1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/TargetFolder.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/Config/config.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalValue.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicsAMDGPU.h"
44 #include "llvm/IR/IntrinsicsX86.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/KnownBits.h"
51 #include "llvm/Support/MathExtras.h"
52 #include <cassert>
53 #include <cerrno>
54 #include <cfenv>
55 #include <cmath>
56 #include <cstddef>
57 #include <cstdint>
58 
59 using namespace llvm;
60 
61 namespace {
62 
63 //===----------------------------------------------------------------------===//
64 // Constant Folding internal helper functions
65 //===----------------------------------------------------------------------===//
66 
67 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
68                                         Constant *C, Type *SrcEltTy,
69                                         unsigned NumSrcElts,
70                                         const DataLayout &DL) {
71   // Now that we know that the input value is a vector of integers, just shift
72   // and insert them into our result.
73   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
74   for (unsigned i = 0; i != NumSrcElts; ++i) {
75     Constant *Element;
76     if (DL.isLittleEndian())
77       Element = C->getAggregateElement(NumSrcElts - i - 1);
78     else
79       Element = C->getAggregateElement(i);
80 
81     if (Element && isa<UndefValue>(Element)) {
82       Result <<= BitShift;
83       continue;
84     }
85 
86     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
87     if (!ElementCI)
88       return ConstantExpr::getBitCast(C, DestTy);
89 
90     Result <<= BitShift;
91     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
92   }
93 
94   return nullptr;
95 }
96 
97 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
98 /// This always returns a non-null constant, but it may be a
99 /// ConstantExpr if unfoldable.
100 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
101   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
102          "Invalid constantexpr bitcast!");
103 
104   // Catch the obvious splat cases.
105   if (C->isNullValue() && !DestTy->isX86_MMXTy())
106     return Constant::getNullValue(DestTy);
107   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
108       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
109     return Constant::getAllOnesValue(DestTy);
110 
111   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
112     // Handle a vector->scalar integer/fp cast.
113     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
114       unsigned NumSrcElts = VTy->getNumElements();
115       Type *SrcEltTy = VTy->getElementType();
116 
117       // If the vector is a vector of floating point, convert it to vector of int
118       // to simplify things.
119       if (SrcEltTy->isFloatingPointTy()) {
120         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
121         auto *SrcIVTy = FixedVectorType::get(
122             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
123         // Ask IR to do the conversion now that #elts line up.
124         C = ConstantExpr::getBitCast(C, SrcIVTy);
125       }
126 
127       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
128       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
129                                                 SrcEltTy, NumSrcElts, DL))
130         return CE;
131 
132       if (isa<IntegerType>(DestTy))
133         return ConstantInt::get(DestTy, Result);
134 
135       APFloat FP(DestTy->getFltSemantics(), Result);
136       return ConstantFP::get(DestTy->getContext(), FP);
137     }
138   }
139 
140   // The code below only handles casts to vectors currently.
141   auto *DestVTy = dyn_cast<VectorType>(DestTy);
142   if (!DestVTy)
143     return ConstantExpr::getBitCast(C, DestTy);
144 
145   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
146   // vector so the code below can handle it uniformly.
147   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
148     Constant *Ops = C; // don't take the address of C!
149     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
150   }
151 
152   // If this is a bitcast from constant vector -> vector, fold it.
153   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
154     return ConstantExpr::getBitCast(C, DestTy);
155 
156   // If the element types match, IR can fold it.
157   unsigned NumDstElt = DestVTy->getNumElements();
158   unsigned NumSrcElt = cast<VectorType>(C->getType())->getNumElements();
159   if (NumDstElt == NumSrcElt)
160     return ConstantExpr::getBitCast(C, DestTy);
161 
162   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
163   Type *DstEltTy = DestVTy->getElementType();
164 
165   // Otherwise, we're changing the number of elements in a vector, which
166   // requires endianness information to do the right thing.  For example,
167   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
168   // folds to (little endian):
169   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
170   // and to (big endian):
171   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
172 
173   // First thing is first.  We only want to think about integer here, so if
174   // we have something in FP form, recast it as integer.
175   if (DstEltTy->isFloatingPointTy()) {
176     // Fold to an vector of integers with same size as our FP type.
177     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
178     auto *DestIVTy = FixedVectorType::get(
179         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
180     // Recursively handle this integer conversion, if possible.
181     C = FoldBitCast(C, DestIVTy, DL);
182 
183     // Finally, IR can handle this now that #elts line up.
184     return ConstantExpr::getBitCast(C, DestTy);
185   }
186 
187   // Okay, we know the destination is integer, if the input is FP, convert
188   // it to integer first.
189   if (SrcEltTy->isFloatingPointTy()) {
190     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
191     auto *SrcIVTy = FixedVectorType::get(
192         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
193     // Ask IR to do the conversion now that #elts line up.
194     C = ConstantExpr::getBitCast(C, SrcIVTy);
195     // If IR wasn't able to fold it, bail out.
196     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
197         !isa<ConstantDataVector>(C))
198       return C;
199   }
200 
201   // Now we know that the input and output vectors are both integer vectors
202   // of the same size, and that their #elements is not the same.  Do the
203   // conversion here, which depends on whether the input or output has
204   // more elements.
205   bool isLittleEndian = DL.isLittleEndian();
206 
207   SmallVector<Constant*, 32> Result;
208   if (NumDstElt < NumSrcElt) {
209     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
210     Constant *Zero = Constant::getNullValue(DstEltTy);
211     unsigned Ratio = NumSrcElt/NumDstElt;
212     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
213     unsigned SrcElt = 0;
214     for (unsigned i = 0; i != NumDstElt; ++i) {
215       // Build each element of the result.
216       Constant *Elt = Zero;
217       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
218       for (unsigned j = 0; j != Ratio; ++j) {
219         Constant *Src = C->getAggregateElement(SrcElt++);
220         if (Src && isa<UndefValue>(Src))
221           Src = Constant::getNullValue(
222               cast<VectorType>(C->getType())->getElementType());
223         else
224           Src = dyn_cast_or_null<ConstantInt>(Src);
225         if (!Src)  // Reject constantexpr elements.
226           return ConstantExpr::getBitCast(C, DestTy);
227 
228         // Zero extend the element to the right size.
229         Src = ConstantExpr::getZExt(Src, Elt->getType());
230 
231         // Shift it to the right place, depending on endianness.
232         Src = ConstantExpr::getShl(Src,
233                                    ConstantInt::get(Src->getType(), ShiftAmt));
234         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
235 
236         // Mix it in.
237         Elt = ConstantExpr::getOr(Elt, Src);
238       }
239       Result.push_back(Elt);
240     }
241     return ConstantVector::get(Result);
242   }
243 
244   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
245   unsigned Ratio = NumDstElt/NumSrcElt;
246   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
247 
248   // Loop over each source value, expanding into multiple results.
249   for (unsigned i = 0; i != NumSrcElt; ++i) {
250     auto *Element = C->getAggregateElement(i);
251 
252     if (!Element) // Reject constantexpr elements.
253       return ConstantExpr::getBitCast(C, DestTy);
254 
255     if (isa<UndefValue>(Element)) {
256       // Correctly Propagate undef values.
257       Result.append(Ratio, UndefValue::get(DstEltTy));
258       continue;
259     }
260 
261     auto *Src = dyn_cast<ConstantInt>(Element);
262     if (!Src)
263       return ConstantExpr::getBitCast(C, DestTy);
264 
265     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
266     for (unsigned j = 0; j != Ratio; ++j) {
267       // Shift the piece of the value into the right place, depending on
268       // endianness.
269       Constant *Elt = ConstantExpr::getLShr(Src,
270                                   ConstantInt::get(Src->getType(), ShiftAmt));
271       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
272 
273       // Truncate the element to an integer with the same pointer size and
274       // convert the element back to a pointer using a inttoptr.
275       if (DstEltTy->isPointerTy()) {
276         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
277         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
278         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
279         continue;
280       }
281 
282       // Truncate and remember this piece.
283       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
284     }
285   }
286 
287   return ConstantVector::get(Result);
288 }
289 
290 } // end anonymous namespace
291 
292 /// If this constant is a constant offset from a global, return the global and
293 /// the constant. Because of constantexprs, this function is recursive.
294 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
295                                       APInt &Offset, const DataLayout &DL) {
296   // Trivial case, constant is the global.
297   if ((GV = dyn_cast<GlobalValue>(C))) {
298     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
299     Offset = APInt(BitWidth, 0);
300     return true;
301   }
302 
303   // Otherwise, if this isn't a constant expr, bail out.
304   auto *CE = dyn_cast<ConstantExpr>(C);
305   if (!CE) return false;
306 
307   // Look through ptr->int and ptr->ptr casts.
308   if (CE->getOpcode() == Instruction::PtrToInt ||
309       CE->getOpcode() == Instruction::BitCast)
310     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
311 
312   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
313   auto *GEP = dyn_cast<GEPOperator>(CE);
314   if (!GEP)
315     return false;
316 
317   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
318   APInt TmpOffset(BitWidth, 0);
319 
320   // If the base isn't a global+constant, we aren't either.
321   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
322     return false;
323 
324   // Otherwise, add any offset that our operands provide.
325   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
326     return false;
327 
328   Offset = TmpOffset;
329   return true;
330 }
331 
332 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
333                                          const DataLayout &DL) {
334   do {
335     Type *SrcTy = C->getType();
336 
337     // If the type sizes are the same and a cast is legal, just directly
338     // cast the constant.
339     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
340       Instruction::CastOps Cast = Instruction::BitCast;
341       // If we are going from a pointer to int or vice versa, we spell the cast
342       // differently.
343       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
344         Cast = Instruction::IntToPtr;
345       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
346         Cast = Instruction::PtrToInt;
347 
348       if (CastInst::castIsValid(Cast, C, DestTy))
349         return ConstantExpr::getCast(Cast, C, DestTy);
350     }
351 
352     // If this isn't an aggregate type, there is nothing we can do to drill down
353     // and find a bitcastable constant.
354     if (!SrcTy->isAggregateType())
355       return nullptr;
356 
357     // We're simulating a load through a pointer that was bitcast to point to
358     // a different type, so we can try to walk down through the initial
359     // elements of an aggregate to see if some part of the aggregate is
360     // castable to implement the "load" semantic model.
361     if (SrcTy->isStructTy()) {
362       // Struct types might have leading zero-length elements like [0 x i32],
363       // which are certainly not what we are looking for, so skip them.
364       unsigned Elem = 0;
365       Constant *ElemC;
366       do {
367         ElemC = C->getAggregateElement(Elem++);
368       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
369       C = ElemC;
370     } else {
371       C = C->getAggregateElement(0u);
372     }
373   } while (C);
374 
375   return nullptr;
376 }
377 
378 namespace {
379 
380 /// Recursive helper to read bits out of global. C is the constant being copied
381 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
382 /// results into and BytesLeft is the number of bytes left in
383 /// the CurPtr buffer. DL is the DataLayout.
384 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
385                         unsigned BytesLeft, const DataLayout &DL) {
386   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
387          "Out of range access");
388 
389   // If this element is zero or undefined, we can just return since *CurPtr is
390   // zero initialized.
391   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
392     return true;
393 
394   if (auto *CI = dyn_cast<ConstantInt>(C)) {
395     if (CI->getBitWidth() > 64 ||
396         (CI->getBitWidth() & 7) != 0)
397       return false;
398 
399     uint64_t Val = CI->getZExtValue();
400     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
401 
402     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
403       int n = ByteOffset;
404       if (!DL.isLittleEndian())
405         n = IntBytes - n - 1;
406       CurPtr[i] = (unsigned char)(Val >> (n * 8));
407       ++ByteOffset;
408     }
409     return true;
410   }
411 
412   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
413     if (CFP->getType()->isDoubleTy()) {
414       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
415       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
416     }
417     if (CFP->getType()->isFloatTy()){
418       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
419       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
420     }
421     if (CFP->getType()->isHalfTy()){
422       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
423       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
424     }
425     return false;
426   }
427 
428   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
429     const StructLayout *SL = DL.getStructLayout(CS->getType());
430     unsigned Index = SL->getElementContainingOffset(ByteOffset);
431     uint64_t CurEltOffset = SL->getElementOffset(Index);
432     ByteOffset -= CurEltOffset;
433 
434     while (true) {
435       // If the element access is to the element itself and not to tail padding,
436       // read the bytes from the element.
