1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/TargetFolder.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/Analysis/VectorUtils.h" 30 #include "llvm/Config/config.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalValue.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/IntrinsicsAMDGPU.h" 44 #include "llvm/IR/IntrinsicsX86.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/KnownBits.h" 51 #include "llvm/Support/MathExtras.h" 52 #include <cassert> 53 #include <cerrno> 54 #include <cfenv> 55 #include <cmath> 56 #include <cstddef> 57 #include <cstdint> 58 59 using namespace llvm; 60 61 namespace { 62 63 //===----------------------------------------------------------------------===// 64 // Constant Folding internal helper functions 65 //===----------------------------------------------------------------------===// 66 67 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 68 Constant *C, Type *SrcEltTy, 69 unsigned NumSrcElts, 70 const DataLayout &DL) { 71 // Now that we know that the input value is a vector of integers, just shift 72 // and insert them into our result. 73 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 74 for (unsigned i = 0; i != NumSrcElts; ++i) { 75 Constant *Element; 76 if (DL.isLittleEndian()) 77 Element = C->getAggregateElement(NumSrcElts - i - 1); 78 else 79 Element = C->getAggregateElement(i); 80 81 if (Element && isa<UndefValue>(Element)) { 82 Result <<= BitShift; 83 continue; 84 } 85 86 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 87 if (!ElementCI) 88 return ConstantExpr::getBitCast(C, DestTy); 89 90 Result <<= BitShift; 91 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 92 } 93 94 return nullptr; 95 } 96 97 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 98 /// This always returns a non-null constant, but it may be a 99 /// ConstantExpr if unfoldable. 100 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 101 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 102 "Invalid constantexpr bitcast!"); 103 104 // Catch the obvious splat cases. 105 if (C->isNullValue() && !DestTy->isX86_MMXTy()) 106 return Constant::getNullValue(DestTy); 107 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && 108 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 109 return Constant::getAllOnesValue(DestTy); 110 111 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 112 // Handle a vector->scalar integer/fp cast. 113 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 114 unsigned NumSrcElts = VTy->getNumElements(); 115 Type *SrcEltTy = VTy->getElementType(); 116 117 // If the vector is a vector of floating point, convert it to vector of int 118 // to simplify things. 119 if (SrcEltTy->isFloatingPointTy()) { 120 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 121 auto *SrcIVTy = FixedVectorType::get( 122 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 123 // Ask IR to do the conversion now that #elts line up. 124 C = ConstantExpr::getBitCast(C, SrcIVTy); 125 } 126 127 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 128 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 129 SrcEltTy, NumSrcElts, DL)) 130 return CE; 131 132 if (isa<IntegerType>(DestTy)) 133 return ConstantInt::get(DestTy, Result); 134 135 APFloat FP(DestTy->getFltSemantics(), Result); 136 return ConstantFP::get(DestTy->getContext(), FP); 137 } 138 } 139 140 // The code below only handles casts to vectors currently. 141 auto *DestVTy = dyn_cast<VectorType>(DestTy); 142 if (!DestVTy) 143 return ConstantExpr::getBitCast(C, DestTy); 144 145 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 146 // vector so the code below can handle it uniformly. 147 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 148 Constant *Ops = C; // don't take the address of C! 149 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 150 } 151 152 // If this is a bitcast from constant vector -> vector, fold it. 153 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 154 return ConstantExpr::getBitCast(C, DestTy); 155 156 // If the element types match, IR can fold it. 157 unsigned NumDstElt = DestVTy->getNumElements(); 158 unsigned NumSrcElt = cast<VectorType>(C->getType())->getNumElements(); 159 if (NumDstElt == NumSrcElt) 160 return ConstantExpr::getBitCast(C, DestTy); 161 162 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 163 Type *DstEltTy = DestVTy->getElementType(); 164 165 // Otherwise, we're changing the number of elements in a vector, which 166 // requires endianness information to do the right thing. For example, 167 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 168 // folds to (little endian): 169 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 170 // and to (big endian): 171 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 172 173 // First thing is first. We only want to think about integer here, so if 174 // we have something in FP form, recast it as integer. 175 if (DstEltTy->isFloatingPointTy()) { 176 // Fold to an vector of integers with same size as our FP type. 177 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 178 auto *DestIVTy = FixedVectorType::get( 179 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 180 // Recursively handle this integer conversion, if possible. 181 C = FoldBitCast(C, DestIVTy, DL); 182 183 // Finally, IR can handle this now that #elts line up. 184 return ConstantExpr::getBitCast(C, DestTy); 185 } 186 187 // Okay, we know the destination is integer, if the input is FP, convert 188 // it to integer first. 189 if (SrcEltTy->isFloatingPointTy()) { 190 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 191 auto *SrcIVTy = FixedVectorType::get( 192 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 193 // Ask IR to do the conversion now that #elts line up. 194 C = ConstantExpr::getBitCast(C, SrcIVTy); 195 // If IR wasn't able to fold it, bail out. 196 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 197 !isa<ConstantDataVector>(C)) 198 return C; 199 } 200 201 // Now we know that the input and output vectors are both integer vectors 202 // of the same size, and that their #elements is not the same. Do the 203 // conversion here, which depends on whether the input or output has 204 // more elements. 205 bool isLittleEndian = DL.isLittleEndian(); 206 207 SmallVector<Constant*, 32> Result; 208 if (NumDstElt < NumSrcElt) { 209 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 210 Constant *Zero = Constant::getNullValue(DstEltTy); 211 unsigned Ratio = NumSrcElt/NumDstElt; 212 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 213 unsigned SrcElt = 0; 214 for (unsigned i = 0; i != NumDstElt; ++i) { 215 // Build each element of the result. 216 Constant *Elt = Zero; 217 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 218 for (unsigned j = 0; j != Ratio; ++j) { 219 Constant *Src = C->getAggregateElement(SrcElt++); 220 if (Src && isa<UndefValue>(Src)) 221 Src = Constant::getNullValue( 222 cast<VectorType>(C->getType())->getElementType()); 223 else 224 Src = dyn_cast_or_null<ConstantInt>(Src); 225 if (!Src) // Reject constantexpr elements. 226 return ConstantExpr::getBitCast(C, DestTy); 227 228 // Zero extend the element to the right size. 229 Src = ConstantExpr::getZExt(Src, Elt->getType()); 230 231 // Shift it to the right place, depending on endianness. 232 Src = ConstantExpr::getShl(Src, 233 ConstantInt::get(Src->getType(), ShiftAmt)); 234 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 235 236 // Mix it in. 237 Elt = ConstantExpr::getOr(Elt, Src); 238 } 239 Result.push_back(Elt); 240 } 241 return ConstantVector::get(Result); 242 } 243 244 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 245 unsigned Ratio = NumDstElt/NumSrcElt; 246 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 247 248 // Loop over each source value, expanding into multiple results. 249 for (unsigned i = 0; i != NumSrcElt; ++i) { 250 auto *Element = C->getAggregateElement(i); 251 252 if (!Element) // Reject constantexpr elements. 253 return ConstantExpr::getBitCast(C, DestTy); 254 255 if (isa<UndefValue>(Element)) { 256 // Correctly Propagate undef values. 257 Result.append(Ratio, UndefValue::get(DstEltTy)); 258 continue; 259 } 260 261 auto *Src = dyn_cast<ConstantInt>(Element); 262 if (!Src) 263 return ConstantExpr::getBitCast(C, DestTy); 264 265 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 266 for (unsigned j = 0; j != Ratio; ++j) { 267 // Shift the piece of the value into the right place, depending on 268 // endianness. 269 Constant *Elt = ConstantExpr::getLShr(Src, 270 ConstantInt::get(Src->getType(), ShiftAmt)); 271 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 272 273 // Truncate the element to an integer with the same pointer size and 274 // convert the element back to a pointer using a inttoptr. 275 if (DstEltTy->isPointerTy()) { 276 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 277 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 278 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 279 continue; 280 } 281 282 // Truncate and remember this piece. 283 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 284 } 285 } 286 287 return ConstantVector::get(Result); 288 } 289 290 } // end anonymous namespace 291 292 /// If this constant is a constant offset from a global, return the global and 293 /// the constant. Because of constantexprs, this function is recursive. 294 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 295 APInt &Offset, const DataLayout &DL) { 296 // Trivial case, constant is the global. 297 if ((GV = dyn_cast<GlobalValue>(C))) { 298 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 299 Offset = APInt(BitWidth, 0); 300 return true; 301 } 302 303 // Otherwise, if this isn't a constant expr, bail out. 304 auto *CE = dyn_cast<ConstantExpr>(C); 305 if (!CE) return false; 306 307 // Look through ptr->int and ptr->ptr casts. 308 if (CE->getOpcode() == Instruction::PtrToInt || 309 CE->getOpcode() == Instruction::BitCast) 310 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); 311 312 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 313 auto *GEP = dyn_cast<GEPOperator>(CE); 314 if (!GEP) 315 return false; 316 317 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 318 APInt TmpOffset(BitWidth, 0); 319 320 // If the base isn't a global+constant, we aren't either. 321 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) 322 return false; 323 324 // Otherwise, add any offset that our operands provide. 325 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 326 return false; 327 328 Offset = TmpOffset; 329 return true; 330 } 331 332 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 333 const DataLayout &DL) { 334 do { 335 Type *SrcTy = C->getType(); 336 337 // If the type sizes are the same and a cast is legal, just directly 338 // cast the constant. 339 if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) { 340 Instruction::CastOps Cast = Instruction::BitCast; 341 // If we are going from a pointer to int or vice versa, we spell the cast 342 // differently. 343 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 344 Cast = Instruction::IntToPtr; 345 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 346 Cast = Instruction::PtrToInt; 347 348 if (CastInst::castIsValid(Cast, C, DestTy)) 349 return ConstantExpr::getCast(Cast, C, DestTy); 350 } 351 352 // If this isn't an aggregate type, there is nothing we can do to drill down 353 // and find a bitcastable constant. 354 if (!SrcTy->isAggregateType()) 355 return nullptr; 356 357 // We're simulating a load through a pointer that was bitcast to point to 358 // a different type, so we can try to walk down through the initial 359 // elements of an aggregate to see if some part of the aggregate is 360 // castable to implement the "load" semantic model. 361 if (SrcTy->isStructTy()) { 362 // Struct types might have leading zero-length elements like [0 x i32], 363 // which are certainly not what we are looking for, so skip them. 364 unsigned Elem = 0; 365 Constant *ElemC; 366 do { 367 ElemC = C->getAggregateElement(Elem++); 368 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 369 C = ElemC; 370 } else { 371 C = C->getAggregateElement(0u); 372 } 373 } while (C); 374 375 return nullptr; 376 } 377 378 namespace { 379 380 /// Recursive helper to read bits out of global. C is the constant being copied 381 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 382 /// results into and BytesLeft is the number of bytes left in 383 /// the CurPtr buffer. DL is the DataLayout. 