1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/IntrinsicsAArch64.h" 45 #include "llvm/IR/IntrinsicsAMDGPU.h" 46 #include "llvm/IR/IntrinsicsARM.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MathExtras.h" 56 #include <cassert> 57 #include <cerrno> 58 #include <cfenv> 59 #include <cmath> 60 #include <cstdint> 61 62 using namespace llvm; 63 64 namespace { 65 66 //===----------------------------------------------------------------------===// 67 // Constant Folding internal helper functions 68 //===----------------------------------------------------------------------===// 69 70 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 71 Constant *C, Type *SrcEltTy, 72 unsigned NumSrcElts, 73 const DataLayout &DL) { 74 // Now that we know that the input value is a vector of integers, just shift 75 // and insert them into our result. 76 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 77 for (unsigned i = 0; i != NumSrcElts; ++i) { 78 Constant *Element; 79 if (DL.isLittleEndian()) 80 Element = C->getAggregateElement(NumSrcElts - i - 1); 81 else 82 Element = C->getAggregateElement(i); 83 84 if (Element && isa<UndefValue>(Element)) { 85 Result <<= BitShift; 86 continue; 87 } 88 89 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 90 if (!ElementCI) 91 return ConstantExpr::getBitCast(C, DestTy); 92 93 Result <<= BitShift; 94 Result |= ElementCI->getValue().zext(Result.getBitWidth()); 95 } 96 97 return nullptr; 98 } 99 100 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 101 /// This always returns a non-null constant, but it may be a 102 /// ConstantExpr if unfoldable. 103 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 104 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 105 "Invalid constantexpr bitcast!"); 106 107 // Catch the obvious splat cases. 108 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 109 return Res; 110 111 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 112 // Handle a vector->scalar integer/fp cast. 113 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 114 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 115 Type *SrcEltTy = VTy->getElementType(); 116 117 // If the vector is a vector of floating point, convert it to vector of int 118 // to simplify things. 119 if (SrcEltTy->isFloatingPointTy()) { 120 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 121 auto *SrcIVTy = FixedVectorType::get( 122 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 123 // Ask IR to do the conversion now that #elts line up. 124 C = ConstantExpr::getBitCast(C, SrcIVTy); 125 } 126 127 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 128 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 129 SrcEltTy, NumSrcElts, DL)) 130 return CE; 131 132 if (isa<IntegerType>(DestTy)) 133 return ConstantInt::get(DestTy, Result); 134 135 APFloat FP(DestTy->getFltSemantics(), Result); 136 return ConstantFP::get(DestTy->getContext(), FP); 137 } 138 } 139 140 // The code below only handles casts to vectors currently. 141 auto *DestVTy = dyn_cast<VectorType>(DestTy); 142 if (!DestVTy) 143 return ConstantExpr::getBitCast(C, DestTy); 144 145 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 146 // vector so the code below can handle it uniformly. 147 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 148 Constant *Ops = C; // don't take the address of C! 149 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 150 } 151 152 // If this is a bitcast from constant vector -> vector, fold it. 153 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 154 return ConstantExpr::getBitCast(C, DestTy); 155 156 // If the element types match, IR can fold it. 157 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 158 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 159 if (NumDstElt == NumSrcElt) 160 return ConstantExpr::getBitCast(C, DestTy); 161 162 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 163 Type *DstEltTy = DestVTy->getElementType(); 164 165 // Otherwise, we're changing the number of elements in a vector, which 166 // requires endianness information to do the right thing. For example, 167 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 168 // folds to (little endian): 169 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 170 // and to (big endian): 171 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 172 173 // First thing is first. We only want to think about integer here, so if 174 // we have something in FP form, recast it as integer. 175 if (DstEltTy->isFloatingPointTy()) { 176 // Fold to an vector of integers with same size as our FP type. 177 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 178 auto *DestIVTy = FixedVectorType::get( 179 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 180 // Recursively handle this integer conversion, if possible. 181 C = FoldBitCast(C, DestIVTy, DL); 182 183 // Finally, IR can handle this now that #elts line up. 184 return ConstantExpr::getBitCast(C, DestTy); 185 } 186 187 // Okay, we know the destination is integer, if the input is FP, convert 188 // it to integer first. 189 if (SrcEltTy->isFloatingPointTy()) { 190 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 191 auto *SrcIVTy = FixedVectorType::get( 192 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 193 // Ask IR to do the conversion now that #elts line up. 194 C = ConstantExpr::getBitCast(C, SrcIVTy); 195 // If IR wasn't able to fold it, bail out. 196 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 197 !isa<ConstantDataVector>(C)) 198 return C; 199 } 200 201 // Now we know that the input and output vectors are both integer vectors 202 // of the same size, and that their #elements is not the same. Do the 203 // conversion here, which depends on whether the input or output has 204 // more elements. 205 bool isLittleEndian = DL.isLittleEndian(); 206 207 SmallVector<Constant*, 32> Result; 208 if (NumDstElt < NumSrcElt) { 209 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 210 Constant *Zero = Constant::getNullValue(DstEltTy); 211 unsigned Ratio = NumSrcElt/NumDstElt; 212 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 213 unsigned SrcElt = 0; 214 for (unsigned i = 0; i != NumDstElt; ++i) { 215 // Build each element of the result. 216 Constant *Elt = Zero; 217 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 218 for (unsigned j = 0; j != Ratio; ++j) { 219 Constant *Src = C->getAggregateElement(SrcElt++); 220 if (Src && isa<UndefValue>(Src)) 221 Src = Constant::getNullValue( 222 cast<VectorType>(C->getType())->getElementType()); 223 else 224 Src = dyn_cast_or_null<ConstantInt>(Src); 225 if (!Src) // Reject constantexpr elements. 226 return ConstantExpr::getBitCast(C, DestTy); 227 228 // Zero extend the element to the right size. 229 Src = ConstantExpr::getZExt(Src, Elt->getType()); 230 231 // Shift it to the right place, depending on endianness. 232 Src = ConstantExpr::getShl(Src, 233 ConstantInt::get(Src->getType(), ShiftAmt)); 234 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 235 236 // Mix it in. 237 Elt = ConstantExpr::getOr(Elt, Src); 238 } 239 Result.push_back(Elt); 240 } 241 return ConstantVector::get(Result); 242 } 243 244 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 245 unsigned Ratio = NumDstElt/NumSrcElt; 246 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 247 248 // Loop over each source value, expanding into multiple results. 249 for (unsigned i = 0; i != NumSrcElt; ++i) { 250 auto *Element = C->getAggregateElement(i); 251 252 if (!Element) // Reject constantexpr elements. 253 return ConstantExpr::getBitCast(C, DestTy); 254 255 if (isa<UndefValue>(Element)) { 256 // Correctly Propagate undef values. 257 Result.append(Ratio, UndefValue::get(DstEltTy)); 258 continue; 259 } 260 261 auto *Src = dyn_cast<ConstantInt>(Element); 262 if (!Src) 263 return ConstantExpr::getBitCast(C, DestTy); 264 265 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 266 for (unsigned j = 0; j != Ratio; ++j) { 267 // Shift the piece of the value into the right place, depending on 268 // endianness. 269 Constant *Elt = ConstantExpr::getLShr(Src, 270 ConstantInt::get(Src->getType(), ShiftAmt)); 271 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 272 273 // Truncate the element to an integer with the same pointer size and 274 // convert the element back to a pointer using a inttoptr. 275 if (DstEltTy->isPointerTy()) { 276 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 277 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 278 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 279 continue; 280 } 281 282 // Truncate and remember this piece. 283 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 284 } 285 } 286 287 return ConstantVector::get(Result); 288 } 289 290 } // end anonymous namespace 291 292 /// If this constant is a constant offset from a global, return the global and 293 /// the constant. Because of constantexprs, this function is recursive. 294 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 295 APInt &Offset, const DataLayout &DL, 296 DSOLocalEquivalent **DSOEquiv) { 297 if (DSOEquiv) 298 *DSOEquiv = nullptr; 299 300 // Trivial case, constant is the global. 301 if ((GV = dyn_cast<GlobalValue>(C))) { 302 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 303 Offset = APInt(BitWidth, 0); 304 return true; 305 } 306 307 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 308 if (DSOEquiv) 309 *DSOEquiv = FoundDSOEquiv; 310 GV = FoundDSOEquiv->getGlobalValue(); 311 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 312 Offset = APInt(BitWidth, 0); 313 return true; 314 } 315 316 // Otherwise, if this isn't a constant expr, bail out. 317 auto *CE = dyn_cast<ConstantExpr>(C); 318 if (!CE) return false; 319 320 // Look through ptr->int and ptr->ptr casts. 321 if (CE->getOpcode() == Instruction::PtrToInt || 322 CE->getOpcode() == Instruction::BitCast) 323 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 324 DSOEquiv); 325 326 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 327 auto *GEP = dyn_cast<GEPOperator>(CE); 328 if (!GEP) 329 return false; 330 331 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 332 APInt TmpOffset(BitWidth, 0); 333 334 // If the base isn't a global+constant, we aren't either. 335 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 336 DSOEquiv)) 337 return false; 338 339 // Otherwise, add any offset that our operands provide. 340 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 341 return false; 342 343 Offset = TmpOffset; 344 return true; 345 } 346 347 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 348 const DataLayout &DL) { 349 do { 350 Type *SrcTy = C->getType(); 351 if (SrcTy == DestTy) 352 return C; 353 354 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 355 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 356 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 357 return nullptr; 358 359 // Catch the obvious splat cases (since all-zeros can coerce non-integral 360 // pointers legally). 361 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 362 return Res; 363 364 // If the type sizes are the same and a cast is legal, just directly 365 // cast the constant. 366 // But be careful not to coerce non-integral pointers illegally. 367 if (SrcSize == DestSize && 368 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 369 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 370 Instruction::CastOps Cast = Instruction::BitCast; 371 // If we are going from a pointer to int or vice versa, we spell the cast 372 // differently. 373 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 374 Cast = Instruction::IntToPtr; 375 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 376 Cast = Instruction::PtrToInt; 377 378 if (CastInst::castIsValid(Cast, C, DestTy)) 379 return ConstantExpr::getCast(Cast, C, DestTy); 380 } 381 382 // If this isn't an aggregate type, there is nothing we can do to drill down 383 // and find a bitcastable constant. 384 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 385 return nullptr; 386 387 // We're simulating a load through a pointer that was bitcast to point to 388 // a different type, so we can try to walk down through the initial 389 // elements of an aggregate to see if some part of the aggregate is 390 // castable to implement the "load" semantic model. 391 if (SrcTy->isStructTy()) { 392 // Struct types might have leading zero-length elements like [0 x i32], 393 // which are certainly not what we are looking for, so skip them. 394 unsigned Elem = 0; 395 Constant *ElemC; 396 do { 397 ElemC = C->getAggregateElement(Elem++); 398 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 399 C = ElemC; 400 } else { 401 // For non-byte-sized vector elements, the first element is not 402 // necessarily located at the vector base address. 403 if (auto *VT = dyn_cast<VectorType>(SrcTy)) 404 if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) 405 return nullptr; 406 407 C = C->getAggregateElement(0u); 408 } 409 } while (C); 410 411 return nullptr; 412 } 413 414 namespace { 415 416 /// Recursive helper to read bits out of global. C is the constant being copied 417 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 418 /// results into and BytesLeft is the number of bytes left in 419 /// the CurPtr buffer. DL is the DataLayout. 420 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 421 unsigned BytesLeft, const DataLayout &DL) { 422 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 423 "Out of range access"); 424 425 // If this element is zero or undefined, we can just return since *CurPtr is 426 // zero initialized. 