunc_sinf))) 1859 return ConstantFoldFP(sin, V, Ty); 1860 else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) || 1861 (Name == "sinhf" && TLI->has(LibFunc_sinhf)) || 1862 (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) || 1863 (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite))) 1864 return ConstantFoldFP(sinh, V, Ty); 1865 else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) || 1866 (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf))) 1867 return ConstantFoldFP(sqrt, V, Ty); 1868 break; 1869 case 't': 1870 if ((Name == "tan" && TLI->has(LibFunc_tan)) || 1871 (Name == "tanf" && TLI->has(LibFunc_tanf))) 1872 return ConstantFoldFP(tan, V, Ty); 1873 else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) || 1874 (Name == "tanhf" && TLI->has(LibFunc_tanhf))) 1875 return ConstantFoldFP(tanh, V, Ty); 1876 break; 1877 default: 1878 break; 1879 } 1880 return nullptr; 1881 } 1882 1883 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 1884 switch (IntrinsicID) { 1885 case Intrinsic::bswap: 1886 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 1887 case Intrinsic::ctpop: 1888 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 1889 case Intrinsic::bitreverse: 1890 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 1891 case Intrinsic::convert_from_fp16: { 1892 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 1893 1894 bool lost = false; 1895 APFloat::opStatus status = Val.convert( 1896 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 1897 1898 // Conversion is always precise. 1899 (void)status; 1900 assert(status == APFloat::opOK && !lost && 1901 "Precision lost during fp16 constfolding"); 1902 1903 return ConstantFP::get(Ty->getContext(), Val); 1904 } 1905 default: 1906 return nullptr; 1907 } 1908 } 1909 1910 // Support ConstantVector in case we have an Undef in the top. 1911 if (isa<ConstantVector>(Operands[0]) || 1912 isa<ConstantDataVector>(Operands[0])) { 1913 auto *Op = cast<Constant>(Operands[0]); 1914 switch (IntrinsicID) { 1915 default: break; 1916 case Intrinsic::x86_sse_cvtss2si: 1917 case Intrinsic::x86_sse_cvtss2si64: 1918 case Intrinsic::x86_sse2_cvtsd2si: 1919 case Intrinsic::x86_sse2_cvtsd2si64: 1920 if (ConstantFP *FPOp = 1921 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 1922 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 1923 /*roundTowardZero=*/false, Ty, 1924 /*IsSigned*/true); 1925 break; 1926 case Intrinsic::x86_sse_cvttss2si: 1927 case Intrinsic::x86_sse_cvttss2si64: 1928 case Intrinsic::x86_sse2_cvttsd2si: 1929 case Intrinsic::x86_sse2_cvttsd2si64: 1930 if (ConstantFP *FPOp = 1931 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 1932 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 1933 /*roundTowardZero=*/true, Ty, 1934 /*IsSigned*/true); 1935 break; 1936 } 1937 } 1938 1939 return nullptr; 1940 } 1941 1942 if (Operands.size() == 2) { 1943 if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 1944 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1945 return nullptr; 1946 double Op1V = getValueAsDouble(Op1); 1947 1948 if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 1949 if (Op2->getType() != Op1->getType()) 1950 return nullptr; 1951 1952 double Op2V = getValueAsDouble(Op2); 1953 if (IntrinsicID == Intrinsic::pow) { 1954 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 1955 } 1956 if (IntrinsicID == Intrinsic::copysign) { 1957 APFloat V1 = Op1->getValueAPF(); 1958 const APFloat &V2 = Op2->getValueAPF(); 1959 V1.copySign(V2); 1960 return ConstantFP::get(Ty->getContext(), V1); 1961 } 1962 1963 if (IntrinsicID == Intrinsic::minnum) { 1964 const APFloat &C1 = Op1->getValueAPF(); 1965 const APFloat &C2 = Op2->getValueAPF(); 1966 return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); 1967 } 1968 1969 if (IntrinsicID == Intrinsic::maxnum) { 1970 const APFloat &C1 = Op1->getValueAPF(); 1971 const APFloat &C2 = Op2->getValueAPF(); 1972 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); 1973 } 1974 1975 if (IntrinsicID == Intrinsic::minimum) { 1976 const APFloat &C1 = Op1->getValueAPF(); 1977 const APFloat &C2 = Op2->getValueAPF(); 1978 return ConstantFP::get(Ty->getContext(), minimum(C1, C2)); 1979 } 1980 1981 if (IntrinsicID == Intrinsic::maximum) { 1982 const APFloat &C1 = Op1->getValueAPF(); 1983 const APFloat &C2 = Op2->getValueAPF(); 1984 return ConstantFP::get(Ty->getContext(), maximum(C1, C2)); 1985 } 1986 1987 if (!TLI) 1988 return nullptr; 1989 if ((Name == "pow" && TLI->has(LibFunc_pow)) || 1990 (Name == "powf" && TLI->has(LibFunc_powf)) || 1991 (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) || 1992 (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite))) 1993 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 1994 if ((Name == "fmod" && TLI->has(LibFunc_fmod)) || 1995 (Name == "fmodf" && TLI->has(LibFunc_fmodf))) 1996 return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty); 1997 if ((Name == "atan2" && TLI->has(LibFunc_atan2)) || 1998 (Name == "atan2f" && TLI->has(LibFunc_atan2f)) || 1999 (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) || 2000 (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite))) 2001 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2002 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2003 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2004 return ConstantFP::get(Ty->getContext(), 2005 APFloat((float)std::pow((float)Op1V, 2006 (int)Op2C->getZExtValue()))); 2007 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2008 return ConstantFP::get(Ty->getContext(), 2009 APFloat((float)std::pow((float)Op1V, 2010 (int)Op2C->getZExtValue()))); 2011 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2012 return ConstantFP::get(Ty->getContext(), 2013 APFloat((double)std::pow((double)Op1V, 2014 (int)Op2C->getZExtValue()))); 2015 } 2016 return nullptr; 2017 } 2018 2019 if (Operands[0]->getType()->isIntegerTy() && 2020 Operands[1]->getType()->isIntegerTy()) { 2021 const APInt *C0, *C1; 2022 if (!getConstIntOrUndef(Operands[0], C0) || 2023 !getConstIntOrUndef(Operands[1], C1)) 2024 return nullptr; 2025 2026 switch (IntrinsicID) { 2027 default: break; 2028 case Intrinsic::smul_with_overflow: 2029 case Intrinsic::umul_with_overflow: 2030 // Even if both operands are undef, we cannot fold muls to undef 2031 // in the general case. For example, on i2 there are no inputs 2032 // that would produce { i2 -1, i1 true } as the result. 2033 if (!C0 || !C1) 2034 return Constant::getNullValue(Ty); 2035 LLVM_FALLTHROUGH; 2036 case Intrinsic::sadd_with_overflow: 2037 case Intrinsic::uadd_with_overflow: 2038 case Intrinsic::ssub_with_overflow: 2039 case Intrinsic::usub_with_overflow: { 2040 if (!C0 || !C1) 2041 return UndefValue::get(Ty); 2042 2043 APInt Res; 2044 bool Overflow; 2045 switch (IntrinsicID) { 2046 default: llvm_unreachable("Invalid case"); 2047 case Intrinsic::sadd_with_overflow: 2048 Res = C0->sadd_ov(*C1, Overflow); 2049 break; 2050 case Intrinsic::uadd_with_overflow: 2051 Res = C0->uadd_ov(*C1, Overflow); 2052 break; 2053 case Intrinsic::ssub_with_overflow: 2054 Res = C0->ssub_ov(*C1, Overflow); 2055 break; 2056 case Intrinsic::usub_with_overflow: 2057 Res = C0->usub_ov(*C1, Overflow); 2058 break; 2059 case Intrinsic::smul_with_overflow: 2060 Res = C0->smul_ov(*C1, Overflow); 2061 break; 2062 case Intrinsic::umul_with_overflow: 2063 Res = C0->umul_ov(*C1, Overflow); 2064 break; 2065 } 2066 Constant *Ops[] = { 2067 ConstantInt::get(Ty->getContext(), Res), 2068 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2069 }; 2070 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2071 } 2072 case Intrinsic::uadd_sat: 2073 case Intrinsic::sadd_sat: 2074 if (!C0 && !C1) 2075 return UndefValue::get(Ty); 2076 if (!C0 || !C1) 2077 return Constant::getAllOnesValue(Ty); 2078 if (IntrinsicID == Intrinsic::uadd_sat) 2079 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2080 else 2081 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2082 case Intrinsic::usub_sat: 2083 case Intrinsic::ssub_sat: 2084 if (!C0 && !C1) 2085 return UndefValue::get(Ty); 2086 if (!C0 || !C1) 2087 return Constant::getNullValue(Ty); 2088 if (IntrinsicID == Intrinsic::usub_sat) 2089 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2090 else 2091 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2092 case Intrinsic::cttz: 2093 case Intrinsic::ctlz: 2094 assert(C1 && "Must be constant int"); 2095 2096 // cttz(0, 1) and ctlz(0, 1) are undef. 