384 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 385 unsigned BytesLeft, const DataLayout &DL) { 386 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 387 "Out of range access"); 388 389 // If this element is zero or undefined, we can just return since *CurPtr is 390 // zero initialized. 391 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 392 return true; 393 394 if (auto *CI = dyn_cast<ConstantInt>(C)) { 395 if (CI->getBitWidth() > 64 || 396 (CI->getBitWidth() & 7) != 0) 397 return false; 398 399 uint64_t Val = CI->getZExtValue(); 400 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 401 402 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 403 int n = ByteOffset; 404 if (!DL.isLittleEndian()) 405 n = IntBytes - n - 1; 406 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 407 ++ByteOffset; 408 } 409 return true; 410 } 411 412 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 413 if (CFP->getType()->isDoubleTy()) { 414 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 415 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 416 } 417 if (CFP->getType()->isFloatTy()){ 418 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 419 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 420 } 421 if (CFP->getType()->isHalfTy()){ 422 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 423 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 424 } 425 return false; 426 } 427 428 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 429 const StructLayout *SL = DL.getStructLayout(CS->getType()); 430 unsigned Index = SL->getElementContainingOffset(ByteOffset); 431 uint64_t CurEltOffset = SL->getElementOffset(Index); 432 ByteOffset -= CurEltOffset; 433 434 while (true) { 435 // If the element access is to the element itself and not to tail padding, 436 // read the bytes from the element. 437 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 438 439 if (ByteOffset < EltSize && 440 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 441 BytesLeft, DL)) 442 return false; 443 444 ++Index; 445 446 // Check to see if we read from the last struct element, if so we're done. 447 if (Index == CS->getType()->getNumElements()) 448 return true; 449 450 // If we read all of the bytes we needed from this element we're done. 451 uint64_t NextEltOffset = SL->getElementOffset(Index); 452 453 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 454 return true; 455 456 // Move to the next element of the struct. 457 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 458 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 459 ByteOffset = 0; 460 CurEltOffset = NextEltOffset; 461 } 462 // not reached. 463 } 464 465 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 466 isa<ConstantDataSequential>(C)) { 467 uint64_t NumElts; 468 Type *EltTy; 469 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 470 NumElts = AT->getNumElements(); 471 EltTy = AT->getElementType(); 472 } else { 473 NumElts = cast<VectorType>(C->getType())->getNumElements(); 474 EltTy = cast<VectorType>(C->getType())->getElementType(); 475 } 476 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 477 uint64_t Index = ByteOffset / EltSize; 478 uint64_t Offset = ByteOffset - Index * EltSize; 479 480 for (; Index != NumElts; ++Index) { 481 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 482 BytesLeft, DL)) 483 return false; 484 485 uint64_t BytesWritten = EltSize - Offset; 486 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 487 if (BytesWritten >= BytesLeft) 488 return true; 489 490 Offset = 0; 491 BytesLeft -= BytesWritten; 492 CurPtr += BytesWritten; 493 } 494 return true; 495 } 496 497 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 498 if (CE->getOpcode() == Instruction::IntToPtr && 499 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 500 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 501 BytesLeft, DL); 502 } 503 } 504 505 // Otherwise, unknown initializer type. 506 return false; 507 } 508 509 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, 510 const DataLayout &DL) { 511 // Bail out early. Not expect to load from scalable global variable. 512 if (isa<ScalableVectorType>(LoadTy)) 513 return nullptr; 514 515 auto *PTy = cast<PointerType>(C->getType()); 516 auto *IntType = dyn_cast<IntegerType>(LoadTy); 517 518 // If this isn't an integer load we can't fold it directly. 519 if (!IntType) { 520 unsigned AS = PTy->getAddressSpace(); 521 522 // If this is a float/double load, we can try folding it as an int32/64 load 523 // and then bitcast the result. This can be useful for union cases. Note 524 // that address spaces don't matter here since we're not going to result in 525 // an actual new load. 526 Type *MapTy; 527 if (LoadTy->isHalfTy()) 528 MapTy = Type::getInt16Ty(C->getContext()); 529 else if (LoadTy->isFloatTy()) 530 MapTy = Type::getInt32Ty(C->getContext()); 531 else if (LoadTy->isDoubleTy()) 532 MapTy = Type::getInt64Ty(C->getContext()); 533 else if (LoadTy->isVectorTy()) { 534 MapTy = PointerType::getIntNTy( 535 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 536 } else 537 return nullptr; 538 539 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); 540 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) { 541 if (Res->isNullValue() && !LoadTy->isX86_MMXTy()) 542 // Materializing a zero can be done trivially without a bitcast 543 return Constant::getNullValue(LoadTy); 544 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 545 Res = FoldBitCast(Res, CastTy, DL); 546 if (LoadTy->isPtrOrPtrVectorTy()) { 547 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 548 if (Res->isNullValue() && !LoadTy->isX86_MMXTy()) 549 return Constant::getNullValue(LoadTy); 550 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 551 // Be careful not to replace a load of an addrspace value with an inttoptr here 552 return nullptr; 553 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 554 } 555 return Res; 556 } 557 return nullptr; 558 } 559 560 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 561 if (BytesLoaded > 32 || BytesLoaded == 0) 562 return nullptr; 563 564 GlobalValue *GVal; 565 APInt OffsetAI; 566 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) 567 return nullptr; 568 569 auto *GV = dyn_cast<GlobalVariable>(GVal); 570 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 571 !GV->getInitializer()->getType()->isSized()) 572 return nullptr; 573 574 int64_t Offset = OffsetAI.getSExtValue(); 575 int64_t InitializerSize = 576 DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize(); 577 578 // If we're not accessing anything in this constant, the result is undefined. 579 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 580 return UndefValue::get(IntType); 581 582 // If we're not accessing anything in this constant, the result is undefined. 583 if (Offset >= InitializerSize) 584 return UndefValue::get(IntType); 585 586 unsigned char RawBytes[32] = {0}; 587 unsigned char *CurPtr = RawBytes; 588 unsigned BytesLeft = BytesLoaded; 589 590 // If we're loading off the beginning of the global, some bytes may be valid. 591 if (Offset < 0) { 592 CurPtr += -Offset; 593 BytesLeft += Offset; 594 Offset = 0; 595 } 596 597 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) 598 return nullptr; 599 600 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 601 if (DL.isLittleEndian()) { 602 ResultVal = RawBytes[BytesLoaded - 1]; 603 for (unsigned i = 1; i != BytesLoaded; ++i) { 604 ResultVal <<= 8; 605 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 606 } 607 } else { 608 ResultVal = RawBytes[0]; 609 for (unsigned i = 1; i != BytesLoaded; ++i) { 610 ResultVal <<= 8; 611 ResultVal |= RawBytes[i]; 612 } 613 } 614 615 return ConstantInt::get(IntType->getContext(), ResultVal); 616 } 617 618 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, 619 const DataLayout &DL) { 620 auto *SrcPtr = CE->getOperand(0); 621 auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); 622 if (!SrcPtrTy) 623 return nullptr; 624 Type *SrcTy = SrcPtrTy->getPointerElementType(); 625 626 Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); 627 if (!C) 628 return nullptr; 629 630 return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); 631 } 632 633 } // end anonymous namespace 634 635 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 636 const DataLayout &DL) { 637 // First, try the easy cases: 638 if (auto *GV = dyn_cast<GlobalVariable>(C)) 639 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 640 return GV->getInitializer(); 641 642 if (auto *GA = dyn_cast<GlobalAlias>(C)) 643 if (GA->getAliasee() && !GA->isInterposable()) 644 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); 645 646 // If the loaded value isn't a constant expr, we can't handle it. 647 auto *CE = dyn_cast<ConstantExpr>(C); 648 if (!CE) 649 return nullptr; 650 651 if (CE->getOpcode() == Instruction::GetElementPtr) { 652 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { 653 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 654 if (Constant *V = 655 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) 656 return V; 657 } 658 } 659 } 660 661 if (CE->getOpcode() == Instruction::BitCast) 662 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) 663 return LoadedC; 664 665 // Instead of loading constant c string, use corresponding integer value 666 // directly if string length is small enough. 667 StringRef Str; 668 if (getConstantStringInfo(CE, Str) && !Str.empty()) { 669 size_t StrLen = Str.size(); 670 unsigned NumBits = Ty->getPrimitiveSizeInBits(); 671 // Replace load with immediate integer if the result is an integer or fp 672 // value. 673 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && 674 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { 675 APInt StrVal(NumBits, 0); 676 APInt SingleChar(NumBits, 0); 677 if (DL.isLittleEndian()) { 678 for (unsigned char C : reverse(Str.bytes())) { 679 SingleChar = static_cast<uint64_t>(C); 680 StrVal = (StrVal << 8) | SingleChar; 681 } 682 } else { 683 for (unsigned char C : Str.bytes()) { 684 SingleChar = static_cast<uint64_t>(C); 685 StrVal = (StrVal << 8) | SingleChar; 686 } 687 // Append NULL at the end. 688 SingleChar = 0; 689 StrVal = (StrVal << 8) | SingleChar; 690 } 691 692 Constant *Res = ConstantInt::get(CE->getContext(), StrVal); 693 if (Ty->isFloatingPointTy()) 694 Res = ConstantExpr::getBitCast(Res, Ty); 695 return Res; 696 } 697 } 698 699 // If this load comes from anywhere in a constant global, and if the global 700 // is all undef or zero, we know what it loads. 701 if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { 702 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 703 if (GV->getInitializer()->isNullValue()) 704 return Constant::getNullValue(Ty); 705 if (isa<UndefValue>(GV->getInitializer())) 706 return UndefValue::get(Ty); 707 } 708 } 709 710 // Try hard to fold loads from bitcasted strange and non-type-safe things. 711 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); 712 } 713 714 namespace { 715 716 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { 717 if (LI->isVolatile()) return nullptr; 718 719 if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) 720 return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); 721 722 return nullptr; 723 } 724 725 /// One of Op0/Op1 is a constant expression. 726 /// Attempt to symbolically evaluate the result of a binary operator merging 727 /// these together. If target data info is available, it is provided as DL, 728 /// otherwise DL is null. 729 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 730 const DataLayout &DL) { 731 // SROA 732 733 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 734 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 735 // bits. 736 737 if (Opc == Instruction::And) { 738 KnownBits Known0 = computeKnownBits(Op0, DL); 739 KnownBits Known1 = computeKnownBits(Op1, DL); 740 if ((Known1.One | Known0.Zero).isAllOnesValue()) { 741 // All the bits of Op0 that the 'and' could be masking are already zero. 742 return Op0; 743 } 744 if ((Known0.One | Known1.Zero).isAllOnesValue()) { 745 // All the bits of Op1 that the 'and' could be masking are already zero. 746 return Op1; 747 } 748 749 Known0 &= Known1; 750 if (Known0.isConstant()) 751 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 752 } 753 754 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 755 // constant. This happens frequently when iterating over a global array. 