1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MathExtras.h"
56 #include <cassert>
57 #include <cerrno>
58 #include <cfenv>
59 #include <cmath>
60 #include <cstdint>
61 
62 using namespace llvm;
63 
64 namespace {
65 
66 //===----------------------------------------------------------------------===//
67 // Constant Folding internal helper functions
68 //===----------------------------------------------------------------------===//
69 
70 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
71                                         Constant *C, Type *SrcEltTy,
72                                         unsigned NumSrcElts,
73                                         const DataLayout &DL) {
74   // Now that we know that the input value is a vector of integers, just shift
75   // and insert them into our result.
76   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
77   for (unsigned i = 0; i != NumSrcElts; ++i) {
78     Constant *Element;
79     if (DL.isLittleEndian())
80       Element = C->getAggregateElement(NumSrcElts - i - 1);
81     else
82       Element = C->getAggregateElement(i);
83 
84     if (Element && isa<UndefValue>(Element)) {
85       Result <<= BitShift;
86       continue;
87     }
88 
89     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
90     if (!ElementCI)
91       return ConstantExpr::getBitCast(C, DestTy);
92 
93     Result <<= BitShift;
94     Result |= ElementCI->getValue().zext(Result.getBitWidth());
95   }
96 
97   return nullptr;
98 }
99 
100 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
101 /// This always returns a non-null constant, but it may be a
102 /// ConstantExpr if unfoldable.
103 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
104   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
105          "Invalid constantexpr bitcast!");
106 
107   // Catch the obvious splat cases.
108   if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
109     return Res;
110 
111   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
112     // Handle a vector->scalar integer/fp cast.
113     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
114       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
115       Type *SrcEltTy = VTy->getElementType();
116 
117       // If the vector is a vector of floating point, convert it to vector of int
118       // to simplify things.
119       if (SrcEltTy->isFloatingPointTy()) {
120         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
121         auto *SrcIVTy = FixedVectorType::get(
122             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
123         // Ask IR to do the conversion now that #elts line up.
124         C = ConstantExpr::getBitCast(C, SrcIVTy);
125       }
126 
127       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
128       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
129                                                 SrcEltTy, NumSrcElts, DL))
130         return CE;
131 
132       if (isa<IntegerType>(DestTy))
133         return ConstantInt::get(DestTy, Result);
134 
135       APFloat FP(DestTy->getFltSemantics(), Result);
136       return ConstantFP::get(DestTy->getContext(), FP);
137     }
138   }
139 
140   // The code below only handles casts to vectors currently.
141   auto *DestVTy = dyn_cast<VectorType>(DestTy);
142   if (!DestVTy)
143     return ConstantExpr::getBitCast(C, DestTy);
144 
145   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
146   // vector so the code below can handle it uniformly.
147   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
148     Constant *Ops = C; // don't take the address of C!
149     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
150   }
151 
152   // If this is a bitcast from constant vector -> vector, fold it.
153   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
154     return ConstantExpr::getBitCast(C, DestTy);
155 
156   // If the element types match, IR can fold it.
157   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
158   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
159   if (NumDstElt == NumSrcElt)
160     return ConstantExpr::getBitCast(C, DestTy);
161 
162   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
163   Type *DstEltTy = DestVTy->getElementType();
164 
165   // Otherwise, we're changing the number of elements in a vector, which
166   // requires endianness information to do the right thing.  For example,
167   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
168   // folds to (little endian):
169   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
170   // and to (big endian):
171   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
172 
173   // First thing is first.  We only want to think about integer here, so if
174   // we have something in FP form, recast it as integer.
175   if (DstEltTy->isFloatingPointTy()) {
176     // Fold to an vector of integers with same size as our FP type.
177     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
178     auto *DestIVTy = FixedVectorType::get(
179         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
180     // Recursively handle this integer conversion, if possible.
181     C = FoldBitCast(C, DestIVTy, DL);
182 
183     // Finally, IR can handle this now that #elts line up.
184     return ConstantExpr::getBitCast(C, DestTy);
185   }
186 
187   // Okay, we know the destination is integer, if the input is FP, convert
188   // it to integer first.
189   if (SrcEltTy->isFloatingPointTy()) {
190     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
191     auto *SrcIVTy = FixedVectorType::get(
192         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
193     // Ask IR to do the conversion now that #elts line up.
194     C = ConstantExpr::getBitCast(C, SrcIVTy);
195     // If IR wasn't able to fold it, bail out.
196     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
197         !isa<ConstantDataVector>(C))
198       return C;
199   }
200 
201   // Now we know that the input and output vectors are both integer vectors
202   // of the same size, and that their #elements is not the same.  Do the
203   // conversion here, which depends on whether the input or output has
204   // more elements.
205   bool isLittleEndian = DL.isLittleEndian();
206 
207   SmallVector<Constant*, 32> Result;
208   if (NumDstElt < NumSrcElt) {
209     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
210     Constant *Zero = Constant::getNullValue(DstEltTy);
211     unsigned Ratio = NumSrcElt/NumDstElt;
212     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
213     unsigned SrcElt = 0;
214     for (unsigned i = 0; i != NumDstElt; ++i) {
215       // Build each element of the result.
216       Constant *Elt = Zero;
217       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
218       for (unsigned j = 0; j != Ratio; ++j) {
219         Constant *Src = C->getAggregateElement(SrcElt++);
220         if (Src && isa<UndefValue>(Src))
221           Src = Constant::getNullValue(
222               cast<VectorType>(C->getType())->getElementType());
223         else
224           Src = dyn_cast_or_null<ConstantInt>(Src);
225         if (!Src)  // Reject constantexpr elements.
226           return ConstantExpr::getBitCast(C, DestTy);
227 
228         // Zero extend the element to the right size.
229         Src = ConstantExpr::getZExt(Src, Elt->getType());
230 
231         // Shift it to the right place, depending on endianness.
232         Src = ConstantExpr::getShl(Src,
233                                    ConstantInt::get(Src->getType(), ShiftAmt));
234         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
235 
236         // Mix it in.
237         Elt = ConstantExpr::getOr(Elt, Src);
238       }
239       Result.push_back(Elt);
240     }
241     return ConstantVector::get(Result);
242   }
243 
244   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
245   unsigned Ratio = NumDstElt/NumSrcElt;
246   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
247 
248   // Loop over each source value, expanding into multiple results.
249   for (unsigned i = 0; i != NumSrcElt; ++i) {
250     auto *Element = C->getAggregateElement(i);
251 
252     if (!Element) // Reject constantexpr elements.
253       return ConstantExpr::getBitCast(C, DestTy);
254 
255     if (isa<UndefValue>(Element)) {
256       // Correctly Propagate undef values.
257       Result.append(Ratio, UndefValue::get(DstEltTy));
258       continue;
259     }
260 
261     auto *Src = dyn_cast<ConstantInt>(Element);
262     if (!Src)
263       return ConstantExpr::getBitCast(C, DestTy);
264 
265     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
266     for (unsigned j = 0; j != Ratio; ++j) {
267       // Shift the piece of the value into the right place, depending on
268       // endianness.
269       Constant *Elt = ConstantExpr::getLShr(Src,
270                                   ConstantInt::get(Src->getType(), ShiftAmt));
271       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
272 
273       // Truncate the element to an integer with the same pointer size and
274       // convert the element back to a pointer using a inttoptr.
275       if (DstEltTy->isPointerTy()) {
276         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
277         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
278         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
279         continue;
280       }
281 
282       // Truncate and remember this piece.
283       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
284     }
285   }
286 
287   return ConstantVector::get(Result);
288 }
289 
290 } // end anonymous namespace
291 
292 /// If this constant is a constant offset from a global, return the global and
293 /// the constant. Because of constantexprs, this function is recursive.
294 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
295                                       APInt &Offset, const DataLayout &DL,
296                                       DSOLocalEquivalent **DSOEquiv) {
297   if (DSOEquiv)
298     *DSOEquiv = nullptr;
299 
300   // Trivial case, constant is the global.
301   if ((GV = dyn_cast<GlobalValue>(C))) {
302     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
303     Offset = APInt(BitWidth, 0);
304     return true;
305   }
306 
307   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
308     if (DSOEquiv)
309       *DSOEquiv = FoundDSOEquiv;
310     GV = FoundDSOEquiv->getGlobalValue();
311     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
312     Offset = APInt(BitWidth, 0);
313     return true;
314   }
315 
316   // Otherwise, if this isn't a constant expr, bail out.
317   auto *CE = dyn_cast<ConstantExpr>(C);
318   if (!CE) return false;
319 
320   // Look through ptr->int and ptr->ptr casts.
321   if (CE->getOpcode() == Instruction::PtrToInt ||
322       CE->getOpcode() == Instruction::BitCast)
323     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
324                                       DSOEquiv);
325 
326   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
327   auto *GEP = dyn_cast<GEPOperator>(CE);
328   if (!GEP)
329     return false;
330 
331   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
332   APInt TmpOffset(BitWidth, 0);
333 
334   // If the base isn't a global+constant, we aren't either.
335   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
336                                   DSOEquiv))
337     return false;
338 
339   // Otherwise, add any offset that our operands provide.
340   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
341     return false;
342 
343   Offset = TmpOffset;
344   return true;
345 }
346 
347 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
348                                          const DataLayout &DL) {
349   do {
350     Type *SrcTy = C->getType();
351     if (SrcTy == DestTy)
352       return C;
353 
354     TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
355     TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
356     if (!TypeSize::isKnownGE(SrcSize, DestSize))
357       return nullptr;
358 
359     // Catch the obvious splat cases (since all-zeros can coerce non-integral
360     // pointers legally).
361     if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
362       return Res;
363 
364     // If the type sizes are the same and a cast is legal, just directly
365     // cast the constant.
366     // But be careful not to coerce non-integral pointers illegally.
367     if (SrcSize == DestSize &&
368         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
369             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
370       Instruction::CastOps Cast = Instruction::BitCast;
371       // If we are going from a pointer to int or vice versa, we spell the cast
372       // differently.
373       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
374         Cast = Instruction::IntToPtr;
375       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
376         Cast = Instruction::PtrToInt;
377 
378       if (CastInst::castIsValid(Cast, C, DestTy))
379         return ConstantExpr::getCast(Cast, C, DestTy);
380     }
381 
382     // If this isn't an aggregate type, there is nothing we can do to drill down
383     // and find a bitcastable constant.
384     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
385       return nullptr;
386 
387     // We're simulating a load through a pointer that was bitcast to point to
388     // a different type, so we can try to walk down through the initial
389     // elements of an aggregate to see if some part of the aggregate is
390     // castable to implement the "load" semantic model.
391     if (SrcTy->isStructTy()) {
392       // Struct types might have leading zero-length elements like [0 x i32],
393       // which are certainly not what we are looking for, so skip them.
394       unsigned Elem = 0;
395       Constant *ElemC;
396       do {
397         ElemC = C->getAggregateElement(Elem++);
398       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
399       C = ElemC;
400     } else {
401       // For non-byte-sized vector elements, the first element is not
402       // necessarily located at the vector base address.
403       if (auto *VT = dyn_cast<VectorType>(SrcTy))
404         if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
405           return nullptr;
406 
407       C = C->getAggregateElement(0u);
408     }
409   } while (C);
410 
411   return nullptr;
412 }
413 
414 namespace {
415 
416 /// Recursive helper to read bits out of global. C is the constant being copied
417 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
418 /// results into and BytesLeft is the number of bytes left in
419 /// the CurPtr buffer. DL is the DataLayout.
420 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
421                         unsigned BytesLeft, const DataLayout &DL) {
422   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
423          "Out of range access");
424 
425   // If this element is zero or undefined, we can just return since *CurPtr is
426   // zero initialized.