2097 if (C1->isOneValue() && (!C0 || C0->isNullValue())) 2098 return UndefValue::get(Ty); 2099 if (!C0) 2100 return Constant::getNullValue(Ty); 2101 if (IntrinsicID == Intrinsic::cttz) 2102 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2103 else 2104 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2105 } 2106 2107 return nullptr; 2108 } 2109 2110 // Support ConstantVector in case we have an Undef in the top. 2111 if ((isa<ConstantVector>(Operands[0]) || 2112 isa<ConstantDataVector>(Operands[0])) && 2113 // Check for default rounding mode. 2114 // FIXME: Support other rounding modes? 2115 isa<ConstantInt>(Operands[1]) && 2116 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2117 auto *Op = cast<Constant>(Operands[0]); 2118 switch (IntrinsicID) { 2119 default: break; 2120 case Intrinsic::x86_avx512_vcvtss2si32: 2121 case Intrinsic::x86_avx512_vcvtss2si64: 2122 case Intrinsic::x86_avx512_vcvtsd2si32: 2123 case Intrinsic::x86_avx512_vcvtsd2si64: 2124 if (ConstantFP *FPOp = 2125 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2126 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2127 /*roundTowardZero=*/false, Ty, 2128 /*IsSigned*/true); 2129 break; 2130 case Intrinsic::x86_avx512_vcvtss2usi32: 2131 case Intrinsic::x86_avx512_vcvtss2usi64: 2132 case Intrinsic::x86_avx512_vcvtsd2usi32: 2133 case Intrinsic::x86_avx512_vcvtsd2usi64: 2134 if (ConstantFP *FPOp = 2135 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2136 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2137 /*roundTowardZero=*/false, Ty, 2138 /*IsSigned*/false); 2139 break; 2140 case Intrinsic::x86_avx512_cvttss2si: 2141 case Intrinsic::x86_avx512_cvttss2si64: 2142 case Intrinsic::x86_avx512_cvttsd2si: 2143 case Intrinsic::x86_avx512_cvttsd2si64: 2144 if (ConstantFP *FPOp = 2145 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2146 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2147 /*roundTowardZero=*/true, Ty, 2148 /*IsSigned*/true); 2149 break; 2150 case Intrinsic::x86_avx512_cvttss2usi: 2151 case Intrinsic::x86_avx512_cvttss2usi64: 2152 case Intrinsic::x86_avx512_cvttsd2usi: 2153 case Intrinsic::x86_avx512_cvttsd2usi64: 2154 if (ConstantFP *FPOp = 2155 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2156 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2157 /*roundTowardZero=*/true, Ty, 2158 /*IsSigned*/false); 2159 break; 2160 } 2161 } 2162 return nullptr; 2163 } 2164 2165 if (Operands.size() != 3) 2166 return nullptr; 2167 2168 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2169 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2170 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2171 switch (IntrinsicID) { 2172 default: break; 2173 case Intrinsic::fma: 2174 case Intrinsic::fmuladd: { 2175 APFloat V = Op1->getValueAPF(); 2176 APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(), 2177 Op3->getValueAPF(), 2178 APFloat::rmNearestTiesToEven); 2179 if (s != APFloat::opInvalidOp) 2180 return ConstantFP::get(Ty->getContext(), V); 2181 2182 return nullptr; 2183 } 2184 } 2185 } 2186 } 2187 } 2188 2189 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2190 const APInt *C0, *C1, *C2; 2191 if (!getConstIntOrUndef(Operands[0], C0) || 2192 !getConstIntOrUndef(Operands[1], C1) || 2193 !getConstIntOrUndef(Operands[2], C2)) 2194 return nullptr; 2195 2196 bool IsRight = IntrinsicID == Intrinsic::fshr; 2197 if (!C2) 2198 return Operands[IsRight ? 1 : 0]; 2199 if (!C0 && !C1) 2200 return UndefValue::get(Ty); 2201 2202 // The shift amount is interpreted as modulo the bitwidth. If the shift 2203 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2204 unsigned BitWidth = C2->getBitWidth(); 2205 unsigned ShAmt = C2->urem(BitWidth); 2206 if (!ShAmt) 2207 return Operands[IsRight ? 