756 if (Opc == Instruction::Sub) { 757 GlobalValue *GV1, *GV2; 758 APInt Offs1, Offs2; 759 760 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 761 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 762 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 763 764 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 765 // PtrToInt may change the bitwidth so we have convert to the right size 766 // first. 767 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 768 Offs2.zextOrTrunc(OpSize)); 769 } 770 } 771 772 return nullptr; 773 } 774 775 /// If array indices are not pointer-sized integers, explicitly cast them so 776 /// that they aren't implicitly casted by the getelementptr. 777 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 778 Type *ResultTy, Optional<unsigned> InRangeIndex, 779 const DataLayout &DL, const TargetLibraryInfo *TLI) { 780 Type *IntIdxTy = DL.getIndexType(ResultTy); 781 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 782 783 bool Any = false; 784 SmallVector<Constant*, 32> NewIdxs; 785 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 786 if ((i == 1 || 787 !isa<StructType>(GetElementPtrInst::getIndexedType( 788 SrcElemTy, Ops.slice(1, i - 1)))) && 789 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 790 Any = true; 791 Type *NewType = Ops[i]->getType()->isVectorTy() 792 ? IntIdxTy 793 : IntIdxScalarTy; 794 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 795 true, 796 NewType, 797 true), 798 Ops[i], NewType)); 799 } else 800 NewIdxs.push_back(Ops[i]); 801 } 802 803 if (!Any) 804 return nullptr; 805 806 Constant *C = ConstantExpr::getGetElementPtr( 807 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 808 return ConstantFoldConstant(C, DL, TLI); 809 } 810 811 /// Strip the pointer casts, but preserve the address space information. 812 Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) { 813 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 814 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 815 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 816 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 817 818 ElemTy = NewPtrTy->getPointerElementType(); 819 820 // Preserve the address space number of the pointer. 821 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 822 NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); 823 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); 824 } 825 return Ptr; 826 } 827 828 /// If we can symbolically evaluate the GEP constant expression, do so. 829 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 830 ArrayRef<Constant *> Ops, 831 const DataLayout &DL, 832 const TargetLibraryInfo *TLI) { 833 const GEPOperator *InnermostGEP = GEP; 834 bool InBounds = GEP->isInBounds(); 835 836 Type *SrcElemTy = GEP->getSourceElementType(); 837 Type *ResElemTy = GEP->getResultElementType(); 838 Type *ResTy = GEP->getType(); 839 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 840 return nullptr; 841 842 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 843 GEP->getInRangeIndex(), DL, TLI)) 844 return C; 845 846 Constant *Ptr = Ops[0]; 847 if (!Ptr->getType()->isPointerTy()) 848 return nullptr; 849 850 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 851 852 // If this is a constant expr gep that is effectively computing an 853 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' 854 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 855 if (!isa<ConstantInt>(Ops[i])) { 856 857 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 858 // "inttoptr (sub (ptrtoint Ptr), V)" 859 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 860 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 861 assert((!CE || CE->getType() == IntIdxTy) && 862 "CastGEPIndices didn't canonicalize index types!"); 863 if (CE && CE->getOpcode() == Instruction::Sub && 864 CE->getOperand(0)->isNullValue()) { 865 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 866 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 867 Res = ConstantExpr::getIntToPtr(Res, ResTy); 868 return ConstantFoldConstant(Res, DL, TLI); 869 } 870 } 871 return nullptr; 872 } 873 874 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 875 APInt Offset = 876 APInt(BitWidth, 877 DL.getIndexedOffsetInType( 878 SrcElemTy, 879 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 880 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 881 882 // If this is a GEP of a GEP, fold it all into a single GEP. 883 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 884 InnermostGEP = GEP; 885 InBounds &= GEP->isInBounds(); 886 887 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 888 889 // Do not try the incorporate the sub-GEP if some index is not a number. 890 bool AllConstantInt = true; 891 for (Value *NestedOp : NestedOps) 892 if (!isa<ConstantInt>(NestedOp)) { 893 AllConstantInt = false; 894 break; 895 } 896 if (!AllConstantInt) 897 break; 898 899 Ptr = cast<Constant>(GEP->getOperand(0)); 900 SrcElemTy = GEP->getSourceElementType(); 901 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 902 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 903 } 904 905 // If the base value for this address is a literal integer value, fold the 906 // getelementptr to the resulting integer value casted to the pointer type. 907 APInt BasePtr(BitWidth, 0); 908 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 909 if (CE->getOpcode() == Instruction::IntToPtr) { 910 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 911 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 912 } 913 } 914 915 auto *PTy = cast<PointerType>(Ptr->getType()); 916 if ((Ptr->isNullValue() || BasePtr != 0) && 917 !DL.isNonIntegralPointerType(PTy)) { 918 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 919 return ConstantExpr::getIntToPtr(C, ResTy); 920 } 921 922 // Otherwise form a regular getelementptr. Recompute the indices so that 923 // we eliminate over-indexing of the notional static type array bounds. 924 // This makes it easy to determine if the getelementptr is "inbounds". 925 // Also, this helps GlobalOpt do SROA on GlobalVariables. 926 Type *Ty = PTy; 927 SmallVector<Constant *, 32> NewIdxs; 928 929 do { 930 if (!Ty->isStructTy()) { 931 if (Ty->isPointerTy()) { 932 // The only pointer indexing we'll do is on the first index of the GEP. 933 if (!NewIdxs.empty()) 934 break; 935 936 Ty = SrcElemTy; 937 938 // Only handle pointers to sized types, not pointers to functions. 939 if (!Ty->isSized()) 940 return nullptr; 941 } else { 942 Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0); 943 if (!NextTy) 944 break; 945 Ty = NextTy; 946 } 947 948 // Determine which element of the array the offset points into. 949 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); 950 if (ElemSize == 0) { 951 // The element size is 0. This may be [0 x Ty]*, so just use a zero 952 // index for this level and proceed to the next level to see if it can 953 // accommodate the offset. 954 NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0)); 955 } else { 956 // The element size is non-zero divide the offset by the element 957 // size (rounding down), to compute the index at this level. 958 bool Overflow; 959 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); 960 if (Overflow) 961 break; 962 Offset -= NewIdx * ElemSize; 963 NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx)); 964 } 965 } else { 966 auto *STy = cast<StructType>(Ty); 967 // If we end up with an offset that isn't valid for this struct type, we 968 // can't re-form this GEP in a regular form, so bail out. The pointer 969 // operand likely went through casts that are necessary to make the GEP 970 // sensible. 971 const StructLayout &SL = *DL.getStructLayout(STy); 972 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) 973 break; 974 975 // Determine which field of the struct the offset points into. The 976 // getZExtValue is fine as we've already ensured that the offset is 977 // within the range representable by the StructLayout API. 978 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); 979 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 980 ElIdx)); 981 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); 982 Ty = STy->getTypeAtIndex(ElIdx); 983 } 984 } while (Ty != ResElemTy); 985 986 // If we haven't used up the entire offset by descending the static 987 // type, then the offset is pointing into the middle of an indivisible 988 // member, so we can't simplify it. 989 if (Offset != 0) 990 return nullptr; 991 992 // Preserve the inrange index from the innermost GEP if possible. We must 993 // have calculated the same indices up to and including the inrange index. 994 Optional<unsigned> InRangeIndex; 995 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 996 if (SrcElemTy == InnermostGEP->getSourceElementType() && 997 NewIdxs.size() > *LastIRIndex) { 998 InRangeIndex = LastIRIndex; 999 for (unsigned I = 0; I <= *LastIRIndex; ++I) 1000 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 1001 return nullptr; 1002 } 1003 1004 // Create a GEP. 1005 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 1006 InBounds, InRangeIndex); 1007 assert(C->getType()->getPointerElementType() == Ty && 1008 "Computed GetElementPtr has unexpected type!"); 1009 1010 // If we ended up indexing a member with a type that doesn't match 1011 // the type of what the original indices indexed, add a cast. 1012 if (Ty != ResElemTy) 1013 C = FoldBitCast(C, ResTy, DL); 1014 1015 return C; 1016 } 1017 1018 /// Attempt to constant fold an instruction with the 1019 /// specified opcode and operands. If successful, the constant result is 1020 /// returned, if not, null is returned. Note that this function can fail when 1021 /// attempting to fold instructions like loads and stores, which have no 1022 /// constant expression form. 1023 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 1024 ArrayRef<Constant *> Ops, 1025 const DataLayout &DL, 1026 const TargetLibraryInfo *TLI) { 1027 Type *DestTy = InstOrCE->getType(); 1028 1029 if (Instruction::isUnaryOp(Opcode)) 1030 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1031 1032 if (Instruction::isBinaryOp(Opcode)) 1033 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1034 1035 if (Instruction::isCast(Opcode)) 1036 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1037 1038 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1039 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1040 return C; 1041 1042 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1043 Ops.slice(1), GEP->isInBounds(), 1044 GEP->getInRangeIndex()); 1045 } 1046 1047 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1048 return CE->getWithOperands(Ops); 1049 1050 switch (Opcode) { 1051 default: return nullptr; 1052 case Instruction::ICmp: 1053 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1054 case Instruction::Call: 1055 if (auto *F = dyn_cast<Function>(Ops.back())) { 1056 const auto *Call = cast<CallBase>(InstOrCE); 1057 if (canConstantFoldCallTo(Call, F)) 1058 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1059 } 1060 return nullptr; 1061 case Instruction::Select: 1062 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1063 case Instruction::ExtractElement: 1064 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1065 case Instruction::ExtractValue: 1066 return ConstantExpr::getExtractValue( 1067 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1068 case Instruction::InsertElement: 1069 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1070 case Instruction::ShuffleVector: 1071 return ConstantExpr::getShuffleVector( 1072 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1073 } 1074 } 1075 1076 } // end anonymous namespace 1077 1078 //===----------------------------------------------------------------------===// 1079 // Constant Folding public APIs 1080 //===----------------------------------------------------------------------===// 1081 1082 namespace { 1083 1084 Constant * 1085 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1086 const TargetLibraryInfo *TLI, 1087 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1088 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1089 return const_cast<Constant *>(C); 1090 1091 SmallVector<Constant *, 8> Ops; 1092 for (const Use &OldU : C->operands()) { 1093 Constant *OldC = cast<Constant>(&OldU); 1094 Constant *NewC = OldC; 1095 // Recursively fold the ConstantExpr's operands. If we have already folded 1096 // a ConstantExpr, we don't have to process it again. 