427   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
428     return true;
429 
430   if (auto *CI = dyn_cast<ConstantInt>(C)) {
431     if (CI->getBitWidth() > 64 ||
432         (CI->getBitWidth() & 7) != 0)
433       return false;
434 
435     uint64_t Val = CI->getZExtValue();
436     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
437 
438     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
439       int n = ByteOffset;
440       if (!DL.isLittleEndian())
441         n = IntBytes - n - 1;
442       CurPtr[i] = (unsigned char)(Val >> (n * 8));
443       ++ByteOffset;
444     }
445     return true;
446   }
447 
448   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
449     if (CFP->getType()->isDoubleTy()) {
450       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
451       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
452     }
453     if (CFP->getType()->isFloatTy()){
454       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
455       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
456     }
457     if (CFP->getType()->isHalfTy()){
458       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
459       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
460     }
461     return false;
462   }
463 
464   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
465     const StructLayout *SL = DL.getStructLayout(CS->getType());
466     unsigned Index = SL->getElementContainingOffset(ByteOffset);
467     uint64_t CurEltOffset = SL->getElementOffset(Index);
468     ByteOffset -= CurEltOffset;
469 
470     while (true) {
471       // If the element access is to the element itself and not to tail padding,
472       // read the bytes from the element.
473       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
474 
475       if (ByteOffset < EltSize &&
476           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
477                               BytesLeft, DL))
478         return false;
479 
480       ++Index;
481 
482       // Check to see if we read from the last struct element, if so we're done.
483       if (Index == CS->getType()->getNumElements())
484         return true;
485 
486       // If we read all of the bytes we needed from this element we're done.
487       uint64_t NextEltOffset = SL->getElementOffset(Index);
488 
489       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
490         return true;
491 
492       // Move to the next element of the struct.
493       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
494       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
495       ByteOffset = 0;
496       CurEltOffset = NextEltOffset;
497     }
498     // not reached.
499   }
500 
501   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
502       isa<ConstantDataSequential>(C)) {
503     uint64_t NumElts;
504     Type *EltTy;
505     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
506       NumElts = AT->getNumElements();
507       EltTy = AT->getElementType();
508     } else {
509       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
510       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
511     }
512     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
513     uint64_t Index = ByteOffset / EltSize;
514     uint64_t Offset = ByteOffset - Index * EltSize;
515 
516     for (; Index != NumElts; ++Index) {
517       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
518                               BytesLeft, DL))
519         return false;
520 
521       uint64_t BytesWritten = EltSize - Offset;
522       assert(BytesWritten <= EltSize && "Not indexing into this element?");
523       if (BytesWritten >= BytesLeft)
524         return true;
525 
526       Offset = 0;
527       BytesLeft -= BytesWritten;
528       CurPtr += BytesWritten;
529     }
530     return true;
531   }
532 
533   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
534     if (CE->getOpcode() == Instruction::IntToPtr &&
535         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
536       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
537                                 BytesLeft, DL);
538     }
539   }
540 
541   // Otherwise, unknown initializer type.
542   return false;
543 }
544 
545 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
546                                        int64_t Offset, const DataLayout &DL) {
547   // Bail out early. Not expect to load from scalable global variable.
548   if (isa<ScalableVectorType>(LoadTy))
549     return nullptr;
550 
551   auto *IntType = dyn_cast<IntegerType>(LoadTy);
552 
553   // If this isn't an integer load we can't fold it directly.
554   if (!IntType) {
555     // If this is a non-integer load, we can try folding it as an int load and
556     // then bitcast the result.  This can be useful for union cases.  Note
557     // that address spaces don't matter here since we're not going to result in
558     // an actual new load.
559     if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
560         !LoadTy->isVectorTy())
561       return nullptr;
562 
563     Type *MapTy = Type::getIntNTy(
564           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
565     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
566       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
567           !LoadTy->isX86_AMXTy())
568         // Materializing a zero can be done trivially without a bitcast
569         return Constant::getNullValue(LoadTy);
570       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
571       Res = FoldBitCast(Res, CastTy, DL);
572       if (LoadTy->isPtrOrPtrVectorTy()) {
573         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
574         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
575             !LoadTy->isX86_AMXTy())
576           return Constant::getNullValue(LoadTy);
577         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
578           // Be careful not to replace a load of an addrspace value with an inttoptr here
579           return nullptr;
580         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
581       }
582       return Res;
583     }
584     return nullptr;
585   }
586 
587   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
588   if (BytesLoaded > 32 || BytesLoaded == 0)
589     return nullptr;
590 
591   // If we're not accessing anything in this constant, the result is undefined.
592   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
593     return UndefValue::get(IntType);
594 
595   // TODO: We should be able to support scalable types.
596   TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
597   if (InitializerSize.isScalable())
598     return nullptr;
599 
600   // If we're not accessing anything in this constant, the result is undefined.
601   if (Offset >= (int64_t)InitializerSize.getFixedValue())
602     return UndefValue::get(IntType);
603 
604   unsigned char RawBytes[32] = {0};
605   unsigned char *CurPtr = RawBytes;
606   unsigned BytesLeft = BytesLoaded;
607 
608   // If we're loading off the beginning of the global, some bytes may be valid.
609   if (Offset < 0) {
610     CurPtr += -Offset;
611     BytesLeft += Offset;
612     Offset = 0;
613   }
614 
615   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
616     return nullptr;
617 
618   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
619   if (DL.isLittleEndian()) {
620     ResultVal = RawBytes[BytesLoaded - 1];
621     for (unsigned i = 1; i != BytesLoaded; ++i) {
622       ResultVal <<= 8;
623       ResultVal |= RawBytes[BytesLoaded - 1 - i];
624     }
625   } else {
626     ResultVal = RawBytes[0];
627     for (unsigned i = 1; i != BytesLoaded; ++i) {
628       ResultVal <<= 8;
629       ResultVal |= RawBytes[i];
630     }
631   }
632 
633   return ConstantInt::get(IntType->getContext(), ResultVal);
634 }
635 
636 /// If this Offset points exactly to the start of an aggregate element, return
637 /// that element, otherwise return nullptr.
638 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
639                               const DataLayout &DL) {
640   if (Offset.isZero())
641     return Base;
642 
643   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
644     return nullptr;
645 
646   Type *ElemTy = Base->getType();
647   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
648   if (!Offset.isZero() || !Indices[0].isZero())
649     return nullptr;
650 
651   Constant *C = Base;
652   for (const APInt &Index : drop_begin(Indices)) {
653     if (Index.isNegative() || Index.getActiveBits() >= 32)
654       return nullptr;
655 
656     C = C->getAggregateElement(Index.getZExtValue());
657     if (!C)
658       return nullptr;
659   }
660 
661   return C;
662 }
663 
664 } // end anonymous namespace
665 
666 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
667                                           const APInt &Offset,
668                                           const DataLayout &DL) {
669   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
670     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
671       return Result;
672 
673   // Explicitly check for out-of-bounds access, so we return undef even if the
674   // constant is a uniform value.
675   TypeSize Size = DL.getTypeAllocSize(C->getType());
676   if (!Size.isScalable() && Offset.sge(Size.getFixedSize()))
677     return UndefValue::get(Ty);
678 
679   // Try an offset-independent fold of a uniform value.
680   if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
681     return Result;
682 
683   // Try hard to fold loads from bitcasted strange and non-type-safe things.
684   if (Offset.getMinSignedBits() <= 64)
685     if (Constant *Result =
686             FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
687       return Result;
688 
689   return nullptr;
690 }
691 
692 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
693                                           const DataLayout &DL) {
694   return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
695 }
696 
697 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
698                                              APInt Offset,
699                                              const DataLayout &DL) {
700   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
701           DL, Offset, /* AllowNonInbounds */ true));
702 
703   if (auto *GV = dyn_cast<GlobalVariable>(C))
704     if (GV->isConstant() && GV->hasDefinitiveInitializer())
705       if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
706                                                        Offset, DL))
707         return Result;
708 
709   // If this load comes from anywhere in a uniform constant global, the value
710   // is always the same, regardless of the loaded offset.
711   if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
712     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
713       if (Constant *Res =
714               ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty))
715         return Res;
716     }
717   }
718 
719   return nullptr;
720 }
721 
722 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
723                                              const DataLayout &DL) {
724   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
725   return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
726 }
727 
728 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
729   if (isa<PoisonValue>(C))
730     return PoisonValue::get(Ty);
731   if (isa<UndefValue>(C))
732     return UndefValue::get(Ty);
733   if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
734     return Constant::getNullValue(Ty);
735   if (C->isAllOnesValue() &&
736       (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
737     return Constant::getAllOnesValue(Ty);
738   return nullptr;
739 }
740 
741 namespace {
742 
743 /// One of Op0/Op1 is a constant expression.
744 /// Attempt to symbolically evaluate the result of a binary operator merging
745 /// these together.  If target data info is available, it is provided as DL,
746 /// otherwise DL is null.
747 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
748                                     const DataLayout &DL) {
749   // SROA
750 
751   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
752   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
753   // bits.
754 
755   if (Opc == Instruction::And) {
756     KnownBits Known0 = computeKnownBits(Op0, DL);
757     KnownBits Known1 = computeKnownBits(Op1, DL);
758     if ((Known1.One | Known0.Zero).isAllOnes()) {
759       // All the bits of Op0 that the 'and' could be masking are already zero.
760       return Op0;
761     }
762     if ((Known0.One | Known1.Zero).isAllOnes()) {
763       // All the bits of Op1 that the 'and' could be masking are already zero.
764       return Op1;
765     }
766 
767     Known0 &= Known1;
768     if (Known0.isConstant())
769       return ConstantInt::get(Op0->getType(), Known0.getConstant());
770   }
771 
772   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
773   // constant.  This happens frequently when iterating over a global array.
774   if (Opc == Instruction::Sub) {
775     GlobalValue *GV1, *GV2;
776     APInt Offs1, Offs2;
777 
778     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
779       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
780         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
781 
782         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
783         // PtrToInt may change the bitwidth so we have convert to the right size
784         // first.
785         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
786                                                 Offs2.zextOrTrunc(OpSize));
787       }
788   }
789 
790   return nullptr;
791 }
792 
793 /// If array indices are not pointer-sized integers, explicitly cast them so
794 /// that they aren't implicitly casted by the getelementptr.
795 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
796                          Type *ResultTy, Optional<unsigned> InRangeIndex,
797                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
798   Type *IntIdxTy = DL.getIndexType(ResultTy);
799   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
800 
801   bool Any = false;
802   SmallVector<Constant*, 32> NewIdxs;
803   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
804     if ((i == 1 ||
805          !isa<StructType>(GetElementPtrInst::getIndexedType(
806              SrcElemTy, Ops.slice(1, i - 1)))) &&
807         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
808       Any = true;
809       Type *NewType = Ops[i]->getType()->isVectorTy()
810                           ? IntIdxTy
811                           : IntIdxScalarTy;
812       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
813                                                                       true,
814                                                                       NewType,
815                                                                       true),
816                                               Ops[i], NewType));
817     } else
818       NewIdxs.push_back(Ops[i]);
819   }
820 
821   if (!Any)
822     return nullptr;
823 
824   Constant *C = ConstantExpr::getGetElementPtr(
825       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
826   return ConstantFoldConstant(C, DL, TLI);
827 }
828 
829 /// Strip the pointer casts, but preserve the address space information.
830 Constant *StripPtrCastKeepAS(Constant *Ptr) {
831   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
832   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
833   Ptr = cast<Constant>(Ptr->stripPointerCasts());
834   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
835 
836   // Preserve the address space number of the pointer.
837   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
838     Ptr = ConstantExpr::getPointerCast(
839         Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
840                                                  OldPtrTy->getAddressSpace()));
841   }
842   return Ptr;
843 }
844 
845 /// If we can symbolically evaluate the GEP constant expression, do so.