437       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
438 
439       if (ByteOffset < EltSize &&
440           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
441                               BytesLeft, DL))
442         return false;
443 
444       ++Index;
445 
446       // Check to see if we read from the last struct element, if so we're done.
447       if (Index == CS->getType()->getNumElements())
448         return true;
449 
450       // If we read all of the bytes we needed from this element we're done.
451       uint64_t NextEltOffset = SL->getElementOffset(Index);
452 
453       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
454         return true;
455 
456       // Move to the next element of the struct.
457       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
458       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
459       ByteOffset = 0;
460       CurEltOffset = NextEltOffset;
461     }
462     // not reached.
463   }
464 
465   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
466       isa<ConstantDataSequential>(C)) {
467     uint64_t NumElts;
468     Type *EltTy;
469     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
470       NumElts = AT->getNumElements();
471       EltTy = AT->getElementType();
472     } else {
473       NumElts = cast<VectorType>(C->getType())->getNumElements();
474       EltTy = cast<VectorType>(C->getType())->getElementType();
475     }
476     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
477     uint64_t Index = ByteOffset / EltSize;
478     uint64_t Offset = ByteOffset - Index * EltSize;
479 
480     for (; Index != NumElts; ++Index) {
481       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
482                               BytesLeft, DL))
483         return false;
484 
485       uint64_t BytesWritten = EltSize - Offset;
486       assert(BytesWritten <= EltSize && "Not indexing into this element?");
487       if (BytesWritten >= BytesLeft)
488         return true;
489 
490       Offset = 0;
491       BytesLeft -= BytesWritten;
492       CurPtr += BytesWritten;
493     }
494     return true;
495   }
496 
497   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
498     if (CE->getOpcode() == Instruction::IntToPtr &&
499         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
500       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
501                                 BytesLeft, DL);
502     }
503   }
504 
505   // Otherwise, unknown initializer type.
506   return false;
507 }
508 
509 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
510                                           const DataLayout &DL) {
511   // Bail out early. Not expect to load from scalable global variable.
512   if (isa<ScalableVectorType>(LoadTy))
513     return nullptr;
514 
515   auto *PTy = cast<PointerType>(C->getType());
516   auto *IntType = dyn_cast<IntegerType>(LoadTy);
517 
518   // If this isn't an integer load we can't fold it directly.
519   if (!IntType) {
520     unsigned AS = PTy->getAddressSpace();
521 
522     // If this is a float/double load, we can try folding it as an int32/64 load
523     // and then bitcast the result.  This can be useful for union cases.  Note
524     // that address spaces don't matter here since we're not going to result in
525     // an actual new load.
526     Type *MapTy;
527     if (LoadTy->isHalfTy())
528       MapTy = Type::getInt16Ty(C->getContext());
529     else if (LoadTy->isFloatTy())
530       MapTy = Type::getInt32Ty(C->getContext());
531     else if (LoadTy->isDoubleTy())
532       MapTy = Type::getInt64Ty(C->getContext());
533     else if (LoadTy->isVectorTy()) {
534       MapTy = PointerType::getIntNTy(
535           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
536     } else
537       return nullptr;
538 
539     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
540     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
541       if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
542         // Materializing a zero can be done trivially without a bitcast
543         return Constant::getNullValue(LoadTy);
544       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
545       Res = FoldBitCast(Res, CastTy, DL);
546       if (LoadTy->isPtrOrPtrVectorTy()) {
547         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
548         if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
549           return Constant::getNullValue(LoadTy);
550         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
551           // Be careful not to replace a load of an addrspace value with an inttoptr here
552           return nullptr;
553         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
554       }
555       return Res;
556     }
557     return nullptr;
558   }
559 
560   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
561   if (BytesLoaded > 32 || BytesLoaded == 0)
562     return nullptr;
563 
564   GlobalValue *GVal;
565   APInt OffsetAI;
566   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
567     return nullptr;
568 
569   auto *GV = dyn_cast<GlobalVariable>(GVal);
570   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
571       !GV->getInitializer()->getType()->isSized())
572     return nullptr;
573 
574   int64_t Offset = OffsetAI.getSExtValue();
575   int64_t InitializerSize =
576       DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
577 
578   // If we're not accessing anything in this constant, the result is undefined.
579   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
580     return UndefValue::get(IntType);
581 
582   // If we're not accessing anything in this constant, the result is undefined.
583   if (Offset >= InitializerSize)
584     return UndefValue::get(IntType);
585 
586   unsigned char RawBytes[32] = {0};
587   unsigned char *CurPtr = RawBytes;
588   unsigned BytesLeft = BytesLoaded;
589 
590   // If we're loading off the beginning of the global, some bytes may be valid.
591   if (Offset < 0) {
592     CurPtr += -Offset;
593     BytesLeft += Offset;
594     Offset = 0;
595   }
596 
597   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
598     return nullptr;
599 
600   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
601   if (DL.isLittleEndian()) {
602     ResultVal = RawBytes[BytesLoaded - 1];
603     for (unsigned i = 1; i != BytesLoaded; ++i) {
604       ResultVal <<= 8;
605       ResultVal |= RawBytes[BytesLoaded - 1 - i];
606     }
607   } else {
608     ResultVal = RawBytes[0];
609     for (unsigned i = 1; i != BytesLoaded; ++i) {
610       ResultVal <<= 8;
611       ResultVal |= RawBytes[i];
612     }
613   }
614 
615   return ConstantInt::get(IntType->getContext(), ResultVal);
616 }
617 
618 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
619                                              const DataLayout &DL) {
620   auto *SrcPtr = CE->getOperand(0);
621   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
622   if (!SrcPtrTy)
623     return nullptr;
624   Type *SrcTy = SrcPtrTy->getPointerElementType();
625 
626   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
627   if (!C)
628     return nullptr;
629 
630   return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
631 }
632 
633 } // end anonymous namespace
634 
635 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
636                                              const DataLayout &DL) {
637   // First, try the easy cases:
638   if (auto *GV = dyn_cast<GlobalVariable>(C))
639     if (GV->isConstant() && GV->hasDefinitiveInitializer())
640       return GV->getInitializer();
641 
642   if (auto *GA = dyn_cast<GlobalAlias>(C))
643     if (GA->getAliasee() && !GA->isInterposable())
644       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
645 
646   // If the loaded value isn't a constant expr, we can't handle it.
647   auto *CE = dyn_cast<ConstantExpr>(C);
648   if (!CE)
649     return nullptr;
650 
651   if (CE->getOpcode() == Instruction::GetElementPtr) {
652     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
653       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
654         if (Constant *V =
655              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
656           return V;
657       }
658     }
659   }
660 
661   if (CE->getOpcode() == Instruction::BitCast)
662     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
663       return LoadedC;
664 
665   // Instead of loading constant c string, use corresponding integer value
666   // directly if string length is small enough.
667   StringRef Str;
668   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
669     size_t StrLen = Str.size();
670     unsigned NumBits = Ty->getPrimitiveSizeInBits();
671     // Replace load with immediate integer if the result is an integer or fp
672     // value.
673     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
674         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
675       APInt StrVal(NumBits, 0);
676       APInt SingleChar(NumBits, 0);
677       if (DL.isLittleEndian()) {
678         for (unsigned char C : reverse(Str.bytes())) {
679           SingleChar = static_cast<uint64_t>(C);
680           StrVal = (StrVal << 8) | SingleChar;
681         }
682       } else {
683         for (unsigned char C : Str.bytes()) {
684           SingleChar = static_cast<uint64_t>(C);
685           StrVal = (StrVal << 8) | SingleChar;
686         }
687         // Append NULL at the end.
688         SingleChar = 0;
689         StrVal = (StrVal << 8) | SingleChar;
690       }
691 
692       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
693       if (Ty->isFloatingPointTy())
694         Res = ConstantExpr::getBitCast(Res, Ty);
695       return Res;
696     }
697   }
698 
699   // If this load comes from anywhere in a constant global, and if the global
700   // is all undef or zero, we know what it loads.
701   if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
702     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
703       if (GV->getInitializer()->isNullValue())
704         return Constant::getNullValue(Ty);
705       if (isa<UndefValue>(GV->getInitializer()))
706         return UndefValue::get(Ty);
707     }
708   }
709 
710   // Try hard to fold loads from bitcasted strange and non-type-safe things.
711   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
712 }
713 
714 namespace {
715 
716 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
717   if (LI->isVolatile()) return nullptr;
718 
719   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
720     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
721 
722   return nullptr;
723 }
724 
725 /// One of Op0/Op1 is a constant expression.
726 /// Attempt to symbolically evaluate the result of a binary operator merging
727 /// these together.  If target data info is available, it is provided as DL,
728 /// otherwise DL is null.
729 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
730                                     const DataLayout &DL) {
731   // SROA
732 
733   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
734   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
735   // bits.
736 
737   if (Opc == Instruction::And) {
738     KnownBits Known0 = computeKnownBits(Op0, DL);
739     KnownBits Known1 = computeKnownBits(Op1, DL);
740     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
741       // All the bits of Op0 that the 'and' could be masking are already zero.
742       return Op0;
743     }
744     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
745       // All the bits of Op1 that the 'and' could be masking are already zero.
746       return Op1;
747     }
748 
749     Known0 &= Known1;
750     if (Known0.isConstant())
751       return ConstantInt::get(Op0->getType(), Known0.getConstant());
752   }
753 
754   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
755   // constant.  This happens frequently when iterating over a global array.
756   if (Opc == Instruction::Sub) {
757     GlobalValue *GV1, *GV2;
758     APInt Offs1, Offs2;
759 
760     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
761       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
762         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
763 
764         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
765         // PtrToInt may change the bitwidth so we have convert to the right size
766         // first.
767         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
768                                                 Offs2.zextOrTrunc(OpSize));
769       }
770   }
771 
772   return nullptr;
773 }
774 
775 /// If array indices are not pointer-sized integers, explicitly cast them so
776 /// that they aren't implicitly casted by the getelementptr.
777 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
778                          Type *ResultTy, Optional<unsigned> InRangeIndex,
779                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
780   Type *IntIdxTy = DL.getIndexType(ResultTy);
781   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
782 
783   bool Any = false;
784   SmallVector<Constant*, 32> NewIdxs;
785   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
786     if ((i == 1 ||
787          !isa<StructType>(GetElementPtrInst::getIndexedType(
788              SrcElemTy, Ops.slice(1, i - 1)))) &&
789         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
790       Any = true;
791       Type *NewType = Ops[i]->getType()->isVectorTy()
792                           ? IntIdxTy
793                           : IntIdxScalarTy;
794       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
795                                                                       true,
796                                                                       NewType,
797                                                                       true),
798                                               Ops[i], NewType));
799     } else
800       NewIdxs.push_back(Ops[i]);
801   }
802 
803   if (!Any)
804     return nullptr;
805 
806   Constant *C = ConstantExpr::getGetElementPtr(
807       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
808   return ConstantFoldConstant(C, DL, TLI);
809 }
810 
811 /// Strip the pointer casts, but preserve the address space information.
812 Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
813   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
814   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
815   Ptr = cast<Constant>(Ptr->stripPointerCasts());
816   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
817 
818   ElemTy = NewPtrTy->getPointerElementType();
819 
820   // Preserve the address space number of the pointer.
821   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
822     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
823     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
824   }
825   return Ptr;
826 }
827 
828 /// If we can symbolically evaluate the GEP constant expression, do so.