1097 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1098 auto It = FoldedOps.find(OldC); 1099 if (It == FoldedOps.end()) { 1100 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1101 FoldedOps.insert({OldC, NewC}); 1102 } else { 1103 NewC = It->second; 1104 } 1105 } 1106 Ops.push_back(NewC); 1107 } 1108 1109 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1110 if (CE->isCompare()) 1111 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1112 DL, TLI); 1113 1114 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1115 } 1116 1117 assert(isa<ConstantVector>(C)); 1118 return ConstantVector::get(Ops); 1119 } 1120 1121 } // end anonymous namespace 1122 1123 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1124 const TargetLibraryInfo *TLI) { 1125 // Handle PHI nodes quickly here... 1126 if (auto *PN = dyn_cast<PHINode>(I)) { 1127 Constant *CommonValue = nullptr; 1128 1129 SmallDenseMap<Constant *, Constant *> FoldedOps; 1130 for (Value *Incoming : PN->incoming_values()) { 1131 // If the incoming value is undef then skip it. Note that while we could 1132 // skip the value if it is equal to the phi node itself we choose not to 1133 // because that would break the rule that constant folding only applies if 1134 // all operands are constants. 1135 if (isa<UndefValue>(Incoming)) 1136 continue; 1137 // If the incoming value is not a constant, then give up. 1138 auto *C = dyn_cast<Constant>(Incoming); 1139 if (!C) 1140 return nullptr; 1141 // Fold the PHI's operands. 1142 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1143 // If the incoming value is a different constant to 1144 // the one we saw previously, then give up. 1145 if (CommonValue && C != CommonValue) 1146 return nullptr; 1147 CommonValue = C; 1148 } 1149 1150 // If we reach here, all incoming values are the same constant or undef. 1151 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1152 } 1153 1154 // Scan the operand list, checking to see if they are all constants, if so, 1155 // hand off to ConstantFoldInstOperandsImpl. 1156 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1157 return nullptr; 1158 1159 SmallDenseMap<Constant *, Constant *> FoldedOps; 1160 SmallVector<Constant *, 8> Ops; 1161 for (const Use &OpU : I->operands()) { 1162 auto *Op = cast<Constant>(&OpU); 1163 // Fold the Instruction's operands. 1164 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1165 Ops.push_back(Op); 1166 } 1167 1168 if (const auto *CI = dyn_cast<CmpInst>(I)) 1169 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1170 DL, TLI); 1171 1172 if (const auto *LI = dyn_cast<LoadInst>(I)) 1173 return ConstantFoldLoadInst(LI, DL); 1174 1175 if (auto *IVI = dyn_cast<InsertValueInst>(I)) { 1176 return ConstantExpr::getInsertValue( 1177 cast<Constant>(IVI->getAggregateOperand()), 1178 cast<Constant>(IVI->getInsertedValueOperand()), 1179 IVI->getIndices()); 1180 } 1181 1182 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { 1183 return ConstantExpr::getExtractValue( 1184 cast<Constant>(EVI->getAggregateOperand()), 1185 EVI->getIndices()); 1186 } 1187 1188 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1189 } 1190 1191 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1192 const TargetLibraryInfo *TLI) { 1193 SmallDenseMap<Constant *, Constant *> FoldedOps; 1194 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1195 } 1196 1197 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1198 ArrayRef<Constant *> Ops, 1199 const DataLayout &DL, 1200 const TargetLibraryInfo *TLI) { 1201 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1202 } 1203 1204 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1205 Constant *Ops0, Constant *Ops1, 1206 const DataLayout &DL, 1207 const TargetLibraryInfo *TLI) { 1208 // fold: icmp (inttoptr x), null -> icmp x, 0 1209 // fold: icmp null, (inttoptr x) -> icmp 0, x 1210 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1211 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1212 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1213 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1214 // 1215 // FIXME: The following comment is out of data and the DataLayout is here now. 1216 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1217 // around to know if bit truncation is happening. 1218 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1219 if (Ops1->isNullValue()) { 1220 if (CE0->getOpcode() == Instruction::IntToPtr) { 1221 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1222 // Convert the integer value to the right size to ensure we get the 1223 // proper extension or truncation. 1224 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1225 IntPtrTy, false); 1226 Constant *Null = Constant::getNullValue(C->getType()); 1227 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1228 } 1229 1230 // Only do this transformation if the int is intptrty in size, otherwise 1231 // there is a truncation or extension that we aren't modeling. 1232 if (CE0->getOpcode() == Instruction::PtrToInt) { 1233 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1234 if (CE0->getType() == IntPtrTy) { 1235 Constant *C = CE0->getOperand(0); 1236 Constant *Null = Constant::getNullValue(C->getType()); 1237 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1238 } 1239 } 1240 } 1241 1242 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1243 if (CE0->getOpcode() == CE1->getOpcode()) { 1244 if (CE0->getOpcode() == Instruction::IntToPtr) { 1245 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1246 1247 // Convert the integer value to the right size to ensure we get the 1248 // proper extension or truncation. 1249 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1250 IntPtrTy, false); 1251 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1252 IntPtrTy, false); 1253 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1254 } 1255 1256 // Only do this transformation if the int is intptrty in size, otherwise 1257 // there is a truncation or extension that we aren't modeling. 1258 if (CE0->getOpcode() == Instruction::PtrToInt) { 1259 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1260 if (CE0->getType() == IntPtrTy && 1261 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1262 return ConstantFoldCompareInstOperands( 1263 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1264 } 1265 } 1266 } 1267 } 1268 1269 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1270 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1271 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1272 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1273 Constant *LHS = ConstantFoldCompareInstOperands( 1274 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1275 Constant *RHS = ConstantFoldCompareInstOperands( 1276 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1277 unsigned OpC = 1278 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1279 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1280 } 1281 } else if (isa<ConstantExpr>(Ops1)) { 1282 // If RHS is a constant expression, but the left side isn't, swap the 1283 // operands and try again. 1284 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1285 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1286 } 1287 1288 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1289 } 1290 1291 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1292 const DataLayout &DL) { 1293 assert(Instruction::isUnaryOp(Opcode)); 1294 1295 return ConstantExpr::get(Opcode, Op); 1296 } 1297 1298 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1299 Constant *RHS, 1300 const DataLayout &DL) { 1301 assert(Instruction::isBinaryOp(Opcode)); 1302 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1303 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1304 return C; 1305 1306 return ConstantExpr::get(Opcode, LHS, RHS); 1307 } 1308 1309 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1310 Type *DestTy, const DataLayout &DL) { 1311 assert(Instruction::isCast(Opcode)); 1312 switch (Opcode) { 1313 default: 1314 llvm_unreachable("Missing case"); 1315 case Instruction::PtrToInt: 1316 // If the input is a inttoptr, eliminate the pair. This requires knowing 1317 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1318 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1319 if (CE->getOpcode() == Instruction::IntToPtr) { 1320 Constant *Input = CE->getOperand(0); 1321 unsigned InWidth = Input->getType()->getScalarSizeInBits(); 1322 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); 1323 if (PtrWidth < InWidth) { 1324 Constant *Mask = 1325 ConstantInt::get(CE->getContext(), 1326 APInt::getLowBitsSet(InWidth, PtrWidth)); 1327 Input = ConstantExpr::getAnd(Input, Mask); 1328 } 1329 // Do a zext or trunc to get to the dest size. 1330 return ConstantExpr::getIntegerCast(Input, DestTy, false); 1331 } 1332 } 1333 return ConstantExpr::getCast(Opcode, C, DestTy); 1334 case Instruction::IntToPtr: 1335 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1336 // the int size is >= the ptr size and the address spaces are the same. 1337 // This requires knowing the width of a pointer, so it can't be done in 1338 // ConstantExpr::getCast. 1339 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1340 if (CE->getOpcode() == Instruction::PtrToInt) { 1341 Constant *SrcPtr = CE->getOperand(0); 1342 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1343 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1344 1345 if (MidIntSize >= SrcPtrSize) { 1346 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1347 if (SrcAS == DestTy->getPointerAddressSpace()) 1348 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1349 } 1350 } 1351 } 1352 1353 return ConstantExpr::getCast(Opcode, C, DestTy); 1354 case Instruction::Trunc: 1355 case Instruction::ZExt: 1356 case Instruction::SExt: 1357 case Instruction::FPTrunc: 1358 case Instruction::FPExt: 1359 case Instruction::UIToFP: 1360 case Instruction::SIToFP: 1361 case Instruction::FPToUI: 1362 case Instruction::FPToSI: 1363 case Instruction::AddrSpaceCast: 1364 return ConstantExpr::getCast(Opcode, C, DestTy); 1365 case Instruction::BitCast: 1366 return FoldBitCast(C, DestTy, DL); 1367 } 1368 } 1369 1370 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1371 ConstantExpr *CE) { 1372 if (!CE->getOperand(1)->isNullValue()) 1373 return nullptr; // Do not allow stepping over the value! 1374 1375 // Loop over all of the operands, tracking down which value we are 1376 // addressing. 1377 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1378 C = C->getAggregateElement(CE->getOperand(i)); 1379 if (!C) 1380 return nullptr; 1381 } 1382 return C; 1383 } 1384 1385 Constant * 1386 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, 1387 ArrayRef<Constant *> Indices) { 1388 // Loop over all of the operands, tracking down which value we are 1389 // addressing. 1390 for (Constant *Index : Indices) { 1391 C = C->getAggregateElement(Index); 1392 if (!C) 1393 return nullptr; 1394 } 1395 return C; 1396 } 1397 1398 //===----------------------------------------------------------------------===// 1399 // Constant Folding for Calls 1400 // 1401 1402 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1403 if (Call->isNoBuiltin()) 1404 return false; 1405 switch (F->getIntrinsicID()) { 1406 // Operations that do not operate floating-point numbers and do not depend on 1407 // FP environment can be folded even in strictfp functions. 