846 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
847                                   ArrayRef<Constant *> Ops,
848                                   const DataLayout &DL,
849                                   const TargetLibraryInfo *TLI) {
850   const GEPOperator *InnermostGEP = GEP;
851   bool InBounds = GEP->isInBounds();
852 
853   Type *SrcElemTy = GEP->getSourceElementType();
854   Type *ResElemTy = GEP->getResultElementType();
855   Type *ResTy = GEP->getType();
856   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
857     return nullptr;
858 
859   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
860                                    GEP->getInRangeIndex(), DL, TLI))
861     return C;
862 
863   Constant *Ptr = Ops[0];
864   if (!Ptr->getType()->isPointerTy())
865     return nullptr;
866 
867   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
868 
869   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
870     if (!isa<ConstantInt>(Ops[i]))
871       return nullptr;
872 
873   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
874   APInt Offset =
875       APInt(BitWidth,
876             DL.getIndexedOffsetInType(
877                 SrcElemTy,
878                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
879   Ptr = StripPtrCastKeepAS(Ptr);
880 
881   // If this is a GEP of a GEP, fold it all into a single GEP.
882   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
883     InnermostGEP = GEP;
884     InBounds &= GEP->isInBounds();
885 
886     SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
887 
888     // Do not try the incorporate the sub-GEP if some index is not a number.
889     bool AllConstantInt = true;
890     for (Value *NestedOp : NestedOps)
891       if (!isa<ConstantInt>(NestedOp)) {
892         AllConstantInt = false;
893         break;
894       }
895     if (!AllConstantInt)
896       break;
897 
898     Ptr = cast<Constant>(GEP->getOperand(0));
899     SrcElemTy = GEP->getSourceElementType();
900     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
901     Ptr = StripPtrCastKeepAS(Ptr);
902   }
903 
904   // If the base value for this address is a literal integer value, fold the
905   // getelementptr to the resulting integer value casted to the pointer type.
906   APInt BasePtr(BitWidth, 0);
907   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
908     if (CE->getOpcode() == Instruction::IntToPtr) {
909       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
910         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
911     }
912   }
913 
914   auto *PTy = cast<PointerType>(Ptr->getType());
915   if ((Ptr->isNullValue() || BasePtr != 0) &&
916       !DL.isNonIntegralPointerType(PTy)) {
917     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
918     return ConstantExpr::getIntToPtr(C, ResTy);
919   }
920 
921   // Otherwise form a regular getelementptr. Recompute the indices so that
922   // we eliminate over-indexing of the notional static type array bounds.
923   // This makes it easy to determine if the getelementptr is "inbounds".
924   // Also, this helps GlobalOpt do SROA on GlobalVariables.
925 
926   // For GEPs of GlobalValues, use the value type even for opaque pointers.
927   // Otherwise use an i8 GEP.
928   if (auto *GV = dyn_cast<GlobalValue>(Ptr))
929     SrcElemTy = GV->getValueType();
930   else if (!PTy->isOpaque())
931     SrcElemTy = PTy->getNonOpaquePointerElementType();
932   else
933     SrcElemTy = Type::getInt8Ty(Ptr->getContext());
934 
935   if (!SrcElemTy->isSized())
936     return nullptr;
937 
938   Type *ElemTy = SrcElemTy;
939   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
940   if (Offset != 0)
941     return nullptr;
942 
943   // Try to add additional zero indices to reach the desired result element
944   // type.
945   // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
946   // we'll have to insert a bitcast anyway?
947   while (ElemTy != ResElemTy) {
948     Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
949     if (!NextTy)
950       break;
951 
952     Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
953     ElemTy = NextTy;
954   }
955 
956   SmallVector<Constant *, 32> NewIdxs;
957   for (const APInt &Index : Indices)
958     NewIdxs.push_back(ConstantInt::get(
959         Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
960 
961   // Preserve the inrange index from the innermost GEP if possible. We must
962   // have calculated the same indices up to and including the inrange index.
963   Optional<unsigned> InRangeIndex;
964   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
965     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
966         NewIdxs.size() > *LastIRIndex) {
967       InRangeIndex = LastIRIndex;
968       for (unsigned I = 0; I <= *LastIRIndex; ++I)
969         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
970           return nullptr;
971     }
972 
973   // Create a GEP.
974   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
975                                                InBounds, InRangeIndex);
976   assert(
977       cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
978       "Computed GetElementPtr has unexpected type!");
979 
980   // If we ended up indexing a member with a type that doesn't match
981   // the type of what the original indices indexed, add a cast.
982   if (C->getType() != ResTy)
983     C = FoldBitCast(C, ResTy, DL);
984 
985   return C;
986 }
987 
988 /// Attempt to constant fold an instruction with the
989 /// specified opcode and operands.  If successful, the constant result is
990 /// returned, if not, null is returned.  Note that this function can fail when
991 /// attempting to fold instructions like loads and stores, which have no
992 /// constant expression form.
993 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
994                                        ArrayRef<Constant *> Ops,
995                                        const DataLayout &DL,
996                                        const TargetLibraryInfo *TLI) {
997   Type *DestTy = InstOrCE->getType();
998 
999   if (Instruction::isUnaryOp(Opcode))
1000     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1001 
1002   if (Instruction::isBinaryOp(Opcode))
1003     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1004 
1005   if (Instruction::isCast(Opcode))
1006     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1007 
1008   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1009     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1010       return C;
1011 
1012     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1013                                           Ops.slice(1), GEP->isInBounds(),
1014                                           GEP->getInRangeIndex());
1015   }
1016 
1017   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1018     return CE->getWithOperands(Ops);
1019 
1020   switch (Opcode) {
1021   default: return nullptr;
1022   case Instruction::ICmp:
1023   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1024   case Instruction::Freeze:
1025     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1026   case Instruction::Call:
1027     if (auto *F = dyn_cast<Function>(Ops.back())) {
1028       const auto *Call = cast<CallBase>(InstOrCE);
1029       if (canConstantFoldCallTo(Call, F))
1030         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1031     }
1032     return nullptr;
1033   case Instruction::Select:
1034     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1035   case Instruction::ExtractElement:
1036     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1037   case Instruction::ExtractValue:
1038     return ConstantExpr::getExtractValue(
1039         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1040   case Instruction::InsertElement:
1041     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1042   case Instruction::ShuffleVector:
1043     return ConstantExpr::getShuffleVector(
1044         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1045   }
1046 }
1047 
1048 } // end anonymous namespace
1049 
1050 //===----------------------------------------------------------------------===//
1051 // Constant Folding public APIs
1052 //===----------------------------------------------------------------------===//
1053 
1054 namespace {
1055 
1056 Constant *
1057 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1058                          const TargetLibraryInfo *TLI,
1059                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1060   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1061     return const_cast<Constant *>(C);
1062 
1063   SmallVector<Constant *, 8> Ops;
1064   for (const Use &OldU : C->operands()) {
1065     Constant *OldC = cast<Constant>(&OldU);
1066     Constant *NewC = OldC;
1067     // Recursively fold the ConstantExpr's operands. If we have already folded
1068     // a ConstantExpr, we don't have to process it again.
1069     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1070       auto It = FoldedOps.find(OldC);
1071       if (It == FoldedOps.end()) {
1072         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1073         FoldedOps.insert({OldC, NewC});
1074       } else {
1075         NewC = It->second;
1076       }
1077     }
1078     Ops.push_back(NewC);
1079   }
1080 
1081   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1082     if (CE->isCompare())
1083       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1084                                              DL, TLI);
1085 
1086     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1087   }
1088 
1089   assert(isa<ConstantVector>(C));
1090   return ConstantVector::get(Ops);
1091 }
1092 
1093 } // end anonymous namespace
1094 
1095 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1096                                         const TargetLibraryInfo *TLI) {
1097   // Handle PHI nodes quickly here...
1098   if (auto *PN = dyn_cast<PHINode>(I)) {
1099     Constant *CommonValue = nullptr;
1100 
1101     SmallDenseMap<Constant *, Constant *> FoldedOps;
1102     for (Value *Incoming : PN->incoming_values()) {
1103       // If the incoming value is undef then skip it.  Note that while we could
1104       // skip the value if it is equal to the phi node itself we choose not to
1105       // because that would break the rule that constant folding only applies if
1106       // all operands are constants.
1107       if (isa<UndefValue>(Incoming))
1108         continue;
1109       // If the incoming value is not a constant, then give up.
1110       auto *C = dyn_cast<Constant>(Incoming);
1111       if (!C)
1112         return nullptr;
1113       // Fold the PHI's operands.
1114       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1115       // If the incoming value is a different constant to
1116       // the one we saw previously, then give up.
1117       if (CommonValue && C != CommonValue)
1118         return nullptr;
1119       CommonValue = C;
1120     }
1121 
1122     // If we reach here, all incoming values are the same constant or undef.
1123     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1124   }
1125 
1126   // Scan the operand list, checking to see if they are all constants, if so,
1127   // hand off to ConstantFoldInstOperandsImpl.
1128   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1129     return nullptr;
1130 
1131   SmallDenseMap<Constant *, Constant *> FoldedOps;
1132   SmallVector<Constant *, 8> Ops;
1133   for (const Use &OpU : I->operands()) {
1134     auto *Op = cast<Constant>(&OpU);
1135     // Fold the Instruction's operands.
1136     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1137     Ops.push_back(Op);
1138   }
1139 
1140   if (const auto *CI = dyn_cast<CmpInst>(I))
1141     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1142                                            DL, TLI);
1143 
1144   if (const auto *LI = dyn_cast<LoadInst>(I)) {
1145     if (LI->isVolatile())
1146       return nullptr;
1147     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1148   }
1149 
1150   if (auto *IVI = dyn_cast<InsertValueInst>(I))
1151     return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
1152 
1153   if (auto *EVI = dyn_cast<ExtractValueInst>(I))
1154     return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
1155 
1156   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1157 }
1158 
1159 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1160                                      const TargetLibraryInfo *TLI) {
1161   SmallDenseMap<Constant *, Constant *> FoldedOps;
1162   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1163 }
1164 
1165 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1166                                          ArrayRef<Constant *> Ops,
1167                                          const DataLayout &DL,
1168                                          const TargetLibraryInfo *TLI) {
1169   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1170 }
1171 
1172 Constant *llvm::ConstantFoldCompareInstOperands(unsigned IntPredicate,
1173                                                 Constant *Ops0, Constant *Ops1,
1174                                                 const DataLayout &DL,
1175                                                 const TargetLibraryInfo *TLI) {
1176   CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1177   // fold: icmp (inttoptr x), null         -> icmp x, 0
1178   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1179   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1180   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1181   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1182   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1183   //
1184   // FIXME: The following comment is out of data and the DataLayout is here now.
1185   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1186   // around to know if bit truncation is happening.
1187   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1188     if (Ops1->isNullValue()) {
1189       if (CE0->getOpcode() == Instruction::IntToPtr) {
1190         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1191         // Convert the integer value to the right size to ensure we get the
1192         // proper extension or truncation.
1193         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1194                                                    IntPtrTy, false);
1195         Constant *Null = Constant::getNullValue(C->getType());
1196         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1197       }
1198 
1199       // Only do this transformation if the int is intptrty in size, otherwise
1200       // there is a truncation or extension that we aren't modeling.
1201       if (CE0->getOpcode() == Instruction::PtrToInt) {
1202         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1203         if (CE0->getType() == IntPtrTy) {
1204           Constant *C = CE0->getOperand(0);
1205           Constant *Null = Constant::getNullValue(C->getType());
1206           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1207         }
1208       }
1209     }
1210 
1211     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1212       if (CE0->getOpcode() == CE1->getOpcode()) {
1213         if (CE0->getOpcode() == Instruction::IntToPtr) {
1214           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1215 
1216           // Convert the integer value to the right size to ensure we get the
1217           // proper extension or truncation.
1218           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1219                                                       IntPtrTy, false);
1220           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1221                                                       IntPtrTy, false);
1222           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1223         }
1224 
1225         // Only do this transformation if the int is intptrty in size, otherwise
1226         // there is a truncation or extension that we aren't modeling.