427 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 428 return true; 429 430 if (auto *CI = dyn_cast<ConstantInt>(C)) { 431 if (CI->getBitWidth() > 64 || 432 (CI->getBitWidth() & 7) != 0) 433 return false; 434 435 uint64_t Val = CI->getZExtValue(); 436 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 437 438 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 439 int n = ByteOffset; 440 if (!DL.isLittleEndian()) 441 n = IntBytes - n - 1; 442 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 443 ++ByteOffset; 444 } 445 return true; 446 } 447 448 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 449 if (CFP->getType()->isDoubleTy()) { 450 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 451 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 452 } 453 if (CFP->getType()->isFloatTy()){ 454 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 455 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 456 } 457 if (CFP->getType()->isHalfTy()){ 458 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 459 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 460 } 461 return false; 462 } 463 464 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 465 const StructLayout *SL = DL.getStructLayout(CS->getType()); 466 unsigned Index = SL->getElementContainingOffset(ByteOffset); 467 uint64_t CurEltOffset = SL->getElementOffset(Index); 468 ByteOffset -= CurEltOffset; 469 470 while (true) { 471 // If the element access is to the element itself and not to tail padding, 472 // read the bytes from the element. 473 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 474 475 if (ByteOffset < EltSize && 476 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 477 BytesLeft, DL)) 478 return false; 479 480 ++Index; 481 482 // Check to see if we read from the last struct element, if so we're done. 483 if (Index == CS->getType()->getNumElements()) 484 return true; 485 486 // If we read all of the bytes we needed from this element we're done. 487 uint64_t NextEltOffset = SL->getElementOffset(Index); 488 489 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 490 return true; 491 492 // Move to the next element of the struct. 493 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 494 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 495 ByteOffset = 0; 496 CurEltOffset = NextEltOffset; 497 } 498 // not reached. 499 } 500 501 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 502 isa<ConstantDataSequential>(C)) { 503 uint64_t NumElts; 504 Type *EltTy; 505 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 506 NumElts = AT->getNumElements(); 507 EltTy = AT->getElementType(); 508 } else { 509 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 510 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 511 } 512 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 513 uint64_t Index = ByteOffset / EltSize; 514 uint64_t Offset = ByteOffset - Index * EltSize; 515 516 for (; Index != NumElts; ++Index) { 517 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 518 BytesLeft, DL)) 519 return false; 520 521 uint64_t BytesWritten = EltSize - Offset; 522 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 523 if (BytesWritten >= BytesLeft) 524 return true; 525 526 Offset = 0; 527 BytesLeft -= BytesWritten; 528 CurPtr += BytesWritten; 529 } 530 return true; 531 } 532 533 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 534 if (CE->getOpcode() == Instruction::IntToPtr && 535 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 536 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 537 BytesLeft, DL); 538 } 539 } 540 541 // Otherwise, unknown initializer type. 542 return false; 543 } 544 545 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 546 int64_t Offset, const DataLayout &DL) { 547 // Bail out early. Not expect to load from scalable global variable. 548 if (isa<ScalableVectorType>(LoadTy)) 549 return nullptr; 550 551 auto *IntType = dyn_cast<IntegerType>(LoadTy); 552 553 // If this isn't an integer load we can't fold it directly. 554 if (!IntType) { 555 // If this is a non-integer load, we can try folding it as an int load and 556 // then bitcast the result. This can be useful for union cases. Note 557 // that address spaces don't matter here since we're not going to result in 558 // an actual new load. 559 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && 560 !LoadTy->isVectorTy()) 561 return nullptr; 562 563 Type *MapTy = Type::getIntNTy( 564 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 565 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 566 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 567 !LoadTy->isX86_AMXTy()) 568 // Materializing a zero can be done trivially without a bitcast 569 return Constant::getNullValue(LoadTy); 570 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 571 Res = FoldBitCast(Res, CastTy, DL); 572 if (LoadTy->isPtrOrPtrVectorTy()) { 573 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 574 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 575 !LoadTy->isX86_AMXTy()) 576 return Constant::getNullValue(LoadTy); 577 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 578 // Be careful not to replace a load of an addrspace value with an inttoptr here 579 return nullptr; 580 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 581 } 582 return Res; 583 } 584 return nullptr; 585 } 586 587 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 588 if (BytesLoaded > 32 || BytesLoaded == 0) 589 return nullptr; 590 591 // If we're not accessing anything in this constant, the result is undefined. 592 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 593 return UndefValue::get(IntType); 594 595 // TODO: We should be able to support scalable types. 596 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType()); 597 if (InitializerSize.isScalable()) 598 return nullptr; 599 600 // If we're not accessing anything in this constant, the result is undefined. 601 if (Offset >= (int64_t)InitializerSize.getFixedValue()) 602 return UndefValue::get(IntType); 603 604 unsigned char RawBytes[32] = {0}; 605 unsigned char *CurPtr = RawBytes; 606 unsigned BytesLeft = BytesLoaded; 607 608 // If we're loading off the beginning of the global, some bytes may be valid. 609 if (Offset < 0) { 610 CurPtr += -Offset; 611 BytesLeft += Offset; 612 Offset = 0; 613 } 614 615 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 616 return nullptr; 617 618 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 619 if (DL.isLittleEndian()) { 620 ResultVal = RawBytes[BytesLoaded - 1]; 621 for (unsigned i = 1; i != BytesLoaded; ++i) { 622 ResultVal <<= 8; 623 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 624 } 625 } else { 626 ResultVal = RawBytes[0]; 627 for (unsigned i = 1; i != BytesLoaded; ++i) { 628 ResultVal <<= 8; 629 ResultVal |= RawBytes[i]; 630 } 631 } 632 633 return ConstantInt::get(IntType->getContext(), ResultVal); 634 } 635 636 /// If this Offset points exactly to the start of an aggregate element, return 637 /// that element, otherwise return nullptr. 638 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 639 const DataLayout &DL) { 640 if (Offset.isZero()) 641 return Base; 642 643 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 644 return nullptr; 645 646 Type *ElemTy = Base->getType(); 647 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 648 if (!Offset.isZero() || !Indices[0].isZero()) 649 return nullptr; 650 651 Constant *C = Base; 652 for (const APInt &Index : drop_begin(Indices)) { 653 if (Index.isNegative() || Index.getActiveBits() >= 32) 654 return nullptr; 655 656 C = C->getAggregateElement(Index.getZExtValue()); 657 if (!C) 658 return nullptr; 659 } 660 661 return C; 662 } 663 664 } // end anonymous namespace 665 666 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 667 const APInt &Offset, 668 const DataLayout &DL) { 669 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 670 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 671 return Result; 672 673 // Explicitly check for out-of-bounds access, so we return undef even if the 674 // constant is a uniform value. 675 TypeSize Size = DL.getTypeAllocSize(C->getType()); 676 if (!Size.isScalable() && Offset.sge(Size.getFixedSize())) 677 return UndefValue::get(Ty); 678 679 // Try an offset-independent fold of a uniform value. 680 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty)) 681 return Result; 682 683 // Try hard to fold loads from bitcasted strange and non-type-safe things. 684 if (Offset.getMinSignedBits() <= 64) 685 if (Constant *Result = 686 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) 687 return Result; 688 689 return nullptr; 690 } 691 692 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 693 const DataLayout &DL) { 694 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 695 } 696 697 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 698 APInt Offset, 699 const DataLayout &DL) { 700 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 701 DL, Offset, /* AllowNonInbounds */ true)); 702 703 if (auto *GV = dyn_cast<GlobalVariable>(C)) 704 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 705 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 706 Offset, DL)) 707 return Result; 708 709 // If this load comes from anywhere in a uniform constant global, the value 710 // is always the same, regardless of the loaded offset. 711 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) { 712 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 713 if (Constant *Res = 714 ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty)) 715 return Res; 716 } 717 } 718 719 return nullptr; 720 } 721 722 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 723 const DataLayout &DL) { 724 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 725 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL); 726 } 727 728 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) { 729 if (isa<PoisonValue>(C)) 730 return PoisonValue::get(Ty); 731 if (isa<UndefValue>(C)) 732 return UndefValue::get(Ty); 733 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) 734 return Constant::getNullValue(Ty); 735 if (C->isAllOnesValue() && 736 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) 737 return Constant::getAllOnesValue(Ty); 738 return nullptr; 739 } 740 741 namespace { 742 743 /// One of Op0/Op1 is a constant expression. 744 /// Attempt to symbolically evaluate the result of a binary operator merging 745 /// these together. If target data info is available, it is provided as DL, 746 /// otherwise DL is null. 747 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 748 const DataLayout &DL) { 749 // SROA 750 751 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 752 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 753 // bits. 754 755 if (Opc == Instruction::And) { 756 KnownBits Known0 = computeKnownBits(Op0, DL); 757 KnownBits Known1 = computeKnownBits(Op1, DL); 758 if ((Known1.One | Known0.Zero).isAllOnes()) { 759 // All the bits of Op0 that the 'and' could be masking are already zero. 760 return Op0; 761 } 762 if ((Known0.One | Known1.Zero).isAllOnes()) { 763 // All the bits of Op1 that the 'and' could be masking are already zero. 764 return Op1; 765 } 766 767 Known0 &= Known1; 768 if (Known0.isConstant()) 769 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 770 } 771 772 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 773 // constant. This happens frequently when iterating over a global array. 774 if (Opc == Instruction::Sub) { 775 GlobalValue *GV1, *GV2; 776 APInt Offs1, Offs2; 777 778 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 779 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 780 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 781 782 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 783 // PtrToInt may change the bitwidth so we have convert to the right size 784 // first. 785 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 786 Offs2.zextOrTrunc(OpSize)); 787 } 788 } 789 790 return nullptr; 791 } 792 793 /// If array indices are not pointer-sized integers, explicitly cast them so 794 /// that they aren't implicitly casted by the getelementptr. 795 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 796 Type *ResultTy, Optional<unsigned> InRangeIndex, 797 const DataLayout &DL, const TargetLibraryInfo *TLI) { 798 Type *IntIdxTy = DL.getIndexType(ResultTy); 799 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 800 801 bool Any = false; 802 SmallVector<Constant*, 32> NewIdxs; 803 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 804 if ((i == 1 || 805 !isa<StructType>(GetElementPtrInst::getIndexedType( 806 SrcElemTy, Ops.slice(1, i - 1)))) && 807 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 808 Any = true; 809 Type *NewType = Ops[i]->getType()->isVectorTy() 810 ? IntIdxTy 811 : IntIdxScalarTy; 812 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 813 true, 814 NewType, 815 true), 816 Ops[i], NewType)); 817 } else 818 NewIdxs.push_back(Ops[i]); 819 } 820 821 if (!Any) 822 return nullptr; 823 824 Constant *C = ConstantExpr::getGetElementPtr( 825 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 826 return ConstantFoldConstant(C, DL, TLI); 827 } 828 829 /// Strip the pointer casts, but preserve the address space information. 830 Constant *StripPtrCastKeepAS(Constant *Ptr) { 831 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 832 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 833 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 834 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 835 836 // Preserve the address space number of the pointer. 