1408 case Intrinsic::bswap: 1409 case Intrinsic::ctpop: 1410 case Intrinsic::ctlz: 1411 case Intrinsic::cttz: 1412 case Intrinsic::fshl: 1413 case Intrinsic::fshr: 1414 case Intrinsic::launder_invariant_group: 1415 case Intrinsic::strip_invariant_group: 1416 case Intrinsic::masked_load: 1417 case Intrinsic::sadd_with_overflow: 1418 case Intrinsic::uadd_with_overflow: 1419 case Intrinsic::ssub_with_overflow: 1420 case Intrinsic::usub_with_overflow: 1421 case Intrinsic::smul_with_overflow: 1422 case Intrinsic::umul_with_overflow: 1423 case Intrinsic::sadd_sat: 1424 case Intrinsic::uadd_sat: 1425 case Intrinsic::ssub_sat: 1426 case Intrinsic::usub_sat: 1427 case Intrinsic::smul_fix: 1428 case Intrinsic::smul_fix_sat: 1429 case Intrinsic::bitreverse: 1430 case Intrinsic::is_constant: 1431 case Intrinsic::experimental_vector_reduce_add: 1432 case Intrinsic::experimental_vector_reduce_mul: 1433 case Intrinsic::experimental_vector_reduce_and: 1434 case Intrinsic::experimental_vector_reduce_or: 1435 case Intrinsic::experimental_vector_reduce_xor: 1436 case Intrinsic::experimental_vector_reduce_smin: 1437 case Intrinsic::experimental_vector_reduce_smax: 1438 case Intrinsic::experimental_vector_reduce_umin: 1439 case Intrinsic::experimental_vector_reduce_umax: 1440 return true; 1441 1442 // Floating point operations cannot be folded in strictfp functions in 1443 // general case. They can be folded if FP environment is known to compiler. 1444 case Intrinsic::minnum: 1445 case Intrinsic::maxnum: 1446 case Intrinsic::minimum: 1447 case Intrinsic::maximum: 1448 case Intrinsic::log: 1449 case Intrinsic::log2: 1450 case Intrinsic::log10: 1451 case Intrinsic::exp: 1452 case Intrinsic::exp2: 1453 case Intrinsic::sqrt: 1454 case Intrinsic::sin: 1455 case Intrinsic::cos: 1456 case Intrinsic::pow: 1457 case Intrinsic::powi: 1458 case Intrinsic::fma: 1459 case Intrinsic::fmuladd: 1460 case Intrinsic::convert_from_fp16: 1461 case Intrinsic::convert_to_fp16: 1462 // The intrinsics below depend on rounding mode in MXCSR. 1463 case Intrinsic::amdgcn_cubeid: 1464 case Intrinsic::amdgcn_cubema: 1465 case Intrinsic::amdgcn_cubesc: 1466 case Intrinsic::amdgcn_cubetc: 1467 case Intrinsic::amdgcn_fmul_legacy: 1468 case Intrinsic::amdgcn_fract: 1469 case Intrinsic::amdgcn_ldexp: 1470 case Intrinsic::x86_sse_cvtss2si: 1471 case Intrinsic::x86_sse_cvtss2si64: 1472 case Intrinsic::x86_sse_cvttss2si: 1473 case Intrinsic::x86_sse_cvttss2si64: 1474 case Intrinsic::x86_sse2_cvtsd2si: 1475 case Intrinsic::x86_sse2_cvtsd2si64: 1476 case Intrinsic::x86_sse2_cvttsd2si: 1477 case Intrinsic::x86_sse2_cvttsd2si64: 1478 case Intrinsic::x86_avx512_vcvtss2si32: 1479 case Intrinsic::x86_avx512_vcvtss2si64: 1480 case Intrinsic::x86_avx512_cvttss2si: 1481 case Intrinsic::x86_avx512_cvttss2si64: 1482 case Intrinsic::x86_avx512_vcvtsd2si32: 1483 case Intrinsic::x86_avx512_vcvtsd2si64: 1484 case Intrinsic::x86_avx512_cvttsd2si: 1485 case Intrinsic::x86_avx512_cvttsd2si64: 1486 case Intrinsic::x86_avx512_vcvtss2usi32: 1487 case Intrinsic::x86_avx512_vcvtss2usi64: 1488 case Intrinsic::x86_avx512_cvttss2usi: 1489 case Intrinsic::x86_avx512_cvttss2usi64: 1490 case Intrinsic::x86_avx512_vcvtsd2usi32: 1491 case Intrinsic::x86_avx512_vcvtsd2usi64: 1492 case Intrinsic::x86_avx512_cvttsd2usi: 1493 case Intrinsic::x86_avx512_cvttsd2usi64: 1494 return !Call->isStrictFP(); 1495 1496 // Sign operations are actually bitwise operations, they do not raise 1497 // exceptions even for SNANs. 1498 case Intrinsic::fabs: 1499 case Intrinsic::copysign: 1500 // Non-constrained variants of rounding operations means default FP 1501 // environment, they can be folded in any case. 1502 case Intrinsic::ceil: 1503 case Intrinsic::floor: 1504 case Intrinsic::round: 1505 case Intrinsic::roundeven: 1506 case Intrinsic::trunc: 1507 case Intrinsic::nearbyint: 1508 case Intrinsic::rint: 1509 // Constrained intrinsics can be folded if FP environment is known 1510 // to compiler. 1511 case Intrinsic::experimental_constrained_ceil: 1512 case Intrinsic::experimental_constrained_floor: 1513 case Intrinsic::experimental_constrained_round: 1514 case Intrinsic::experimental_constrained_roundeven: 1515 case Intrinsic::experimental_constrained_trunc: 1516 case Intrinsic::experimental_constrained_nearbyint: 1517 case Intrinsic::experimental_constrained_rint: 1518 return true; 1519 default: 1520 return false; 1521 case Intrinsic::not_intrinsic: break; 1522 } 1523 1524 if (!F->hasName() || Call->isStrictFP()) 1525 return false; 1526 1527 // In these cases, the check of the length is required. We don't want to 1528 // return true for a name like "cos\0blah" which strcmp would return equal to 1529 // "cos", but has length 8. 1530 StringRef Name = F->getName(); 1531 switch (Name[0]) { 1532 default: 1533 return false; 1534 case 'a': 1535 return Name == "acos" || Name == "acosf" || 1536 Name == "asin" || Name == "asinf" || 1537 Name == "atan" || Name == "atanf" || 1538 Name == "atan2" || Name == "atan2f"; 1539 case 'c': 1540 return Name == "ceil" || Name == "ceilf" || 1541 Name == "cos" || Name == "cosf" || 1542 Name == "cosh" || Name == "coshf"; 1543 case 'e': 1544 return Name == "exp" || Name == "expf" || 1545 Name == "exp2" || Name == "exp2f"; 1546 case 'f': 1547 return Name == "fabs" || Name == "fabsf" || 1548 Name == "floor" || Name == "floorf" || 1549 Name == "fmod" || Name == "fmodf"; 1550 case 'l': 1551 return Name == "log" || Name == "logf" || 1552 Name == "log2" || Name == "log2f" || 1553 Name == "log10" || Name == "log10f"; 1554 case 'n': 1555 return Name == "nearbyint" || Name == "nearbyintf"; 1556 case 'p': 1557 return Name == "pow" || Name == "powf"; 1558 case 'r': 1559 return Name == "remainder" || Name == "remainderf" || 1560 Name == "rint" || Name == "rintf" || 1561 Name == "round" || Name == "roundf"; 1562 case 's': 1563 return Name == "sin" || Name == "sinf" || 1564 Name == "sinh" || Name == "sinhf" || 1565 Name == "sqrt" || Name == "sqrtf"; 1566 case 't': 1567 return Name == "tan" || Name == "tanf" || 1568 Name == "tanh" || Name == "tanhf" || 1569 Name == "trunc" || Name == "truncf"; 1570 case '_': 1571 // Check for various function names that get used for the math functions 1572 // when the header files are preprocessed with the macro 1573 // __FINITE_MATH_ONLY__ enabled. 1574 // The '12' here is the length of the shortest name that can match. 1575 // We need to check the size before looking at Name[1] and Name[2] 1576 // so we may as well check a limit that will eliminate mismatches. 1577 if (Name.size() < 12 || Name[1] != '_') 1578 return false; 1579 switch (Name[2]) { 1580 default: 1581 return false; 1582 case 'a': 1583 return Name == "__acos_finite" || Name == "__acosf_finite" || 1584 Name == "__asin_finite" || Name == "__asinf_finite" || 1585 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1586 case 'c': 1587 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1588 case 'e': 1589 return Name == "__exp_finite" || Name == "__expf_finite" || 1590 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1591 case 'l': 1592 return Name == "__log_finite" || Name == "__logf_finite" || 1593 Name == "__log10_finite" || Name == "__log10f_finite"; 1594 case 'p': 1595 return Name == "__pow_finite" || Name == "__powf_finite"; 1596 case 's': 1597 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1598 } 1599 } 1600 } 1601 1602 namespace { 1603 1604 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1605 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1606 APFloat APF(V); 1607 bool unused; 1608 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1609 return ConstantFP::get(Ty->getContext(), APF); 1610 } 1611 if (Ty->isDoubleTy()) 1612 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1613 llvm_unreachable("Can only constant fold half/float/double"); 1614 } 1615 1616 /// Clear the floating-point exception state. 1617 inline void llvm_fenv_clearexcept() { 1618 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1619 feclearexcept(FE_ALL_EXCEPT); 1620 #endif 1621 errno = 0; 1622 } 1623 1624 /// Test if a floating-point exception was raised. 1625 inline bool llvm_fenv_testexcept() { 1626 int errno_val = errno; 1627 if (errno_val == ERANGE || errno_val == EDOM) 1628 return true; 1629 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1630 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1631 return true; 1632 #endif 1633 return false; 1634 } 1635 1636 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { 1637 llvm_fenv_clearexcept(); 1638 V = NativeFP(V); 1639 if (llvm_fenv_testexcept()) { 1640 llvm_fenv_clearexcept(); 1641 return nullptr; 1642 } 1643 1644 return GetConstantFoldFPValue(V, Ty); 1645 } 1646 1647 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, 1648 double W, Type *Ty) { 1649 llvm_fenv_clearexcept(); 1650 V = NativeFP(V, W); 1651 if (llvm_fenv_testexcept()) { 1652 llvm_fenv_clearexcept(); 1653 return nullptr; 1654 } 1655 1656 return GetConstantFoldFPValue(V, Ty); 1657 } 1658 1659 Constant *ConstantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1660 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1661 if (!VT) 1662 return nullptr; 1663 ConstantInt *CI = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1664 if (!CI) 1665 return nullptr; 1666 APInt Acc = CI->getValue(); 1667 1668 for (unsigned I = 1; I < VT->getNumElements(); I++) { 1669 if (!(CI = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1670 return nullptr; 1671 const APInt &X = CI->getValue(); 1672 switch (IID) { 1673 case Intrinsic::experimental_vector_reduce_add: 1674 Acc = Acc + X; 1675 break; 1676 case Intrinsic::experimental_vector_reduce_mul: 1677 Acc = Acc * X; 1678 break; 1679 case Intrinsic::experimental_vector_reduce_and: 1680 Acc = Acc & X; 1681 break; 1682 case Intrinsic::experimental_vector_reduce_or: 1683 Acc = Acc | X; 1684 break; 1685 case Intrinsic::experimental_vector_reduce_xor: 1686 Acc = Acc ^ X; 1687 break; 1688 case Intrinsic::experimental_vector_reduce_smin: 1689 Acc = APIntOps::smin(Acc, X); 1690 break; 1691 case Intrinsic::experimental_vector_reduce_smax: 1692 Acc = APIntOps::smax(Acc, X); 1693 break; 1694 case Intrinsic::experimental_vector_reduce_umin: 1695 Acc = APIntOps::umin(Acc, X); 1696 break; 1697 case Intrinsic::experimental_vector_reduce_umax: 1698 Acc = APIntOps::umax(Acc, X); 1699 break; 1700 } 1701 } 1702 1703 return ConstantInt::get(Op->getContext(), Acc); 1704 } 1705 1706 /// Attempt to fold an SSE floating point to integer conversion of a constant 1707 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1708 /// used (toward nearest, ties to even). This matches the behavior of the 1709 /// non-truncating SSE instructions in the default rounding mode. The desired 1710 /// integer type Ty is used to select how many bits are available for the 1711 /// result. Returns null if the conversion cannot be performed, otherwise 1712 /// returns the Constant value resulting from the conversion. 