1227         if (CE0->getOpcode() == Instruction::PtrToInt) {
1228           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1229           if (CE0->getType() == IntPtrTy &&
1230               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1231             return ConstantFoldCompareInstOperands(
1232                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1233           }
1234         }
1235       }
1236     }
1237 
1238     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1239     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1240     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1241         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1242       Constant *LHS = ConstantFoldCompareInstOperands(
1243           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1244       Constant *RHS = ConstantFoldCompareInstOperands(
1245           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1246       unsigned OpC =
1247         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1248       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1249     }
1250 
1251     // Convert pointer comparison (base+offset1) pred (base+offset2) into
1252     // offset1 pred offset2, for the case where the offset is inbounds. This
1253     // only works for equality and unsigned comparison, as inbounds permits
1254     // crossing the sign boundary. However, the offset comparison itself is
1255     // signed.
1256     if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1257       unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1258       APInt Offset0(IndexWidth, 0);
1259       Value *Stripped0 =
1260           Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1261       APInt Offset1(IndexWidth, 0);
1262       Value *Stripped1 =
1263           Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1264       if (Stripped0 == Stripped1)
1265         return ConstantExpr::getCompare(
1266             ICmpInst::getSignedPredicate(Predicate),
1267             ConstantInt::get(CE0->getContext(), Offset0),
1268             ConstantInt::get(CE0->getContext(), Offset1));
1269     }
1270   } else if (isa<ConstantExpr>(Ops1)) {
1271     // If RHS is a constant expression, but the left side isn't, swap the
1272     // operands and try again.
1273     Predicate = ICmpInst::getSwappedPredicate(Predicate);
1274     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1275   }
1276 
1277   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1278 }
1279 
1280 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1281                                            const DataLayout &DL) {
1282   assert(Instruction::isUnaryOp(Opcode));
1283 
1284   return ConstantExpr::get(Opcode, Op);
1285 }
1286 
1287 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1288                                              Constant *RHS,
1289                                              const DataLayout &DL) {
1290   assert(Instruction::isBinaryOp(Opcode));
1291   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1292     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1293       return C;
1294 
1295   return ConstantExpr::get(Opcode, LHS, RHS);
1296 }
1297 
1298 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1299                                         Type *DestTy, const DataLayout &DL) {
1300   assert(Instruction::isCast(Opcode));
1301   switch (Opcode) {
1302   default:
1303     llvm_unreachable("Missing case");
1304   case Instruction::PtrToInt:
1305     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1306       Constant *FoldedValue = nullptr;
1307       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1308       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1309       if (CE->getOpcode() == Instruction::IntToPtr) {
1310         // zext/trunc the inttoptr to pointer size.
1311         FoldedValue = ConstantExpr::getIntegerCast(
1312             CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1313             /*IsSigned=*/false);
1314       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1315         // If we have GEP, we can perform the following folds:
1316         // (ptrtoint (gep null, x)) -> x
1317         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1318         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1319         APInt BaseOffset(BitWidth, 0);
1320         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1321             DL, BaseOffset, /*AllowNonInbounds=*/true));
1322         if (Base->isNullValue()) {
1323           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1324         } else {
1325           // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1326           if (GEP->getNumIndices() == 1 &&
1327               GEP->getSourceElementType()->isIntegerTy(8)) {
1328             auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1329             auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1330             Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1331             if (Sub && Sub->getType() == IntIdxTy &&
1332                 Sub->getOpcode() == Instruction::Sub &&
1333                 Sub->getOperand(0)->isNullValue())
1334               FoldedValue = ConstantExpr::getSub(
1335                   ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1336           }
1337         }
1338       }
1339       if (FoldedValue) {
1340         // Do a zext or trunc to get to the ptrtoint dest size.
1341         return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1342                                             /*IsSigned=*/false);
1343       }
1344     }
1345     return ConstantExpr::getCast(Opcode, C, DestTy);
1346   case Instruction::IntToPtr:
1347     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1348     // the int size is >= the ptr size and the address spaces are the same.
1349     // This requires knowing the width of a pointer, so it can't be done in
1350     // ConstantExpr::getCast.
1351     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1352       if (CE->getOpcode() == Instruction::PtrToInt) {
1353         Constant *SrcPtr = CE->getOperand(0);
1354         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1355         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1356 
1357         if (MidIntSize >= SrcPtrSize) {
1358           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1359           if (SrcAS == DestTy->getPointerAddressSpace())
1360             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1361         }
1362       }
1363     }
1364 
1365     return ConstantExpr::getCast(Opcode, C, DestTy);
1366   case Instruction::Trunc:
1367   case Instruction::ZExt:
1368   case Instruction::SExt:
1369   case Instruction::FPTrunc:
1370   case Instruction::FPExt:
1371   case Instruction::UIToFP:
1372   case Instruction::SIToFP:
1373   case Instruction::FPToUI:
1374   case Instruction::FPToSI:
1375   case Instruction::AddrSpaceCast:
1376       return ConstantExpr::getCast(Opcode, C, DestTy);
1377   case Instruction::BitCast:
1378     return FoldBitCast(C, DestTy, DL);
1379   }
1380 }
1381 
1382 //===----------------------------------------------------------------------===//
1383 //  Constant Folding for Calls
1384 //
1385 
1386 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1387   if (Call->isNoBuiltin())
1388     return false;
1389   if (Call->getFunctionType() != F->getFunctionType())
1390     return false;
1391   switch (F->getIntrinsicID()) {
1392   // Operations that do not operate floating-point numbers and do not depend on
1393   // FP environment can be folded even in strictfp functions.
1394   case Intrinsic::bswap:
1395   case Intrinsic::ctpop:
1396   case Intrinsic::ctlz:
1397   case Intrinsic::cttz:
1398   case Intrinsic::fshl:
1399   case Intrinsic::fshr:
1400   case Intrinsic::launder_invariant_group:
1401   case Intrinsic::strip_invariant_group:
1402   case Intrinsic::masked_load:
1403   case Intrinsic::get_active_lane_mask:
1404   case Intrinsic::abs:
1405   case Intrinsic::smax:
1406   case Intrinsic::smin:
1407   case Intrinsic::umax:
1408   case Intrinsic::umin:
1409   case Intrinsic::sadd_with_overflow:
1410   case Intrinsic::uadd_with_overflow:
1411   case Intrinsic::ssub_with_overflow:
1412   case Intrinsic::usub_with_overflow:
1413   case Intrinsic::smul_with_overflow:
1414   case Intrinsic::umul_with_overflow:
1415   case Intrinsic::sadd_sat:
1416   case Intrinsic::uadd_sat:
1417   case Intrinsic::ssub_sat:
1418   case Intrinsic::usub_sat:
1419   case Intrinsic::smul_fix:
1420   case Intrinsic::smul_fix_sat:
1421   case Intrinsic::bitreverse:
1422   case Intrinsic::is_constant:
1423   case Intrinsic::vector_reduce_add:
1424   case Intrinsic::vector_reduce_mul:
1425   case Intrinsic::vector_reduce_and:
1426   case Intrinsic::vector_reduce_or:
1427   case Intrinsic::vector_reduce_xor:
1428   case Intrinsic::vector_reduce_smin:
1429   case Intrinsic::vector_reduce_smax:
1430   case Intrinsic::vector_reduce_umin:
1431   case Intrinsic::vector_reduce_umax:
1432   // Target intrinsics
1433   case Intrinsic::amdgcn_perm:
1434   case Intrinsic::arm_mve_vctp8:
1435   case Intrinsic::arm_mve_vctp16:
1436   case Intrinsic::arm_mve_vctp32:
1437   case Intrinsic::arm_mve_vctp64:
1438   case Intrinsic::aarch64_sve_convert_from_svbool:
1439   // WebAssembly float semantics are always known
1440   case Intrinsic::wasm_trunc_signed:
1441   case Intrinsic::wasm_trunc_unsigned:
1442     return true;
1443 
1444   // Floating point operations cannot be folded in strictfp functions in
1445   // general case. They can be folded if FP environment is known to compiler.
1446   case Intrinsic::minnum:
1447   case Intrinsic::maxnum:
1448   case Intrinsic::minimum:
1449   case Intrinsic::maximum:
1450   case Intrinsic::log:
1451   case Intrinsic::log2:
1452   case Intrinsic::log10:
1453   case Intrinsic::exp:
1454   case Intrinsic::exp2:
1455   case Intrinsic::sqrt:
1456   case Intrinsic::sin:
1457   case Intrinsic::cos:
1458   case Intrinsic::pow:
1459   case Intrinsic::powi:
1460   case Intrinsic::fma:
1461   case Intrinsic::fmuladd:
1462   case Intrinsic::fptoui_sat:
1463   case Intrinsic::fptosi_sat:
1464   case Intrinsic::convert_from_fp16:
1465   case Intrinsic::convert_to_fp16:
1466   case Intrinsic::amdgcn_cos:
1467   case Intrinsic::amdgcn_cubeid:
1468   case Intrinsic::amdgcn_cubema:
1469   case Intrinsic::amdgcn_cubesc:
1470   case Intrinsic::amdgcn_cubetc:
1471   case Intrinsic::amdgcn_fmul_legacy:
1472   case Intrinsic::amdgcn_fma_legacy:
1473   case Intrinsic::amdgcn_fract:
1474   case Intrinsic::amdgcn_ldexp:
1475   case Intrinsic::amdgcn_sin:
1476   // The intrinsics below depend on rounding mode in MXCSR.
1477   case Intrinsic::x86_sse_cvtss2si:
1478   case Intrinsic::x86_sse_cvtss2si64:
1479   case Intrinsic::x86_sse_cvttss2si:
1480   case Intrinsic::x86_sse_cvttss2si64:
1481   case Intrinsic::x86_sse2_cvtsd2si:
1482   case Intrinsic::x86_sse2_cvtsd2si64:
1483   case Intrinsic::x86_sse2_cvttsd2si:
1484   case Intrinsic::x86_sse2_cvttsd2si64:
1485   case Intrinsic::x86_avx512_vcvtss2si32:
1486   case Intrinsic::x86_avx512_vcvtss2si64:
1487   case Intrinsic::x86_avx512_cvttss2si:
1488   case Intrinsic::x86_avx512_cvttss2si64:
1489   case Intrinsic::x86_avx512_vcvtsd2si32:
1490   case Intrinsic::x86_avx512_vcvtsd2si64:
1491   case Intrinsic::x86_avx512_cvttsd2si:
1492   case Intrinsic::x86_avx512_cvttsd2si64:
1493   case Intrinsic::x86_avx512_vcvtss2usi32:
1494   case Intrinsic::x86_avx512_vcvtss2usi64:
1495   case Intrinsic::x86_avx512_cvttss2usi:
1496   case Intrinsic::x86_avx512_cvttss2usi64:
1497   case Intrinsic::x86_avx512_vcvtsd2usi32:
1498   case Intrinsic::x86_avx512_vcvtsd2usi64:
1499   case Intrinsic::x86_avx512_cvttsd2usi:
1500   case Intrinsic::x86_avx512_cvttsd2usi64:
1501     return !Call->isStrictFP();
1502 
1503   // Sign operations are actually bitwise operations, they do not raise
1504   // exceptions even for SNANs.
1505   case Intrinsic::fabs:
1506   case Intrinsic::copysign:
1507   // Non-constrained variants of rounding operations means default FP
1508   // environment, they can be folded in any case.
1509   case Intrinsic::ceil:
1510   case Intrinsic::floor:
1511   case Intrinsic::round:
1512   case Intrinsic::roundeven:
1513   case Intrinsic::trunc:
1514   case Intrinsic::nearbyint:
1515   case Intrinsic::rint:
1516   // Constrained intrinsics can be folded if FP environment is known
1517   // to compiler.