829 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
830                                   ArrayRef<Constant *> Ops,
831                                   const DataLayout &DL,
832                                   const TargetLibraryInfo *TLI) {
833   const GEPOperator *InnermostGEP = GEP;
834   bool InBounds = GEP->isInBounds();
835 
836   Type *SrcElemTy = GEP->getSourceElementType();
837   Type *ResElemTy = GEP->getResultElementType();
838   Type *ResTy = GEP->getType();
839   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
840     return nullptr;
841 
842   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
843                                    GEP->getInRangeIndex(), DL, TLI))
844     return C;
845 
846   Constant *Ptr = Ops[0];
847   if (!Ptr->getType()->isPointerTy())
848     return nullptr;
849 
850   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
851 
852   // If this is a constant expr gep that is effectively computing an
853   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
854   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
855       if (!isa<ConstantInt>(Ops[i])) {
856 
857         // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
858         // "inttoptr (sub (ptrtoint Ptr), V)"
859         if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
860           auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
861           assert((!CE || CE->getType() == IntIdxTy) &&
862                  "CastGEPIndices didn't canonicalize index types!");
863           if (CE && CE->getOpcode() == Instruction::Sub &&
864               CE->getOperand(0)->isNullValue()) {
865             Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
866             Res = ConstantExpr::getSub(Res, CE->getOperand(1));
867             Res = ConstantExpr::getIntToPtr(Res, ResTy);
868             return ConstantFoldConstant(Res, DL, TLI);
869           }
870         }
871         return nullptr;
872       }
873 
874   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
875   APInt Offset =
876       APInt(BitWidth,
877             DL.getIndexedOffsetInType(
878                 SrcElemTy,
879                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
880   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
881 
882   // If this is a GEP of a GEP, fold it all into a single GEP.
883   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
884     InnermostGEP = GEP;
885     InBounds &= GEP->isInBounds();
886 
887     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
888 
889     // Do not try the incorporate the sub-GEP if some index is not a number.
890     bool AllConstantInt = true;
891     for (Value *NestedOp : NestedOps)
892       if (!isa<ConstantInt>(NestedOp)) {
893         AllConstantInt = false;
894         break;
895       }
896     if (!AllConstantInt)
897       break;
898 
899     Ptr = cast<Constant>(GEP->getOperand(0));
900     SrcElemTy = GEP->getSourceElementType();
901     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
902     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
903   }
904 
905   // If the base value for this address is a literal integer value, fold the
906   // getelementptr to the resulting integer value casted to the pointer type.
907   APInt BasePtr(BitWidth, 0);
908   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
909     if (CE->getOpcode() == Instruction::IntToPtr) {
910       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
911         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
912     }
913   }
914 
915   auto *PTy = cast<PointerType>(Ptr->getType());
916   if ((Ptr->isNullValue() || BasePtr != 0) &&
917       !DL.isNonIntegralPointerType(PTy)) {
918     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
919     return ConstantExpr::getIntToPtr(C, ResTy);
920   }
921 
922   // Otherwise form a regular getelementptr. Recompute the indices so that
923   // we eliminate over-indexing of the notional static type array bounds.
924   // This makes it easy to determine if the getelementptr is "inbounds".
925   // Also, this helps GlobalOpt do SROA on GlobalVariables.
926   Type *Ty = PTy;
927   SmallVector<Constant *, 32> NewIdxs;
928 
929   do {
930     if (!Ty->isStructTy()) {
931       if (Ty->isPointerTy()) {
932         // The only pointer indexing we'll do is on the first index of the GEP.
933         if (!NewIdxs.empty())
934           break;
935 
936         Ty = SrcElemTy;
937 
938         // Only handle pointers to sized types, not pointers to functions.
939         if (!Ty->isSized())
940           return nullptr;
941       } else {
942         Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
943         if (!NextTy)
944           break;
945         Ty = NextTy;
946       }
947 
948       // Determine which element of the array the offset points into.
949       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
950       if (ElemSize == 0) {
951         // The element size is 0. This may be [0 x Ty]*, so just use a zero
952         // index for this level and proceed to the next level to see if it can
953         // accommodate the offset.
954         NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
955       } else {
956         // The element size is non-zero divide the offset by the element
957         // size (rounding down), to compute the index at this level.
958         bool Overflow;
959         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
960         if (Overflow)
961           break;
962         Offset -= NewIdx * ElemSize;
963         NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
964       }
965     } else {
966       auto *STy = cast<StructType>(Ty);
967       // If we end up with an offset that isn't valid for this struct type, we
968       // can't re-form this GEP in a regular form, so bail out. The pointer
969       // operand likely went through casts that are necessary to make the GEP
970       // sensible.
971       const StructLayout &SL = *DL.getStructLayout(STy);
972       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
973         break;
974 
975       // Determine which field of the struct the offset points into. The
976       // getZExtValue is fine as we've already ensured that the offset is
977       // within the range representable by the StructLayout API.
978       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
979       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
980                                          ElIdx));
981       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
982       Ty = STy->getTypeAtIndex(ElIdx);
983     }
984   } while (Ty != ResElemTy);
985 
986   // If we haven't used up the entire offset by descending the static
987   // type, then the offset is pointing into the middle of an indivisible
988   // member, so we can't simplify it.
989   if (Offset != 0)
990     return nullptr;
991 
992   // Preserve the inrange index from the innermost GEP if possible. We must
993   // have calculated the same indices up to and including the inrange index.
994   Optional<unsigned> InRangeIndex;
995   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
996     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
997         NewIdxs.size() > *LastIRIndex) {
998       InRangeIndex = LastIRIndex;
999       for (unsigned I = 0; I <= *LastIRIndex; ++I)
1000         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1001           return nullptr;
1002     }
1003 
1004   // Create a GEP.
1005   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1006                                                InBounds, InRangeIndex);
1007   assert(C->getType()->getPointerElementType() == Ty &&
1008          "Computed GetElementPtr has unexpected type!");
1009 
1010   // If we ended up indexing a member with a type that doesn't match
1011   // the type of what the original indices indexed, add a cast.
1012   if (Ty != ResElemTy)
1013     C = FoldBitCast(C, ResTy, DL);
1014 
1015   return C;
1016 }
1017 
1018 /// Attempt to constant fold an instruction with the
1019 /// specified opcode and operands.  If successful, the constant result is
1020 /// returned, if not, null is returned.  Note that this function can fail when
1021 /// attempting to fold instructions like loads and stores, which have no
1022 /// constant expression form.
1023 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1024                                        ArrayRef<Constant *> Ops,
1025                                        const DataLayout &DL,
1026                                        const TargetLibraryInfo *TLI) {
1027   Type *DestTy = InstOrCE->getType();
1028 
1029   if (Instruction::isUnaryOp(Opcode))
1030     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1031 
1032   if (Instruction::isBinaryOp(Opcode))
1033     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1034 
1035   if (Instruction::isCast(Opcode))
1036     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1037 
1038   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1039     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1040       return C;
1041 
1042     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1043                                           Ops.slice(1), GEP->isInBounds(),
1044                                           GEP->getInRangeIndex());
1045   }
1046 
1047   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1048     return CE->getWithOperands(Ops);
1049 
1050   switch (Opcode) {
1051   default: return nullptr;
1052   case Instruction::ICmp:
1053   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1054   case Instruction::Call:
1055     if (auto *F = dyn_cast<Function>(Ops.back())) {
1056       const auto *Call = cast<CallBase>(InstOrCE);
1057       if (canConstantFoldCallTo(Call, F))
1058         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1059     }
1060     return nullptr;
1061   case Instruction::Select:
1062     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1063   case Instruction::ExtractElement:
1064     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1065   case Instruction::ExtractValue:
1066     return ConstantExpr::getExtractValue(
1067         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1068   case Instruction::InsertElement:
1069     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1070   case Instruction::ShuffleVector:
1071     return ConstantExpr::getShuffleVector(
1072         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1073   }
1074 }
1075 
1076 } // end anonymous namespace
1077 
1078 //===----------------------------------------------------------------------===//
1079 // Constant Folding public APIs
1080 //===----------------------------------------------------------------------===//
1081 
1082 namespace {
1083 
1084 Constant *
1085 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1086                          const TargetLibraryInfo *TLI,
1087                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1088   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1089     return const_cast<Constant *>(C);
1090 
1091   SmallVector<Constant *, 8> Ops;
1092   for (const Use &OldU : C->operands()) {
1093     Constant *OldC = cast<Constant>(&OldU);
1094     Constant *NewC = OldC;
1095     // Recursively fold the ConstantExpr's operands. If we have already folded
1096     // a ConstantExpr, we don't have to process it again.
1097     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1098       auto It = FoldedOps.find(OldC);
1099       if (It == FoldedOps.end()) {
1100         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1101         FoldedOps.insert({OldC, NewC});
1102       } else {
1103         NewC = It->second;
1104       }
1105     }
1106     Ops.push_back(NewC);
1107   }
1108 
1109   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1110     if (CE->isCompare())
1111       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1112                                              DL, TLI);
1113 
1114     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1115   }
1116 
1117   assert(isa<ConstantVector>(C));
1118   return ConstantVector::get(Ops);
1119 }
1120 
1121 } // end anonymous namespace
1122 
1123 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1124                                         const TargetLibraryInfo *TLI) {
1125   // Handle PHI nodes quickly here...
1126   if (auto *PN = dyn_cast<PHINode>(I)) {
1127     Constant *CommonValue = nullptr;
1128 
1129     SmallDenseMap<Constant *, Constant *> FoldedOps;
1130     for (Value *Incoming : PN->incoming_values()) {
1131       // If the incoming value is undef then skip it.  Note that while we could
1132       // skip the value if it is equal to the phi node itself we choose not to
1133       // because that would break the rule that constant folding only applies if
1134       // all operands are constants.
1135       if (isa<UndefValue>(Incoming))
1136         continue;
1137       // If the incoming value is not a constant, then give up.
1138       auto *C = dyn_cast<Constant>(Incoming);
1139       if (!C)
1140         return nullptr;
1141       // Fold the PHI's operands.
1142       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1143       // If the incoming value is a different constant to
1144       // the one we saw previously, then give up.
1145       if (CommonValue && C != CommonValue)
1146         return nullptr;
1147       CommonValue = C;
1148     }
1149 
1150     // If we reach here, all incoming values are the same constant or undef.
1151     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1152   }
1153 
1154   // Scan the operand list, checking to see if they are all constants, if so,
1155   // hand off to ConstantFoldInstOperandsImpl.
1156   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1157     return nullptr;
1158 
1159   SmallDenseMap<Constant *, Constant *> FoldedOps;
1160   SmallVector<Constant *, 8> Ops;
1161   for (const Use &OpU : I->operands()) {
1162     auto *Op = cast<Constant>(&OpU);
1163     // Fold the Instruction's operands.
1164     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1165     Ops.push_back(Op);
1166   }
1167 
1168   if (const auto *CI = dyn_cast<CmpInst>(I))
1169     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1170                                            DL, TLI);
1171 
1172   if (const auto *LI = dyn_cast<LoadInst>(I))
1173     return ConstantFoldLoadInst(LI, DL);
1174 
1175   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1176     return ConstantExpr::getInsertValue(
1177                                 cast<Constant>(IVI->getAggregateOperand()),
1178                                 cast<Constant>(IVI->getInsertedValueOperand()),
1179                                 IVI->getIndices());
1180   }
1181 
1182   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1183     return ConstantExpr::getExtractValue(
1184                                     cast<Constant>(EVI->getAggregateOperand()),
1185                                     EVI->getIndices());
1186   }
1187 
1188   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1189 }
1190 
1191 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1192                                      const TargetLibraryInfo *TLI) {
1193   SmallDenseMap<Constant *, Constant *> FoldedOps;
1194   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1195 }
1196 
1197 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1198                                          ArrayRef<Constant *> Ops,
1199                                          const DataLayout &DL,
1200                                          const TargetLibraryInfo *TLI) {
1201   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1202 }
1203 
1204 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1205                                                 Constant *Ops0, Constant *Ops1,
1206                                                 const DataLayout &DL,
1207                                                 const TargetLibraryInfo *TLI) {
1208   // fold: icmp (inttoptr x), null         -> icmp x, 0
1209   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1210   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1211   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1212   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1213   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1214   //
1215   // FIXME: The following comment is out of data and the DataLayout is here now.
1216   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1217   // around to know if bit truncation is happening.
1218   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1219     if (Ops1->isNullValue()) {
1220       if (CE0->getOpcode() == Instruction::IntToPtr) {
1221         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1222         // Convert the integer value to the right size to ensure we get the
1223         // proper extension or truncation.