1713 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1714 Type *Ty, bool IsSigned) { 1715 // All of these conversion intrinsics form an integer of at most 64bits. 1716 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1717 assert(ResultWidth <= 64 && 1718 "Can only constant fold conversions to 64 and 32 bit ints"); 1719 1720 uint64_t UIntVal; 1721 bool isExact = false; 1722 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1723 : APFloat::rmNearestTiesToEven; 1724 APFloat::opStatus status = 1725 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1726 IsSigned, mode, &isExact); 1727 if (status != APFloat::opOK && 1728 (!roundTowardZero || status != APFloat::opInexact)) 1729 return nullptr; 1730 return ConstantInt::get(Ty, UIntVal, IsSigned); 1731 } 1732 1733 double getValueAsDouble(ConstantFP *Op) { 1734 Type *Ty = Op->getType(); 1735 1736 if (Ty->isFloatTy()) 1737 return Op->getValueAPF().convertToFloat(); 1738 1739 if (Ty->isDoubleTy()) 1740 return Op->getValueAPF().convertToDouble(); 1741 1742 bool unused; 1743 APFloat APF = Op->getValueAPF(); 1744 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1745 return APF.convertToDouble(); 1746 } 1747 1748 static bool isManifestConstant(const Constant *c) { 1749 if (isa<ConstantData>(c)) { 1750 return true; 1751 } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) { 1752 for (const Value *subc : c->operand_values()) { 1753 if (!isManifestConstant(cast<Constant>(subc))) 1754 return false; 1755 } 1756 return true; 1757 } 1758 return false; 1759 } 1760 1761 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1762 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1763 C = &CI->getValue(); 1764 return true; 1765 } 1766 if (isa<UndefValue>(Op)) { 1767 C = nullptr; 1768 return true; 1769 } 1770 return false; 1771 } 1772 1773 static Constant *ConstantFoldScalarCall1(StringRef Name, 1774 Intrinsic::ID IntrinsicID, 1775 Type *Ty, 1776 ArrayRef<Constant *> Operands, 1777 const TargetLibraryInfo *TLI, 1778 const CallBase *Call) { 1779 assert(Operands.size() == 1 && "Wrong number of operands."); 1780 1781 if (IntrinsicID == Intrinsic::is_constant) { 1782 // We know we have a "Constant" argument. But we want to only 1783 // return true for manifest constants, not those that depend on 1784 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1785 if (isManifestConstant(Operands[0])) 1786 return ConstantInt::getTrue(Ty->getContext()); 1787 return nullptr; 1788 } 1789 if (isa<UndefValue>(Operands[0])) { 1790 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1791 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1792 if (IntrinsicID == Intrinsic::cos || 1793 IntrinsicID == Intrinsic::ctpop) 1794 return Constant::getNullValue(Ty); 1795 if (IntrinsicID == Intrinsic::bswap || 1796 IntrinsicID == Intrinsic::bitreverse || 1797 IntrinsicID == Intrinsic::launder_invariant_group || 1798 IntrinsicID == Intrinsic::strip_invariant_group) 1799 return Operands[0]; 1800 } 1801 1802 if (isa<ConstantPointerNull>(Operands[0])) { 1803 // launder(null) == null == strip(null) iff in addrspace 0 1804 if (IntrinsicID == Intrinsic::launder_invariant_group || 1805 IntrinsicID == Intrinsic::strip_invariant_group) { 1806 // If instruction is not yet put in a basic block (e.g. when cloning 1807 // a function during inlining), Call's caller may not be available. 1808 // So check Call's BB first before querying Call->getCaller. 1809 const Function *Caller = 1810 Call->getParent() ? Call->getCaller() : nullptr; 1811 if (Caller && 1812 !NullPointerIsDefined( 1813 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1814 return Operands[0]; 1815 } 1816 return nullptr; 1817 } 1818 } 1819 1820 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1821 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1822 APFloat Val(Op->getValueAPF()); 1823 1824 bool lost = false; 1825 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1826 1827 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1828 } 1829 1830 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1831 return nullptr; 1832 1833 // Use internal versions of these intrinsics. 1834 APFloat U = Op->getValueAPF(); 1835 1836 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1837 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1838 return ConstantFP::get(Ty->getContext(), U); 1839 } 1840 1841 if (IntrinsicID == Intrinsic::round) { 1842 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1843 return ConstantFP::get(Ty->getContext(), U); 1844 } 1845 1846 if (IntrinsicID == Intrinsic::roundeven) { 1847 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1848 return ConstantFP::get(Ty->getContext(), U); 1849 } 1850 1851 if (IntrinsicID == Intrinsic::ceil) { 1852 U.roundToIntegral(APFloat::rmTowardPositive); 1853 return ConstantFP::get(Ty->getContext(), U); 1854 } 1855 1856 if (IntrinsicID == Intrinsic::floor) { 1857 U.roundToIntegral(APFloat::rmTowardNegative); 1858 return ConstantFP::get(Ty->getContext(), U); 1859 } 1860 1861 if (IntrinsicID == Intrinsic::trunc) { 1862 U.roundToIntegral(APFloat::rmTowardZero); 1863 return ConstantFP::get(Ty->getContext(), U); 1864 } 1865 1866 if (IntrinsicID == Intrinsic::fabs) { 1867 U.clearSign(); 1868 return ConstantFP::get(Ty->getContext(), U); 1869 } 1870 1871 if (IntrinsicID == Intrinsic::amdgcn_fract) { 1872 // The v_fract instruction behaves like the OpenCL spec, which defines 1873 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 1874 // there to prevent fract(-small) from returning 1.0. It returns the 1875 // largest positive floating-point number less than 1.0." 1876 APFloat FloorU(U); 1877 FloorU.roundToIntegral(APFloat::rmTowardNegative); 1878 APFloat FractU(U - FloorU); 1879 APFloat AlmostOne(U.getSemantics(), 1); 1880 AlmostOne.next(/*nextDown*/ true); 1881 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 1882 } 1883 1884 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 1885 // raise FP exceptions, unless the argument is signaling NaN. 1886 1887 Optional<APFloat::roundingMode> RM; 1888 switch (IntrinsicID) { 1889 default: 1890 break; 1891 case Intrinsic::experimental_constrained_nearbyint: 1892 case Intrinsic::experimental_constrained_rint: { 1893 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1894 RM = CI->getRoundingMode(); 1895 if (!RM || RM.getValue() == RoundingMode::Dynamic) 1896 return nullptr; 1897 break; 1898 } 1899 case Intrinsic::experimental_constrained_round: 1900 RM = APFloat::rmNearestTiesToAway; 1901 break; 1902 case Intrinsic::experimental_constrained_ceil: 1903 RM = APFloat::rmTowardPositive; 1904 break; 1905 case Intrinsic::experimental_constrained_floor: 1906 RM = APFloat::rmTowardNegative; 1907 break; 1908 case Intrinsic::experimental_constrained_trunc: 1909 RM = APFloat::rmTowardZero; 1910 break; 1911 } 1912 if (RM) { 1913 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1914 if (U.isFinite()) { 1915 APFloat::opStatus St = U.roundToIntegral(*RM); 1916 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 1917 St == APFloat::opInexact) { 1918 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1919 if (EB && *EB == fp::ebStrict) 1920 return nullptr; 1921 } 1922 } else if (U.isSignaling()) { 1923 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1924 if (EB && *EB != fp::ebIgnore) 1925 return nullptr; 1926 U = APFloat::getQNaN(U.getSemantics()); 1927 } 1928 return ConstantFP::get(Ty->getContext(), U); 1929 } 1930 1931 /// We only fold functions with finite arguments. Folding NaN and inf is 1932 /// likely to be aborted with an exception anyway, and some host libms 1933 /// have known errors raising exceptions. 1934 if (!U.isFinite()) 1935 return nullptr; 1936 1937 /// Currently APFloat versions of these functions do not exist, so we use 1938 /// the host native double versions. Float versions are not called 1939 /// directly but for all these it is true (float)(f((double)arg)) == 1940 /// f(arg). Long double not supported yet. 1941 double V = getValueAsDouble(Op); 1942 1943 switch (IntrinsicID) { 1944 default: break; 1945 case Intrinsic::log: 1946 return ConstantFoldFP(log, V, Ty); 1947 case Intrinsic::log2: 1948 // TODO: What about hosts that lack a C99 library? 1949 return ConstantFoldFP(Log2, V, Ty); 1950 case Intrinsic::log10: 1951 // TODO: What about hosts that lack a C99 library? 1952 return ConstantFoldFP(log10, V, Ty); 1953 case Intrinsic::exp: 1954 return ConstantFoldFP(exp, V, Ty); 1955 case Intrinsic::exp2: 1956 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 1957 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 1958 case Intrinsic::sin: 1959 return ConstantFoldFP(sin, V, Ty); 1960 case Intrinsic::cos: 1961 return ConstantFoldFP(cos, V, Ty); 1962 case Intrinsic::sqrt: 1963 return ConstantFoldFP(sqrt, V, Ty); 1964 } 1965 1966 if (!TLI) 1967 return nullptr; 1968 1969 LibFunc Func = NotLibFunc; 1970 TLI->getLibFunc(Name, Func); 1971 switch (Func) { 1972 default: 1973 break; 1974 case LibFunc_acos: 1975 case LibFunc_acosf: 1976 case LibFunc_acos_finite: 1977 case LibFunc_acosf_finite: 1978 if (TLI->has(Func)) 1979 return ConstantFoldFP(acos, V, Ty); 1980 break; 1981 case LibFunc_asin: 1982 case LibFunc_asinf: 1983 case LibFunc_asin_finite: 1984 case LibFunc_asinf_finite: 1985 if (TLI->has(Func)) 1986 return ConstantFoldFP(asin, V, Ty); 1987 break; 1988 case LibFunc_atan: 1989 case LibFunc_atanf: 1990 if (TLI->has(Func)) 1991 return ConstantFoldFP(atan, V, Ty); 1992 break; 1993 case LibFunc_ceil: 1994 case LibFunc_ceilf: 1995 if (TLI->has(Func)) { 1996 U.roundToIntegral(APFloat::rmTowardPositive); 1997 return ConstantFP::get(Ty->getContext(), U); 1998 } 1999 break; 2000 case LibFunc_cos: 2001 case LibFunc_cosf: 2002 if (TLI->has(Func)) 2003 return ConstantFoldFP(cos, V, Ty); 2004 break; 2005 case LibFunc_cosh: 2006 case LibFunc_coshf: 2007 case LibFunc_cosh_finite: 2008 case LibFunc_coshf_finite: 2009 if (TLI->has(Func)) 2010 return ConstantFoldFP(cosh, V, Ty); 2011 break; 2012 case LibFunc_exp: 2013 case LibFunc_expf: 2014 case LibFunc_exp_finite: 2015 case LibFunc_expf_finite: 2016 if (TLI->has(Func)) 2017 return ConstantFoldFP(exp, V, Ty); 2018 break; 2019 case LibFunc_exp2: 2020 case LibFunc_exp2f: 2021 case LibFunc_exp2_finite: 2022 case LibFunc_exp2f_finite: 2023 if (TLI->has(Func)) 2024 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2025 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 2026 break; 2027 case LibFunc_fabs: 2028 case LibFunc_fabsf: 2029 if (TLI->has(Func)) { 2030 U.clearSign(); 2031 return ConstantFP::get(Ty->getContext(), U); 2032 } 2033 break; 2034 case LibFunc_floor: 2035 case LibFunc_floorf: 2036 if (TLI->has(Func)) { 2037 U.roundToIntegral(APFloat::rmTowardNegative); 2038 return ConstantFP::get(Ty->getContext(), U); 2039 } 2040 break; 2041 case LibFunc_log: 2042 case LibFunc_logf: 2043 case LibFunc_log_finite: 2044 case LibFunc_logf_finite: 2045 if (V > 0.0 && TLI->has(Func)) 2046 return ConstantFoldFP(log, V, Ty); 2047 break; 2048 case LibFunc_log2: 2049 case LibFunc_log2f: 2050 case LibFunc_log2_finite: 2051 case LibFunc_log2f_finite: 2052 if (V > 0.0 && TLI->has(Func)) 2053 // TODO: What about hosts that lack a C99 library? 2054 return ConstantFoldFP(Log2, V, Ty); 2055 break; 2056 case LibFunc_log10: 2057 case LibFunc_log10f: 2058 case LibFunc_log10_finite: 2059 case LibFunc_log10f_finite: 2060 if (V > 0.0 && TLI->has(Func)) 2061 // TODO: What about hosts that lack a C99 library? 2062 return ConstantFoldFP(log10, V, Ty); 2063 break; 2064 case LibFunc_nearbyint: 2065 case LibFunc_nearbyintf: 2066 case LibFunc_rint: 2067 case LibFunc_rintf: 2068 if (TLI->has(Func)) { 2069 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2070 return ConstantFP::get(Ty->getContext(), U); 2071 } 2072 break; 2073 case LibFunc_round: 2074 case LibFunc_roundf: 2075 if (TLI->has(Func)) { 2076 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2077 return ConstantFP::get(Ty->getContext(), U); 2078 } 2079 break; 2080 case LibFunc_sin: 2081 case LibFunc_sinf: 2082 if (TLI->has(Func)) 2083 return ConstantFoldFP(sin, V, Ty); 2084 break; 2085 case LibFunc_sinh: 2086 case LibFunc_sinhf: 2087 case LibFunc_sinh_finite: 2088 case LibFunc_sinhf_finite: 2089 if (TLI->has(Func)) 2090 return ConstantFoldFP(sinh, V, Ty); 2091 break; 2092 case LibFunc_sqrt: 2093 case LibFunc_sqrtf: 2094 if (V >= 0.0 && TLI->has(Func)) 2095 return ConstantFoldFP(sqrt, V, Ty); 2096 break; 2097 case LibFunc_tan: 2098 case LibFunc_tanf: 2099 if (TLI->has(Func)) 2100 return ConstantFoldFP(tan, V, Ty); 2101 break; 2102 case LibFunc_tanh: 2103 case LibFunc_tanhf: 2104 if (TLI->has(Func)) 2105 return ConstantFoldFP(tanh, V, Ty); 2106 break; 2107 case LibFunc_trunc: 2108 case LibFunc_truncf: 2109 if (TLI->has(Func)) { 2110 U.roundToIntegral(APFloat::rmTowardZero); 2111 return ConstantFP::get(Ty->getContext(), U); 2112 } 2113 break; 2114 } 2115 return nullptr; 2116 } 2117 2118 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2119 switch (IntrinsicID) { 2120 case Intrinsic::bswap: 2121 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2122 case Intrinsic::ctpop: 2123 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2124 case Intrinsic::bitreverse: 2125 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2126 case Intrinsic::convert_from_fp16: { 2127 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2128 2129 bool lost = false; 2130 APFloat::opStatus status = Val.convert( 2131 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2132 2133 // Conversion is always precise. 