1518   case Intrinsic::experimental_constrained_fma:
1519   case Intrinsic::experimental_constrained_fmuladd:
1520   case Intrinsic::experimental_constrained_fadd:
1521   case Intrinsic::experimental_constrained_fsub:
1522   case Intrinsic::experimental_constrained_fmul:
1523   case Intrinsic::experimental_constrained_fdiv:
1524   case Intrinsic::experimental_constrained_frem:
1525   case Intrinsic::experimental_constrained_ceil:
1526   case Intrinsic::experimental_constrained_floor:
1527   case Intrinsic::experimental_constrained_round:
1528   case Intrinsic::experimental_constrained_roundeven:
1529   case Intrinsic::experimental_constrained_trunc:
1530   case Intrinsic::experimental_constrained_nearbyint:
1531   case Intrinsic::experimental_constrained_rint:
1532   case Intrinsic::experimental_constrained_fcmp:
1533   case Intrinsic::experimental_constrained_fcmps:
1534     return true;
1535   default:
1536     return false;
1537   case Intrinsic::not_intrinsic: break;
1538   }
1539 
1540   if (!F->hasName() || Call->isStrictFP())
1541     return false;
1542 
1543   // In these cases, the check of the length is required.  We don't want to
1544   // return true for a name like "cos\0blah" which strcmp would return equal to
1545   // "cos", but has length 8.
1546   StringRef Name = F->getName();
1547   switch (Name[0]) {
1548   default:
1549     return false;
1550   case 'a':
1551     return Name == "acos" || Name == "acosf" ||
1552            Name == "asin" || Name == "asinf" ||
1553            Name == "atan" || Name == "atanf" ||
1554            Name == "atan2" || Name == "atan2f";
1555   case 'c':
1556     return Name == "ceil" || Name == "ceilf" ||
1557            Name == "cos" || Name == "cosf" ||
1558            Name == "cosh" || Name == "coshf";
1559   case 'e':
1560     return Name == "exp" || Name == "expf" ||
1561            Name == "exp2" || Name == "exp2f";
1562   case 'f':
1563     return Name == "fabs" || Name == "fabsf" ||
1564            Name == "floor" || Name == "floorf" ||
1565            Name == "fmod" || Name == "fmodf";
1566   case 'l':
1567     return Name == "log" || Name == "logf" ||
1568            Name == "log2" || Name == "log2f" ||
1569            Name == "log10" || Name == "log10f";
1570   case 'n':
1571     return Name == "nearbyint" || Name == "nearbyintf";
1572   case 'p':
1573     return Name == "pow" || Name == "powf";
1574   case 'r':
1575     return Name == "remainder" || Name == "remainderf" ||
1576            Name == "rint" || Name == "rintf" ||
1577            Name == "round" || Name == "roundf";
1578   case 's':
1579     return Name == "sin" || Name == "sinf" ||
1580            Name == "sinh" || Name == "sinhf" ||
1581            Name == "sqrt" || Name == "sqrtf";
1582   case 't':
1583     return Name == "tan" || Name == "tanf" ||
1584            Name == "tanh" || Name == "tanhf" ||
1585            Name == "trunc" || Name == "truncf";
1586   case '_':
1587     // Check for various function names that get used for the math functions
1588     // when the header files are preprocessed with the macro
1589     // __FINITE_MATH_ONLY__ enabled.
1590     // The '12' here is the length of the shortest name that can match.
1591     // We need to check the size before looking at Name[1] and Name[2]
1592     // so we may as well check a limit that will eliminate mismatches.
1593     if (Name.size() < 12 || Name[1] != '_')
1594       return false;
1595     switch (Name[2]) {
1596     default:
1597       return false;
1598     case 'a':
1599       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1600              Name == "__asin_finite" || Name == "__asinf_finite" ||
1601              Name == "__atan2_finite" || Name == "__atan2f_finite";
1602     case 'c':
1603       return Name == "__cosh_finite" || Name == "__coshf_finite";
1604     case 'e':
1605       return Name == "__exp_finite" || Name == "__expf_finite" ||
1606              Name == "__exp2_finite" || Name == "__exp2f_finite";
1607     case 'l':
1608       return Name == "__log_finite" || Name == "__logf_finite" ||
1609              Name == "__log10_finite" || Name == "__log10f_finite";
1610     case 'p':
1611       return Name == "__pow_finite" || Name == "__powf_finite";
1612     case 's':
1613       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1614     }
1615   }
1616 }
1617 
1618 namespace {
1619 
1620 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1621   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1622     APFloat APF(V);
1623     bool unused;
1624     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1625     return ConstantFP::get(Ty->getContext(), APF);
1626   }
1627   if (Ty->isDoubleTy())
1628     return ConstantFP::get(Ty->getContext(), APFloat(V));
1629   llvm_unreachable("Can only constant fold half/float/double");
1630 }
1631 
1632 /// Clear the floating-point exception state.
1633 inline void llvm_fenv_clearexcept() {
1634 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1635   feclearexcept(FE_ALL_EXCEPT);
1636 #endif
1637   errno = 0;
1638 }
1639 
1640 /// Test if a floating-point exception was raised.
1641 inline bool llvm_fenv_testexcept() {
1642   int errno_val = errno;
1643   if (errno_val == ERANGE || errno_val == EDOM)
1644     return true;
1645 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1646   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1647     return true;
1648 #endif
1649   return false;
1650 }
1651 
1652 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1653                          Type *Ty) {
1654   llvm_fenv_clearexcept();
1655   double Result = NativeFP(V.convertToDouble());
1656   if (llvm_fenv_testexcept()) {
1657     llvm_fenv_clearexcept();
1658     return nullptr;
1659   }
1660 
1661   return GetConstantFoldFPValue(Result, Ty);
1662 }
1663 
1664 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1665                                const APFloat &V, const APFloat &W, Type *Ty) {
1666   llvm_fenv_clearexcept();
1667   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1668   if (llvm_fenv_testexcept()) {
1669     llvm_fenv_clearexcept();
1670     return nullptr;
1671   }
1672 
1673   return GetConstantFoldFPValue(Result, Ty);
1674 }
1675 
1676 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1677   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1678   if (!VT)
1679     return nullptr;
1680 
1681   // This isn't strictly necessary, but handle the special/common case of zero:
1682   // all integer reductions of a zero input produce zero.
1683   if (isa<ConstantAggregateZero>(Op))
1684     return ConstantInt::get(VT->getElementType(), 0);
1685 
1686   // This is the same as the underlying binops - poison propagates.
1687   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1688     return PoisonValue::get(VT->getElementType());
1689 
1690   // TODO: Handle undef.
1691   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1692     return nullptr;
1693 
1694   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1695   if (!EltC)
1696     return nullptr;
1697 
1698   APInt Acc = EltC->getValue();
1699   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1700     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1701       return nullptr;
1702     const APInt &X = EltC->getValue();
1703     switch (IID) {
1704     case Intrinsic::vector_reduce_add:
1705       Acc = Acc + X;
1706       break;
1707     case Intrinsic::vector_reduce_mul:
1708       Acc = Acc * X;
1709       break;
1710     case Intrinsic::vector_reduce_and:
1711       Acc = Acc & X;
1712       break;
1713     case Intrinsic::vector_reduce_or:
1714       Acc = Acc | X;
1715       break;
1716     case Intrinsic::vector_reduce_xor:
1717       Acc = Acc ^ X;
1718       break;
1719     case Intrinsic::vector_reduce_smin:
1720       Acc = APIntOps::smin(Acc, X);
1721       break;
1722     case Intrinsic::vector_reduce_smax:
1723       Acc = APIntOps::smax(Acc, X);
1724       break;
1725     case Intrinsic::vector_reduce_umin:
1726       Acc = APIntOps::umin(Acc, X);
1727       break;
1728     case Intrinsic::vector_reduce_umax:
1729       Acc = APIntOps::umax(Acc, X);
1730       break;
1731     }
1732   }
1733 
1734   return ConstantInt::get(Op->getContext(), Acc);
1735 }
1736 
1737 /// Attempt to fold an SSE floating point to integer conversion of a constant
1738 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1739 /// used (toward nearest, ties to even). This matches the behavior of the
1740 /// non-truncating SSE instructions in the default rounding mode. The desired
1741 /// integer type Ty is used to select how many bits are available for the
1742 /// result. Returns null if the conversion cannot be performed, otherwise
1743 /// returns the Constant value resulting from the conversion.
1744 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1745                                       Type *Ty, bool IsSigned) {
1746   // All of these conversion intrinsics form an integer of at most 64bits.
1747   unsigned ResultWidth = Ty->getIntegerBitWidth();
1748   assert(ResultWidth <= 64 &&
1749          "Can only constant fold conversions to 64 and 32 bit ints");
1750 
1751   uint64_t UIntVal;
1752   bool isExact = false;
1753   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1754                                               : APFloat::rmNearestTiesToEven;
1755   APFloat::opStatus status =
1756       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1757                            IsSigned, mode, &isExact);
1758   if (status != APFloat::opOK &&
1759       (!roundTowardZero || status != APFloat::opInexact))
1760     return nullptr;
1761   return ConstantInt::get(Ty, UIntVal, IsSigned);
1762 }
1763 
1764 double getValueAsDouble(ConstantFP *Op) {
1765   Type *Ty = Op->getType();
1766 
1767   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1768     return Op->getValueAPF().convertToDouble();
1769 
1770   bool unused;
1771   APFloat APF = Op->getValueAPF();
1772   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1773   return APF.convertToDouble();
1774 }
1775 
1776 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1777   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1778     C = &CI->getValue();
1779     return true;
1780   }
1781   if (isa<UndefValue>(Op)) {
1782     C = nullptr;
1783     return true;
1784   }
1785   return false;
1786 }
1787 
1788 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1789 /// to be folded.
1790 ///
1791 /// \param CI Constrained intrinsic call.
1792 /// \param St Exception flags raised during constant evaluation.
1793 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1794                                APFloat::opStatus St) {
1795   Optional<RoundingMode> ORM = CI->getRoundingMode();
1796   Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1797 
1798   // If the operation does not change exception status flags, it is safe
1799   // to fold.
1800   if (St == APFloat::opStatus::opOK)
1801     return true;
1802 
1803   // If evaluation raised FP exception, the result can depend on rounding
1804   // mode. If the latter is unknown, folding is not possible.
1805   if (ORM && *ORM == RoundingMode::Dynamic)
1806     return false;
1807 
1808   // If FP exceptions are ignored, fold the call, even if such exception is
1809   // raised.
1810   if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1811     return true;
1812 
1813   // Leave the calculation for runtime so that exception flags be correctly set
1814   // in hardware.
1815   return false;
1816 }
1817 
1818 /// Returns the rounding mode that should be used for constant evaluation.
1819 static RoundingMode
1820 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1821   Optional<RoundingMode> ORM = CI->getRoundingMode();
1822   if (!ORM || *ORM == RoundingMode::Dynamic)
1823     // Even if the rounding mode is unknown, try evaluating the operation.
1824     // If it does not raise inexact exception, rounding was not applied,
1825     // so the result is exact and does not depend on rounding mode. Whether
1826     // other FP exceptions are raised, it does not depend on rounding mode.
1827     return RoundingMode::NearestTiesToEven;
1828   return *ORM;
1829 }
1830 
1831 static Constant *ConstantFoldScalarCall1(StringRef Name,
1832                                          Intrinsic::ID IntrinsicID,
1833                                          Type *Ty,
1834                                          ArrayRef<Constant *> Operands,
1835                                          const TargetLibraryInfo *TLI,
1836                                          const CallBase *Call) {
1837   assert(Operands.size() == 1 && "Wrong number of operands.");
1838 
1839   if (IntrinsicID == Intrinsic::is_constant) {
1840     // We know we have a "Constant" argument. But we want to only
1841     // return true for manifest constants, not those that depend on
1842     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1843     if (Operands[0]->isManifestConstant())
1844       return ConstantInt::getTrue(Ty->getContext());
1845     return nullptr;
1846   }
1847   if (isa<UndefValue>(Operands[0])) {
1848     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1849     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1850     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1851     if (IntrinsicID == Intrinsic::cos ||
1852         IntrinsicID == Intrinsic::ctpop ||
1853         IntrinsicID == Intrinsic::fptoui_sat ||
1854         IntrinsicID == Intrinsic::fptosi_sat)
1855       return Constant::getNullValue(Ty);
1856     if (IntrinsicID == Intrinsic::bswap ||
1857         IntrinsicID == Intrinsic::bitreverse ||
1858         IntrinsicID == Intrinsic::launder_invariant_group ||
1859         IntrinsicID == Intrinsic::strip_invariant_group)
1860       return Operands[0];
1861   }
1862 
1863   if (isa<ConstantPointerNull>(Operands[0])) {
1864     // launder(null) == null == strip(null) iff in addrspace 0
1865     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1866         IntrinsicID == Intrinsic::strip_invariant_group) {
1867       // If instruction is not yet put in a basic block (e.g. when cloning
1868       // a function during inlining), Call's caller may not be available.