1224         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1225                                                    IntPtrTy, false);
1226         Constant *Null = Constant::getNullValue(C->getType());
1227         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1228       }
1229 
1230       // Only do this transformation if the int is intptrty in size, otherwise
1231       // there is a truncation or extension that we aren't modeling.
1232       if (CE0->getOpcode() == Instruction::PtrToInt) {
1233         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1234         if (CE0->getType() == IntPtrTy) {
1235           Constant *C = CE0->getOperand(0);
1236           Constant *Null = Constant::getNullValue(C->getType());
1237           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1238         }
1239       }
1240     }
1241 
1242     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1243       if (CE0->getOpcode() == CE1->getOpcode()) {
1244         if (CE0->getOpcode() == Instruction::IntToPtr) {
1245           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1246 
1247           // Convert the integer value to the right size to ensure we get the
1248           // proper extension or truncation.
1249           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1250                                                       IntPtrTy, false);
1251           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1252                                                       IntPtrTy, false);
1253           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1254         }
1255 
1256         // Only do this transformation if the int is intptrty in size, otherwise
1257         // there is a truncation or extension that we aren't modeling.
1258         if (CE0->getOpcode() == Instruction::PtrToInt) {
1259           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1260           if (CE0->getType() == IntPtrTy &&
1261               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1262             return ConstantFoldCompareInstOperands(
1263                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1264           }
1265         }
1266       }
1267     }
1268 
1269     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1270     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1271     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1272         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1273       Constant *LHS = ConstantFoldCompareInstOperands(
1274           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1275       Constant *RHS = ConstantFoldCompareInstOperands(
1276           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1277       unsigned OpC =
1278         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1279       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1280     }
1281   } else if (isa<ConstantExpr>(Ops1)) {
1282     // If RHS is a constant expression, but the left side isn't, swap the
1283     // operands and try again.
1284     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1285     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1286   }
1287 
1288   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1289 }
1290 
1291 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1292                                            const DataLayout &DL) {
1293   assert(Instruction::isUnaryOp(Opcode));
1294 
1295   return ConstantExpr::get(Opcode, Op);
1296 }
1297 
1298 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1299                                              Constant *RHS,
1300                                              const DataLayout &DL) {
1301   assert(Instruction::isBinaryOp(Opcode));
1302   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1303     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1304       return C;
1305 
1306   return ConstantExpr::get(Opcode, LHS, RHS);
1307 }
1308 
1309 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1310                                         Type *DestTy, const DataLayout &DL) {
1311   assert(Instruction::isCast(Opcode));
1312   switch (Opcode) {
1313   default:
1314     llvm_unreachable("Missing case");
1315   case Instruction::PtrToInt:
1316     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1317     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1318     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1319       if (CE->getOpcode() == Instruction::IntToPtr) {
1320         Constant *Input = CE->getOperand(0);
1321         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1322         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1323         if (PtrWidth < InWidth) {
1324           Constant *Mask =
1325             ConstantInt::get(CE->getContext(),
1326                              APInt::getLowBitsSet(InWidth, PtrWidth));
1327           Input = ConstantExpr::getAnd(Input, Mask);
1328         }
1329         // Do a zext or trunc to get to the dest size.
1330         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1331       }
1332     }
1333     return ConstantExpr::getCast(Opcode, C, DestTy);
1334   case Instruction::IntToPtr:
1335     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1336     // the int size is >= the ptr size and the address spaces are the same.
1337     // This requires knowing the width of a pointer, so it can't be done in
1338     // ConstantExpr::getCast.
1339     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1340       if (CE->getOpcode() == Instruction::PtrToInt) {
1341         Constant *SrcPtr = CE->getOperand(0);
1342         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1343         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1344 
1345         if (MidIntSize >= SrcPtrSize) {
1346           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1347           if (SrcAS == DestTy->getPointerAddressSpace())
1348             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1349         }
1350       }
1351     }
1352 
1353     return ConstantExpr::getCast(Opcode, C, DestTy);
1354   case Instruction::Trunc:
1355   case Instruction::ZExt:
1356   case Instruction::SExt:
1357   case Instruction::FPTrunc:
1358   case Instruction::FPExt:
1359   case Instruction::UIToFP:
1360   case Instruction::SIToFP:
1361   case Instruction::FPToUI:
1362   case Instruction::FPToSI:
1363   case Instruction::AddrSpaceCast:
1364       return ConstantExpr::getCast(Opcode, C, DestTy);
1365   case Instruction::BitCast:
1366     return FoldBitCast(C, DestTy, DL);
1367   }
1368 }
1369 
1370 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1371                                                        ConstantExpr *CE) {
1372   if (!CE->getOperand(1)->isNullValue())
1373     return nullptr;  // Do not allow stepping over the value!
1374 
1375   // Loop over all of the operands, tracking down which value we are
1376   // addressing.
1377   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1378     C = C->getAggregateElement(CE->getOperand(i));
1379     if (!C)
1380       return nullptr;
1381   }
1382   return C;
1383 }
1384 
1385 Constant *
1386 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1387                                         ArrayRef<Constant *> Indices) {
1388   // Loop over all of the operands, tracking down which value we are
1389   // addressing.
1390   for (Constant *Index : Indices) {
1391     C = C->getAggregateElement(Index);
1392     if (!C)
1393       return nullptr;
1394   }
1395   return C;
1396 }
1397 
1398 //===----------------------------------------------------------------------===//
1399 //  Constant Folding for Calls
1400 //
1401 
1402 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1403   if (Call->isNoBuiltin())
1404     return false;
1405   switch (F->getIntrinsicID()) {
1406   // Operations that do not operate floating-point numbers and do not depend on
1407   // FP environment can be folded even in strictfp functions.
1408   case Intrinsic::bswap:
1409   case Intrinsic::ctpop:
1410   case Intrinsic::ctlz:
1411   case Intrinsic::cttz:
1412   case Intrinsic::fshl:
1413   case Intrinsic::fshr:
1414   case Intrinsic::launder_invariant_group:
1415   case Intrinsic::strip_invariant_group:
1416   case Intrinsic::masked_load:
1417   case Intrinsic::sadd_with_overflow:
1418   case Intrinsic::uadd_with_overflow:
1419   case Intrinsic::ssub_with_overflow:
1420   case Intrinsic::usub_with_overflow:
1421   case Intrinsic::smul_with_overflow:
1422   case Intrinsic::umul_with_overflow:
1423   case Intrinsic::sadd_sat:
1424   case Intrinsic::uadd_sat:
1425   case Intrinsic::ssub_sat:
1426   case Intrinsic::usub_sat:
1427   case Intrinsic::smul_fix:
1428   case Intrinsic::smul_fix_sat:
1429   case Intrinsic::bitreverse:
1430   case Intrinsic::is_constant:
1431   case Intrinsic::experimental_vector_reduce_add:
1432   case Intrinsic::experimental_vector_reduce_mul:
1433   case Intrinsic::experimental_vector_reduce_and:
1434   case Intrinsic::experimental_vector_reduce_or:
1435   case Intrinsic::experimental_vector_reduce_xor:
1436   case Intrinsic::experimental_vector_reduce_smin:
1437   case Intrinsic::experimental_vector_reduce_smax:
1438   case Intrinsic::experimental_vector_reduce_umin:
1439   case Intrinsic::experimental_vector_reduce_umax:
1440     return true;
1441 
1442   // Floating point operations cannot be folded in strictfp functions in
1443   // general case. They can be folded if FP environment is known to compiler.
1444   case Intrinsic::minnum:
1445   case Intrinsic::maxnum:
1446   case Intrinsic::minimum:
1447   case Intrinsic::maximum:
1448   case Intrinsic::log:
1449   case Intrinsic::log2:
1450   case Intrinsic::log10:
1451   case Intrinsic::exp:
1452   case Intrinsic::exp2:
1453   case Intrinsic::sqrt:
1454   case Intrinsic::sin:
1455   case Intrinsic::cos:
1456   case Intrinsic::pow:
1457   case Intrinsic::powi:
1458   case Intrinsic::fma:
1459   case Intrinsic::fmuladd:
1460   case Intrinsic::convert_from_fp16:
1461   case Intrinsic::convert_to_fp16:
1462   // The intrinsics below depend on rounding mode in MXCSR.
1463   case Intrinsic::amdgcn_cubeid:
1464   case Intrinsic::amdgcn_cubema:
1465   case Intrinsic::amdgcn_cubesc:
1466   case Intrinsic::amdgcn_cubetc:
1467   case Intrinsic::amdgcn_fmul_legacy:
1468   case Intrinsic::amdgcn_fract:
1469   case Intrinsic::amdgcn_ldexp:
1470   case Intrinsic::x86_sse_cvtss2si:
1471   case Intrinsic::x86_sse_cvtss2si64:
1472   case Intrinsic::x86_sse_cvttss2si:
1473   case Intrinsic::x86_sse_cvttss2si64:
1474   case Intrinsic::x86_sse2_cvtsd2si:
1475   case Intrinsic::x86_sse2_cvtsd2si64:
1476   case Intrinsic::x86_sse2_cvttsd2si:
1477   case Intrinsic::x86_sse2_cvttsd2si64:
1478   case Intrinsic::x86_avx512_vcvtss2si32:
1479   case Intrinsic::x86_avx512_vcvtss2si64:
1480   case Intrinsic::x86_avx512_cvttss2si:
1481   case Intrinsic::x86_avx512_cvttss2si64:
1482   case Intrinsic::x86_avx512_vcvtsd2si32:
1483   case Intrinsic::x86_avx512_vcvtsd2si64:
1484   case Intrinsic::x86_avx512_cvttsd2si:
1485   case Intrinsic::x86_avx512_cvttsd2si64:
1486   case Intrinsic::x86_avx512_vcvtss2usi32:
1487   case Intrinsic::x86_avx512_vcvtss2usi64:
1488   case Intrinsic::x86_avx512_cvttss2usi:
1489   case Intrinsic::x86_avx512_cvttss2usi64:
1490   case Intrinsic::x86_avx512_vcvtsd2usi32:
1491   case Intrinsic::x86_avx512_vcvtsd2usi64:
1492   case Intrinsic::x86_avx512_cvttsd2usi:
1493   case Intrinsic::x86_avx512_cvttsd2usi64:
1494     return !Call->isStrictFP();
1495 
1496   // Sign operations are actually bitwise operations, they do not raise
1497   // exceptions even for SNANs.
1498   case Intrinsic::fabs:
1499   case Intrinsic::copysign:
1500   // Non-constrained variants of rounding operations means default FP
1501   // environment, they can be folded in any case.
1502   case Intrinsic::ceil:
1503   case Intrinsic::floor:
1504   case Intrinsic::round:
1505   case Intrinsic::roundeven:
1506   case Intrinsic::trunc:
1507   case Intrinsic::nearbyint:
1508   case Intrinsic::rint:
1509   // Constrained intrinsics can be folded if FP environment is known
1510   // to compiler.
1511   case Intrinsic::experimental_constrained_ceil:
1512   case Intrinsic::experimental_constrained_floor:
1513   case Intrinsic::experimental_constrained_round:
1514   case Intrinsic::experimental_constrained_roundeven:
1515   case Intrinsic::experimental_constrained_trunc:
1516   case Intrinsic::experimental_constrained_nearbyint:
1517   case Intrinsic::experimental_constrained_rint:
1518     return true;
1519   default:
1520     return false;
1521   case Intrinsic::not_intrinsic: break;
1522   }
1523 
1524   if (!F->hasName() || Call->isStrictFP())
1525     return false;
1526 
1527   // In these cases, the check of the length is required.  We don't want to
1528   // return true for a name like "cos\0blah" which strcmp would return equal to
1529   // "cos", but has length 8.