2134 (void)status; 2135 assert(status == APFloat::opOK && !lost && 2136 "Precision lost during fp16 constfolding"); 2137 2138 return ConstantFP::get(Ty->getContext(), Val); 2139 } 2140 default: 2141 return nullptr; 2142 } 2143 } 2144 2145 if (isa<ConstantAggregateZero>(Operands[0])) { 2146 switch (IntrinsicID) { 2147 default: break; 2148 case Intrinsic::experimental_vector_reduce_add: 2149 case Intrinsic::experimental_vector_reduce_mul: 2150 case Intrinsic::experimental_vector_reduce_and: 2151 case Intrinsic::experimental_vector_reduce_or: 2152 case Intrinsic::experimental_vector_reduce_xor: 2153 case Intrinsic::experimental_vector_reduce_smin: 2154 case Intrinsic::experimental_vector_reduce_smax: 2155 case Intrinsic::experimental_vector_reduce_umin: 2156 case Intrinsic::experimental_vector_reduce_umax: 2157 return ConstantInt::get(Ty, 0); 2158 } 2159 } 2160 2161 // Support ConstantVector in case we have an Undef in the top. 2162 if (isa<ConstantVector>(Operands[0]) || 2163 isa<ConstantDataVector>(Operands[0])) { 2164 auto *Op = cast<Constant>(Operands[0]); 2165 switch (IntrinsicID) { 2166 default: break; 2167 case Intrinsic::experimental_vector_reduce_add: 2168 case Intrinsic::experimental_vector_reduce_mul: 2169 case Intrinsic::experimental_vector_reduce_and: 2170 case Intrinsic::experimental_vector_reduce_or: 2171 case Intrinsic::experimental_vector_reduce_xor: 2172 case Intrinsic::experimental_vector_reduce_smin: 2173 case Intrinsic::experimental_vector_reduce_smax: 2174 case Intrinsic::experimental_vector_reduce_umin: 2175 case Intrinsic::experimental_vector_reduce_umax: 2176 if (Constant *C = ConstantFoldVectorReduce(IntrinsicID, Op)) 2177 return C; 2178 break; 2179 case Intrinsic::x86_sse_cvtss2si: 2180 case Intrinsic::x86_sse_cvtss2si64: 2181 case Intrinsic::x86_sse2_cvtsd2si: 2182 case Intrinsic::x86_sse2_cvtsd2si64: 2183 if (ConstantFP *FPOp = 2184 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2185 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2186 /*roundTowardZero=*/false, Ty, 2187 /*IsSigned*/true); 2188 break; 2189 case Intrinsic::x86_sse_cvttss2si: 2190 case Intrinsic::x86_sse_cvttss2si64: 2191 case Intrinsic::x86_sse2_cvttsd2si: 2192 case Intrinsic::x86_sse2_cvttsd2si64: 2193 if (ConstantFP *FPOp = 2194 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2195 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2196 /*roundTowardZero=*/true, Ty, 2197 /*IsSigned*/true); 2198 break; 2199 } 2200 } 2201 2202 return nullptr; 2203 } 2204 2205 static Constant *ConstantFoldScalarCall2(StringRef Name, 2206 Intrinsic::ID IntrinsicID, 2207 Type *Ty, 2208 ArrayRef<Constant *> Operands, 2209 const TargetLibraryInfo *TLI, 2210 const CallBase *Call) { 2211 assert(Operands.size() == 2 && "Wrong number of operands."); 2212 2213 if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2214 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2215 return nullptr; 2216 double Op1V = getValueAsDouble(Op1); 2217 2218 if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2219 if (Op2->getType() != Op1->getType()) 2220 return nullptr; 2221 2222 double Op2V = getValueAsDouble(Op2); 2223 if (IntrinsicID == Intrinsic::pow) { 2224 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2225 } 2226 if (IntrinsicID == Intrinsic::copysign) { 2227 APFloat V1 = Op1->getValueAPF(); 2228 const APFloat &V2 = Op2->getValueAPF(); 2229 V1.copySign(V2); 2230 return ConstantFP::get(Ty->getContext(), V1); 2231 } 2232 2233 if (IntrinsicID == Intrinsic::minnum) { 2234 const APFloat &C1 = Op1->getValueAPF(); 2235 const APFloat &C2 = Op2->getValueAPF(); 2236 return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); 2237 } 2238 2239 if (IntrinsicID == Intrinsic::maxnum) { 2240 const APFloat &C1 = Op1->getValueAPF(); 2241 const APFloat &C2 = Op2->getValueAPF(); 2242 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); 2243 } 2244 2245 if (IntrinsicID == Intrinsic::minimum) { 2246 const APFloat &C1 = Op1->getValueAPF(); 2247 const APFloat &C2 = Op2->getValueAPF(); 2248 return ConstantFP::get(Ty->getContext(), minimum(C1, C2)); 2249 } 2250 2251 if (IntrinsicID == Intrinsic::maximum) { 2252 const APFloat &C1 = Op1->getValueAPF(); 2253 const APFloat &C2 = Op2->getValueAPF(); 2254 return ConstantFP::get(Ty->getContext(), maximum(C1, C2)); 2255 } 2256 2257 if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) { 2258 const APFloat &C1 = Op1->getValueAPF(); 2259 const APFloat &C2 = Op2->getValueAPF(); 2260 // The legacy behaviour is that multiplying zero by anything, even NaN 2261 // or infinity, gives +0.0. 2262 if (C1.isZero() || C2.isZero()) 2263 return ConstantFP::getNullValue(Ty); 2264 return ConstantFP::get(Ty->getContext(), C1 * C2); 2265 } 2266 2267 if (!TLI) 2268 return nullptr; 2269 2270 LibFunc Func = NotLibFunc; 2271 TLI->getLibFunc(Name, Func); 2272 switch (Func) { 2273 default: 2274 break; 2275 case LibFunc_pow: 2276 case LibFunc_powf: 2277 case LibFunc_pow_finite: 2278 case LibFunc_powf_finite: 2279 if (TLI->has(Func)) 2280 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2281 break; 2282 case LibFunc_fmod: 2283 case LibFunc_fmodf: 2284 if (TLI->has(Func)) { 2285 APFloat V = Op1->getValueAPF(); 2286 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2287 return ConstantFP::get(Ty->getContext(), V); 2288 } 2289 break; 2290 case LibFunc_remainder: 2291 case LibFunc_remainderf: 2292 if (TLI->has(Func)) { 2293 APFloat V = Op1->getValueAPF(); 2294 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2295 return ConstantFP::get(Ty->getContext(), V); 2296 } 2297 break; 2298 case LibFunc_atan2: 2299 case LibFunc_atan2f: 2300 case LibFunc_atan2_finite: 2301 case LibFunc_atan2f_finite: 2302 if (TLI->has(Func)) 2303 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2304 break; 2305 } 2306 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2307 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2308 return ConstantFP::get(Ty->getContext(), 2309 APFloat((float)std::pow((float)Op1V, 2310 (int)Op2C->getZExtValue()))); 2311 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2312 return ConstantFP::get(Ty->getContext(), 2313 APFloat((float)std::pow((float)Op1V, 2314 (int)Op2C->getZExtValue()))); 2315 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2316 return ConstantFP::get(Ty->getContext(), 2317 APFloat((double)std::pow((double)Op1V, 2318 (int)Op2C->getZExtValue()))); 2319 2320 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2321 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2322 // everywhere else. 2323 2324 // scalbn is equivalent to ldexp with float radix 2 2325 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2326 APFloat::rmNearestTiesToEven); 2327 return ConstantFP::get(Ty->getContext(), Result); 2328 } 2329 } 2330 return nullptr; 2331 } 2332 2333 if (Operands[0]->getType()->isIntegerTy() && 2334 Operands[1]->getType()->isIntegerTy()) { 2335 const APInt *C0, *C1; 2336 if (!getConstIntOrUndef(Operands[0], C0) || 2337 !getConstIntOrUndef(Operands[1], C1)) 2338 return nullptr; 2339 2340 switch (IntrinsicID) { 2341 default: break; 2342 case Intrinsic::usub_with_overflow: 2343 case Intrinsic::ssub_with_overflow: 2344 case Intrinsic::uadd_with_overflow: 2345 case Intrinsic::sadd_with_overflow: 2346 // X - undef -> { undef, false } 2347 // undef - X -> { undef, false } 2348 // X + undef -> { undef, false } 2349 // undef + x -> { undef, false } 2350 if (!C0 || !C1) { 2351 return ConstantStruct::get( 2352 cast<StructType>(Ty), 2353 {UndefValue::get(Ty->getStructElementType(0)), 2354 Constant::getNullValue(Ty->getStructElementType(1))}); 2355 } 2356 LLVM_FALLTHROUGH; 2357 case Intrinsic::smul_with_overflow: 2358 case Intrinsic::umul_with_overflow: { 2359 // undef * X -> { 0, false } 2360 // X * undef -> { 0, false } 2361 if (!C0 || !C1) 2362 return Constant::getNullValue(Ty); 2363 2364 APInt Res; 2365 bool Overflow; 2366 switch (IntrinsicID) { 2367 default: llvm_unreachable("Invalid case"); 2368 case Intrinsic::sadd_with_overflow: 2369 Res = C0->sadd_ov(*C1, Overflow); 2370 break; 2371 case Intrinsic::uadd_with_overflow: 2372 Res = C0->uadd_ov(*C1, Overflow); 2373 break; 2374 case Intrinsic::ssub_with_overflow: 2375 Res = C0->ssub_ov(*C1, Overflow); 2376 break; 2377 case Intrinsic::usub_with_overflow: 2378 Res = C0->usub_ov(*C1, Overflow); 2379 break; 2380 case Intrinsic::smul_with_overflow: 2381 Res = C0->smul_ov(*C1, Overflow); 2382 break; 2383 case Intrinsic::umul_with_overflow: 2384 Res = C0->umul_ov(*C1, Overflow); 2385 break; 2386 } 2387 Constant *Ops[] = { 2388 ConstantInt::get(Ty->getContext(), Res), 2389 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2390 }; 2391 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2392 } 2393 case Intrinsic::uadd_sat: 2394 case Intrinsic::sadd_sat: 2395 if (!C0 && !C1) 2396 return UndefValue::get(Ty); 2397 if (!C0 || !C1) 2398 return Constant::getAllOnesValue(Ty); 2399 if (IntrinsicID == Intrinsic::uadd_sat) 2400 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2401 else 2402 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2403 case Intrinsic::usub_sat: 2404 case Intrinsic::ssub_sat: 2405 if (!C0 && !C1) 2406 return UndefValue::get(Ty); 2407 if (!C0 || !C1) 2408 return Constant::getNullValue(Ty); 2409 if (IntrinsicID == Intrinsic::usub_sat) 2410 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2411 else 2412 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2413 case Intrinsic::cttz: 2414 case Intrinsic::ctlz: 2415 assert(C1 && "Must be constant int"); 2416 2417 // cttz(0, 1) and ctlz(0, 1) are undef. 2418 if (C1->isOneValue() && (!C0 || C0->isNullValue())) 2419 return UndefValue::get(Ty); 2420 if (!C0) 2421 return Constant::getNullValue(Ty); 2422 if (IntrinsicID == Intrinsic::cttz) 2423 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2424 else 2425 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2426 } 2427 2428 return nullptr; 2429 } 2430 2431 // Support ConstantVector in case we have an Undef in the top. 2432 if ((isa<ConstantVector>(Operands[0]) || 2433 isa<ConstantDataVector>(Operands[0])) && 2434 // Check for default rounding mode. 2435 // FIXME: Support other rounding modes? 2436 isa<ConstantInt>(Operands[1]) && 2437 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2438 auto *Op = cast<Constant>(Operands[0]); 2439 switch (IntrinsicID) { 2440 default: break; 2441 case Intrinsic::x86_avx512_vcvtss2si32: 2442 case Intrinsic::x86_avx512_vcvtss2si64: 2443 case Intrinsic::x86_avx512_vcvtsd2si32: 2444 case Intrinsic::x86_avx512_vcvtsd2si64: 2445 if (ConstantFP *FPOp = 2446 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2447 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2448 /*roundTowardZero=*/false, Ty, 2449 /*IsSigned*/true); 2450 break; 2451 case Intrinsic::x86_avx512_vcvtss2usi32: 2452 case Intrinsic::x86_avx512_vcvtss2usi64: 2453 case Intrinsic::x86_avx512_vcvtsd2usi32: 2454 case Intrinsic::x86_avx512_vcvtsd2usi64: 2455 if (ConstantFP *FPOp = 2456 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2457 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2458 /*roundTowardZero=*/false, Ty, 2459 /*IsSigned*/false); 2460 break; 2461 case Intrinsic::x86_avx512_cvttss2si: 2462 case Intrinsic::x86_avx512_cvttss2si64: 2463 case Intrinsic::x86_avx512_cvttsd2si: 2464 case Intrinsic::x86_avx512_cvttsd2si64: 2465 if (ConstantFP *FPOp = 2466 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2467 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2468 /*roundTowardZero=*/true, Ty, 2469 /*IsSigned*/true); 2470 break; 2471 case Intrinsic::x86_avx512_cvttss2usi: 2472 case Intrinsic::x86_avx512_cvttss2usi64: 2473 case Intrinsic::x86_avx512_cvttsd2usi: 2474 case Intrinsic::x86_avx512_cvttsd2usi64: 2475 if (ConstantFP *FPOp = 2476 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2477 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2478 /*roundTowardZero=*/true, Ty, 2479 /*IsSigned*/false); 2480 break; 2481 } 2482 } 2483 return nullptr; 2484 } 2485 2486 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2487 const APFloat &S0, 2488 const APFloat &S1, 2489 const APFloat &S2) { 2490 unsigned ID; 2491 const fltSemantics &Sem = S0.getSemantics(); 2492 APFloat MA(Sem), SC(Sem), TC(Sem); 2493 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2494 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2495 // S2 < 0 2496 ID = 5; 2497 SC = -S0; 2498 } else { 2499 ID = 4; 2500 SC = S0; 2501 } 2502 MA = S2; 2503 TC = -S1; 2504 } else if (abs(S1) >= abs(S0)) { 2505 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2506 // S1 < 0 2507 ID = 3; 2508 