1869       // So check Call's BB first before querying Call->getCaller.
1870       const Function *Caller =
1871           Call->getParent() ? Call->getCaller() : nullptr;
1872       if (Caller &&
1873           !NullPointerIsDefined(
1874               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1875         return Operands[0];
1876       }
1877       return nullptr;
1878     }
1879   }
1880 
1881   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1882     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1883       APFloat Val(Op->getValueAPF());
1884 
1885       bool lost = false;
1886       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1887 
1888       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1889     }
1890 
1891     APFloat U = Op->getValueAPF();
1892 
1893     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
1894         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
1895       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
1896 
1897       if (U.isNaN())
1898         return nullptr;
1899 
1900       unsigned Width = Ty->getIntegerBitWidth();
1901       APSInt Int(Width, !Signed);
1902       bool IsExact = false;
1903       APFloat::opStatus Status =
1904           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1905 
1906       if (Status == APFloat::opOK || Status == APFloat::opInexact)
1907         return ConstantInt::get(Ty, Int);
1908 
1909       return nullptr;
1910     }
1911 
1912     if (IntrinsicID == Intrinsic::fptoui_sat ||
1913         IntrinsicID == Intrinsic::fptosi_sat) {
1914       // convertToInteger() already has the desired saturation semantics.
1915       APSInt Int(Ty->getIntegerBitWidth(),
1916                  IntrinsicID == Intrinsic::fptoui_sat);
1917       bool IsExact;
1918       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1919       return ConstantInt::get(Ty, Int);
1920     }
1921 
1922     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1923       return nullptr;
1924 
1925     // Use internal versions of these intrinsics.
1926 
1927     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1928       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1929       return ConstantFP::get(Ty->getContext(), U);
1930     }
1931 
1932     if (IntrinsicID == Intrinsic::round) {
1933       U.roundToIntegral(APFloat::rmNearestTiesToAway);
1934       return ConstantFP::get(Ty->getContext(), U);
1935     }
1936 
1937     if (IntrinsicID == Intrinsic::roundeven) {
1938       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1939       return ConstantFP::get(Ty->getContext(), U);
1940     }
1941 
1942     if (IntrinsicID == Intrinsic::ceil) {
1943       U.roundToIntegral(APFloat::rmTowardPositive);
1944       return ConstantFP::get(Ty->getContext(), U);
1945     }
1946 
1947     if (IntrinsicID == Intrinsic::floor) {
1948       U.roundToIntegral(APFloat::rmTowardNegative);
1949       return ConstantFP::get(Ty->getContext(), U);
1950     }
1951 
1952     if (IntrinsicID == Intrinsic::trunc) {
1953       U.roundToIntegral(APFloat::rmTowardZero);
1954       return ConstantFP::get(Ty->getContext(), U);
1955     }
1956 
1957     if (IntrinsicID == Intrinsic::fabs) {
1958       U.clearSign();
1959       return ConstantFP::get(Ty->getContext(), U);
1960     }
1961 
1962     if (IntrinsicID == Intrinsic::amdgcn_fract) {
1963       // The v_fract instruction behaves like the OpenCL spec, which defines
1964       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
1965       //   there to prevent fract(-small) from returning 1.0. It returns the
1966       //   largest positive floating-point number less than 1.0."
1967       APFloat FloorU(U);
1968       FloorU.roundToIntegral(APFloat::rmTowardNegative);
1969       APFloat FractU(U - FloorU);
1970       APFloat AlmostOne(U.getSemantics(), 1);
1971       AlmostOne.next(/*nextDown*/ true);
1972       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
1973     }
1974 
1975     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
1976     // raise FP exceptions, unless the argument is signaling NaN.
1977 
1978     Optional<APFloat::roundingMode> RM;
1979     switch (IntrinsicID) {
1980     default:
1981       break;
1982     case Intrinsic::experimental_constrained_nearbyint:
1983     case Intrinsic::experimental_constrained_rint: {
1984       auto CI = cast<ConstrainedFPIntrinsic>(Call);
1985       RM = CI->getRoundingMode();
1986       if (!RM || RM.getValue() == RoundingMode::Dynamic)
1987         return nullptr;
1988       break;
1989     }
1990     case Intrinsic::experimental_constrained_round:
1991       RM = APFloat::rmNearestTiesToAway;
1992       break;
1993     case Intrinsic::experimental_constrained_ceil:
1994       RM = APFloat::rmTowardPositive;
1995       break;
1996     case Intrinsic::experimental_constrained_floor:
1997       RM = APFloat::rmTowardNegative;
1998       break;
1999     case Intrinsic::experimental_constrained_trunc:
2000       RM = APFloat::rmTowardZero;
2001       break;
2002     }
2003     if (RM) {
2004       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2005       if (U.isFinite()) {
2006         APFloat::opStatus St = U.roundToIntegral(*RM);
2007         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2008             St == APFloat::opInexact) {
2009           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2010           if (EB && *EB == fp::ebStrict)
2011             return nullptr;
2012         }
2013       } else if (U.isSignaling()) {
2014         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2015         if (EB && *EB != fp::ebIgnore)
2016           return nullptr;
2017         U = APFloat::getQNaN(U.getSemantics());
2018       }
2019       return ConstantFP::get(Ty->getContext(), U);
2020     }
2021 
2022     /// We only fold functions with finite arguments. Folding NaN and inf is
2023     /// likely to be aborted with an exception anyway, and some host libms
2024     /// have known errors raising exceptions.
2025     if (!U.isFinite())
2026       return nullptr;
2027 
2028     /// Currently APFloat versions of these functions do not exist, so we use
2029     /// the host native double versions.  Float versions are not called
2030     /// directly but for all these it is true (float)(f((double)arg)) ==
2031     /// f(arg).  Long double not supported yet.
2032     const APFloat &APF = Op->getValueAPF();
2033 
2034     switch (IntrinsicID) {
2035       default: break;
2036       case Intrinsic::log:
2037         return ConstantFoldFP(log, APF, Ty);
2038       case Intrinsic::log2:
2039         // TODO: What about hosts that lack a C99 library?
2040         return ConstantFoldFP(Log2, APF, Ty);
2041       case Intrinsic::log10:
2042         // TODO: What about hosts that lack a C99 library?
2043         return ConstantFoldFP(log10, APF, Ty);
2044       case Intrinsic::exp:
2045         return ConstantFoldFP(exp, APF, Ty);
2046       case Intrinsic::exp2:
2047         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2048         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2049       case Intrinsic::sin:
2050         return ConstantFoldFP(sin, APF, Ty);
2051       case Intrinsic::cos:
2052         return ConstantFoldFP(cos, APF, Ty);
2053       case Intrinsic::sqrt:
2054         return ConstantFoldFP(sqrt, APF, Ty);
2055       case Intrinsic::amdgcn_cos:
2056       case Intrinsic::amdgcn_sin: {
2057         double V = getValueAsDouble(Op);
2058         if (V < -256.0 || V > 256.0)
2059           // The gfx8 and gfx9 architectures handle arguments outside the range
2060           // [-256, 256] differently. This should be a rare case so bail out
2061           // rather than trying to handle the difference.
2062           return nullptr;
2063         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2064         double V4 = V * 4.0;
2065         if (V4 == floor(V4)) {
2066           // Force exact results for quarter-integer inputs.
2067           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2068           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2069         } else {
2070           if (IsCos)
2071             V = cos(V * 2.0 * numbers::pi);
2072           else
2073             V = sin(V * 2.0 * numbers::pi);
2074         }
2075         return GetConstantFoldFPValue(V, Ty);
2076       }
2077     }
2078 
2079     if (!TLI)
2080       return nullptr;
2081 
2082     LibFunc Func = NotLibFunc;
2083     if (!TLI->getLibFunc(Name, Func))
2084       return nullptr;
2085 
2086     switch (Func) {
2087     default:
2088       break;
2089     case LibFunc_acos:
2090     case LibFunc_acosf:
2091     case LibFunc_acos_finite:
2092     case LibFunc_acosf_finite:
2093       if (TLI->has(Func))
2094         return ConstantFoldFP(acos, APF, Ty);
2095       break;
2096     case LibFunc_asin:
2097     case LibFunc_asinf:
2098     case LibFunc_asin_finite:
2099     case LibFunc_asinf_finite:
2100       if (TLI->has(Func))
2101         return ConstantFoldFP(asin, APF, Ty);
2102       break;
2103     case LibFunc_atan:
2104     case LibFunc_atanf:
2105       if (TLI->has(Func))
2106         return ConstantFoldFP(atan, APF, Ty);
2107       break;
2108     case LibFunc_ceil:
2109     case LibFunc_ceilf:
2110       if (TLI->has(Func)) {
2111         U.roundToIntegral(APFloat::rmTowardPositive);
2112         return ConstantFP::get(Ty->getContext(), U);
2113       }
2114       break;
2115     case LibFunc_cos:
2116     case LibFunc_cosf:
2117       if (TLI->has(Func))
2118         return ConstantFoldFP(cos, APF, Ty);
2119       break;
2120     case LibFunc_cosh:
2121     case LibFunc_coshf:
2122     case LibFunc_cosh_finite:
2123     case LibFunc_coshf_finite:
2124       if (TLI->has(Func))
2125         return ConstantFoldFP(cosh, APF, Ty);
2126       break;
2127     case LibFunc_exp:
2128     case LibFunc_expf:
2129     case LibFunc_exp_finite:
2130     case LibFunc_expf_finite:
2131       if (TLI->has(Func))
2132         return ConstantFoldFP(exp, APF, Ty);
2133       break;
2134     case LibFunc_exp2:
2135     case LibFunc_exp2f:
2136     case LibFunc_exp2_finite:
2137     case LibFunc_exp2f_finite:
2138       if (TLI->has(Func))
2139         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2140         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2141       break;
2142     case LibFunc_fabs:
2143     case LibFunc_fabsf:
2144       if (TLI->has(Func)) {
2145         U.clearSign();
2146         return ConstantFP::get(Ty->getContext(), U);
2147       }
2148       break;
2149     case LibFunc_floor:
2150     case LibFunc_floorf:
2151       if (TLI->has(Func)) {
2152         U.roundToIntegral(APFloat::rmTowardNegative);
2153         return ConstantFP::get(Ty->getContext(), U);
2154       }
2155       break;
2156     case LibFunc_log:
2157     case LibFunc_logf:
2158     case LibFunc_log_finite:
2159     case LibFunc_logf_finite:
2160       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2161         return ConstantFoldFP(log, APF, Ty);
2162       break;
2163     case LibFunc_log2:
2164     case LibFunc_log2f:
2165     case LibFunc_log2_finite:
2166     case LibFunc_log2f_finite:
2167       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2168         // TODO: What about hosts that lack a C99 library?
2169         return ConstantFoldFP(Log2, APF, Ty);
2170       break;
2171     case LibFunc_log10:
2172     case LibFunc_log10f:
2173     case LibFunc_log10_finite:
2174     case LibFunc_log10f_finite:
2175       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2176         // TODO: What about hosts that lack a C99 library?