1530   StringRef Name = F->getName();
1531   switch (Name[0]) {
1532   default:
1533     return false;
1534   case 'a':
1535     return Name == "acos" || Name == "acosf" ||
1536            Name == "asin" || Name == "asinf" ||
1537            Name == "atan" || Name == "atanf" ||
1538            Name == "atan2" || Name == "atan2f";
1539   case 'c':
1540     return Name == "ceil" || Name == "ceilf" ||
1541            Name == "cos" || Name == "cosf" ||
1542            Name == "cosh" || Name == "coshf";
1543   case 'e':
1544     return Name == "exp" || Name == "expf" ||
1545            Name == "exp2" || Name == "exp2f";
1546   case 'f':
1547     return Name == "fabs" || Name == "fabsf" ||
1548            Name == "floor" || Name == "floorf" ||
1549            Name == "fmod" || Name == "fmodf";
1550   case 'l':
1551     return Name == "log" || Name == "logf" ||
1552            Name == "log2" || Name == "log2f" ||
1553            Name == "log10" || Name == "log10f";
1554   case 'n':
1555     return Name == "nearbyint" || Name == "nearbyintf";
1556   case 'p':
1557     return Name == "pow" || Name == "powf";
1558   case 'r':
1559     return Name == "remainder" || Name == "remainderf" ||
1560            Name == "rint" || Name == "rintf" ||
1561            Name == "round" || Name == "roundf";
1562   case 's':
1563     return Name == "sin" || Name == "sinf" ||
1564            Name == "sinh" || Name == "sinhf" ||
1565            Name == "sqrt" || Name == "sqrtf";
1566   case 't':
1567     return Name == "tan" || Name == "tanf" ||
1568            Name == "tanh" || Name == "tanhf" ||
1569            Name == "trunc" || Name == "truncf";
1570   case '_':
1571     // Check for various function names that get used for the math functions
1572     // when the header files are preprocessed with the macro
1573     // __FINITE_MATH_ONLY__ enabled.
1574     // The '12' here is the length of the shortest name that can match.
1575     // We need to check the size before looking at Name[1] and Name[2]
1576     // so we may as well check a limit that will eliminate mismatches.
1577     if (Name.size() < 12 || Name[1] != '_')
1578       return false;
1579     switch (Name[2]) {
1580     default:
1581       return false;
1582     case 'a':
1583       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1584              Name == "__asin_finite" || Name == "__asinf_finite" ||
1585              Name == "__atan2_finite" || Name == "__atan2f_finite";
1586     case 'c':
1587       return Name == "__cosh_finite" || Name == "__coshf_finite";
1588     case 'e':
1589       return Name == "__exp_finite" || Name == "__expf_finite" ||
1590              Name == "__exp2_finite" || Name == "__exp2f_finite";
1591     case 'l':
1592       return Name == "__log_finite" || Name == "__logf_finite" ||
1593              Name == "__log10_finite" || Name == "__log10f_finite";
1594     case 'p':
1595       return Name == "__pow_finite" || Name == "__powf_finite";
1596     case 's':
1597       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1598     }
1599   }
1600 }
1601 
1602 namespace {
1603 
1604 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1605   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1606     APFloat APF(V);
1607     bool unused;
1608     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1609     return ConstantFP::get(Ty->getContext(), APF);
1610   }
1611   if (Ty->isDoubleTy())
1612     return ConstantFP::get(Ty->getContext(), APFloat(V));
1613   llvm_unreachable("Can only constant fold half/float/double");
1614 }
1615 
1616 /// Clear the floating-point exception state.
1617 inline void llvm_fenv_clearexcept() {
1618 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1619   feclearexcept(FE_ALL_EXCEPT);
1620 #endif
1621   errno = 0;
1622 }
1623 
1624 /// Test if a floating-point exception was raised.
1625 inline bool llvm_fenv_testexcept() {
1626   int errno_val = errno;
1627   if (errno_val == ERANGE || errno_val == EDOM)
1628     return true;
1629 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1630   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1631     return true;
1632 #endif
1633   return false;
1634 }
1635 
1636 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1637   llvm_fenv_clearexcept();
1638   V = NativeFP(V);
1639   if (llvm_fenv_testexcept()) {
1640     llvm_fenv_clearexcept();
1641     return nullptr;
1642   }
1643 
1644   return GetConstantFoldFPValue(V, Ty);
1645 }
1646 
1647 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1648                                double W, Type *Ty) {
1649   llvm_fenv_clearexcept();
1650   V = NativeFP(V, W);
1651   if (llvm_fenv_testexcept()) {
1652     llvm_fenv_clearexcept();
1653     return nullptr;
1654   }
1655 
1656   return GetConstantFoldFPValue(V, Ty);
1657 }
1658 
1659 Constant *ConstantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1660   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1661   if (!VT)
1662     return nullptr;
1663   ConstantInt *CI = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1664   if (!CI)
1665     return nullptr;
1666   APInt Acc = CI->getValue();
1667 
1668   for (unsigned I = 1; I < VT->getNumElements(); I++) {
1669     if (!(CI = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1670       return nullptr;
1671     const APInt &X = CI->getValue();
1672     switch (IID) {
1673     case Intrinsic::experimental_vector_reduce_add:
1674       Acc = Acc + X;
1675       break;
1676     case Intrinsic::experimental_vector_reduce_mul:
1677       Acc = Acc * X;
1678       break;
1679     case Intrinsic::experimental_vector_reduce_and:
1680       Acc = Acc & X;
1681       break;
1682     case Intrinsic::experimental_vector_reduce_or:
1683       Acc = Acc | X;
1684       break;
1685     case Intrinsic::experimental_vector_reduce_xor:
1686       Acc = Acc ^ X;
1687       break;
1688     case Intrinsic::experimental_vector_reduce_smin:
1689       Acc = APIntOps::smin(Acc, X);
1690       break;
1691     case Intrinsic::experimental_vector_reduce_smax:
1692       Acc = APIntOps::smax(Acc, X);
1693       break;
1694     case Intrinsic::experimental_vector_reduce_umin:
1695       Acc = APIntOps::umin(Acc, X);
1696       break;
1697     case Intrinsic::experimental_vector_reduce_umax:
1698       Acc = APIntOps::umax(Acc, X);
1699       break;
1700     }
1701   }
1702 
1703   return ConstantInt::get(Op->getContext(), Acc);
1704 }
1705 
1706 /// Attempt to fold an SSE floating point to integer conversion of a constant
1707 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1708 /// used (toward nearest, ties to even). This matches the behavior of the
1709 /// non-truncating SSE instructions in the default rounding mode. The desired
1710 /// integer type Ty is used to select how many bits are available for the
1711 /// result. Returns null if the conversion cannot be performed, otherwise
1712 /// returns the Constant value resulting from the conversion.
1713 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1714                                       Type *Ty, bool IsSigned) {
1715   // All of these conversion intrinsics form an integer of at most 64bits.
1716   unsigned ResultWidth = Ty->getIntegerBitWidth();
1717   assert(ResultWidth <= 64 &&
1718          "Can only constant fold conversions to 64 and 32 bit ints");
1719 
1720   uint64_t UIntVal;
1721   bool isExact = false;
1722   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1723                                               : APFloat::rmNearestTiesToEven;
1724   APFloat::opStatus status =
1725       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1726                            IsSigned, mode, &isExact);
1727   if (status != APFloat::opOK &&
1728       (!roundTowardZero || status != APFloat::opInexact))
1729     return nullptr;
1730   return ConstantInt::get(Ty, UIntVal, IsSigned);
1731 }
1732 
1733 double getValueAsDouble(ConstantFP *Op) {
1734   Type *Ty = Op->getType();
1735 
1736   if (Ty->isFloatTy())
1737     return Op->getValueAPF().convertToFloat();
1738 
1739   if (Ty->isDoubleTy())
1740     return Op->getValueAPF().convertToDouble();
1741 
1742   bool unused;
1743   APFloat APF = Op->getValueAPF();
1744   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1745   return APF.convertToDouble();
1746 }
1747 
1748 static bool isManifestConstant(const Constant *c) {
1749   if (isa<ConstantData>(c)) {
1750     return true;
1751   } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
1752     for (const Value *subc : c->operand_values()) {
1753       if (!isManifestConstant(cast<Constant>(subc)))
1754         return false;
1755     }
1756     return true;
1757   }
1758   return false;
1759 }
1760 
1761 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1762   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1763     C = &CI->getValue();
1764     return true;
1765   }
1766   if (isa<UndefValue>(Op)) {
1767     C = nullptr;
1768     return true;
1769   }
1770   return false;
1771 }
1772 
1773 static Constant *ConstantFoldScalarCall1(StringRef Name,
1774                                          Intrinsic::ID IntrinsicID,
1775                                          Type *Ty,
1776                                          ArrayRef<Constant *> Operands,
1777                                          const TargetLibraryInfo *TLI,
1778                                          const CallBase *Call) {
1779   assert(Operands.size() == 1 && "Wrong number of operands.");
1780 
1781   if (IntrinsicID == Intrinsic::is_constant) {
1782     // We know we have a "Constant" argument. But we want to only
1783     // return true for manifest constants, not those that depend on
1784     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1785     if (isManifestConstant(Operands[0]))
1786       return ConstantInt::getTrue(Ty->getContext());
1787     return nullptr;
1788   }
1789   if (isa<UndefValue>(Operands[0])) {
1790     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1791     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1792     if (IntrinsicID == Intrinsic::cos ||
1793         IntrinsicID == Intrinsic::ctpop)
1794       return Constant::getNullValue(Ty);
1795     if (IntrinsicID == Intrinsic::bswap ||
1796         IntrinsicID == Intrinsic::bitreverse ||
1797         IntrinsicID == Intrinsic::launder_invariant_group ||
1798         IntrinsicID == Intrinsic::strip_invariant_group)
1799       return Operands[0];
1800   }
1801 
1802   if (isa<ConstantPointerNull>(Operands[0])) {
1803     // launder(null) == null == strip(null) iff in addrspace 0
1804     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1805         IntrinsicID == Intrinsic::strip_invariant_group) {
1806       // If instruction is not yet put in a basic block (e.g. when cloning
1807       // a function during inlining), Call's caller may not be available.
1808       // So check Call's BB first before querying Call->getCaller.
1809       const Function *Caller =
1810           Call->getParent() ? Call->getCaller() : nullptr;
1811       if (Caller &&
1812           !NullPointerIsDefined(
1813               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1814         return Operands[0];
1815       }
1816       return nullptr;
1817     }
1818   }
1819 
1820   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1821     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1822       APFloat Val(Op->getValueAPF());
1823 
1824       bool lost = false;
1825       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1826 
1827       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1828     }
1829 
1830     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1831       return nullptr;
1832 
1833     // Use internal versions of these intrinsics.
1834     APFloat U = Op->getValueAPF();
1835 
1836     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1837       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1838       return ConstantFP::get(Ty->getContext(), U);
1839     }
1840 
1841     if (IntrinsicID == Intrinsic::round) {
1842       U.roundToIntegral(APFloat::rmNearestTiesToAway);
1843       return ConstantFP::get(Ty->getContext(), U);
1844     }
1845 
1846     if (IntrinsicID == Intrinsic::roundeven) {
1847       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1848       return ConstantFP::get(Ty->getContext(), U);
1849     }
1850 
1851     if (IntrinsicID == Intrinsic::ceil) {
1852       U.roundToIntegral(APFloat::rmTowardPositive);
1853       return ConstantFP::get(Ty->getContext(), U);
1854     }
1855 
1856     if (IntrinsicID == Intrinsic::floor) {
1857       U.roundToIntegral(APFloat::rmTowardNegative);
1858       return ConstantFP::get(Ty->getContext(), U);
1859     }
1860 
1861     if (IntrinsicID == Intrinsic::trunc) {
1862       U.roundToIntegral(APFloat::rmTowardZero);
1863       return ConstantFP::get(Ty->getContext(), U);
1864     }
1865 
1866     if (IntrinsicID == Intrinsic::fabs) {
1867       U.clearSign();
1868       return ConstantFP::get(Ty->getContext(), U);
1869     }
1870 
1871     if (IntrinsicID == Intrinsic::amdgcn_fract) {
1872       // The v_fract instruction behaves like the OpenCL spec, which defines
1873       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
1874       //   there to prevent fract(-small) from returning 1.0. It returns the
1875       //   largest positive floating-point number less than 1.0."
1876       APFloat FloorU(U);
1877       FloorU.roundToIntegral(APFloat::rmTowardNegative);
1878       APFloat FractU(U - FloorU);
1879       APFloat AlmostOne(U.getSemantics(), 1);
1880       AlmostOne.next(/*nextDown*/ true);
1881       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
1882     }
1883 
1884     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
1885     // raise FP exceptions, unless the argument is signaling NaN.