TC = -S2; 2509 } else { 2510 ID = 2; 2511 TC = S2; 2512 } 2513 MA = S1; 2514 SC = S0; 2515 } else { 2516 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2517 // S0 < 0 2518 ID = 1; 2519 SC = S2; 2520 } else { 2521 ID = 0; 2522 SC = -S2; 2523 } 2524 MA = S0; 2525 TC = -S1; 2526 } 2527 switch (IntrinsicID) { 2528 default: 2529 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2530 case Intrinsic::amdgcn_cubeid: 2531 return APFloat(Sem, ID); 2532 case Intrinsic::amdgcn_cubema: 2533 return MA + MA; 2534 case Intrinsic::amdgcn_cubesc: 2535 return SC; 2536 case Intrinsic::amdgcn_cubetc: 2537 return TC; 2538 } 2539 } 2540 2541 static Constant *ConstantFoldScalarCall3(StringRef Name, 2542 Intrinsic::ID IntrinsicID, 2543 Type *Ty, 2544 ArrayRef<Constant *> Operands, 2545 const TargetLibraryInfo *TLI, 2546 const CallBase *Call) { 2547 assert(Operands.size() == 3 && "Wrong number of operands."); 2548 2549 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2550 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2551 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2552 switch (IntrinsicID) { 2553 default: break; 2554 case Intrinsic::fma: 2555 case Intrinsic::fmuladd: { 2556 APFloat V = Op1->getValueAPF(); 2557 V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(), 2558 APFloat::rmNearestTiesToEven); 2559 return ConstantFP::get(Ty->getContext(), V); 2560 } 2561 case Intrinsic::amdgcn_cubeid: 2562 case Intrinsic::amdgcn_cubema: 2563 case Intrinsic::amdgcn_cubesc: 2564 case Intrinsic::amdgcn_cubetc: { 2565 APFloat V = ConstantFoldAMDGCNCubeIntrinsic( 2566 IntrinsicID, Op1->getValueAPF(), Op2->getValueAPF(), 2567 Op3->getValueAPF()); 2568 return ConstantFP::get(Ty->getContext(), V); 2569 } 2570 } 2571 } 2572 } 2573 } 2574 2575 if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { 2576 if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { 2577 if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) { 2578 switch (IntrinsicID) { 2579 default: break; 2580 case Intrinsic::smul_fix: 2581 case Intrinsic::smul_fix_sat: { 2582 // This code performs rounding towards negative infinity in case the 2583 // result cannot be represented exactly for the given scale. Targets 2584 // that do care about rounding should use a target hook for specifying 2585 // how rounding should be done, and provide their own folding to be 2586 // consistent with rounding. This is the same approach as used by 2587 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2588 APInt Lhs = Op1->getValue(); 2589 APInt Rhs = Op2->getValue(); 2590 unsigned Scale = Op3->getValue().getZExtValue(); 2591 unsigned Width = Lhs.getBitWidth(); 2592 assert(Scale < Width && "Illegal scale."); 2593 unsigned ExtendedWidth = Width * 2; 2594 APInt Product = (Lhs.sextOrSelf(ExtendedWidth) * 2595 Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale); 2596 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2597 APInt MaxValue = 2598 APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2599 APInt MinValue = 2600 APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2601 Product = APIntOps::smin(Product, MaxValue); 2602 Product = APIntOps::smax(Product, MinValue); 2603 } 2604 return ConstantInt::get(Ty->getContext(), 2605 Product.sextOrTrunc(Width)); 2606 } 2607 } 2608 } 2609 } 2610 } 2611 2612 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2613 const APInt *C0, *C1, *C2; 2614 if (!getConstIntOrUndef(Operands[0], C0) || 2615 !getConstIntOrUndef(Operands[1], C1) || 2616 !getConstIntOrUndef(Operands[2], C2)) 2617 return nullptr; 2618 2619 bool IsRight = IntrinsicID == Intrinsic::fshr; 2620 if (!C2) 2621 return Operands[IsRight ? 1 : 0]; 2622 if (!C0 && !C1) 2623 return UndefValue::get(Ty); 2624 2625 // The shift amount is interpreted as modulo the bitwidth. If the shift 2626 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2627 unsigned BitWidth = C2->getBitWidth(); 2628 unsigned ShAmt = C2->urem(BitWidth); 2629 if (!ShAmt) 2630 return Operands[IsRight ? 1 : 0]; 2631 2632 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2633 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2634 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2635 if (!C0) 2636 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2637 if (!C1) 2638 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2639 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2640 } 2641 2642 return nullptr; 2643 } 2644 2645 static Constant *ConstantFoldScalarCall(StringRef Name, 2646 Intrinsic::ID IntrinsicID, 2647 Type *Ty, 2648 ArrayRef<Constant *> Operands, 2649 const TargetLibraryInfo *TLI, 2650 const CallBase *Call) { 2651 if (Operands.size() == 1) 2652 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2653 2654 if (Operands.size() == 2) 2655 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2656 2657 if (Operands.size() == 3) 2658 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2659 2660 return nullptr; 2661 } 2662 2663 static Constant *ConstantFoldVectorCall(StringRef Name, 2664 Intrinsic::ID IntrinsicID, 2665 VectorType *VTy, 2666 ArrayRef<Constant *> Operands, 2667 const DataLayout &DL, 2668 const TargetLibraryInfo *TLI, 2669 const CallBase *Call) { 2670 SmallVector<Constant *, 4> Result(VTy->getNumElements()); 2671 SmallVector<Constant *, 4> Lane(Operands.size()); 2672 Type *Ty = VTy->getElementType(); 2673 2674 // Do not iterate on scalable vector. The number of elements is unknown at 2675 // compile-time. 2676 if (isa<ScalableVectorType>(VTy)) 2677 return nullptr; 2678 2679 if (IntrinsicID == Intrinsic::masked_load) { 2680 auto *SrcPtr = Operands[0]; 2681 auto *Mask = Operands[2]; 2682 auto *Passthru = Operands[3]; 2683 2684 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); 2685 2686 SmallVector<Constant *, 32> NewElements; 2687 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 2688 auto *MaskElt = Mask->getAggregateElement(I); 2689 if (!MaskElt) 2690 break; 2691 auto *PassthruElt = Passthru->getAggregateElement(I); 2692 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2693 if (isa<UndefValue>(MaskElt)) { 2694 if (PassthruElt) 2695 NewElements.push_back(PassthruElt); 2696 else if (VecElt) 2697 NewElements.push_back(VecElt); 2698 else 2699 return nullptr; 2700 } 2701 if (MaskElt->isNullValue()) { 2702 if (!PassthruElt) 2703 return nullptr; 2704 NewElements.push_back(PassthruElt); 2705 } else if (MaskElt->isOneValue()) { 2706 if (!VecElt) 2707 return nullptr; 2708 NewElements.push_back(VecElt); 2709 } else { 2710 return nullptr; 2711 } 2712 } 2713 if (NewElements.size() != VTy->getNumElements()) 2714 return nullptr; 2715 return ConstantVector::get(NewElements); 2716 } 2717 2718 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 2719 // Gather a column of constants. 2720 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 2721 // Some intrinsics use a scalar type for certain arguments. 2722 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 2723 Lane[J] = Operands[J]; 2724 continue; 2725 } 2726 2727 Constant *Agg = Operands[J]->getAggregateElement(I); 2728 if (!Agg) 2729 return nullptr; 2730 2731 Lane[J] = Agg; 2732 } 2733 2734 // Use the regular scalar folding to simplify this column. 2735 Constant *Folded = 2736 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 2737 if (!Folded) 2738 return nullptr; 2739 Result[I] = Folded; 2740 } 2741 2742 return ConstantVector::get(Result); 2743 } 2744 2745 } // end anonymous namespace 2746 2747 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 2748 ArrayRef<Constant *> Operands, 2749 const TargetLibraryInfo *TLI) { 2750 if (Call->isNoBuiltin()) 2751 return nullptr; 2752 if (!F->hasName()) 2753 return nullptr; 2754 StringRef Name = F->getName(); 2755 2756 Type *Ty = F->getReturnType(); 2757 2758 if (auto *VTy = dyn_cast<VectorType>(Ty)) 2759 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, 2760 F->getParent()->getDataLayout(), TLI, Call); 2761 2762 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 2763 Call); 2764 } 2765 2766 bool llvm::isMathLibCallNoop(const CallBase *Call, 2767 const TargetLibraryInfo *TLI) { 2768 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 2769 // (and to some extent ConstantFoldScalarCall). 2770 if (Call->isNoBuiltin() || Call->isStrictFP()) 2771 return false; 2772 Function *F = Call->getCalledFunction(); 2773 if (!F) 2774 return false; 2775 2776 LibFunc Func; 2777 if (!TLI || !TLI->getLibFunc(*F, Func)) 2778 return false; 2779 2780 if (Call->getNumArgOperands() == 1) { 2781 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 2782 const APFloat &Op = OpC->getValueAPF(); 2783 switch (Func) { 2784 case LibFunc_logl: 2785 case LibFunc_log: 2786 case LibFunc_logf: 2787 case LibFunc_log2l: 2788 case LibFunc_log2: 2789 case LibFunc_log2f: 2790 case LibFunc_log10l: 2791 case LibFunc_log10: 2792 case LibFunc_log10f: 2793 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 2794 2795 case LibFunc_expl: 2796 case LibFunc_exp: 2797 case LibFunc_expf: 2798 // FIXME: These boundaries are slightly conservative. 2799 if (OpC->getType()->isDoubleTy()) 2800 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 2801 if (OpC->getType()->isFloatTy()) 2802 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 2803 break; 2804 2805 case LibFunc_exp2l: 2806 case LibFunc_exp2: 2807 case LibFunc_exp2f: 2808 // FIXME: These boundaries are slightly conservative. 2809 if (OpC->getType()->isDoubleTy()) 2810 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 2811 if (OpC->getType()->isFloatTy()) 2812 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 2813 break; 2814 2815 case LibFunc_sinl: 2816 case LibFunc_sin: 2817 case LibFunc_sinf: 2818 case LibFunc_cosl: 2819 case LibFunc_cos: 2820 case LibFunc_cosf: 2821 return !Op.isInfinity(); 2822 2823 case LibFunc_tanl: 2824 case LibFunc_tan: 2825 case LibFunc_tanf: { 2826 // FIXME: Stop using the host math library. 2827 // FIXME: The computation isn't done in the right precision. 2828 Type *Ty = OpC->getType(); 2829 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2830 double OpV = getValueAsDouble(OpC); 2831 return ConstantFoldFP(tan, OpV, Ty) != nullptr; 2832 } 2833 break; 2834 } 2835 2836 case LibFunc_asinl: 2837 case LibFunc_asin: 2838 case LibFunc_asinf: 2839 case LibFunc_acosl: 2840 case LibFunc_acos: 2841 case LibFunc_acosf: 2842 return !(Op < APFloat(Op.getSemantics(), "-1") || 2843 Op > APFloat(Op.getSemantics(), "1")); 2844 2845 case LibFunc_sinh: 2846 case LibFunc_cosh: 2847 case LibFunc_sinhf: 2848 case LibFunc_coshf: 2849 case LibFunc_sinhl: 2850 case LibFunc_coshl: 2851 // FIXME: These boundaries are slightly conservative. 2852 if (OpC->getType()->isDoubleTy()) 2853 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 2854 if (OpC->getType()->isFloatTy()) 2855 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 2856 break; 2857 2858 case LibFunc_sqrtl: 2859 case LibFunc_sqrt: 2860 case LibFunc_sqrtf: 2861 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 2862 2863 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 2864 // maybe others? 2865 default: 2866 break; 2867 } 2868 } 2869 } 2870 2871 if (Call->getNumArgOperands() == 2) { 2872 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 2873 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 2874 if (Op0C && Op1C) { 2875 const APFloat &Op0 = Op0C->getValueAPF(); 2876 const APFloat &Op1 = Op1C->getValueAPF(); 2877 2878 switch (Func) { 2879 case LibFunc_powl: 2880 case LibFunc_pow: 2881 case LibFunc_powf: { 2882 // FIXME: Stop using the host math library. 2883 // FIXME: The computation isn't done in the right precision. 2884 Type *Ty = Op0C->getType(); 2885 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2886 if (Ty == Op1C->getType()) { 2887 double Op0V = getValueAsDouble(Op0C); 2888 double Op1V = getValueAsDouble(Op1C); 2889 return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; 2890 } 2891 } 2892 break; 2893 } 2894 2895 case LibFunc_fmodl: 2896 case LibFunc_fmod: 2897 case LibFunc_fmodf: 2898 case LibFunc_remainderl: 2899 case LibFunc_remainder: 2900 case LibFunc_remainderf: 2901 return Op0.isNaN() || Op1.isNaN() || 2902 (!Op0.isInfinity() && !Op1.isZero()); 2903 2904 default: 2905 break; 2906 } 2907 } 2908 } 2909 2910 return false; 2911 } 2912 2913 void TargetFolder::anchor() {} 2914