837 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 838 Ptr = ConstantExpr::getPointerCast( 839 Ptr, PointerType::getWithSamePointeeType(NewPtrTy, 840 OldPtrTy->getAddressSpace())); 841 } 842 return Ptr; 843 } 844 845 /// If we can symbolically evaluate the GEP constant expression, do so. 846 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 847 ArrayRef<Constant *> Ops, 848 const DataLayout &DL, 849 const TargetLibraryInfo *TLI) { 850 const GEPOperator *InnermostGEP = GEP; 851 bool InBounds = GEP->isInBounds(); 852 853 Type *SrcElemTy = GEP->getSourceElementType(); 854 Type *ResElemTy = GEP->getResultElementType(); 855 Type *ResTy = GEP->getType(); 856 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 857 return nullptr; 858 859 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 860 GEP->getInRangeIndex(), DL, TLI)) 861 return C; 862 863 Constant *Ptr = Ops[0]; 864 if (!Ptr->getType()->isPointerTy()) 865 return nullptr; 866 867 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 868 869 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 870 if (!isa<ConstantInt>(Ops[i])) 871 return nullptr; 872 873 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 874 APInt Offset = 875 APInt(BitWidth, 876 DL.getIndexedOffsetInType( 877 SrcElemTy, 878 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 879 Ptr = StripPtrCastKeepAS(Ptr); 880 881 // If this is a GEP of a GEP, fold it all into a single GEP. 882 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 883 InnermostGEP = GEP; 884 InBounds &= GEP->isInBounds(); 885 886 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 887 888 // Do not try the incorporate the sub-GEP if some index is not a number. 889 bool AllConstantInt = true; 890 for (Value *NestedOp : NestedOps) 891 if (!isa<ConstantInt>(NestedOp)) { 892 AllConstantInt = false; 893 break; 894 } 895 if (!AllConstantInt) 896 break; 897 898 Ptr = cast<Constant>(GEP->getOperand(0)); 899 SrcElemTy = GEP->getSourceElementType(); 900 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 901 Ptr = StripPtrCastKeepAS(Ptr); 902 } 903 904 // If the base value for this address is a literal integer value, fold the 905 // getelementptr to the resulting integer value casted to the pointer type. 906 APInt BasePtr(BitWidth, 0); 907 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 908 if (CE->getOpcode() == Instruction::IntToPtr) { 909 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 910 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 911 } 912 } 913 914 auto *PTy = cast<PointerType>(Ptr->getType()); 915 if ((Ptr->isNullValue() || BasePtr != 0) && 916 !DL.isNonIntegralPointerType(PTy)) { 917 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 918 return ConstantExpr::getIntToPtr(C, ResTy); 919 } 920 921 // Otherwise form a regular getelementptr. Recompute the indices so that 922 // we eliminate over-indexing of the notional static type array bounds. 923 // This makes it easy to determine if the getelementptr is "inbounds". 924 // Also, this helps GlobalOpt do SROA on GlobalVariables. 925 926 // For GEPs of GlobalValues, use the value type even for opaque pointers. 927 // Otherwise use an i8 GEP. 928 if (auto *GV = dyn_cast<GlobalValue>(Ptr)) 929 SrcElemTy = GV->getValueType(); 930 else if (!PTy->isOpaque()) 931 SrcElemTy = PTy->getNonOpaquePointerElementType(); 932 else 933 SrcElemTy = Type::getInt8Ty(Ptr->getContext()); 934 935 if (!SrcElemTy->isSized()) 936 return nullptr; 937 938 Type *ElemTy = SrcElemTy; 939 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 940 if (Offset != 0) 941 return nullptr; 942 943 // Try to add additional zero indices to reach the desired result element 944 // type. 945 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and 946 // we'll have to insert a bitcast anyway? 947 while (ElemTy != ResElemTy) { 948 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); 949 if (!NextTy) 950 break; 951 952 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); 953 ElemTy = NextTy; 954 } 955 956 SmallVector<Constant *, 32> NewIdxs; 957 for (const APInt &Index : Indices) 958 NewIdxs.push_back(ConstantInt::get( 959 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); 960 961 // Preserve the inrange index from the innermost GEP if possible. We must 962 // have calculated the same indices up to and including the inrange index. 963 Optional<unsigned> InRangeIndex; 964 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 965 if (SrcElemTy == InnermostGEP->getSourceElementType() && 966 NewIdxs.size() > *LastIRIndex) { 967 InRangeIndex = LastIRIndex; 968 for (unsigned I = 0; I <= *LastIRIndex; ++I) 969 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 970 return nullptr; 971 } 972 973 // Create a GEP. 974 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 975 InBounds, InRangeIndex); 976 assert( 977 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && 978 "Computed GetElementPtr has unexpected type!"); 979 980 // If we ended up indexing a member with a type that doesn't match 981 // the type of what the original indices indexed, add a cast. 982 if (C->getType() != ResTy) 983 C = FoldBitCast(C, ResTy, DL); 984 985 return C; 986 } 987 988 /// Attempt to constant fold an instruction with the 989 /// specified opcode and operands. If successful, the constant result is 990 /// returned, if not, null is returned. Note that this function can fail when 991 /// attempting to fold instructions like loads and stores, which have no 992 /// constant expression form. 993 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 994 ArrayRef<Constant *> Ops, 995 const DataLayout &DL, 996 const TargetLibraryInfo *TLI) { 997 Type *DestTy = InstOrCE->getType(); 998 999 if (Instruction::isUnaryOp(Opcode)) 1000 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1001 1002 if (Instruction::isBinaryOp(Opcode)) 1003 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1004 1005 if (Instruction::isCast(Opcode)) 1006 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1007 1008 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1009 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1010 return C; 1011 1012 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1013 Ops.slice(1), GEP->isInBounds(), 1014 GEP->getInRangeIndex()); 1015 } 1016 1017 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1018 return CE->getWithOperands(Ops); 1019 1020 switch (Opcode) { 1021 default: return nullptr; 1022 case Instruction::ICmp: 1023 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1024 case Instruction::Freeze: 1025 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1026 case Instruction::Call: 1027 if (auto *F = dyn_cast<Function>(Ops.back())) { 1028 const auto *Call = cast<CallBase>(InstOrCE); 1029 if (canConstantFoldCallTo(Call, F)) 1030 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1031 } 1032 return nullptr; 1033 case Instruction::Select: 1034 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1035 case Instruction::ExtractElement: 1036 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1037 case Instruction::ExtractValue: 1038 return ConstantExpr::getExtractValue( 1039 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1040 case Instruction::InsertElement: 1041 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1042 case Instruction::ShuffleVector: 1043 return ConstantExpr::getShuffleVector( 1044 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1045 } 1046 } 1047 1048 } // end anonymous namespace 1049 1050 //===----------------------------------------------------------------------===// 1051 // Constant Folding public APIs 1052 //===----------------------------------------------------------------------===// 1053 1054 namespace { 1055 1056 Constant * 1057 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1058 const TargetLibraryInfo *TLI, 1059 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1060 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1061 return const_cast<Constant *>(C); 1062 1063 SmallVector<Constant *, 8> Ops; 1064 for (const Use &OldU : C->operands()) { 1065 Constant *OldC = cast<Constant>(&OldU); 1066 Constant *NewC = OldC; 1067 // Recursively fold the ConstantExpr's operands. If we have already folded 1068 // a ConstantExpr, we don't have to process it again. 1069 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1070 auto It = FoldedOps.find(OldC); 1071 if (It == FoldedOps.end()) { 1072 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1073 FoldedOps.insert({OldC, NewC}); 1074 } else { 1075 NewC = It->second; 1076 } 1077 } 1078 Ops.push_back(NewC); 1079 } 1080 1081 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1082 if (CE->isCompare()) 1083 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1084 DL, TLI); 1085 1086 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1087 } 1088 1089 assert(isa<ConstantVector>(C)); 1090 return ConstantVector::get(Ops); 1091 } 1092 1093 } // end anonymous namespace 1094 1095 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1096 const TargetLibraryInfo *TLI) { 1097 // Handle PHI nodes quickly here... 1098 if (auto *PN = dyn_cast<PHINode>(I)) { 1099 Constant *CommonValue = nullptr; 1100 1101 SmallDenseMap<Constant *, Constant *> FoldedOps; 1102 for (Value *Incoming : PN->incoming_values()) { 1103 // If the incoming value is undef then skip it. Note that while we could 1104 // skip the value if it is equal to the phi node itself we choose not to 1105 // because that would break the rule that constant folding only applies if 1106 // all operands are constants. 1107 if (isa<UndefValue>(Incoming)) 1108 continue; 1109 // If the incoming value is not a constant, then give up. 1110 auto *C = dyn_cast<Constant>(Incoming); 1111 if (!C) 1112 return nullptr; 1113 // Fold the PHI's operands. 1114 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1115 // If the incoming value is a different constant to 1116 // the one we saw previously, then give up. 1117 if (CommonValue && C != CommonValue) 1118 return nullptr; 1119 CommonValue = C; 1120 } 1121 1122 // If we reach here, all incoming values are the same constant or undef. 1123 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1124 } 1125 1126 // Scan the operand list, checking to see if they are all constants, if so, 1127 // hand off to ConstantFoldInstOperandsImpl. 1128 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1129 return nullptr; 1130 1131 SmallDenseMap<Constant *, Constant *> FoldedOps; 1132 SmallVector<Constant *, 8> Ops; 1133 for (const Use &OpU : I->operands()) { 1134 auto *Op = cast<Constant>(&OpU); 1135 // Fold the Instruction's operands. 1136 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1137 Ops.push_back(Op); 1138 } 1139 1140 if (const auto *CI = dyn_cast<CmpInst>(I)) 1141 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1142 DL, TLI); 1143 1144 if (const auto *LI = dyn_cast<LoadInst>(I)) { 1145 if (LI->isVolatile()) 1146 return nullptr; 1147 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1148 } 1149 1150 if (auto *IVI = dyn_cast<InsertValueInst>(I)) 1151 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices()); 1152 1153 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) 1154 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices()); 1155 1156 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1157 } 1158 1159 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1160 const TargetLibraryInfo *TLI) { 1161 SmallDenseMap<Constant *, Constant *> FoldedOps; 1162 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1163 } 1164 1165 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1166 ArrayRef<Constant *> Ops, 1167 const DataLayout &DL, 1168 const TargetLibraryInfo *TLI) { 1169 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1170 } 1171 1172 Constant *llvm::ConstantFoldCompareInstOperands(unsigned IntPredicate, 1173 Constant *Ops0, Constant *Ops1, 1174 const DataLayout &DL, 1175 const TargetLibraryInfo *TLI) { 1176 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; 1177 // fold: icmp (inttoptr x), null -> icmp x, 0 1178 // fold: icmp null, (inttoptr x) -> icmp 0, x 1179 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1180 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1181 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1182 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1183 // 1184 // FIXME: The following comment is out of data and the DataLayout is here now. 1185 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1186 // around to know if bit truncation is happening. 1187 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1188 if (Ops1->isNullValue()) { 1189 if (CE0->getOpcode() == Instruction::IntToPtr) { 1190 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1191 // Convert the integer value to the right size to ensure we get the 1192 // proper extension or truncation. 1193 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1194 IntPtrTy, false); 1195 Constant *Null = Constant::getNullValue(C->getType()); 1196 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1197 } 1198 1199 // Only do this transformation if the int is intptrty in size, otherwise 1200 // there is a truncation or extension that we aren't modeling. 1201 if (CE0->getOpcode() == Instruction::PtrToInt) { 1202 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1203 if (CE0->getType() == IntPtrTy) { 1204 Constant *C = CE0->getOperand(0); 1205 Constant *Null = Constant::getNullValue(C->getType()); 1206 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1207 } 1208 } 1209 } 1210 1211 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1212 if (CE0->getOpcode() == CE1->getOpcode()) { 1213 if (CE0->getOpcode() == Instruction::IntToPtr) { 1214 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1215 1216 // Convert the integer value to the right size to ensure we get the 1217 // proper extension or truncation. 