2177         return ConstantFoldFP(log10, APF, Ty);
2178       break;
2179     case LibFunc_nearbyint:
2180     case LibFunc_nearbyintf:
2181     case LibFunc_rint:
2182     case LibFunc_rintf:
2183       if (TLI->has(Func)) {
2184         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2185         return ConstantFP::get(Ty->getContext(), U);
2186       }
2187       break;
2188     case LibFunc_round:
2189     case LibFunc_roundf:
2190       if (TLI->has(Func)) {
2191         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2192         return ConstantFP::get(Ty->getContext(), U);
2193       }
2194       break;
2195     case LibFunc_sin:
2196     case LibFunc_sinf:
2197       if (TLI->has(Func))
2198         return ConstantFoldFP(sin, APF, Ty);
2199       break;
2200     case LibFunc_sinh:
2201     case LibFunc_sinhf:
2202     case LibFunc_sinh_finite:
2203     case LibFunc_sinhf_finite:
2204       if (TLI->has(Func))
2205         return ConstantFoldFP(sinh, APF, Ty);
2206       break;
2207     case LibFunc_sqrt:
2208     case LibFunc_sqrtf:
2209       if (!APF.isNegative() && TLI->has(Func))
2210         return ConstantFoldFP(sqrt, APF, Ty);
2211       break;
2212     case LibFunc_tan:
2213     case LibFunc_tanf:
2214       if (TLI->has(Func))
2215         return ConstantFoldFP(tan, APF, Ty);
2216       break;
2217     case LibFunc_tanh:
2218     case LibFunc_tanhf:
2219       if (TLI->has(Func))
2220         return ConstantFoldFP(tanh, APF, Ty);
2221       break;
2222     case LibFunc_trunc:
2223     case LibFunc_truncf:
2224       if (TLI->has(Func)) {
2225         U.roundToIntegral(APFloat::rmTowardZero);
2226         return ConstantFP::get(Ty->getContext(), U);
2227       }
2228       break;
2229     }
2230     return nullptr;
2231   }
2232 
2233   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2234     switch (IntrinsicID) {
2235     case Intrinsic::bswap:
2236       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2237     case Intrinsic::ctpop:
2238       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2239     case Intrinsic::bitreverse:
2240       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2241     case Intrinsic::convert_from_fp16: {
2242       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2243 
2244       bool lost = false;
2245       APFloat::opStatus status = Val.convert(
2246           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2247 
2248       // Conversion is always precise.
2249       (void)status;
2250       assert(status == APFloat::opOK && !lost &&
2251              "Precision lost during fp16 constfolding");
2252 
2253       return ConstantFP::get(Ty->getContext(), Val);
2254     }
2255     default:
2256       return nullptr;
2257     }
2258   }
2259 
2260   switch (IntrinsicID) {
2261   default: break;
2262   case Intrinsic::vector_reduce_add:
2263   case Intrinsic::vector_reduce_mul:
2264   case Intrinsic::vector_reduce_and:
2265   case Intrinsic::vector_reduce_or:
2266   case Intrinsic::vector_reduce_xor:
2267   case Intrinsic::vector_reduce_smin:
2268   case Intrinsic::vector_reduce_smax:
2269   case Intrinsic::vector_reduce_umin:
2270   case Intrinsic::vector_reduce_umax:
2271     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2272       return C;
2273     break;
2274   }
2275 
2276   // Support ConstantVector in case we have an Undef in the top.
2277   if (isa<ConstantVector>(Operands[0]) ||
2278       isa<ConstantDataVector>(Operands[0])) {
2279     auto *Op = cast<Constant>(Operands[0]);
2280     switch (IntrinsicID) {
2281     default: break;
2282     case Intrinsic::x86_sse_cvtss2si:
2283     case Intrinsic::x86_sse_cvtss2si64:
2284     case Intrinsic::x86_sse2_cvtsd2si:
2285     case Intrinsic::x86_sse2_cvtsd2si64:
2286       if (ConstantFP *FPOp =
2287               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2288         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2289                                            /*roundTowardZero=*/false, Ty,
2290                                            /*IsSigned*/true);
2291       break;
2292     case Intrinsic::x86_sse_cvttss2si:
2293     case Intrinsic::x86_sse_cvttss2si64:
2294     case Intrinsic::x86_sse2_cvttsd2si:
2295     case Intrinsic::x86_sse2_cvttsd2si64:
2296       if (ConstantFP *FPOp =
2297               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2298         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2299                                            /*roundTowardZero=*/true, Ty,
2300                                            /*IsSigned*/true);
2301       break;
2302     }
2303   }
2304 
2305   return nullptr;
2306 }
2307 
2308 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2309                                  const ConstrainedFPIntrinsic *Call) {
2310   APFloat::opStatus St = APFloat::opOK;
2311   auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2312   FCmpInst::Predicate Cond = FCmp->getPredicate();
2313   if (FCmp->isSignaling()) {
2314     if (Op1.isNaN() || Op2.isNaN())
2315       St = APFloat::opInvalidOp;
2316   } else {
2317     if (Op1.isSignaling() || Op2.isSignaling())
2318       St = APFloat::opInvalidOp;
2319   }
2320   bool Result = FCmpInst::compare(Op1, Op2, Cond);
2321   if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2322     return ConstantInt::get(Call->getType()->getScalarType(), Result);
2323   return nullptr;
2324 }
2325 
2326 static Constant *ConstantFoldScalarCall2(StringRef Name,
2327                                          Intrinsic::ID IntrinsicID,
2328                                          Type *Ty,
2329                                          ArrayRef<Constant *> Operands,
2330                                          const TargetLibraryInfo *TLI,
2331                                          const CallBase *Call) {
2332   assert(Operands.size() == 2 && "Wrong number of operands.");
2333 
2334   if (Ty->isFloatingPointTy()) {
2335     // TODO: We should have undef handling for all of the FP intrinsics that
2336     //       are attempted to be folded in this function.
2337     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2338     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2339     switch (IntrinsicID) {
2340     case Intrinsic::maxnum:
2341     case Intrinsic::minnum:
2342     case Intrinsic::maximum:
2343     case Intrinsic::minimum:
2344       // If one argument is undef, return the other argument.
2345       if (IsOp0Undef)
2346         return Operands[1];
2347       if (IsOp1Undef)
2348         return Operands[0];
2349       break;
2350     }
2351   }
2352 
2353   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2354     const APFloat &Op1V = Op1->getValueAPF();
2355 
2356     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2357       if (Op2->getType() != Op1->getType())
2358         return nullptr;
2359       const APFloat &Op2V = Op2->getValueAPF();
2360 
2361       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2362         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2363         APFloat Res = Op1V;
2364         APFloat::opStatus St;
2365         switch (IntrinsicID) {
2366         default:
2367           return nullptr;
2368         case Intrinsic::experimental_constrained_fadd:
2369           St = Res.add(Op2V, RM);
2370           break;
2371         case Intrinsic::experimental_constrained_fsub:
2372           St = Res.subtract(Op2V, RM);
2373           break;
2374         case Intrinsic::experimental_constrained_fmul:
2375           St = Res.multiply(Op2V, RM);
2376           break;
2377         case Intrinsic::experimental_constrained_fdiv:
2378           St = Res.divide(Op2V, RM);
2379           break;
2380         case Intrinsic::experimental_constrained_frem:
2381           St = Res.mod(Op2V);
2382           break;
2383         case Intrinsic::experimental_constrained_fcmp:
2384         case Intrinsic::experimental_constrained_fcmps:
2385           return evaluateCompare(Op1V, Op2V, ConstrIntr);
2386         }
2387         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2388                                St))
2389           return ConstantFP::get(Ty->getContext(), Res);
2390         return nullptr;
2391       }
2392 
2393       switch (IntrinsicID) {
2394       default:
2395         break;
2396       case Intrinsic::copysign:
2397         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2398       case Intrinsic::minnum:
2399         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2400       case Intrinsic::maxnum:
2401         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2402       case Intrinsic::minimum:
2403         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2404       case Intrinsic::maximum:
2405         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2406       }
2407 
2408       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2409         return nullptr;
2410 
2411       switch (IntrinsicID) {
2412       default:
2413         break;
2414       case Intrinsic::pow:
2415         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2416       case Intrinsic::amdgcn_fmul_legacy:
2417         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2418         // NaN or infinity, gives +0.0.
2419         if (Op1V.isZero() || Op2V.isZero())
2420           return ConstantFP::getNullValue(Ty);
2421         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2422       }
2423 
2424       if (!TLI)
2425         return nullptr;
2426 
2427       LibFunc Func = NotLibFunc;
2428       if (!TLI->getLibFunc(Name, Func))
2429         return nullptr;
2430 
2431       switch (Func) {
2432       default:
2433         break;
2434       case LibFunc_pow:
2435       case LibFunc_powf:
2436       case LibFunc_pow_finite:
2437       case LibFunc_powf_finite:
2438         if (TLI->has(Func))
2439           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2440         break;
2441       case LibFunc_fmod:
2442       case LibFunc_fmodf:
2443         if (TLI->has(Func)) {
2444           APFloat V = Op1->getValueAPF();
2445           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2446             return ConstantFP::get(Ty->getContext(), V);
2447         }
2448         break;
2449       case LibFunc_remainder:
2450       case LibFunc_remainderf:
2451         if (TLI->has(Func)) {
2452           APFloat V = Op1->getValueAPF();
2453           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2454             return ConstantFP::get(Ty->getContext(), V);
2455         }
2456         break;
2457       case LibFunc_atan2:
2458       case LibFunc_atan2f:
2459       case LibFunc_atan2_finite:
2460       case LibFunc_atan2f_finite:
2461         if (TLI->has(Func))
2462           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2463         break;
2464       }
2465     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2466       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2467         return nullptr;
2468       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2469         return ConstantFP::get(
2470             Ty->getContext(),
2471             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2472                                     (int)Op2C->getZExtValue())));
2473       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2474         return ConstantFP::get(
2475             Ty->getContext(),
2476             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2477                                     (int)Op2C->getZExtValue())));
2478       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2479         return ConstantFP::get(
2480             Ty->getContext(),
2481             APFloat((double)std::pow(Op1V.convertToDouble(),
2482                                      (int)Op2C->getZExtValue())));
2483 
2484       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2485         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2486         // everywhere else.
2487 
2488         // scalbn is equivalent to ldexp with float radix 2
2489         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2490                                 APFloat::rmNearestTiesToEven);
2491         return ConstantFP::get(Ty->getContext(), Result);
2492       }
2493     }
2494     return nullptr;
2495   }
2496 
2497   if (Operands[0]->getType()->isIntegerTy() &&
2498       Operands[1]->getType()->isIntegerTy()) {
2499     const APInt *C0, *C1;
2500     if (!getConstIntOrUndef(Operands[0], C0) ||
2501         !getConstIntOrUndef(Operands[1], C1))
2502       return nullptr;
2503 
2504     switch (IntrinsicID) {
2505     default: break;
2506     case Intrinsic::smax:
2507     case Intrinsic::smin:
2508     case Intrinsic::umax:
2509     case Intrinsic::umin:
2510       // This is the same as for binary ops - poison propagates.
2511       // TODO: Poison handling should be consolidated.