1 : 0]; 2208 2209 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2210 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2211 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2212 if (!C0) 2213 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2214 if (!C1) 2215 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2216 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2217 } 2218 2219 return nullptr; 2220 } 2221 2222 Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID, 2223 VectorType *VTy, ArrayRef<Constant *> Operands, 2224 const DataLayout &DL, 2225 const TargetLibraryInfo *TLI, 2226 const CallBase *Call) { 2227 SmallVector<Constant *, 4> Result(VTy->getNumElements()); 2228 SmallVector<Constant *, 4> Lane(Operands.size()); 2229 Type *Ty = VTy->getElementType(); 2230 2231 if (IntrinsicID == Intrinsic::masked_load) { 2232 auto *SrcPtr = Operands[0]; 2233 auto *Mask = Operands[2]; 2234 auto *Passthru = Operands[3]; 2235 2236 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); 2237 2238 SmallVector<Constant *, 32> NewElements; 2239 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 2240 auto *MaskElt = Mask->getAggregateElement(I); 2241 if (!MaskElt) 2242 break; 2243 auto *PassthruElt = Passthru->getAggregateElement(I); 2244 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2245 if (isa<UndefValue>(MaskElt)) { 2246 if (PassthruElt) 2247 NewElements.push_back(PassthruElt); 2248 else if (VecElt) 2249 NewElements.push_back(VecElt); 2250 else 2251 return nullptr; 2252 } 2253 if (MaskElt->isNullValue()) { 2254 if (!PassthruElt) 2255 return nullptr; 2256 NewElements.push_back(PassthruElt); 2257 } else if (MaskElt->isOneValue()) { 2258 if (!VecElt) 2259 return nullptr; 2260 NewElements.push_back(VecElt); 2261 } else { 2262 return nullptr; 2263 } 2264 } 2265 if (NewElements.size() != VTy->getNumElements()) 2266 return nullptr; 2267 return ConstantVector::get(NewElements); 2268 } 2269 2270 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 2271 // Gather a column of constants. 2272 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 2273 // These intrinsics use a scalar type for their second argument. 2274 if (J == 1 && 2275 (IntrinsicID == Intrinsic::cttz || IntrinsicID == Intrinsic::ctlz || 2276 IntrinsicID == Intrinsic::powi)) { 2277 Lane[J] = Operands[J]; 2278 continue; 2279 } 2280 2281 Constant *Agg = Operands[J]->getAggregateElement(I); 2282 if (!Agg) 2283 return nullptr; 2284 2285 Lane[J] = Agg; 2286 } 2287 2288 // Use the regular scalar folding to simplify this column. 2289 Constant *Folded = 2290 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 2291 if (!Folded) 2292 return nullptr; 2293 Result[I] = Folded; 2294 } 2295 2296 return ConstantVector::get(Result); 2297 } 2298 2299 } // end anonymous namespace 2300 2301 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 2302 ArrayRef<Constant *> Operands, 2303 const TargetLibraryInfo *TLI) { 2304 if (Call->isNoBuiltin() || Call->isStrictFP()) 2305 return nullptr; 2306 if (!F->hasName()) 2307 return nullptr; 2308 StringRef Name = F->getName(); 2309 2310 Type *Ty = F->getReturnType(); 2311 2312 if (auto *VTy = dyn_cast<VectorType>(Ty)) 2313 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, 2314 F->getParent()->getDataLayout(), TLI, Call); 2315 2316 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 2317 Call); 2318 } 2319 2320 bool llvm::isMathLibCallNoop(const CallBase *Call, 2321 const TargetLibraryInfo *TLI) { 2322 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 2323 // (and to some extent ConstantFoldScalarCall). 2324 if (Call->isNoBuiltin() || Call->isStrictFP()) 2325 return false; 2326 Function *F = Call->getCalledFunction(); 2327 if (!F) 2328 return false; 2329 2330 LibFunc Func; 2331 if (!TLI || !TLI->getLibFunc(*F, Func)) 2332 return false; 2333 2334 if (Call->getNumArgOperands() == 1) { 2335 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 2336 const APFloat &Op = OpC->getValueAPF(); 2337 switch (Func) { 2338 case LibFunc_logl: 2339 case LibFunc_log: 2340 case LibFunc_logf: 2341 case LibFunc_log2l: 2342 case LibFunc_log2: 2343 case LibFunc_log2f: 2344 case LibFunc_log10l: 2345 case LibFunc_log10: 2346 case LibFunc_log10f: 2347 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 2348 2349 case LibFunc_expl: 2350 case LibFunc_exp: 2351 case LibFunc_expf: 2352 // FIXME: These boundaries are slightly conservative. 