1886 
1887     Optional<APFloat::roundingMode> RM;
1888     switch (IntrinsicID) {
1889     default:
1890       break;
1891     case Intrinsic::experimental_constrained_nearbyint:
1892     case Intrinsic::experimental_constrained_rint: {
1893       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1894       RM = CI->getRoundingMode();
1895       if (!RM || RM.getValue() == RoundingMode::Dynamic)
1896         return nullptr;
1897       break;
1898     }
1899     case Intrinsic::experimental_constrained_round:
1900       RM = APFloat::rmNearestTiesToAway;
1901       break;
1902     case Intrinsic::experimental_constrained_ceil:
1903       RM = APFloat::rmTowardPositive;
1904       break;
1905     case Intrinsic::experimental_constrained_floor:
1906       RM = APFloat::rmTowardNegative;
1907       break;
1908     case Intrinsic::experimental_constrained_trunc:
1909       RM = APFloat::rmTowardZero;
1910       break;
1911     }
1912     if (RM) {
1913       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1914       if (U.isFinite()) {
1915         APFloat::opStatus St = U.roundToIntegral(*RM);
1916         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
1917             St == APFloat::opInexact) {
1918           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1919           if (EB && *EB == fp::ebStrict)
1920             return nullptr;
1921         }
1922       } else if (U.isSignaling()) {
1923         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1924         if (EB && *EB != fp::ebIgnore)
1925           return nullptr;
1926         U = APFloat::getQNaN(U.getSemantics());
1927       }
1928       return ConstantFP::get(Ty->getContext(), U);
1929     }
1930 
1931     /// We only fold functions with finite arguments. Folding NaN and inf is
1932     /// likely to be aborted with an exception anyway, and some host libms
1933     /// have known errors raising exceptions.
1934     if (!U.isFinite())
1935       return nullptr;
1936 
1937     /// Currently APFloat versions of these functions do not exist, so we use
1938     /// the host native double versions.  Float versions are not called
1939     /// directly but for all these it is true (float)(f((double)arg)) ==
1940     /// f(arg).  Long double not supported yet.
1941     double V = getValueAsDouble(Op);
1942 
1943     switch (IntrinsicID) {
1944       default: break;
1945       case Intrinsic::log:
1946         return ConstantFoldFP(log, V, Ty);
1947       case Intrinsic::log2:
1948         // TODO: What about hosts that lack a C99 library?
1949         return ConstantFoldFP(Log2, V, Ty);
1950       case Intrinsic::log10:
1951         // TODO: What about hosts that lack a C99 library?
1952         return ConstantFoldFP(log10, V, Ty);
1953       case Intrinsic::exp:
1954         return ConstantFoldFP(exp, V, Ty);
1955       case Intrinsic::exp2:
1956         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
1957         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1958       case Intrinsic::sin:
1959         return ConstantFoldFP(sin, V, Ty);
1960       case Intrinsic::cos:
1961         return ConstantFoldFP(cos, V, Ty);
1962       case Intrinsic::sqrt:
1963         return ConstantFoldFP(sqrt, V, Ty);
1964     }
1965 
1966     if (!TLI)
1967       return nullptr;
1968 
1969     LibFunc Func = NotLibFunc;
1970     TLI->getLibFunc(Name, Func);
1971     switch (Func) {
1972     default:
1973       break;
1974     case LibFunc_acos:
1975     case LibFunc_acosf:
1976     case LibFunc_acos_finite:
1977     case LibFunc_acosf_finite:
1978       if (TLI->has(Func))
1979         return ConstantFoldFP(acos, V, Ty);
1980       break;
1981     case LibFunc_asin:
1982     case LibFunc_asinf:
1983     case LibFunc_asin_finite:
1984     case LibFunc_asinf_finite:
1985       if (TLI->has(Func))
1986         return ConstantFoldFP(asin, V, Ty);
1987       break;
1988     case LibFunc_atan:
1989     case LibFunc_atanf:
1990       if (TLI->has(Func))
1991         return ConstantFoldFP(atan, V, Ty);
1992       break;
1993     case LibFunc_ceil:
1994     case LibFunc_ceilf:
1995       if (TLI->has(Func)) {
1996         U.roundToIntegral(APFloat::rmTowardPositive);
1997         return ConstantFP::get(Ty->getContext(), U);
1998       }
1999       break;
2000     case LibFunc_cos:
2001     case LibFunc_cosf:
2002       if (TLI->has(Func))
2003         return ConstantFoldFP(cos, V, Ty);
2004       break;
2005     case LibFunc_cosh:
2006     case LibFunc_coshf:
2007     case LibFunc_cosh_finite:
2008     case LibFunc_coshf_finite:
2009       if (TLI->has(Func))
2010         return ConstantFoldFP(cosh, V, Ty);
2011       break;
2012     case LibFunc_exp:
2013     case LibFunc_expf:
2014     case LibFunc_exp_finite:
2015     case LibFunc_expf_finite:
2016       if (TLI->has(Func))
2017         return ConstantFoldFP(exp, V, Ty);
2018       break;
2019     case LibFunc_exp2:
2020     case LibFunc_exp2f:
2021     case LibFunc_exp2_finite:
2022     case LibFunc_exp2f_finite:
2023       if (TLI->has(Func))
2024         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2025         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
2026       break;
2027     case LibFunc_fabs:
2028     case LibFunc_fabsf:
2029       if (TLI->has(Func)) {
2030         U.clearSign();
2031         return ConstantFP::get(Ty->getContext(), U);
2032       }
2033       break;
2034     case LibFunc_floor:
2035     case LibFunc_floorf:
2036       if (TLI->has(Func)) {
2037         U.roundToIntegral(APFloat::rmTowardNegative);
2038         return ConstantFP::get(Ty->getContext(), U);
2039       }
2040       break;
2041     case LibFunc_log:
2042     case LibFunc_logf:
2043     case LibFunc_log_finite:
2044     case LibFunc_logf_finite:
2045       if (V > 0.0 && TLI->has(Func))
2046         return ConstantFoldFP(log, V, Ty);
2047       break;
2048     case LibFunc_log2:
2049     case LibFunc_log2f:
2050     case LibFunc_log2_finite:
2051     case LibFunc_log2f_finite:
2052       if (V > 0.0 && TLI->has(Func))
2053         // TODO: What about hosts that lack a C99 library?
2054         return ConstantFoldFP(Log2, V, Ty);
2055       break;
2056     case LibFunc_log10:
2057     case LibFunc_log10f:
2058     case LibFunc_log10_finite:
2059     case LibFunc_log10f_finite:
2060       if (V > 0.0 && TLI->has(Func))
2061         // TODO: What about hosts that lack a C99 library?
2062         return ConstantFoldFP(log10, V, Ty);
2063       break;
2064     case LibFunc_nearbyint:
2065     case LibFunc_nearbyintf:
2066     case LibFunc_rint:
2067     case LibFunc_rintf:
2068       if (TLI->has(Func)) {
2069         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2070         return ConstantFP::get(Ty->getContext(), U);
2071       }
2072       break;
2073     case LibFunc_round:
2074     case LibFunc_roundf:
2075       if (TLI->has(Func)) {
2076         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2077         return ConstantFP::get(Ty->getContext(), U);
2078       }
2079       break;
2080     case LibFunc_sin:
2081     case LibFunc_sinf:
2082       if (TLI->has(Func))
2083         return ConstantFoldFP(sin, V, Ty);
2084       break;
2085     case LibFunc_sinh:
2086     case LibFunc_sinhf:
2087     case LibFunc_sinh_finite:
2088     case LibFunc_sinhf_finite:
2089       if (TLI->has(Func))
2090         return ConstantFoldFP(sinh, V, Ty);
2091       break;
2092     case LibFunc_sqrt:
2093     case LibFunc_sqrtf:
2094       if (V >= 0.0 && TLI->has(Func))
2095         return ConstantFoldFP(sqrt, V, Ty);
2096       break;
2097     case LibFunc_tan:
2098     case LibFunc_tanf:
2099       if (TLI->has(Func))
2100         return ConstantFoldFP(tan, V, Ty);
2101       break;
2102     case LibFunc_tanh:
2103     case LibFunc_tanhf:
2104       if (TLI->has(Func))
2105         return ConstantFoldFP(tanh, V, Ty);
2106       break;
2107     case LibFunc_trunc:
2108     case LibFunc_truncf:
2109       if (TLI->has(Func)) {
2110         U.roundToIntegral(APFloat::rmTowardZero);
2111         return ConstantFP::get(Ty->getContext(), U);
2112       }
2113       break;
2114     }
2115     return nullptr;
2116   }
2117 
2118   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2119     switch (IntrinsicID) {
2120     case Intrinsic::bswap:
2121       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2122     case Intrinsic::ctpop:
2123       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2124     case Intrinsic::bitreverse:
2125       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2126     case Intrinsic::convert_from_fp16: {
2127       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2128 
2129       bool lost = false;
2130       APFloat::opStatus status = Val.convert(
2131           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2132 
2133       // Conversion is always precise.
2134       (void)status;
2135       assert(status == APFloat::opOK && !lost &&
2136              "Precision lost during fp16 constfolding");
2137 
2138       return ConstantFP::get(Ty->getContext(), Val);
2139     }
2140     default:
2141       return nullptr;
2142     }
2143   }
2144 
2145   if (isa<ConstantAggregateZero>(Operands[0])) {
2146     switch (IntrinsicID) {
2147     default: break;
2148     case Intrinsic::experimental_vector_reduce_add:
2149     case Intrinsic::experimental_vector_reduce_mul:
2150     case Intrinsic::experimental_vector_reduce_and:
2151     case Intrinsic::experimental_vector_reduce_or:
2152     case Intrinsic::experimental_vector_reduce_xor:
2153     case Intrinsic::experimental_vector_reduce_smin:
2154     case Intrinsic::experimental_vector_reduce_smax:
2155     case Intrinsic::experimental_vector_reduce_umin:
2156     case Intrinsic::experimental_vector_reduce_umax:
2157       return ConstantInt::get(Ty, 0);
2158     }
2159   }
2160 
2161   // Support ConstantVector in case we have an Undef in the top.