1218 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1219 IntPtrTy, false); 1220 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1221 IntPtrTy, false); 1222 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1223 } 1224 1225 // Only do this transformation if the int is intptrty in size, otherwise 1226 // there is a truncation or extension that we aren't modeling. 1227 if (CE0->getOpcode() == Instruction::PtrToInt) { 1228 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1229 if (CE0->getType() == IntPtrTy && 1230 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1231 return ConstantFoldCompareInstOperands( 1232 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1233 } 1234 } 1235 } 1236 } 1237 1238 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1239 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1240 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1241 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1242 Constant *LHS = ConstantFoldCompareInstOperands( 1243 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1244 Constant *RHS = ConstantFoldCompareInstOperands( 1245 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1246 unsigned OpC = 1247 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1248 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1249 } 1250 1251 // Convert pointer comparison (base+offset1) pred (base+offset2) into 1252 // offset1 pred offset2, for the case where the offset is inbounds. This 1253 // only works for equality and unsigned comparison, as inbounds permits 1254 // crossing the sign boundary. However, the offset comparison itself is 1255 // signed. 1256 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { 1257 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); 1258 APInt Offset0(IndexWidth, 0); 1259 Value *Stripped0 = 1260 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); 1261 APInt Offset1(IndexWidth, 0); 1262 Value *Stripped1 = 1263 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); 1264 if (Stripped0 == Stripped1) 1265 return ConstantExpr::getCompare( 1266 ICmpInst::getSignedPredicate(Predicate), 1267 ConstantInt::get(CE0->getContext(), Offset0), 1268 ConstantInt::get(CE0->getContext(), Offset1)); 1269 } 1270 } else if (isa<ConstantExpr>(Ops1)) { 1271 // If RHS is a constant expression, but the left side isn't, swap the 1272 // operands and try again. 1273 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1274 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1275 } 1276 1277 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1278 } 1279 1280 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1281 const DataLayout &DL) { 1282 assert(Instruction::isUnaryOp(Opcode)); 1283 1284 return ConstantExpr::get(Opcode, Op); 1285 } 1286 1287 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1288 Constant *RHS, 1289 const DataLayout &DL) { 1290 assert(Instruction::isBinaryOp(Opcode)); 1291 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1292 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1293 return C; 1294 1295 return ConstantExpr::get(Opcode, LHS, RHS); 1296 } 1297 1298 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1299 Type *DestTy, const DataLayout &DL) { 1300 assert(Instruction::isCast(Opcode)); 1301 switch (Opcode) { 1302 default: 1303 llvm_unreachable("Missing case"); 1304 case Instruction::PtrToInt: 1305 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1306 Constant *FoldedValue = nullptr; 1307 // If the input is a inttoptr, eliminate the pair. This requires knowing 1308 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1309 if (CE->getOpcode() == Instruction::IntToPtr) { 1310 // zext/trunc the inttoptr to pointer size. 1311 FoldedValue = ConstantExpr::getIntegerCast( 1312 CE->getOperand(0), DL.getIntPtrType(CE->getType()), 1313 /*IsSigned=*/false); 1314 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1315 // If we have GEP, we can perform the following folds: 1316 // (ptrtoint (gep null, x)) -> x 1317 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1318 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1319 APInt BaseOffset(BitWidth, 0); 1320 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1321 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1322 if (Base->isNullValue()) { 1323 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1324 } else { 1325 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V 1326 if (GEP->getNumIndices() == 1 && 1327 GEP->getSourceElementType()->isIntegerTy(8)) { 1328 auto *Ptr = cast<Constant>(GEP->getPointerOperand()); 1329 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1)); 1330 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 1331 if (Sub && Sub->getType() == IntIdxTy && 1332 Sub->getOpcode() == Instruction::Sub && 1333 Sub->getOperand(0)->isNullValue()) 1334 FoldedValue = ConstantExpr::getSub( 1335 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); 1336 } 1337 } 1338 } 1339 if (FoldedValue) { 1340 // Do a zext or trunc to get to the ptrtoint dest size. 1341 return ConstantExpr::getIntegerCast(FoldedValue, DestTy, 1342 /*IsSigned=*/false); 1343 } 1344 } 1345 return ConstantExpr::getCast(Opcode, C, DestTy); 1346 case Instruction::IntToPtr: 1347 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1348 // the int size is >= the ptr size and the address spaces are the same. 1349 // This requires knowing the width of a pointer, so it can't be done in 1350 // ConstantExpr::getCast. 1351 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1352 if (CE->getOpcode() == Instruction::PtrToInt) { 1353 Constant *SrcPtr = CE->getOperand(0); 1354 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1355 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1356 1357 if (MidIntSize >= SrcPtrSize) { 1358 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1359 if (SrcAS == DestTy->getPointerAddressSpace()) 1360 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1361 } 1362 } 1363 } 1364 1365 return ConstantExpr::getCast(Opcode, C, DestTy); 1366 case Instruction::Trunc: 1367 case Instruction::ZExt: 1368 case Instruction::SExt: 1369 case Instruction::FPTrunc: 1370 case Instruction::FPExt: 1371 case Instruction::UIToFP: 1372 case Instruction::SIToFP: 1373 case Instruction::FPToUI: 1374 case Instruction::FPToSI: 1375 case Instruction::AddrSpaceCast: 1376 return ConstantExpr::getCast(Opcode, C, DestTy); 1377 case Instruction::BitCast: 1378 return FoldBitCast(C, DestTy, DL); 1379 } 1380 } 1381 1382 //===----------------------------------------------------------------------===// 1383 // Constant Folding for Calls 1384 // 1385 1386 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1387 if (Call->isNoBuiltin()) 1388 return false; 1389 if (Call->getFunctionType() != F->getFunctionType()) 1390 return false; 1391 switch (F->getIntrinsicID()) { 1392 // Operations that do not operate floating-point numbers and do not depend on 1393 // FP environment can be folded even in strictfp functions. 1394 case Intrinsic::bswap: 1395 case Intrinsic::ctpop: 1396 case Intrinsic::ctlz: 1397 case Intrinsic::cttz: 1398 case Intrinsic::fshl: 1399 case Intrinsic::fshr: 1400 case Intrinsic::launder_invariant_group: 1401 case Intrinsic::strip_invariant_group: 1402 case Intrinsic::masked_load: 1403 case Intrinsic::get_active_lane_mask: 1404 case Intrinsic::abs: 1405 case Intrinsic::smax: 1406 case Intrinsic::smin: 1407 case Intrinsic::umax: 1408 case Intrinsic::umin: 1409 case Intrinsic::sadd_with_overflow: 1410 case Intrinsic::uadd_with_overflow: 1411 case Intrinsic::ssub_with_overflow: 1412 case Intrinsic::usub_with_overflow: 1413 case Intrinsic::smul_with_overflow: 1414 case Intrinsic::umul_with_overflow: 1415 case Intrinsic::sadd_sat: 1416 case Intrinsic::uadd_sat: 1417 case Intrinsic::ssub_sat: 1418 case Intrinsic::usub_sat: 1419 case Intrinsic::smul_fix: 1420 case Intrinsic::smul_fix_sat: 1421 case Intrinsic::bitreverse: 1422 case Intrinsic::is_constant: 1423 case Intrinsic::vector_reduce_add: 1424 case Intrinsic::vector_reduce_mul: 1425 case Intrinsic::vector_reduce_and: 1426 case Intrinsic::vector_reduce_or: 1427 case Intrinsic::vector_reduce_xor: 1428 case Intrinsic::vector_reduce_smin: 1429 case Intrinsic::vector_reduce_smax: 1430 case Intrinsic::vector_reduce_umin: 1431 case Intrinsic::vector_reduce_umax: 1432 // Target intrinsics 1433 case Intrinsic::amdgcn_perm: 1434 case Intrinsic::arm_mve_vctp8: 1435 case Intrinsic::arm_mve_vctp16: 1436 case Intrinsic::arm_mve_vctp32: 1437 case Intrinsic::arm_mve_vctp64: 1438 case Intrinsic::aarch64_sve_convert_from_svbool: 1439 // WebAssembly float semantics are always known 1440 case Intrinsic::wasm_trunc_signed: 1441 case Intrinsic::wasm_trunc_unsigned: 1442 return true; 1443 1444 // Floating point operations cannot be folded in strictfp functions in 1445 // general case. They can be folded if FP environment is known to compiler. 1446 case Intrinsic::minnum: 1447 case Intrinsic::maxnum: 1448 case Intrinsic::minimum: 1449 case Intrinsic::maximum: 1450 case Intrinsic::log: 1451 case Intrinsic::log2: 1452 case Intrinsic::log10: 1453 case Intrinsic::exp: 1454 case Intrinsic::exp2: 1455 case Intrinsic::sqrt: 1456 case Intrinsic::sin: 1457 case Intrinsic::cos: 1458 case Intrinsic::pow: 1459 case Intrinsic::powi: 1460 case Intrinsic::fma: 1461 case Intrinsic::fmuladd: 1462 case Intrinsic::fptoui_sat: 1463 case Intrinsic::fptosi_sat: 1464 case Intrinsic::convert_from_fp16: 1465 case Intrinsic::convert_to_fp16: 1466 case Intrinsic::amdgcn_cos: 1467 case Intrinsic::amdgcn_cubeid: 1468 case Intrinsic::amdgcn_cubema: 1469 case Intrinsic::amdgcn_cubesc: 1470 case Intrinsic::amdgcn_cubetc: 1471 case Intrinsic::amdgcn_fmul_legacy: 1472 case Intrinsic::amdgcn_fma_legacy: 1473 case Intrinsic::amdgcn_fract: 1474 case Intrinsic::amdgcn_ldexp: 1475 case Intrinsic::amdgcn_sin: 1476 // The intrinsics below depend on rounding mode in MXCSR. 1477 case Intrinsic::x86_sse_cvtss2si: 1478 case Intrinsic::x86_sse_cvtss2si64: 1479 case Intrinsic::x86_sse_cvttss2si: 1480 case Intrinsic::x86_sse_cvttss2si64: 1481 case Intrinsic::x86_sse2_cvtsd2si: 1482 case Intrinsic::x86_sse2_cvtsd2si64: 1483 case Intrinsic::x86_sse2_cvttsd2si: 1484 case Intrinsic::x86_sse2_cvttsd2si64: 1485 case Intrinsic::x86_avx512_vcvtss2si32: 1486 case Intrinsic::x86_avx512_vcvtss2si64: 1487 case Intrinsic::x86_avx512_cvttss2si: 1488 case Intrinsic::x86_avx512_cvttss2si64: 1489 case Intrinsic::x86_avx512_vcvtsd2si32: 1490 case Intrinsic::x86_avx512_vcvtsd2si64: 1491 case Intrinsic::x86_avx512_cvttsd2si: 1492 case Intrinsic::x86_avx512_cvttsd2si64: 1493 case Intrinsic::x86_avx512_vcvtss2usi32: 1494 case Intrinsic::x86_avx512_vcvtss2usi64: 1495 case Intrinsic::x86_avx512_cvttss2usi: 1496 case Intrinsic::x86_avx512_cvttss2usi64: 1497 case Intrinsic::x86_avx512_vcvtsd2usi32: 1498 case Intrinsic::x86_avx512_vcvtsd2usi64: 1499 case Intrinsic::x86_avx512_cvttsd2usi: 1500 case Intrinsic::x86_avx512_cvttsd2usi64: 1501 return !Call->isStrictFP(); 1502 1503 // Sign operations are actually bitwise operations, they do not raise 1504 // exceptions even for SNANs. 1505 case Intrinsic::fabs: 1506 case Intrinsic::copysign: 1507 // Non-constrained variants of rounding operations means default FP 1508 // environment, they can be folded in any case. 1509 case Intrinsic::ceil: 1510 case Intrinsic::floor: 1511 case Intrinsic::round: 1512 case Intrinsic::roundeven: 1513 case Intrinsic::trunc: 1514 case Intrinsic::nearbyint: 1515 case Intrinsic::rint: 1516 // Constrained intrinsics can be folded if FP environment is known 1517 // to compiler. 1518 case Intrinsic::experimental_constrained_fma: 1519 case Intrinsic::experimental_constrained_fmuladd: 1520 case Intrinsic::experimental_constrained_fadd: 1521 case Intrinsic::experimental_constrained_fsub: 1522 case Intrinsic::experimental_constrained_fmul: 1523 case Intrinsic::experimental_constrained_fdiv: 1524 case Intrinsic::experimental_constrained_frem: 1525 case Intrinsic::experimental_constrained_ceil: 1526 case Intrinsic::experimental_constrained_floor: 1527 case Intrinsic::experimental_constrained_round: 1528 case Intrinsic::experimental_constrained_roundeven: 1529 case Intrinsic::experimental_constrained_trunc: 1530 case Intrinsic::experimental_constrained_nearbyint: 1531 case Intrinsic::experimental_constrained_rint: 1532 case Intrinsic::experimental_constrained_fcmp: 1533 case Intrinsic::experimental_constrained_fcmps: 1534 return true; 1535 default: 1536 return false; 1537 case Intrinsic::not_intrinsic: break; 1538 } 1539 1540 if (!F->hasName() || Call->isStrictFP()) 1541 return false; 1542 1543 // In these cases, the check of the length is required. We don't want to 1544 // return true for a name like "cos\0blah" which strcmp would return equal to 1545 // "cos", but has length 8. 