2353 if (OpC->getType()->isDoubleTy()) 2354 return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan && 2355 Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan; 2356 if (OpC->getType()->isFloatTy()) 2357 return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan && 2358 Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan; 2359 break; 2360 2361 case LibFunc_exp2l: 2362 case LibFunc_exp2: 2363 case LibFunc_exp2f: 2364 // FIXME: These boundaries are slightly conservative. 2365 if (OpC->getType()->isDoubleTy()) 2366 return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan && 2367 Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan; 2368 if (OpC->getType()->isFloatTy()) 2369 return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan && 2370 Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan; 2371 break; 2372 2373 case LibFunc_sinl: 2374 case LibFunc_sin: 2375 case LibFunc_sinf: 2376 case LibFunc_cosl: 2377 case LibFunc_cos: 2378 case LibFunc_cosf: 2379 return !Op.isInfinity(); 2380 2381 case LibFunc_tanl: 2382 case LibFunc_tan: 2383 case LibFunc_tanf: { 2384 // FIXME: Stop using the host math library. 2385 // FIXME: The computation isn't done in the right precision. 2386 Type *Ty = OpC->getType(); 2387 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2388 double OpV = getValueAsDouble(OpC); 2389 return ConstantFoldFP(tan, OpV, Ty) != nullptr; 2390 } 2391 break; 2392 } 2393 2394 case LibFunc_asinl: 2395 case LibFunc_asin: 2396 case LibFunc_asinf: 2397 case LibFunc_acosl: 2398 case LibFunc_acos: 2399 case LibFunc_acosf: 2400 return Op.compare(APFloat(Op.getSemantics(), "-1")) != 2401 APFloat::cmpLessThan && 2402 Op.compare(APFloat(Op.getSemantics(), "1")) != 2403 APFloat::cmpGreaterThan; 2404 2405 case LibFunc_sinh: 2406 case LibFunc_cosh: 2407 case LibFunc_sinhf: 2408 case LibFunc_coshf: 2409 case LibFunc_sinhl: 2410 case LibFunc_coshl: 2411 // FIXME: These boundaries are slightly conservative. 2412 if (OpC->getType()->isDoubleTy()) 2413 return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan && 2414 Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan; 2415 if (OpC->getType()->isFloatTy()) 2416 return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan && 2417 Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan; 2418 break; 2419 2420 case LibFunc_sqrtl: 2421 case LibFunc_sqrt: 2422 case LibFunc_sqrtf: 2423 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 2424 2425 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 2426 // maybe others? 2427 default: 2428 break; 2429 } 2430 } 2431 } 2432 2433 if (Call->getNumArgOperands() == 2) { 2434 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 2435 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 2436 if (Op0C && Op1C) { 2437 const APFloat &Op0 = Op0C->getValueAPF(); 2438 const APFloat &Op1 = Op1C->getValueAPF(); 2439 2440 switch (Func) { 2441 case LibFunc_powl: 2442 case LibFunc_pow: 2443 case LibFunc_powf: { 2444 // FIXME: Stop using the host math library. 2445 // FIXME: The computation isn't done in the right precision. 2446 Type *Ty = Op0C->getType(); 2447 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2448 if (Ty == Op1C->getType()) { 2449 double Op0V = getValueAsDouble(Op0C); 2450 double Op1V = getValueAsDouble(Op1C); 2451 return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; 2452 } 2453 } 2454 break; 2455 } 2456 2457 case LibFunc_fmodl: 2458 case LibFunc_fmod: 2459 case LibFunc_fmodf: 2460 return Op0.isNaN() || Op1.isNaN() || 2461 (!Op0.isInfinity() && !Op1.isZero()); 2462 2463 default: 2464 break; 2465 } 2466 } 2467 } 2468 2469 return false; 2470 } 2471