2162   if (isa<ConstantVector>(Operands[0]) ||
2163       isa<ConstantDataVector>(Operands[0])) {
2164     auto *Op = cast<Constant>(Operands[0]);
2165     switch (IntrinsicID) {
2166     default: break;
2167     case Intrinsic::experimental_vector_reduce_add:
2168     case Intrinsic::experimental_vector_reduce_mul:
2169     case Intrinsic::experimental_vector_reduce_and:
2170     case Intrinsic::experimental_vector_reduce_or:
2171     case Intrinsic::experimental_vector_reduce_xor:
2172     case Intrinsic::experimental_vector_reduce_smin:
2173     case Intrinsic::experimental_vector_reduce_smax:
2174     case Intrinsic::experimental_vector_reduce_umin:
2175     case Intrinsic::experimental_vector_reduce_umax:
2176       if (Constant *C = ConstantFoldVectorReduce(IntrinsicID, Op))
2177         return C;
2178       break;
2179     case Intrinsic::x86_sse_cvtss2si:
2180     case Intrinsic::x86_sse_cvtss2si64:
2181     case Intrinsic::x86_sse2_cvtsd2si:
2182     case Intrinsic::x86_sse2_cvtsd2si64:
2183       if (ConstantFP *FPOp =
2184               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2185         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2186                                            /*roundTowardZero=*/false, Ty,
2187                                            /*IsSigned*/true);
2188       break;
2189     case Intrinsic::x86_sse_cvttss2si:
2190     case Intrinsic::x86_sse_cvttss2si64:
2191     case Intrinsic::x86_sse2_cvttsd2si:
2192     case Intrinsic::x86_sse2_cvttsd2si64:
2193       if (ConstantFP *FPOp =
2194               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2195         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2196                                            /*roundTowardZero=*/true, Ty,
2197                                            /*IsSigned*/true);
2198       break;
2199     }
2200   }
2201 
2202   return nullptr;
2203 }
2204 
2205 static Constant *ConstantFoldScalarCall2(StringRef Name,
2206                                          Intrinsic::ID IntrinsicID,
2207                                          Type *Ty,
2208                                          ArrayRef<Constant *> Operands,
2209                                          const TargetLibraryInfo *TLI,
2210                                          const CallBase *Call) {
2211   assert(Operands.size() == 2 && "Wrong number of operands.");
2212 
2213   if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2214     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2215       return nullptr;
2216     double Op1V = getValueAsDouble(Op1);
2217 
2218     if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2219       if (Op2->getType() != Op1->getType())
2220         return nullptr;
2221 
2222       double Op2V = getValueAsDouble(Op2);
2223       if (IntrinsicID == Intrinsic::pow) {
2224         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2225       }
2226       if (IntrinsicID == Intrinsic::copysign) {
2227         APFloat V1 = Op1->getValueAPF();
2228         const APFloat &V2 = Op2->getValueAPF();
2229         V1.copySign(V2);
2230         return ConstantFP::get(Ty->getContext(), V1);
2231       }
2232 
2233       if (IntrinsicID == Intrinsic::minnum) {
2234         const APFloat &C1 = Op1->getValueAPF();
2235         const APFloat &C2 = Op2->getValueAPF();
2236         return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
2237       }
2238 
2239       if (IntrinsicID == Intrinsic::maxnum) {
2240         const APFloat &C1 = Op1->getValueAPF();
2241         const APFloat &C2 = Op2->getValueAPF();
2242         return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
2243       }
2244 
2245       if (IntrinsicID == Intrinsic::minimum) {
2246         const APFloat &C1 = Op1->getValueAPF();
2247         const APFloat &C2 = Op2->getValueAPF();
2248         return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
2249       }
2250 
2251       if (IntrinsicID == Intrinsic::maximum) {
2252         const APFloat &C1 = Op1->getValueAPF();
2253         const APFloat &C2 = Op2->getValueAPF();
2254         return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
2255       }
2256 
2257       if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) {
2258         const APFloat &C1 = Op1->getValueAPF();
2259         const APFloat &C2 = Op2->getValueAPF();
2260         // The legacy behaviour is that multiplying zero by anything, even NaN
2261         // or infinity, gives +0.0.
2262         if (C1.isZero() || C2.isZero())
2263           return ConstantFP::getNullValue(Ty);
2264         return ConstantFP::get(Ty->getContext(), C1 * C2);
2265       }
2266 
2267       if (!TLI)
2268         return nullptr;
2269 
2270       LibFunc Func = NotLibFunc;
2271       TLI->getLibFunc(Name, Func);
2272       switch (Func) {
2273       default:
2274         break;
2275       case LibFunc_pow:
2276       case LibFunc_powf:
2277       case LibFunc_pow_finite:
2278       case LibFunc_powf_finite:
2279         if (TLI->has(Func))
2280           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2281         break;
2282       case LibFunc_fmod:
2283       case LibFunc_fmodf:
2284         if (TLI->has(Func)) {
2285           APFloat V = Op1->getValueAPF();
2286           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2287             return ConstantFP::get(Ty->getContext(), V);
2288         }
2289         break;
2290       case LibFunc_remainder:
2291       case LibFunc_remainderf:
2292         if (TLI->has(Func)) {
2293           APFloat V = Op1->getValueAPF();
2294           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2295             return ConstantFP::get(Ty->getContext(), V);
2296         }
2297         break;
2298       case LibFunc_atan2:
2299       case LibFunc_atan2f:
2300       case LibFunc_atan2_finite:
2301       case LibFunc_atan2f_finite:
2302         if (TLI->has(Func))
2303           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2304         break;
2305       }
2306     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2307       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2308         return ConstantFP::get(Ty->getContext(),
2309                                APFloat((float)std::pow((float)Op1V,
2310                                                (int)Op2C->getZExtValue())));
2311       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2312         return ConstantFP::get(Ty->getContext(),
2313                                APFloat((float)std::pow((float)Op1V,
2314                                                (int)Op2C->getZExtValue())));
2315       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2316         return ConstantFP::get(Ty->getContext(),
2317                                APFloat((double)std::pow((double)Op1V,
2318                                                  (int)Op2C->getZExtValue())));
2319 
2320       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2321         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2322         // everywhere else.
2323 
2324         // scalbn is equivalent to ldexp with float radix 2
2325         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2326                                 APFloat::rmNearestTiesToEven);
2327         return ConstantFP::get(Ty->getContext(), Result);
2328       }
2329     }
2330     return nullptr;
2331   }
2332 
2333   if (Operands[0]->getType()->isIntegerTy() &&
2334       Operands[1]->getType()->isIntegerTy()) {
2335     const APInt *C0, *C1;
2336     if (!getConstIntOrUndef(Operands[0], C0) ||
2337         !getConstIntOrUndef(Operands[1], C1))
2338       return nullptr;
2339 
2340     switch (IntrinsicID) {
2341     default: break;
2342     case Intrinsic::usub_with_overflow:
2343     case Intrinsic::ssub_with_overflow:
2344     case Intrinsic::uadd_with_overflow:
2345     case Intrinsic::sadd_with_overflow:
2346       // X - undef -> { undef, false }
2347       // undef - X -> { undef, false }
2348       // X + undef -> { undef, false }
2349       // undef + x -> { undef, false }
2350       if (!C0 || !C1) {
2351         return ConstantStruct::get(
2352             cast<StructType>(Ty),
2353             {UndefValue::get(Ty->getStructElementType(0)),
2354              Constant::getNullValue(Ty->getStructElementType(1))});
2355       }
2356       LLVM_FALLTHROUGH;
2357     case Intrinsic::smul_with_overflow:
2358     case Intrinsic::umul_with_overflow: {
2359       // undef * X -> { 0, false }
2360       // X * undef -> { 0, false }
2361       if (!C0 || !C1)
2362         return Constant::getNullValue(Ty);
2363 
2364       APInt Res;
2365       bool Overflow;
2366       switch (IntrinsicID) {
2367       default: llvm_unreachable("Invalid case");
2368       case Intrinsic::sadd_with_overflow:
2369         Res = C0->sadd_ov(*C1, Overflow);
2370         break;
2371       case Intrinsic::uadd_with_overflow:
2372         Res = C0->uadd_ov(*C1, Overflow);
2373         break;
2374       case Intrinsic::ssub_with_overflow:
2375         Res = C0->ssub_ov(*C1, Overflow);
2376         break;
2377       case Intrinsic::usub_with_overflow:
2378         Res = C0->usub_ov(*C1, Overflow);
2379         break;
2380       case Intrinsic::smul_with_overflow:
2381         Res = C0->smul_ov(*C1, Overflow);
2382         break;
2383       case Intrinsic::umul_with_overflow:
2384         Res = C0->umul_ov(*C1, Overflow);
2385         break;
2386       }
2387       Constant *Ops[] = {
2388         ConstantInt::get(Ty->getContext(), Res),
2389         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2390       };
2391       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2392     }
2393     case Intrinsic::uadd_sat:
2394     case Intrinsic::sadd_sat:
2395       if (!C0 && !C1)
2396         return UndefValue::get(Ty);
2397       if (!C0 || !C1)
2398         return Constant::getAllOnesValue(Ty);
2399       if (IntrinsicID == Intrinsic::uadd_sat)
2400         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2401       else
2402         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2403     case Intrinsic::usub_sat:
2404     case Intrinsic::ssub_sat:
2405       if (!C0 && !C1)
2406         return UndefValue::get(Ty);
2407       if (!C0 || !C1)
2408         return Constant::getNullValue(Ty);
2409       if (IntrinsicID == Intrinsic::usub_sat)
2410         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2411       else
2412         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2413     case Intrinsic::cttz:
2414     case Intrinsic::ctlz:
2415       assert(C1 && "Must be constant int");
2416 
2417       // cttz(0, 1) and ctlz(0, 1) are undef.
2418       if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2419         return UndefValue::get(Ty);
2420       if (!C0)
2421         return Constant::getNullValue(Ty);
2422       if (IntrinsicID == Intrinsic::cttz)
2423         return ConstantInt::get(Ty, C0->countTrailingZeros());
2424       else
2425         return ConstantInt::get(Ty, C0->countLeadingZeros());
2426     }
2427 
2428     return nullptr;
2429   }
2430 
2431   // Support ConstantVector in case we have an Undef in the top.
2432   if ((isa<ConstantVector>(Operands[0]) ||
2433        isa<ConstantDataVector>(Operands[0])) &&
2434       // Check for default rounding mode.
2435       // FIXME: Support other rounding modes?
2436       isa<ConstantInt>(Operands[1]) &&
2437       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2438     auto *Op = cast<Constant>(Operands[0]);
2439     switch (IntrinsicID) {
2440     default: break;
2441     case Intrinsic::x86_avx512_vcvtss2si32:
2442     case Intrinsic::x86_avx512_vcvtss2si64:
2443     case Intrinsic::x86_avx512_vcvtsd2si32:
2444     case Intrinsic::x86_avx512_vcvtsd2si64:
2445       if (ConstantFP *FPOp =
2446               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2447         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2448                                            /*roundTowardZero=*/false, Ty,
2449                                            /*IsSigned*/true);
2450       break;
2451     case Intrinsic::x86_avx512_vcvtss2usi32:
2452     case Intrinsic::x86_avx512_vcvtss2usi64:
2453     case Intrinsic::x86_avx512_vcvtsd2usi32:
2454     case Intrinsic::x86_avx512_vcvtsd2usi64:
2455       if (ConstantFP *FPOp =
2456               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2457         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2458                                            /*roundTowardZero=*/false, Ty,
2459                                            /*IsSigned*/false);
2460       break;
2461     case Intrinsic::x86_avx512_cvttss2si:
2462     case Intrinsic::x86_avx512_cvttss2si64:
2463     case Intrinsic::x86_avx512_cvttsd2si:
2464     case Intrinsic::x86_avx512_cvttsd2si64:
2465       if (ConstantFP *FPOp =
2466               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2467         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2468                                            /*roundTowardZero=*/true, Ty,
2469                                            /*IsSigned*/true);
2470       break;
2471     case Intrinsic::x86_avx512_cvttss2usi:
2472     case Intrinsic::x86_avx512_cvttss2usi64:
2473     case Intrinsic::x86_avx512_cvttsd2usi:
2474     case Intrinsic::x86_avx512_cvttsd2usi64:
2475       if (ConstantFP *FPOp =
2476               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2477         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2478                                            /*roundTowardZero=*/true, Ty,
2479                                            /*IsSigned*/false);
2480       break;
2481     }
2482   }
2483   return nullptr;
2484 }
2485 
2486 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2487                                                const APFloat &S0,
2488                                                const APFloat &S1,
2489                                                const APFloat &S2) {
2490   unsigned ID;
2491   const fltSemantics &Sem = S0.getSemantics();
2492   APFloat MA(Sem), SC(Sem), TC(Sem);
2493   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2494     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2495       // S2 < 0
2496       ID = 5;
2497       SC = -S0;
2498     } else {
2499       ID = 4;
2500       SC = S0;
2501     }
2502     MA = S2;
2503     TC = -S1;
2504   } else if (abs(S1) >= abs(S0)) {
2505     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2506       // S1 < 0
2507       ID = 3;
2508       TC = -S2;
2509     } else {
2510       ID = 2;
2511       TC = S2;
2512     }
2513     MA = S1;
2514     SC = S0;
2515   } else {
2516     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2517       // S0 < 0
2518       ID = 1;
2519       SC = S2;
2520     } else {
2521       ID = 0;