1546 StringRef Name = F->getName(); 1547 switch (Name[0]) { 1548 default: 1549 return false; 1550 case 'a': 1551 return Name == "acos" || Name == "acosf" || 1552 Name == "asin" || Name == "asinf" || 1553 Name == "atan" || Name == "atanf" || 1554 Name == "atan2" || Name == "atan2f"; 1555 case 'c': 1556 return Name == "ceil" || Name == "ceilf" || 1557 Name == "cos" || Name == "cosf" || 1558 Name == "cosh" || Name == "coshf"; 1559 case 'e': 1560 return Name == "exp" || Name == "expf" || 1561 Name == "exp2" || Name == "exp2f"; 1562 case 'f': 1563 return Name == "fabs" || Name == "fabsf" || 1564 Name == "floor" || Name == "floorf" || 1565 Name == "fmod" || Name == "fmodf"; 1566 case 'l': 1567 return Name == "log" || Name == "logf" || 1568 Name == "log2" || Name == "log2f" || 1569 Name == "log10" || Name == "log10f"; 1570 case 'n': 1571 return Name == "nearbyint" || Name == "nearbyintf"; 1572 case 'p': 1573 return Name == "pow" || Name == "powf"; 1574 case 'r': 1575 return Name == "remainder" || Name == "remainderf" || 1576 Name == "rint" || Name == "rintf" || 1577 Name == "round" || Name == "roundf"; 1578 case 's': 1579 return Name == "sin" || Name == "sinf" || 1580 Name == "sinh" || Name == "sinhf" || 1581 Name == "sqrt" || Name == "sqrtf"; 1582 case 't': 1583 return Name == "tan" || Name == "tanf" || 1584 Name == "tanh" || Name == "tanhf" || 1585 Name == "trunc" || Name == "truncf"; 1586 case '_': 1587 // Check for various function names that get used for the math functions 1588 // when the header files are preprocessed with the macro 1589 // __FINITE_MATH_ONLY__ enabled. 1590 // The '12' here is the length of the shortest name that can match. 1591 // We need to check the size before looking at Name[1] and Name[2] 1592 // so we may as well check a limit that will eliminate mismatches. 1593 if (Name.size() < 12 || Name[1] != '_') 1594 return false; 1595 switch (Name[2]) { 1596 default: 1597 return false; 1598 case 'a': 1599 return Name == "__acos_finite" || Name == "__acosf_finite" || 1600 Name == "__asin_finite" || Name == "__asinf_finite" || 1601 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1602 case 'c': 1603 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1604 case 'e': 1605 return Name == "__exp_finite" || Name == "__expf_finite" || 1606 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1607 case 'l': 1608 return Name == "__log_finite" || Name == "__logf_finite" || 1609 Name == "__log10_finite" || Name == "__log10f_finite"; 1610 case 'p': 1611 return Name == "__pow_finite" || Name == "__powf_finite"; 1612 case 's': 1613 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1614 } 1615 } 1616 } 1617 1618 namespace { 1619 1620 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1621 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1622 APFloat APF(V); 1623 bool unused; 1624 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1625 return ConstantFP::get(Ty->getContext(), APF); 1626 } 1627 if (Ty->isDoubleTy()) 1628 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1629 llvm_unreachable("Can only constant fold half/float/double"); 1630 } 1631 1632 /// Clear the floating-point exception state. 1633 inline void llvm_fenv_clearexcept() { 1634 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1635 feclearexcept(FE_ALL_EXCEPT); 1636 #endif 1637 errno = 0; 1638 } 1639 1640 /// Test if a floating-point exception was raised. 1641 inline bool llvm_fenv_testexcept() { 1642 int errno_val = errno; 1643 if (errno_val == ERANGE || errno_val == EDOM) 1644 return true; 1645 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1646 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1647 return true; 1648 #endif 1649 return false; 1650 } 1651 1652 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1653 Type *Ty) { 1654 llvm_fenv_clearexcept(); 1655 double Result = NativeFP(V.convertToDouble()); 1656 if (llvm_fenv_testexcept()) { 1657 llvm_fenv_clearexcept(); 1658 return nullptr; 1659 } 1660 1661 return GetConstantFoldFPValue(Result, Ty); 1662 } 1663 1664 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1665 const APFloat &V, const APFloat &W, Type *Ty) { 1666 llvm_fenv_clearexcept(); 1667 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1668 if (llvm_fenv_testexcept()) { 1669 llvm_fenv_clearexcept(); 1670 return nullptr; 1671 } 1672 1673 return GetConstantFoldFPValue(Result, Ty); 1674 } 1675 1676 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1677 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1678 if (!VT) 1679 return nullptr; 1680 1681 // This isn't strictly necessary, but handle the special/common case of zero: 1682 // all integer reductions of a zero input produce zero. 1683 if (isa<ConstantAggregateZero>(Op)) 1684 return ConstantInt::get(VT->getElementType(), 0); 1685 1686 // This is the same as the underlying binops - poison propagates. 1687 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1688 return PoisonValue::get(VT->getElementType()); 1689 1690 // TODO: Handle undef. 1691 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1692 return nullptr; 1693 1694 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1695 if (!EltC) 1696 return nullptr; 1697 1698 APInt Acc = EltC->getValue(); 1699 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1700 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1701 return nullptr; 1702 const APInt &X = EltC->getValue(); 1703 switch (IID) { 1704 case Intrinsic::vector_reduce_add: 1705 Acc = Acc + X; 1706 break; 1707 case Intrinsic::vector_reduce_mul: 1708 Acc = Acc * X; 1709 break; 1710 case Intrinsic::vector_reduce_and: 1711 Acc = Acc & X; 1712 break; 1713 case Intrinsic::vector_reduce_or: 1714 Acc = Acc | X; 1715 break; 1716 case Intrinsic::vector_reduce_xor: 1717 Acc = Acc ^ X; 1718 break; 1719 case Intrinsic::vector_reduce_smin: 1720 Acc = APIntOps::smin(Acc, X); 1721 break; 1722 case Intrinsic::vector_reduce_smax: 1723 Acc = APIntOps::smax(Acc, X); 1724 break; 1725 case Intrinsic::vector_reduce_umin: 1726 Acc = APIntOps::umin(Acc, X); 1727 break; 1728 case Intrinsic::vector_reduce_umax: 1729 Acc = APIntOps::umax(Acc, X); 1730 break; 1731 } 1732 } 1733 1734 return ConstantInt::get(Op->getContext(), Acc); 1735 } 1736 1737 /// Attempt to fold an SSE floating point to integer conversion of a constant 1738 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1739 /// used (toward nearest, ties to even). This matches the behavior of the 1740 /// non-truncating SSE instructions in the default rounding mode. The desired 1741 /// integer type Ty is used to select how many bits are available for the 1742 /// result. Returns null if the conversion cannot be performed, otherwise 1743 /// returns the Constant value resulting from the conversion. 1744 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1745 Type *Ty, bool IsSigned) { 1746 // All of these conversion intrinsics form an integer of at most 64bits. 1747 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1748 assert(ResultWidth <= 64 && 1749 "Can only constant fold conversions to 64 and 32 bit ints"); 1750 1751 uint64_t UIntVal; 1752 bool isExact = false; 1753 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1754 : APFloat::rmNearestTiesToEven; 1755 APFloat::opStatus status = 1756 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1757 IsSigned, mode, &isExact); 1758 if (status != APFloat::opOK && 1759 (!roundTowardZero || status != APFloat::opInexact)) 1760 return nullptr; 1761 return ConstantInt::get(Ty, UIntVal, IsSigned); 1762 } 1763 1764 double getValueAsDouble(ConstantFP *Op) { 1765 Type *Ty = Op->getType(); 1766 1767 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1768 return Op->getValueAPF().convertToDouble(); 1769 1770 bool unused; 1771 APFloat APF = Op->getValueAPF(); 1772 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1773 return APF.convertToDouble(); 1774 } 1775 1776 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1777 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1778 C = &CI->getValue(); 1779 return true; 1780 } 1781 if (isa<UndefValue>(Op)) { 1782 C = nullptr; 1783 return true; 1784 } 1785 return false; 1786 } 1787 1788 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1789 /// to be folded. 1790 /// 1791 /// \param CI Constrained intrinsic call. 1792 /// \param St Exception flags raised during constant evaluation. 1793 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1794 APFloat::opStatus St) { 1795 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1796 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1797 1798 // If the operation does not change exception status flags, it is safe 1799 // to fold. 1800 if (St == APFloat::opStatus::opOK) 1801 return true; 1802 1803 // If evaluation raised FP exception, the result can depend on rounding 1804 // mode. If the latter is unknown, folding is not possible. 1805 if (ORM && *ORM == RoundingMode::Dynamic) 1806 return false; 1807 1808 // If FP exceptions are ignored, fold the call, even if such exception is 1809 // raised. 1810 if (EB && *EB != fp::ExceptionBehavior::ebStrict) 1811 return true; 1812 1813 // Leave the calculation for runtime so that exception flags be correctly set 1814 // in hardware. 1815 return false; 1816 } 1817 1818 /// Returns the rounding mode that should be used for constant evaluation. 1819 static RoundingMode 1820 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1821 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1822 if (!ORM || *ORM == RoundingMode::Dynamic) 1823 // Even if the rounding mode is unknown, try evaluating the operation. 1824 // If it does not raise inexact exception, rounding was not applied, 1825 // so the result is exact and does not depend on rounding mode. Whether 1826 // other FP exceptions are raised, it does not depend on rounding mode. 1827 return RoundingMode::NearestTiesToEven; 1828 return *ORM; 1829 } 1830 1831 static Constant *ConstantFoldScalarCall1(StringRef Name, 1832 Intrinsic::ID IntrinsicID, 1833 Type *Ty, 1834 ArrayRef<Constant *> Operands, 1835 const TargetLibraryInfo *TLI, 1836 const CallBase *Call) { 1837 assert(Operands.size() == 1 && "Wrong number of operands."); 1838 1839 if (IntrinsicID == Intrinsic::is_constant) { 1840 // We know we have a "Constant" argument. But we want to only 1841 // return true for manifest constants, not those that depend on 1842 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1843 if (Operands[0]->isManifestConstant()) 1844 return ConstantInt::getTrue(Ty->getContext()); 1845 return nullptr; 1846 } 1847 if (isa<UndefValue>(Operands[0])) { 1848 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1849 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1850 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 1851 if (IntrinsicID == Intrinsic::cos || 1852 IntrinsicID == Intrinsic::ctpop || 1853 IntrinsicID == Intrinsic::fptoui_sat || 1854 IntrinsicID == Intrinsic::fptosi_sat) 1855 return Constant::getNullValue(Ty); 1856 if (IntrinsicID == Intrinsic::bswap || 1857 IntrinsicID == Intrinsic::bitreverse || 1858 IntrinsicID == Intrinsic::launder_invariant_group || 1859 IntrinsicID == Intrinsic::strip_invariant_group) 1860 return Operands[0]; 1861 } 1862 1863 if (isa<ConstantPointerNull>(Operands[0])) { 1864 // launder(null) == null == strip(null) iff in addrspace 0 1865 if (IntrinsicID == Intrinsic::launder_invariant_group || 1866 IntrinsicID == Intrinsic::strip_invariant_group) { 1867 // If instruction is not yet put in a basic block (e.g. when cloning 1868 // a function during inlining), Call's caller may not be available. 1869 // So check Call's BB first before querying Call->getCaller. 1870 const Function *Caller = 1871 Call->getParent() ? Call->getCaller() : nullptr; 1872 if (Caller && 1873 !NullPointerIsDefined( 1874 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1875 return Operands[0]; 1876 } 1877 return nullptr; 1878 } 1879 } 1880 1881 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1882 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1883 APFloat Val(Op->getValueAPF()); 1884 1885 bool lost = false; 1886 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1887 1888 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1889 } 1890 1891 APFloat U = Op->getValueAPF(); 1892 1893 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 1894 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 1895 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 1896 1897 if (U.isNaN()) 1898 return nullptr; 1899 1900 unsigned Width = Ty->getIntegerBitWidth(); 1901 APSInt Int(Width, !Signed); 1902 bool IsExact = false; 1903 APFloat::opStatus Status = 1904 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1905 1906 if (Status == APFloat::opOK || Status == APFloat::opInexact) 1907 return ConstantInt::get(Ty, Int); 1908 1909 return nullptr; 1910 } 1911 1912 if (IntrinsicID == Intrinsic::fptoui_sat || 1913 IntrinsicID == Intrinsic::fptosi_sat) { 1914 // convertToInteger() already has the desired saturation semantics. 1915 APSInt Int(Ty->getIntegerBitWidth(), 1916 IntrinsicID == Intrinsic::fptoui_sat); 1917 bool IsExact; 1918 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1919 return ConstantInt::get(Ty, Int); 1920 } 1921 1922 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1923 return nullptr; 1924 1925 // Use internal versions of these intrinsics. 1926 1927 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1928 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1929 return ConstantFP::get(Ty->getContext(), U); 1930 } 1931 1932 if (IntrinsicID == Intrinsic::round) { 1933 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1934 return ConstantFP::get(Ty->getContext(), U); 1935 } 1936 1937 if (IntrinsicID == Intrinsic::roundeven) { 1938 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1939 return ConstantFP::get(Ty->getContext(), U); 1940 } 1941 1942 if (IntrinsicID == Intrinsic::ceil) { 1943 U.roundToIntegral(APFloat::rmTowardPositive); 1944 return ConstantFP::get(Ty->getContext(), U); 1945 } 1946 1947 if (IntrinsicID == Intrinsic::floor) { 1948 U.roundToIntegral(APFloat::rmTowardNegative); 1949 return ConstantFP::get(Ty->getContext(), U); 1950 } 1951 1952 if (IntrinsicID == Intrinsic::trunc) { 1953 U.roundToIntegral(APFloat::rmTowardZero); 1954 return ConstantFP::get(Ty->getContext(), U); 1955 } 1956 1957 if (IntrinsicID == Intrinsic::fabs) { 1958 U.clearSign(); 1959 return ConstantFP::get(Ty->getContext(), U); 1960 } 1961 1962 if (IntrinsicID == Intrinsic::amdgcn_fract) { 1963 // The v_fract instruction behaves like the OpenCL spec, which defines 1964 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 1965 // there to prevent fract(-small) from returning 1.0. It returns the 1966 // largest positive floating-point number less than 1.0." 1967 APFloat FloorU(U); 1968 FloorU.roundToIntegral(APFloat::rmTowardNegative); 1969 APFloat FractU(U - FloorU); 1970 APFloat AlmostOne(U.getSemantics(), 1); 1971 AlmostOne.next(/*nextDown*/ true); 1972 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 1973 } 1974 1975 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 1976 // raise FP exceptions, unless the argument is signaling NaN. 1977 1978 Optional<APFloat::roundingMode> RM; 1979 switch (IntrinsicID) { 1980 default: 1981 break; 1982 case Intrinsic::experimental_constrained_nearbyint: 1983 case Intrinsic::experimental_constrained_rint: { 1984 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1985 RM = CI->getRoundingMode(); 1986 if (!RM || RM.getValue() == RoundingMode::Dynamic) 1987 return nullptr; 1988 break; 1989 } 1990 case Intrinsic::experimental_constrained_round: 1991 RM = APFloat::rmNearestTiesToAway; 1992 break; 1993 case Intrinsic::experimental_constrained_ceil: 1994 RM = APFloat::rmTowardPositive; 1995 break; 1996 case Intrinsic::experimental_constrained_floor: 1997 RM = APFloat::rmTowardNegative; 1998 break; 1999 case Intrinsic::experimental_constrained_trunc: 2000 RM = APFloat::rmTowardZero; 2001 break; 2002 } 2003 if (RM) { 2004 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2005 if (U.isFinite()) { 2006 APFloat::opStatus St = U.roundToIntegral(*RM); 2007 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2008 St == APFloat::opInexact) { 2009 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2010 if (EB && *EB == fp::ebStrict) 2011 return nullptr; 2012 } 2013 } else if (U.isSignaling()) { 2014 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2015 if (EB && *EB != fp::ebIgnore) 2016 return nullptr; 2017 U = APFloat::getQNaN(U.getSemantics()); 2018 } 2019 return ConstantFP::get(Ty->getContext(), U); 2020 } 2021 2022 /// We only fold functions with finite arguments. Folding NaN and inf is 2023 /// likely to be aborted with an exception anyway, and some host libms 2024 /// have known errors raising exceptions. 2025 if (!U.isFinite()) 2026 return nullptr; 2027 2028 /// Currently APFloat versions of these functions do not exist, so we use 2029 /// the host native double versions. Float versions are not called 2030 /// directly but for all these it is true (float)(f((double)arg)) == 2031 /// f(arg). Long double not supported yet. 2032 const APFloat &APF = Op->getValueAPF(); 2033 2034 switch (IntrinsicID) { 2035 default: break; 2036 case Intrinsic::log: 2037 return ConstantFoldFP(log, APF, Ty); 2038 case Intrinsic::log2: 2039 // TODO: What about hosts that lack a C99 library? 2040 return ConstantFoldFP(Log2, APF, Ty); 2041 case Intrinsic::log10: 2042 // TODO: What about hosts that lack a C99 library? 2043 return ConstantFoldFP(log10, APF, Ty); 2044 case Intrinsic::exp: 2045 return ConstantFoldFP(exp, APF, Ty); 2046 case Intrinsic::exp2: 2047 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2048 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2049 case Intrinsic::sin: 2050 return ConstantFoldFP(sin, APF, Ty); 2051 case Intrinsic::cos: 2052 return ConstantFoldFP(cos, APF, Ty); 2053 case Intrinsic::sqrt: 2054 return ConstantFoldFP(sqrt, APF, Ty); 2055 case Intrinsic::amdgcn_cos: 2056 case Intrinsic::amdgcn_sin: { 2057 double V = getValueAsDouble(Op); 2058 if (V < -256.0 || V > 256.0) 2059 // The gfx8 and gfx9 architectures handle arguments outside the range 2060 // [-256, 256] differently. This should be a rare case so bail out 2061 // rather than trying to handle the difference. 2062 return nullptr; 2063 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2064 double V4 = V * 4.0; 2065 if (V4 == floor(V4)) { 2066 // Force exact results for quarter-integer inputs. 2067 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2068 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2069 } else { 2070 if (IsCos) 2071 V = cos(V * 2.0 * numbers::pi); 2072 else 2073 V = sin(V * 2.0 * numbers::pi); 2074 } 2075 return GetConstantFoldFPValue(V, Ty); 2076 } 2077 } 2078 2079 if (!TLI) 2080 return nullptr; 2081 2082 LibFunc Func = NotLibFunc; 2083 if (!TLI->getLibFunc(Name, Func)) 2084 return nullptr; 2085 2086 switch (Func) { 2087 default: 2088 break; 2089 case LibFunc_acos: 2090 case LibFunc_acosf: 2091 case LibFunc_acos_finite: 2092 case LibFunc_acosf_finite: 2093 if (TLI->has(Func)) 2094 return ConstantFoldFP(acos, APF, Ty); 2095 break; 2096 case LibFunc_asin: 2097 case LibFunc_asinf: 2098 case LibFunc_asin_finite: 2099 case LibFunc_asinf_finite: 2100 if (TLI->has(Func)) 2101 return ConstantFoldFP(asin, APF, Ty); 2102 break; 2103 case LibFunc_atan: 2104 case LibFunc_atanf: 2105 if (TLI->has(Func)) 2106 return ConstantFoldFP(atan, APF, Ty); 2107 break; 2108 case LibFunc_ceil: 2109 case LibFunc_ceilf: 2110 if (TLI->has(Func)) { 2111 U.roundToIntegral(APFloat::rmTowardPositive); 2112 return ConstantFP::get(Ty->getContext(), U); 2113 } 2114 break; 2115 case LibFunc_cos: 2116 case LibFunc_cosf: 2117 if (TLI->has(Func)) 2118 return ConstantFoldFP(cos, APF, Ty); 2119 break; 2120 case LibFunc_cosh: 2121 case LibFunc_coshf: 2122 case LibFunc_cosh_finite: 2123 case LibFunc_coshf_finite: 2124 if (TLI->has(Func)) 2125 return ConstantFoldFP(cosh, APF, Ty); 2126 break; 2127 case LibFunc_exp: 2128 case LibFunc_expf: 2129 case LibFunc_exp_finite: 2130 case LibFunc_expf_finite: 2131 if (TLI->has(Func)) 2132 return ConstantFoldFP(exp, APF, Ty); 2133 break; 2134 case LibFunc_exp2: 2135 case LibFunc_exp2f: 2136 case LibFunc_exp2_finite: 2137 case LibFunc_exp2f_finite: 2138 if (TLI->has(Func)) 2139 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2140 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2141 break; 2142 case LibFunc_fabs: 2143 case LibFunc_fabsf: 2144 if (TLI->has(Func)) { 2145 U.clearSign(); 2146 return ConstantFP::get(Ty->getContext(), U); 2147 } 2148 break; 2149 case LibFunc_floor: 2150 case LibFunc_floorf: 2151 if (TLI->has(Func)) { 2152 U.roundToIntegral(APFloat::rmTowardNegative); 2153 return ConstantFP::get(Ty->getContext(), U); 2154 } 2155 break; 2156 case LibFunc_log: 2157 case LibFunc_logf: 2158 case LibFunc_log_finite: 2159 case LibFunc_logf_finite: 2160 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2161 return ConstantFoldFP(log, APF, Ty); 2162 break; 2163 case LibFunc_log2: 2164 case LibFunc_log2f: 2165 case LibFunc_log2_finite: 2166 case LibFunc_log2f_finite: 2167 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2168 // TODO: What about hosts that lack a C99 library? 2169 return ConstantFoldFP(Log2, APF, Ty); 2170 break; 2171 case LibFunc_log10: 2172 case LibFunc_log10f: 2173 case LibFunc_log10_finite: 2174 case LibFunc_log10f_finite: 2175 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2176 // TODO: What about hosts that lack a C99 library? 2177 return ConstantFoldFP(log10, APF, Ty); 2178 break; 2179 case LibFunc_nearbyint: 2180 case LibFunc_nearbyintf: 2181 case LibFunc_rint: 2182 case LibFunc_rintf: 2183 if (TLI->has(Func)) { 2184 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2185 return ConstantFP::get(Ty->getContext(), U); 2186 } 2187 break; 2188 case LibFunc_round: 2189 case LibFunc_roundf: 2190 if (TLI->has(Func)) { 2191 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2192 return ConstantFP::get(Ty->getContext(), U); 2193 } 2194 break; 2195 case LibFunc_sin: 2196 case LibFunc_sinf: 2197 if (TLI->has(Func)) 2198 return ConstantFoldFP(sin, APF, Ty); 2199 break; 2200 case LibFunc_sinh: 2201 case LibFunc_sinhf: 2202 case LibFunc_sinh_finite: 2203 case LibFunc_sinhf_finite: 2204 if (TLI->has(Func)) 2205 return ConstantFoldFP(sinh, APF, Ty); 2206 break; 2207 case LibFunc_sqrt: 2208 case LibFunc_sqrtf: 2209 if (!APF.isNegative() && TLI->has(Func)) 2210 return ConstantFoldFP(sqrt, APF, Ty); 2211 break; 2212 case LibFunc_tan: 2213 case LibFunc_tanf: 2214 if (TLI->has(Func)) 2215 return ConstantFoldFP(tan, APF, Ty); 2216 break; 2217 case LibFunc_tanh: 2218 case LibFunc_tanhf: 2219 if (TLI->has(Func)) 2220 return ConstantFoldFP(tanh, APF, Ty); 2221 break; 2222 case LibFunc_trunc: 2223 case LibFunc_truncf: 2224 if (TLI->has(Func)) { 2225 U.roundToIntegral(APFloat::rmTowardZero); 2226 return ConstantFP::get(Ty->getContext(), U); 2227 } 2228 break; 2229 } 2230 return nullptr; 2231 } 2232 2233 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2234 switch (IntrinsicID) { 2235 case Intrinsic::bswap: 2236 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2237 case Intrinsic::ctpop: 2238 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2239 case Intrinsic::bitreverse: 2240 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2241 case Intrinsic::convert_from_fp16: { 2242 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2243 2244 bool lost = false; 2245 APFloat::opStatus status = Val.convert( 2246 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2247 2248 // Conversion is always precise. 2249 (void)status; 2250 assert(status == APFloat::opOK && !lost && 2251 "Precision lost during fp16 constfolding"); 2252 2253 return ConstantFP::get(Ty->getContext(), Val); 2254 } 2255 default: 2256 return nullptr; 2257 } 2258 } 2259 2260 switch (IntrinsicID) { 2261 default: break; 2262 case Intrinsic::vector_reduce_add: 2263 case Intrinsic::vector_reduce_mul: 2264 case Intrinsic::vector_reduce_and: 2265 case Intrinsic::vector_reduce_or: 2266 case Intrinsic::vector_reduce_xor: 2267 case Intrinsic::vector_reduce_smin: 2268 case Intrinsic::vector_reduce_smax: 2269 case Intrinsic::vector_reduce_umin: 2270 case Intrinsic::vector_reduce_umax: 2271 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2272 return C; 2273 break; 2274 } 2275 2276 // Support ConstantVector in case we have an Undef in the top. 2277 if (isa<ConstantVector>(Operands[0]) || 2278 isa<ConstantDataVector>(Operands[0])) { 2279 auto *Op = cast<Constant>(Operands[0]); 2280 switch (IntrinsicID) { 2281 default: break; 2282 case Intrinsic::x86_sse_cvtss2si: 2283 case Intrinsic::x86_sse_cvtss2si64: 2284 case Intrinsic::x86_sse2_cvtsd2si: 2285 case Intrinsic::x86_sse2_cvtsd2si64: 2286 if (ConstantFP *FPOp = 2287 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2288 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2289 /*roundTowardZero=*/false, Ty, 2290 /*IsSigned*/true); 2291 break; 2292 case Intrinsic::x86_sse_cvttss2si: 2293 case Intrinsic::x86_sse_cvttss2si64: 2294 case Intrinsic::x86_sse2_cvttsd2si: 2295 case Intrinsic::x86_sse2_cvttsd2si64: 2296 if (ConstantFP *FPOp = 2297 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2298 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2299 /*roundTowardZero=*/true, Ty, 2300 /*IsSigned*/true); 2301 break; 2302 } 2303 } 2304 2305 return nullptr; 2306 } 2307 2308 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, 2309 const ConstrainedFPIntrinsic *Call) { 2310 APFloat::opStatus St = APFloat::opOK; 2311 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call); 2312 FCmpInst::Predicate Cond = FCmp->getPredicate(); 2313 if (FCmp->isSignaling()) { 2314 if (Op1.isNaN() || Op2.isNaN()) 2315 St = APFloat::opInvalidOp; 2316 } else { 2317 if (Op1.isSignaling() || Op2.isSignaling()) 2318 St = APFloat::opInvalidOp; 2319 } 2320 bool Result = FCmpInst::compare(Op1, Op2, Cond); 2321 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St)) 2322 return ConstantInt::get(Call->getType()->getScalarType(), Result); 2323 return nullptr; 2324 } 2325 2326 static Constant *ConstantFoldScalarCall2(StringRef Name, 2327 Intrinsic::ID IntrinsicID, 2328 Type *Ty, 2329 ArrayRef<Constant *> Operands, 2330 const TargetLibraryInfo *TLI, 2331 const CallBase *Call) { 2332 assert(Operands.size() == 2 && "Wrong number of operands."); 2333 2334 if (Ty->isFloatingPointTy()) { 2335 // TODO: We should have undef handling for all of the FP intrinsics that 2336 // are attempted to be folded in this function. 2337 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2338 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2339 switch (IntrinsicID) { 2340 case Intrinsic::maxnum: 2341 case Intrinsic::minnum: 2342 case Intrinsic::maximum: 2343 case Intrinsic::minimum: 2344 // If one argument is undef, return the other argument. 2345 if (IsOp0Undef) 2346 return Operands[1]; 2347 if (IsOp1Undef) 2348 return Operands[0]; 2349 break; 2350 } 2351 } 2352 2353 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2354 const APFloat &Op1V = Op1->getValueAPF(); 2355 2356 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2357 if (Op2->getType() != Op1->getType()) 2358 return nullptr; 2359 const APFloat &Op2V = Op2->getValueAPF(); 2360 2361 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2362 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2363 APFloat Res = Op1V; 2364 APFloat::opStatus St; 2365 switch (IntrinsicID) { 2366 default: 2367 return nullptr; 2368 case Intrinsic::experimental_constrained_fadd: 2369 St = Res.add(Op2V, RM); 2370 break; 2371 case Intrinsic::experimental_constrained_fsub: 2372 St = Res.subtract(Op2V, RM); 2373 break; 2374 case Intrinsic::experimental_constrained_fmul: 2375 St = Res.multiply(Op2V, RM); 2376 break; 2377 case Intrinsic::experimental_constrained_fdiv: 2378 St = Res.divide(Op2V, RM); 2379 break; 2380 case Intrinsic::experimental_constrained_frem: 2381 St = Res.mod(Op2V); 2382 break; 2383 case Intrinsic::experimental_constrained_fcmp: 2384 case Intrinsic::experimental_constrained_fcmps: 2385 return evaluateCompare(Op1V, Op2V, ConstrIntr); 2386 } 2387 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2388 St)) 2389 return ConstantFP::get(Ty->getContext(), Res); 2390 return nullptr; 2391 } 2392 2393 switch (IntrinsicID) { 2394 default: 2395 break; 2396 case Intrinsic::copysign: 2397 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2398 case Intrinsic::minnum: 2399 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2400 case Intrinsic::maxnum: 2401 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2402 case Intrinsic::minimum: 2403 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2404 case Intrinsic::maximum: 2405 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2406 } 2407 2408 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2409 return nullptr; 2410 2411 switch (IntrinsicID) { 2412 default: 2413 break; 2414 case Intrinsic::pow: 2415 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2416 case Intrinsic::amdgcn_fmul_legacy: 2417 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2418 // NaN or infinity, gives +0.0. 