2522       SC = -S2;
2523     }
2524     MA = S0;
2525     TC = -S1;
2526   }
2527   switch (IntrinsicID) {
2528   default:
2529     llvm_unreachable("unhandled amdgcn cube intrinsic");
2530   case Intrinsic::amdgcn_cubeid:
2531     return APFloat(Sem, ID);
2532   case Intrinsic::amdgcn_cubema:
2533     return MA + MA;
2534   case Intrinsic::amdgcn_cubesc:
2535     return SC;
2536   case Intrinsic::amdgcn_cubetc:
2537     return TC;
2538   }
2539 }
2540 
2541 static Constant *ConstantFoldScalarCall3(StringRef Name,
2542                                          Intrinsic::ID IntrinsicID,
2543                                          Type *Ty,
2544                                          ArrayRef<Constant *> Operands,
2545                                          const TargetLibraryInfo *TLI,
2546                                          const CallBase *Call) {
2547   assert(Operands.size() == 3 && "Wrong number of operands.");
2548 
2549   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2550     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2551       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2552         switch (IntrinsicID) {
2553         default: break;
2554         case Intrinsic::fma:
2555         case Intrinsic::fmuladd: {
2556           APFloat V = Op1->getValueAPF();
2557           V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
2558                              APFloat::rmNearestTiesToEven);
2559           return ConstantFP::get(Ty->getContext(), V);
2560         }
2561         case Intrinsic::amdgcn_cubeid:
2562         case Intrinsic::amdgcn_cubema:
2563         case Intrinsic::amdgcn_cubesc:
2564         case Intrinsic::amdgcn_cubetc: {
2565           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(
2566               IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(),
2567               Op3->getValueAPF());
2568           return ConstantFP::get(Ty->getContext(), V);
2569         }
2570         }
2571       }
2572     }
2573   }
2574 
2575   if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
2576     if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
2577       if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
2578         switch (IntrinsicID) {
2579         default: break;
2580         case Intrinsic::smul_fix:
2581         case Intrinsic::smul_fix_sat: {
2582           // This code performs rounding towards negative infinity in case the
2583           // result cannot be represented exactly for the given scale. Targets
2584           // that do care about rounding should use a target hook for specifying
2585           // how rounding should be done, and provide their own folding to be
2586           // consistent with rounding. This is the same approach as used by
2587           // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2588           APInt Lhs = Op1->getValue();
2589           APInt Rhs = Op2->getValue();
2590           unsigned Scale = Op3->getValue().getZExtValue();
2591           unsigned Width = Lhs.getBitWidth();
2592           assert(Scale < Width && "Illegal scale.");
2593           unsigned ExtendedWidth = Width * 2;
2594           APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
2595                            Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
2596           if (IntrinsicID == Intrinsic::smul_fix_sat) {
2597             APInt MaxValue =
2598               APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2599             APInt MinValue =
2600               APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2601             Product = APIntOps::smin(Product, MaxValue);
2602             Product = APIntOps::smax(Product, MinValue);
2603           }
2604           return ConstantInt::get(Ty->getContext(),
2605                                   Product.sextOrTrunc(Width));
2606         }
2607         }
2608       }
2609     }
2610   }
2611 
2612   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2613     const APInt *C0, *C1, *C2;
2614     if (!getConstIntOrUndef(Operands[0], C0) ||
2615         !getConstIntOrUndef(Operands[1], C1) ||
2616         !getConstIntOrUndef(Operands[2], C2))
2617       return nullptr;
2618 
2619     bool IsRight = IntrinsicID == Intrinsic::fshr;
2620     if (!C2)
2621       return Operands[IsRight ? 1 : 0];
2622     if (!C0 && !C1)
2623       return UndefValue::get(Ty);
2624 
2625     // The shift amount is interpreted as modulo the bitwidth. If the shift
2626     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2627     unsigned BitWidth = C2->getBitWidth();
2628     unsigned ShAmt = C2->urem(BitWidth);
2629     if (!ShAmt)
2630       return Operands[IsRight ? 1 : 0];
2631 
2632     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2633     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2634     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2635     if (!C0)
2636       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2637     if (!C1)
2638       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2639     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2640   }
2641 
2642   return nullptr;
2643 }
2644 
2645 static Constant *ConstantFoldScalarCall(StringRef Name,
2646                                         Intrinsic::ID IntrinsicID,
2647                                         Type *Ty,
2648                                         ArrayRef<Constant *> Operands,
2649                                         const TargetLibraryInfo *TLI,
2650                                         const CallBase *Call) {
2651   if (Operands.size() == 1)
2652     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2653 
2654   if (Operands.size() == 2)
2655     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2656 
2657   if (Operands.size() == 3)
2658     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2659 
2660   return nullptr;
2661 }
2662 
2663 static Constant *ConstantFoldVectorCall(StringRef Name,
2664                                         Intrinsic::ID IntrinsicID,
2665                                         VectorType *VTy,
2666                                         ArrayRef<Constant *> Operands,
2667                                         const DataLayout &DL,
2668                                         const TargetLibraryInfo *TLI,
2669                                         const CallBase *Call) {
2670   SmallVector<Constant *, 4> Result(VTy->getNumElements());
2671   SmallVector<Constant *, 4> Lane(Operands.size());
2672   Type *Ty = VTy->getElementType();
2673 
2674   // Do not iterate on scalable vector. The number of elements is unknown at
2675   // compile-time.
2676   if (isa<ScalableVectorType>(VTy))
2677     return nullptr;
2678 
2679   if (IntrinsicID == Intrinsic::masked_load) {
2680     auto *SrcPtr = Operands[0];
2681     auto *Mask = Operands[2];
2682     auto *Passthru = Operands[3];
2683 
2684     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
2685 
2686     SmallVector<Constant *, 32> NewElements;
2687     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2688       auto *MaskElt = Mask->getAggregateElement(I);
2689       if (!MaskElt)
2690         break;
2691       auto *PassthruElt = Passthru->getAggregateElement(I);
2692       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2693       if (isa<UndefValue>(MaskElt)) {
2694         if (PassthruElt)
2695           NewElements.push_back(PassthruElt);
2696         else if (VecElt)
2697           NewElements.push_back(VecElt);
2698         else
2699           return nullptr;
2700       }
2701       if (MaskElt->isNullValue()) {
2702         if (!PassthruElt)
2703           return nullptr;
2704         NewElements.push_back(PassthruElt);
2705       } else if (MaskElt->isOneValue()) {
2706         if (!VecElt)
2707           return nullptr;
2708         NewElements.push_back(VecElt);
2709       } else {
2710         return nullptr;
2711       }
2712     }
2713     if (NewElements.size() != VTy->getNumElements())
2714       return nullptr;
2715     return ConstantVector::get(NewElements);
2716   }
2717 
2718   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2719     // Gather a column of constants.
2720     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
2721       // Some intrinsics use a scalar type for certain arguments.
2722       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
2723         Lane[J] = Operands[J];
2724         continue;
2725       }
2726 
2727       Constant *Agg = Operands[J]->getAggregateElement(I);
2728       if (!Agg)
2729         return nullptr;
2730 
2731       Lane[J] = Agg;
2732     }
2733 
2734     // Use the regular scalar folding to simplify this column.
2735     Constant *Folded =
2736         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
2737     if (!Folded)
2738       return nullptr;
2739     Result[I] = Folded;
2740   }
2741 
2742   return ConstantVector::get(Result);
2743 }
2744 
2745 } // end anonymous namespace
2746 
2747 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
2748                                  ArrayRef<Constant *> Operands,
2749                                  const TargetLibraryInfo *TLI) {
2750   if (Call->isNoBuiltin())
2751     return nullptr;
2752   if (!F->hasName())
2753     return nullptr;
2754   StringRef Name = F->getName();
2755 
2756   Type *Ty = F->getReturnType();
2757 
2758   if (auto *VTy = dyn_cast<VectorType>(Ty))
2759     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
2760                                   F->getParent()->getDataLayout(), TLI, Call);
2761 
2762   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
2763                                 Call);
2764 }
2765 
2766 bool llvm::isMathLibCallNoop(const CallBase *Call,
2767                              const TargetLibraryInfo *TLI) {
2768   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2769   // (and to some extent ConstantFoldScalarCall).
2770   if (Call->isNoBuiltin() || Call->isStrictFP())
2771     return false;
2772   Function *F = Call->getCalledFunction();
2773   if (!F)
2774     return false;
2775 
2776   LibFunc Func;
2777   if (!TLI || !TLI->getLibFunc(*F, Func))
2778     return false;
2779 
2780   if (Call->getNumArgOperands() == 1) {
2781     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
2782       const APFloat &Op = OpC->getValueAPF();
2783       switch (Func) {
2784       case LibFunc_logl:
2785       case LibFunc_log:
2786       case LibFunc_logf:
2787       case LibFunc_log2l:
2788       case LibFunc_log2:
2789       case LibFunc_log2f:
2790       case LibFunc_log10l:
2791       case LibFunc_log10:
2792       case LibFunc_log10f:
2793         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
2794 
2795       case LibFunc_expl:
2796       case LibFunc_exp:
2797       case LibFunc_expf:
2798         // FIXME: These boundaries are slightly conservative.
2799         if (OpC->getType()->isDoubleTy())
2800           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
2801         if (OpC->getType()->isFloatTy())
2802           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
2803         break;
2804 
2805       case LibFunc_exp2l:
2806       case LibFunc_exp2:
2807       case LibFunc_exp2f:
2808         // FIXME: These boundaries are slightly conservative.
2809         if (OpC->getType()->isDoubleTy())
2810           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
2811         if (OpC->getType()->isFloatTy())
2812           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
2813         break;
2814 
2815       case LibFunc_sinl:
2816       case LibFunc_sin:
2817       case LibFunc_sinf:
2818       case LibFunc_cosl:
2819       case LibFunc_cos:
2820       case LibFunc_cosf:
2821         return !Op.isInfinity();
2822 
2823       case LibFunc_tanl:
2824       case LibFunc_tan:
2825       case LibFunc_tanf: {
2826         // FIXME: Stop using the host math library.
2827         // FIXME: The computation isn't done in the right precision.
2828         Type *Ty = OpC->getType();
2829         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2830           double OpV = getValueAsDouble(OpC);
2831           return ConstantFoldFP(tan, OpV, Ty) != nullptr;
2832         }
2833         break;
2834       }
2835 
2836       case LibFunc_asinl:
2837       case LibFunc_asin:
2838       case LibFunc_asinf:
2839       case LibFunc_acosl:
2840       case LibFunc_acos:
2841       case LibFunc_acosf:
2842         return !(Op < APFloat(Op.getSemantics(), "-1") ||
2843                  Op > APFloat(Op.getSemantics(), "1"));
2844 
2845       case LibFunc_sinh:
2846       case LibFunc_cosh:
2847       case LibFunc_sinhf:
2848       case LibFunc_coshf:
2849       case LibFunc_sinhl:
2850       case LibFunc_coshl:
2851         // FIXME: These boundaries are slightly conservative.
2852         if (OpC->getType()->isDoubleTy())
2853           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
2854         if (OpC->getType()->isFloatTy())
2855           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
2856         break;
2857 
2858       case LibFunc_sqrtl:
2859       case LibFunc_sqrt:
2860       case LibFunc_sqrtf:
2861         return Op.isNaN() || Op.isZero() || !Op.isNegative();
2862 
2863       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2864       // maybe others?
2865       default:
2866         break;
2867       }
2868     }
2869   }
2870 
2871   if (Call->getNumArgOperands() == 2) {
2872     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
2873     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
2874     if (Op0C && Op1C) {
2875       const APFloat &Op0 = Op0C->getValueAPF();
2876       const APFloat &Op1 = Op1C->getValueAPF();
2877 
2878       switch (Func) {
2879       case LibFunc_powl:
2880       case LibFunc_pow:
2881       case LibFunc_powf: {
2882         // FIXME: Stop using the host math library.
2883         // FIXME: The computation isn't done in the right precision.
2884         Type *Ty = Op0C->getType();
2885         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2886           if (Ty == Op1C->getType()) {
2887             double Op0V = getValueAsDouble(Op0C);
2888             double Op1V = getValueAsDouble(Op1C);
2889             return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
2890           }
2891         }
2892         break;
2893       }
2894 
2895       case LibFunc_fmodl:
2896       case LibFunc_fmod:
2897       case LibFunc_fmodf:
2898       case LibFunc_remainderl:
2899       case LibFunc_remainder:
2900       case LibFunc_remainderf:
2901         return Op0.isNaN() || Op1.isNaN() ||
2902                (!Op0.isInfinity() && !Op1.isZero());
2903 
2904       default:
2905         break;
2906       }
2907     }
2908   }
2909 
2910   return false;
2911 }
2912 
2913 void TargetFolder::anchor() {}
2914