2419 if (Op1V.isZero() || Op2V.isZero()) 2420 return ConstantFP::getNullValue(Ty); 2421 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2422 } 2423 2424 if (!TLI) 2425 return nullptr; 2426 2427 LibFunc Func = NotLibFunc; 2428 if (!TLI->getLibFunc(Name, Func)) 2429 return nullptr; 2430 2431 switch (Func) { 2432 default: 2433 break; 2434 case LibFunc_pow: 2435 case LibFunc_powf: 2436 case LibFunc_pow_finite: 2437 case LibFunc_powf_finite: 2438 if (TLI->has(Func)) 2439 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2440 break; 2441 case LibFunc_fmod: 2442 case LibFunc_fmodf: 2443 if (TLI->has(Func)) { 2444 APFloat V = Op1->getValueAPF(); 2445 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2446 return ConstantFP::get(Ty->getContext(), V); 2447 } 2448 break; 2449 case LibFunc_remainder: 2450 case LibFunc_remainderf: 2451 if (TLI->has(Func)) { 2452 APFloat V = Op1->getValueAPF(); 2453 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2454 return ConstantFP::get(Ty->getContext(), V); 2455 } 2456 break; 2457 case LibFunc_atan2: 2458 case LibFunc_atan2f: 2459 case LibFunc_atan2_finite: 2460 case LibFunc_atan2f_finite: 2461 if (TLI->has(Func)) 2462 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2463 break; 2464 } 2465 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2466 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2467 return nullptr; 2468 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2469 return ConstantFP::get( 2470 Ty->getContext(), 2471 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2472 (int)Op2C->getZExtValue()))); 2473 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2474 return ConstantFP::get( 2475 Ty->getContext(), 2476 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2477 (int)Op2C->getZExtValue()))); 2478 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2479 return ConstantFP::get( 2480 Ty->getContext(), 2481 APFloat((double)std::pow(Op1V.convertToDouble(), 2482 (int)Op2C->getZExtValue()))); 2483 2484 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2485 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2486 // everywhere else. 2487 2488 // scalbn is equivalent to ldexp with float radix 2 2489 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2490 APFloat::rmNearestTiesToEven); 2491 return ConstantFP::get(Ty->getContext(), Result); 2492 } 2493 } 2494 return nullptr; 2495 } 2496 2497 if (Operands[0]->getType()->isIntegerTy() && 2498 Operands[1]->getType()->isIntegerTy()) { 2499 const APInt *C0, *C1; 2500 if (!getConstIntOrUndef(Operands[0], C0) || 2501 !getConstIntOrUndef(Operands[1], C1)) 2502 return nullptr; 2503 2504 switch (IntrinsicID) { 2505 default: break; 2506 case Intrinsic::smax: 2507 case Intrinsic::smin: 2508 case Intrinsic::umax: 2509 case Intrinsic::umin: 2510 // This is the same as for binary ops - poison propagates. 2511 // TODO: Poison handling should be consolidated. 2512 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2513 return PoisonValue::get(Ty); 2514 2515 if (!C0 && !C1) 2516 return UndefValue::get(Ty); 2517 if (!C0 || !C1) 2518 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); 2519 return ConstantInt::get( 2520 Ty, ICmpInst::compare(*C0, *C1, 2521 MinMaxIntrinsic::getPredicate(IntrinsicID)) 2522 ? *C0 2523 : *C1); 2524 2525 case Intrinsic::usub_with_overflow: 2526 case Intrinsic::ssub_with_overflow: 2527 // X - undef -> { 0, false } 2528 // undef - X -> { 0, false } 2529 if (!C0 || !C1) 2530 return Constant::getNullValue(Ty); 2531 LLVM_FALLTHROUGH; 2532 case Intrinsic::uadd_with_overflow: 2533 case Intrinsic::sadd_with_overflow: 2534 // X + undef -> { -1, false } 2535 // undef + x -> { -1, false } 2536 if (!C0 || !C1) { 2537 return ConstantStruct::get( 2538 cast<StructType>(Ty), 2539 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2540 Constant::getNullValue(Ty->getStructElementType(1))}); 2541 } 2542 LLVM_FALLTHROUGH; 2543 case Intrinsic::smul_with_overflow: 2544 case Intrinsic::umul_with_overflow: { 2545 // undef * X -> { 0, false } 2546 // X * undef -> { 0, false } 2547 if (!C0 || !C1) 2548 return Constant::getNullValue(Ty); 2549 2550 APInt Res; 2551 bool Overflow; 2552 switch (IntrinsicID) { 2553 default: llvm_unreachable("Invalid case"); 2554 case Intrinsic::sadd_with_overflow: 2555 Res = C0->sadd_ov(*C1, Overflow); 2556 break; 2557 case Intrinsic::uadd_with_overflow: 2558 Res = C0->uadd_ov(*C1, Overflow); 2559 break; 2560 case Intrinsic::ssub_with_overflow: 2561 Res = C0->ssub_ov(*C1, Overflow); 2562 break; 2563 case Intrinsic::usub_with_overflow: 2564 Res = C0->usub_ov(*C1, Overflow); 2565 break; 2566 case Intrinsic::smul_with_overflow: 2567 Res = C0->smul_ov(*C1, Overflow); 2568 break; 2569 case Intrinsic::umul_with_overflow: 2570 Res = C0->umul_ov(*C1, Overflow); 2571 break; 2572 } 2573 Constant *Ops[] = { 2574 ConstantInt::get(Ty->getContext(), Res), 2575 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2576 }; 2577 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2578 } 2579 case Intrinsic::uadd_sat: 2580 case Intrinsic::sadd_sat: 2581 // This is the same as for binary ops - poison propagates. 2582 // TODO: Poison handling should be consolidated. 2583 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2584 return PoisonValue::get(Ty); 2585 2586 if (!C0 && !C1) 2587 return UndefValue::get(Ty); 2588 if (!C0 || !C1) 2589 return Constant::getAllOnesValue(Ty); 2590 if (IntrinsicID == Intrinsic::uadd_sat) 2591 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2592 else 2593 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2594 case Intrinsic::usub_sat: 2595 case Intrinsic::ssub_sat: 2596 // This is the same as for binary ops - poison propagates. 2597 // TODO: Poison handling should be consolidated. 2598 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2599 return PoisonValue::get(Ty); 2600 2601 if (!C0 && !C1) 2602 return UndefValue::get(Ty); 2603 if (!C0 || !C1) 2604 return Constant::getNullValue(Ty); 2605 if (IntrinsicID == Intrinsic::usub_sat) 2606 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2607 else 2608 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2609 case Intrinsic::cttz: 2610 case Intrinsic::ctlz: 2611 assert(C1 && "Must be constant int"); 2612 2613 // cttz(0, 1) and ctlz(0, 1) are poison. 2614 if (C1->isOne() && (!C0 || C0->isZero())) 2615 return PoisonValue::get(Ty); 2616 if (!C0) 2617 return Constant::getNullValue(Ty); 2618 if (IntrinsicID == Intrinsic::cttz) 2619 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2620 else 2621 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2622 2623 case Intrinsic::abs: 2624 assert(C1 && "Must be constant int"); 2625 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); 2626 2627 // Undef or minimum val operand with poison min --> undef 2628 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2629 return UndefValue::get(Ty); 2630 2631 // Undef operand with no poison min --> 0 (sign bit must be clear) 2632 if (!C0) 2633 return Constant::getNullValue(Ty); 2634 2635 return ConstantInt::get(Ty, C0->abs()); 2636 } 2637 2638 return nullptr; 2639 } 2640 2641 // Support ConstantVector in case we have an Undef in the top. 2642 if ((isa<ConstantVector>(Operands[0]) || 2643 isa<ConstantDataVector>(Operands[0])) && 2644 // Check for default rounding mode. 2645 // FIXME: Support other rounding modes? 2646 isa<ConstantInt>(Operands[1]) && 2647 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2648 auto *Op = cast<Constant>(Operands[0]); 2649 switch (IntrinsicID) { 2650 default: break; 2651 case Intrinsic::x86_avx512_vcvtss2si32: 2652 case Intrinsic::x86_avx512_vcvtss2si64: 2653 case Intrinsic::x86_avx512_vcvtsd2si32: 2654 case Intrinsic::x86_avx512_vcvtsd2si64: 2655 if (ConstantFP *FPOp = 2656 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2657 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2658 /*roundTowardZero=*/false, Ty, 2659 /*IsSigned*/true); 2660 break; 2661 case Intrinsic::x86_avx512_vcvtss2usi32: 2662 case Intrinsic::x86_avx512_vcvtss2usi64: 2663 case Intrinsic::x86_avx512_vcvtsd2usi32: 2664 case Intrinsic::x86_avx512_vcvtsd2usi64: 2665 if (ConstantFP *FPOp = 2666 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2667 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2668 /*roundTowardZero=*/false, Ty, 2669 /*IsSigned*/false); 2670 break; 2671 case Intrinsic::x86_avx512_cvttss2si: 2672 case Intrinsic::x86_avx512_cvttss2si64: 2673 case Intrinsic::x86_avx512_cvttsd2si: 2674 case Intrinsic::x86_avx512_cvttsd2si64: 2675 if (ConstantFP *FPOp = 2676 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2677 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2678 /*roundTowardZero=*/true, Ty, 2679 /*IsSigned*/true); 2680 break; 2681 case Intrinsic::x86_avx512_cvttss2usi: 2682 case Intrinsic::x86_avx512_cvttss2usi64: 2683 case Intrinsic::x86_avx512_cvttsd2usi: 2684 case Intrinsic::x86_avx512_cvttsd2usi64: 2685 if (ConstantFP *FPOp = 2686 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2687 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2688 /*roundTowardZero=*/true, Ty, 2689 /*IsSigned*/false); 2690 break; 2691 } 2692 } 2693 return nullptr; 2694 } 2695 2696 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2697 const APFloat &S0, 2698 const APFloat &S1, 2699 const APFloat &S2) { 2700 unsigned ID; 2701 const fltSemantics &Sem = S0.getSemantics(); 2702 APFloat MA(Sem), SC(Sem), TC(Sem); 2703 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2704 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2705 // S2 < 0 2706 ID = 5; 2707 SC = -S0; 2708 } else { 2709 ID = 4; 2710 SC = S0; 2711 } 2712 MA = S2; 2713 TC = -S1; 2714 } else if (abs(S1) >= abs(S0)) { 2715 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2716 // S1 < 0 2717 ID = 3; 2718 TC = -S2; 2719 } else { 2720 ID = 2; 2721 TC = S2; 2722 } 2723 MA = S1; 2724 SC = S0; 2725 } else { 2726 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2727 // S0 < 0 2728 ID = 1; 2729 SC = S2; 2730 } else { 2731 ID = 0; 2732 SC = -S2; 2733 } 2734 MA = S0; 2735 TC = -S1; 2736 } 2737 switch (IntrinsicID) { 2738 default: 2739 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2740 case Intrinsic::amdgcn_cubeid: 2741 return APFloat(Sem, ID); 2742 case Intrinsic::amdgcn_cubema: 2743 return MA + MA; 2744 case Intrinsic::amdgcn_cubesc: 2745 return SC; 2746 case Intrinsic::amdgcn_cubetc: 2747 return TC; 2748 } 2749 } 2750 2751 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2752 Type *Ty) { 2753 const APInt *C0, *C1, *C2; 2754 if (!getConstIntOrUndef(Operands[0], C0) || 2755 !getConstIntOrUndef(Operands[1], C1) || 2756 !getConstIntOrUndef(Operands[2], C2)) 2757 return nullptr; 2758 2759 if (!C2) 2760 return UndefValue::get(Ty); 2761 2762 APInt Val(32, 0); 2763 unsigned NumUndefBytes = 0; 2764 for (unsigned I = 0; I < 32; I += 8) { 2765 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2766 unsigned B = 0; 2767 2768 if (Sel >= 13) 2769 B = 0xff; 2770 else if (Sel == 12) 2771 B = 0x00; 2772 else { 2773 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 2774 if (!Src) 2775 ++NumUndefBytes; 2776 else if (Sel < 8) 2777 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 2778 else 2779 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 2780 } 2781 2782 Val.insertBits(B, I, 8); 2783 } 2784 2785 if (NumUndefBytes == 4) 2786 return UndefValue::get(Ty); 2787 2788 return ConstantInt::get(Ty, Val); 2789 } 2790 2791 static Constant *ConstantFoldScalarCall3(StringRef Name, 2792 Intrinsic::ID IntrinsicID, 2793 Type *Ty, 2794 ArrayRef<Constant *> Operands, 2795 const TargetLibraryInfo *TLI, 2796 const CallBase *Call) { 2797 assert(Operands.size() == 3 && "Wrong number of operands."); 2798 2799 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2800 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2801 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2802 const APFloat &C1 = Op1->getValueAPF(); 2803 const APFloat &C2 = Op2->getValueAPF(); 2804 const APFloat &C3 = Op3->getValueAPF(); 2805 2806 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2807 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2808 APFloat Res = C1; 2809 APFloat::opStatus St; 2810 switch (IntrinsicID) { 2811 default: 2812 return nullptr; 2813 case Intrinsic::experimental_constrained_fma: 2814 case Intrinsic::experimental_constrained_fmuladd: 2815 St = Res.fusedMultiplyAdd(C2, C3, RM); 2816 break; 2817 } 2818 if (mayFoldConstrained( 2819 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 2820 return ConstantFP::get(Ty->getContext(), Res); 2821 return nullptr; 2822 } 2823 2824 switch (IntrinsicID) { 2825 default: break; 2826 case Intrinsic::amdgcn_fma_legacy: { 2827 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2828 // NaN or infinity, gives +0.0. 2829 if (C1.isZero() || C2.isZero()) { 2830 // It's tempting to just return C3 here, but that would give the 2831 // wrong result if C3 was -0.0. 2832 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 2833 } 2834 LLVM_FALLTHROUGH; 2835 } 2836 case Intrinsic::fma: 2837 case Intrinsic::fmuladd: { 2838 APFloat V = C1; 2839 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 2840 return ConstantFP::get(Ty->getContext(), V); 2841 } 2842 case Intrinsic::amdgcn_cubeid: 2843 case Intrinsic::amdgcn_cubema: 2844 case Intrinsic::amdgcn_cubesc: 2845 case Intrinsic::amdgcn_cubetc: { 2846 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 2847 return ConstantFP::get(Ty->getContext(), V); 2848 } 2849 } 2850 } 2851 } 2852 } 2853 2854 if (IntrinsicID == Intrinsic::smul_fix || 2855 IntrinsicID == Intrinsic::smul_fix_sat) { 2856 // poison * C -> poison 2857 // C * poison -> poison 2858 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2859 return PoisonValue::get(Ty); 2860 2861 const APInt *C0, *C1; 2862 if (!getConstIntOrUndef(Operands[0], C0) || 2863 !getConstIntOrUndef(Operands[1], C1)) 2864 return nullptr; 2865 2866 // undef * C -> 0 2867 // C * undef -> 0 2868 if (!C0 || !C1) 2869 return Constant::getNullValue(Ty); 2870 2871 // This code performs rounding towards negative infinity in case the result 2872 // cannot be represented exactly for the given scale. Targets that do care 2873 // about rounding should use a target hook for specifying how rounding 2874 // should be done, and provide their own folding to be consistent with 2875 // rounding. This is the same approach as used by 2876 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2877 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 2878 unsigned Width = C0->getBitWidth(); 2879 assert(Scale < Width && "Illegal scale."); 2880 unsigned ExtendedWidth = Width * 2; 2881 APInt Product = 2882 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale); 2883 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2884 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth); 2885 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth); 2886 Product = APIntOps::smin(Product, Max); 2887 Product = APIntOps::smax(Product, Min); 2888 } 2889 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 2890 } 2891 2892 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2893 const APInt *C0, *C1, *C2; 2894 if (!getConstIntOrUndef(Operands[0], C0) || 2895 !getConstIntOrUndef(Operands[1], C1) || 2896 !getConstIntOrUndef(Operands[2], C2)) 2897 return nullptr; 2898 2899 bool IsRight = IntrinsicID == Intrinsic::fshr; 2900 if (!C2) 2901 return Operands[IsRight ? 1 : 0]; 2902 if (!C0 && !C1) 2903 return UndefValue::get(Ty); 2904 2905 // The shift amount is interpreted as modulo the bitwidth. If the shift 2906 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2907 unsigned BitWidth = C2->getBitWidth(); 2908 unsigned ShAmt = C2->urem(BitWidth); 2909 if (!ShAmt) 2910 return Operands[IsRight ? 1 : 0]; 2911 2912 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2913 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2914 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2915 if (!C0) 2916 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2917 if (!C1) 2918 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2919 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2920 } 2921 2922 if (IntrinsicID == Intrinsic::amdgcn_perm) 2923 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 2924 2925 return nullptr; 2926 } 2927 2928 static Constant *ConstantFoldScalarCall(StringRef Name, 2929 Intrinsic::ID IntrinsicID, 2930 Type *Ty, 2931 ArrayRef<Constant *> Operands, 2932 const TargetLibraryInfo *TLI, 2933 const CallBase *Call) { 2934 if (Operands.size() == 1) 2935 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2936 2937 if (Operands.size() == 2) 2938 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2939 2940 if (Operands.size() == 3) 2941 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2942 2943 return nullptr; 2944 } 2945 2946 static Constant *ConstantFoldFixedVectorCall( 2947 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 2948 ArrayRef<Constant *> Operands, const DataLayout &DL, 2949 const TargetLibraryInfo *TLI, const CallBase *Call) { 2950 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 2951 SmallVector<Constant *, 4> Lane(Operands.size()); 2952 Type *Ty = FVTy->getElementType(); 2953 2954 switch (IntrinsicID) { 2955 case Intrinsic::masked_load: { 2956 auto *SrcPtr = Operands[0]; 2957 auto *Mask = Operands[2]; 2958 auto *Passthru = Operands[3]; 2959 2960 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 2961 2962 SmallVector<Constant *, 32> NewElements; 2963 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2964 auto *MaskElt = Mask->getAggregateElement(I); 2965 if (!MaskElt) 2966 break; 2967 auto *PassthruElt = Passthru->getAggregateElement(I); 2968 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2969 if (isa<UndefValue>(MaskElt)) { 2970 if (PassthruElt) 2971 NewElements.push_back(PassthruElt); 2972 else if (VecElt) 2973 NewElements.push_back(VecElt); 2974 else 2975 return nullptr; 2976 } 2977 if (MaskElt->isNullValue()) { 2978 if (!PassthruElt) 2979 return nullptr; 2980 NewElements.push_back(PassthruElt); 2981 } else if (MaskElt->isOneValue()) { 2982 if (!VecElt) 2983 return nullptr; 2984 NewElements.push_back(VecElt); 2985 } else { 2986 return nullptr; 2987 } 2988 } 2989 if (NewElements.size() != FVTy->getNumElements()) 2990 return nullptr; 2991 return ConstantVector::get(NewElements); 2992 } 2993 case Intrinsic::arm_mve_vctp8: 2994 case Intrinsic::arm_mve_vctp16: 2995 case Intrinsic::arm_mve_vctp32: 2996 case Intrinsic::arm_mve_vctp64: { 2997 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2998 unsigned Lanes = FVTy->getNumElements(); 2999 uint64_t Limit = Op->getZExtValue(); 3000 3001 SmallVector<Constant *, 16> NCs; 3002 for (unsigned i = 0; i < Lanes; i++) { 3003 if (i < Limit) 3004 NCs.push_back(ConstantInt::getTrue(Ty)); 3005 else 3006 NCs.push_back(ConstantInt::getFalse(Ty)); 3007 } 3008 return ConstantVector::get(NCs); 3009 } 3010 break; 3011 } 3012 case Intrinsic::get_active_lane_mask: { 3013 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 3014 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 3015 if (Op0 && Op1) { 3016 unsigned Lanes = FVTy->getNumElements(); 3017 uint64_t Base = Op0->getZExtValue(); 3018 uint64_t Limit = Op1->getZExtValue(); 3019 3020 SmallVector<Constant *, 16> NCs; 3021 for (unsigned i = 0; i < Lanes; i++) { 3022 if (Base + i < Limit) 3023 NCs.push_back(ConstantInt::getTrue(Ty)); 3024 else 3025 NCs.push_back(ConstantInt::getFalse(Ty)); 3026 } 3027 return ConstantVector::get(NCs); 3028 } 3029 break; 3030 } 3031 default: 3032 break; 3033 } 3034 3035 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3036 // Gather a column of constants. 3037 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3038 // Some intrinsics use a scalar type for certain arguments. 3039 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) { 3040 Lane[J] = Operands[J]; 3041 continue; 3042 } 3043 3044 Constant *Agg = Operands[J]->getAggregateElement(I); 3045 if (!Agg) 3046 return nullptr; 3047 3048 Lane[J] = Agg; 3049 } 3050 3051 // Use the regular scalar folding to simplify this column. 3052 Constant *Folded = 3053 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3054 if (!Folded) 3055 return nullptr; 3056 Result[I] = Folded; 3057 } 3058 3059 return ConstantVector::get(Result); 3060 } 3061 3062 static Constant *ConstantFoldScalableVectorCall( 3063 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3064 ArrayRef<Constant *> Operands, const DataLayout &DL, 3065 const TargetLibraryInfo *TLI, const CallBase *Call) { 3066 switch (IntrinsicID) { 3067 case Intrinsic::aarch64_sve_convert_from_svbool: { 3068 auto *Src = dyn_cast<Constant>(Operands[0]); 3069 if (!Src || !Src->isNullValue()) 3070 break; 3071 3072 return ConstantInt::getFalse(SVTy); 3073 } 3074 default: 3075 break; 3076 } 3077 return nullptr; 3078 } 3079 3080 } // end anonymous namespace 3081 3082 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3083 ArrayRef<Constant *> Operands, 3084 const TargetLibraryInfo *TLI) { 3085 if (Call->isNoBuiltin()) 3086 return nullptr; 3087 if (!F->hasName()) 3088 return nullptr; 3089 3090 // If this is not an intrinsic and not recognized as a library call, bail out. 3091 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) { 3092 if (!TLI) 3093 return nullptr; 3094 LibFunc LibF; 3095 if (!TLI->getLibFunc(*F, LibF)) 3096 return nullptr; 3097 } 3098 3099 StringRef Name = F->getName(); 3100 Type *Ty = F->getReturnType(); 3101 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3102 return ConstantFoldFixedVectorCall( 3103 Name, F->getIntrinsicID(), FVTy, Operands, 3104 F->getParent()->getDataLayout(), TLI, Call); 3105 3106 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3107 return ConstantFoldScalableVectorCall( 3108 Name, F->getIntrinsicID(), SVTy, Operands, 3109 F->getParent()->getDataLayout(), TLI, Call); 3110 3111 // TODO: If this is a library function, we already discovered that above, 3112 // so we should pass the LibFunc, not the name (and it might be better 3113 // still to separate intrinsic handling from libcalls). 3114 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3115 Call); 3116 } 3117 3118 bool llvm::isMathLibCallNoop(const CallBase *Call, 3119 const TargetLibraryInfo *TLI) { 3120 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3121 // (and to some extent ConstantFoldScalarCall). 3122 if (Call->isNoBuiltin() || Call->isStrictFP()) 3123 return false; 3124 Function *F = Call->getCalledFunction(); 3125 if (!F) 3126 return false; 3127 3128 LibFunc Func; 3129 if (!TLI || !TLI->getLibFunc(*F, Func)) 3130 return false; 3131 3132 if (Call->arg_size() == 1) { 3133 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3134 const APFloat &Op = OpC->getValueAPF(); 3135 switch (Func) { 3136 case LibFunc_logl: 3137 case LibFunc_log: 3138 case LibFunc_logf: 3139 case LibFunc_log2l: 3140 case LibFunc_log2: 3141 case LibFunc_log2f: 3142 case LibFunc_log10l: 3143 case LibFunc_log10: 3144 case LibFunc_log10f: 3145 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3146 3147 case LibFunc_expl: 3148 case LibFunc_exp: 3149 case LibFunc_expf: 3150 // FIXME: These boundaries are slightly conservative. 3151 if (OpC->getType()->isDoubleTy()) 3152 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3153 if (OpC->getType()->isFloatTy()) 3154 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3155 break; 3156 3157 case LibFunc_exp2l: 3158 case LibFunc_exp2: 3159 case LibFunc_exp2f: 3160 // FIXME: These boundaries are slightly conservative. 3161 if (OpC->getType()->isDoubleTy()) 3162 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3163 if (OpC->getType()->isFloatTy()) 3164 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3165 break; 3166 3167 case LibFunc_sinl: 3168 case LibFunc_sin: 3169 case LibFunc_sinf: 3170 case LibFunc_cosl: 3171 case LibFunc_cos: 3172 case LibFunc_cosf: 3173 return !Op.isInfinity(); 3174 3175 case LibFunc_tanl: 3176 case LibFunc_tan: 3177 case LibFunc_tanf: { 3178 // FIXME: Stop using the host math library. 3179 // FIXME: The computation isn't done in the right precision. 3180 Type *Ty = OpC->getType(); 3181 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3182 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3183 break; 3184 } 3185 3186 case LibFunc_asinl: 3187 case LibFunc_asin: 3188 case LibFunc_asinf: 3189 case LibFunc_acosl: 3190 case LibFunc_acos: 3191 case LibFunc_acosf: 3192 return !(Op < APFloat(Op.getSemantics(), "-1") || 3193 Op > APFloat(Op.getSemantics(), "1")); 3194 3195 case LibFunc_sinh: 3196 case LibFunc_cosh: 3197 case LibFunc_sinhf: 3198 case LibFunc_coshf: 3199 case LibFunc_sinhl: 3200 case LibFunc_coshl: 3201 // FIXME: These boundaries are slightly conservative. 3202 if (OpC->getType()->isDoubleTy()) 3203 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3204 if (OpC->getType()->isFloatTy()) 3205 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3206 break; 3207 3208 case LibFunc_sqrtl: 3209 case LibFunc_sqrt: 3210 case LibFunc_sqrtf: 3211 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3212 3213 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3214 // maybe others? 3215 default: 3216 break; 3217 } 3218 } 3219 } 3220 3221 if (Call->arg_size() == 2) { 3222 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3223 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3224 if (Op0C && Op1C) { 3225 const APFloat &Op0 = Op0C->getValueAPF(); 3226 const APFloat &Op1 = Op1C->getValueAPF(); 3227 3228 switch (Func) { 3229 case LibFunc_powl: 3230 case LibFunc_pow: 3231 case LibFunc_powf: { 3232 // FIXME: Stop using the host math library. 3233 // FIXME: The computation isn't done in the right precision. 3234 Type *Ty = Op0C->getType(); 3235 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3236 if (Ty == Op1C->getType()) 3237 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3238 } 3239 break; 3240 } 3241 3242 case LibFunc_fmodl: 3243 case LibFunc_fmod: 3244 case LibFunc_fmodf: 3245 case LibFunc_remainderl: 3246 case LibFunc_remainder: 3247 case LibFunc_remainderf: 3248 return Op0.isNaN() || Op1.isNaN() || 3249 (!Op0.isInfinity() && !Op1.isZero()); 3250 3251 default: 3252 break; 3253 } 3254 } 3255 } 3256 3257 return false; 3258 } 3259 3260 void TargetFolder::anchor() {} 3261