2512       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2513         return PoisonValue::get(Ty);
2514 
2515       if (!C0 && !C1)
2516         return UndefValue::get(Ty);
2517       if (!C0 || !C1)
2518         return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2519       return ConstantInt::get(
2520           Ty, ICmpInst::compare(*C0, *C1,
2521                                 MinMaxIntrinsic::getPredicate(IntrinsicID))
2522                   ? *C0
2523                   : *C1);
2524 
2525     case Intrinsic::usub_with_overflow:
2526     case Intrinsic::ssub_with_overflow:
2527       // X - undef -> { 0, false }
2528       // undef - X -> { 0, false }
2529       if (!C0 || !C1)
2530         return Constant::getNullValue(Ty);
2531       LLVM_FALLTHROUGH;
2532     case Intrinsic::uadd_with_overflow:
2533     case Intrinsic::sadd_with_overflow:
2534       // X + undef -> { -1, false }
2535       // undef + x -> { -1, false }
2536       if (!C0 || !C1) {
2537         return ConstantStruct::get(
2538             cast<StructType>(Ty),
2539             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2540              Constant::getNullValue(Ty->getStructElementType(1))});
2541       }
2542       LLVM_FALLTHROUGH;
2543     case Intrinsic::smul_with_overflow:
2544     case Intrinsic::umul_with_overflow: {
2545       // undef * X -> { 0, false }
2546       // X * undef -> { 0, false }
2547       if (!C0 || !C1)
2548         return Constant::getNullValue(Ty);
2549 
2550       APInt Res;
2551       bool Overflow;
2552       switch (IntrinsicID) {
2553       default: llvm_unreachable("Invalid case");
2554       case Intrinsic::sadd_with_overflow:
2555         Res = C0->sadd_ov(*C1, Overflow);
2556         break;
2557       case Intrinsic::uadd_with_overflow:
2558         Res = C0->uadd_ov(*C1, Overflow);
2559         break;
2560       case Intrinsic::ssub_with_overflow:
2561         Res = C0->ssub_ov(*C1, Overflow);
2562         break;
2563       case Intrinsic::usub_with_overflow:
2564         Res = C0->usub_ov(*C1, Overflow);
2565         break;
2566       case Intrinsic::smul_with_overflow:
2567         Res = C0->smul_ov(*C1, Overflow);
2568         break;
2569       case Intrinsic::umul_with_overflow:
2570         Res = C0->umul_ov(*C1, Overflow);
2571         break;
2572       }
2573       Constant *Ops[] = {
2574         ConstantInt::get(Ty->getContext(), Res),
2575         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2576       };
2577       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2578     }
2579     case Intrinsic::uadd_sat:
2580     case Intrinsic::sadd_sat:
2581       // This is the same as for binary ops - poison propagates.
2582       // TODO: Poison handling should be consolidated.
2583       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2584         return PoisonValue::get(Ty);
2585 
2586       if (!C0 && !C1)
2587         return UndefValue::get(Ty);
2588       if (!C0 || !C1)
2589         return Constant::getAllOnesValue(Ty);
2590       if (IntrinsicID == Intrinsic::uadd_sat)
2591         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2592       else
2593         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2594     case Intrinsic::usub_sat:
2595     case Intrinsic::ssub_sat:
2596       // This is the same as for binary ops - poison propagates.
2597       // TODO: Poison handling should be consolidated.
2598       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2599         return PoisonValue::get(Ty);
2600 
2601       if (!C0 && !C1)
2602         return UndefValue::get(Ty);
2603       if (!C0 || !C1)
2604         return Constant::getNullValue(Ty);
2605       if (IntrinsicID == Intrinsic::usub_sat)
2606         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2607       else
2608         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2609     case Intrinsic::cttz:
2610     case Intrinsic::ctlz:
2611       assert(C1 && "Must be constant int");
2612 
2613       // cttz(0, 1) and ctlz(0, 1) are poison.
2614       if (C1->isOne() && (!C0 || C0->isZero()))
2615         return PoisonValue::get(Ty);
2616       if (!C0)
2617         return Constant::getNullValue(Ty);
2618       if (IntrinsicID == Intrinsic::cttz)
2619         return ConstantInt::get(Ty, C0->countTrailingZeros());
2620       else
2621         return ConstantInt::get(Ty, C0->countLeadingZeros());
2622 
2623     case Intrinsic::abs:
2624       assert(C1 && "Must be constant int");
2625       assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2626 
2627       // Undef or minimum val operand with poison min --> undef
2628       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2629         return UndefValue::get(Ty);
2630 
2631       // Undef operand with no poison min --> 0 (sign bit must be clear)
2632       if (!C0)
2633         return Constant::getNullValue(Ty);
2634 
2635       return ConstantInt::get(Ty, C0->abs());
2636     }
2637 
2638     return nullptr;
2639   }
2640 
2641   // Support ConstantVector in case we have an Undef in the top.
2642   if ((isa<ConstantVector>(Operands[0]) ||
2643        isa<ConstantDataVector>(Operands[0])) &&
2644       // Check for default rounding mode.
2645       // FIXME: Support other rounding modes?
2646       isa<ConstantInt>(Operands[1]) &&
2647       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2648     auto *Op = cast<Constant>(Operands[0]);
2649     switch (IntrinsicID) {
2650     default: break;
2651     case Intrinsic::x86_avx512_vcvtss2si32:
2652     case Intrinsic::x86_avx512_vcvtss2si64:
2653     case Intrinsic::x86_avx512_vcvtsd2si32:
2654     case Intrinsic::x86_avx512_vcvtsd2si64:
2655       if (ConstantFP *FPOp =
2656               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2657         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2658                                            /*roundTowardZero=*/false, Ty,
2659                                            /*IsSigned*/true);
2660       break;
2661     case Intrinsic::x86_avx512_vcvtss2usi32:
2662     case Intrinsic::x86_avx512_vcvtss2usi64:
2663     case Intrinsic::x86_avx512_vcvtsd2usi32:
2664     case Intrinsic::x86_avx512_vcvtsd2usi64:
2665       if (ConstantFP *FPOp =
2666               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2667         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2668                                            /*roundTowardZero=*/false, Ty,
2669                                            /*IsSigned*/false);
2670       break;
2671     case Intrinsic::x86_avx512_cvttss2si:
2672     case Intrinsic::x86_avx512_cvttss2si64:
2673     case Intrinsic::x86_avx512_cvttsd2si:
2674     case Intrinsic::x86_avx512_cvttsd2si64:
2675       if (ConstantFP *FPOp =
2676               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2677         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2678                                            /*roundTowardZero=*/true, Ty,
2679                                            /*IsSigned*/true);
2680       break;
2681     case Intrinsic::x86_avx512_cvttss2usi:
2682     case Intrinsic::x86_avx512_cvttss2usi64:
2683     case Intrinsic::x86_avx512_cvttsd2usi:
2684     case Intrinsic::x86_avx512_cvttsd2usi64:
2685       if (ConstantFP *FPOp =
2686               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2687         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2688                                            /*roundTowardZero=*/true, Ty,
2689                                            /*IsSigned*/false);
2690       break;
2691     }
2692   }
2693   return nullptr;
2694 }
2695 
2696 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2697                                                const APFloat &S0,
2698                                                const APFloat &S1,
2699                                                const APFloat &S2) {
2700   unsigned ID;
2701   const fltSemantics &Sem = S0.getSemantics();
2702   APFloat MA(Sem), SC(Sem), TC(Sem);
2703   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2704     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2705       // S2 < 0
2706       ID = 5;
2707       SC = -S0;
2708     } else {
2709       ID = 4;
2710       SC = S0;
2711     }
2712     MA = S2;
2713     TC = -S1;
2714   } else if (abs(S1) >= abs(S0)) {
2715     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2716       // S1 < 0
2717       ID = 3;
2718       TC = -S2;
2719     } else {
2720       ID = 2;
2721       TC = S2;
2722     }
2723     MA = S1;
2724     SC = S0;
2725   } else {
2726     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2727       // S0 < 0
2728       ID = 1;
2729       SC = S2;
2730     } else {
2731       ID = 0;
2732       SC = -S2;
2733     }
2734     MA = S0;
2735     TC = -S1;
2736   }
2737   switch (IntrinsicID) {
2738   default:
2739     llvm_unreachable("unhandled amdgcn cube intrinsic");
2740   case Intrinsic::amdgcn_cubeid:
2741     return APFloat(Sem, ID);
2742   case Intrinsic::amdgcn_cubema:
2743     return MA + MA;
2744   case Intrinsic::amdgcn_cubesc:
2745     return SC;
2746   case Intrinsic::amdgcn_cubetc:
2747     return TC;
2748   }
2749 }
2750 
2751 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2752                                                  Type *Ty) {
2753   const APInt *C0, *C1, *C2;
2754   if (!getConstIntOrUndef(Operands[0], C0) ||
2755       !getConstIntOrUndef(Operands[1], C1) ||
2756       !getConstIntOrUndef(Operands[2], C2))
2757     return nullptr;
2758 
2759   if (!C2)
2760     return UndefValue::get(Ty);
2761 
2762   APInt Val(32, 0);
2763   unsigned NumUndefBytes = 0;
2764   for (unsigned I = 0; I < 32; I += 8) {
2765     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2766     unsigned B = 0;
2767 
2768     if (Sel >= 13)
2769       B = 0xff;
2770     else if (Sel == 12)
2771       B = 0x00;
2772     else {
2773       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2774       if (!Src)
2775         ++NumUndefBytes;
2776       else if (Sel < 8)
2777         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2778       else
2779         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2780     }
2781 
2782     Val.insertBits(B, I, 8);
2783   }
2784 
2785   if (NumUndefBytes == 4)
2786     return UndefValue::get(Ty);
2787 
2788   return ConstantInt::get(Ty, Val);
2789 }
2790 
2791 static Constant *ConstantFoldScalarCall3(StringRef Name,
2792                                          Intrinsic::ID IntrinsicID,
2793                                          Type *Ty,
2794                                          ArrayRef<Constant *> Operands,
2795                                          const TargetLibraryInfo *TLI,
2796                                          const CallBase *Call) {
2797   assert(Operands.size() == 3 && "Wrong number of operands.");
2798 
2799   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2800     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2801       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2802         const APFloat &C1 = Op1->getValueAPF();
2803         const APFloat &C2 = Op2->getValueAPF();
2804         const APFloat &C3 = Op3->getValueAPF();
2805 
2806         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2807           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2808           APFloat Res = C1;
2809           APFloat::opStatus St;
2810           switch (IntrinsicID) {
2811           default:
2812             return nullptr;
2813           case Intrinsic::experimental_constrained_fma:
2814           case Intrinsic::experimental_constrained_fmuladd:
2815             St = Res.fusedMultiplyAdd(C2, C3, RM);
2816             break;
2817           }
2818           if (mayFoldConstrained(
2819                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
2820             return ConstantFP::get(Ty->getContext(), Res);
2821           return nullptr;
2822         }
2823 
2824         switch (IntrinsicID) {
2825         default: break;
2826         case Intrinsic::amdgcn_fma_legacy: {
2827           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2828           // NaN or infinity, gives +0.0.
2829           if (C1.isZero() || C2.isZero()) {
2830             // It's tempting to just return C3 here, but that would give the
2831             // wrong result if C3 was -0.0.
2832             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2833           }
2834           LLVM_FALLTHROUGH;
2835         }
2836         case Intrinsic::fma:
2837         case Intrinsic::fmuladd: {
2838           APFloat V = C1;
2839           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
2840           return ConstantFP::get(Ty->getContext(), V);
2841         }
2842         case Intrinsic::amdgcn_cubeid:
2843         case Intrinsic::amdgcn_cubema:
2844         case Intrinsic::amdgcn_cubesc:
2845         case Intrinsic::amdgcn_cubetc: {
2846           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
2847           return ConstantFP::get(Ty->getContext(), V);
2848         }
2849         }
2850       }
2851     }
2852   }
2853 
2854   if (IntrinsicID == Intrinsic::smul_fix ||
2855       IntrinsicID == Intrinsic::smul_fix_sat) {
2856     // poison * C -> poison
2857     // C * poison -> poison
2858     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2859       return PoisonValue::get(Ty);
2860 
2861     const APInt *C0, *C1;
2862     if (!getConstIntOrUndef(Operands[0], C0) ||
2863         !getConstIntOrUndef(Operands[1], C1))
2864       return nullptr;
2865 
2866     // undef * C -> 0
2867     // C * undef -> 0
2868     if (!C0 || !C1)
2869       return Constant::getNullValue(Ty);
2870 
2871     // This code performs rounding towards negative infinity in case the result
2872     // cannot be represented exactly for the given scale. Targets that do care
2873     // about rounding should use a target hook for specifying how rounding
2874     // should be done, and provide their own folding to be consistent with
2875     // rounding. This is the same approach as used by
2876     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2877     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2878     unsigned Width = C0->getBitWidth();
2879     assert(Scale < Width && "Illegal scale.");
2880     unsigned ExtendedWidth = Width * 2;
2881     APInt Product =
2882         (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
2883     if (IntrinsicID == Intrinsic::smul_fix_sat) {
2884       APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
2885       APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
2886       Product = APIntOps::smin(Product, Max);
2887       Product = APIntOps::smax(Product, Min);
2888     }
2889     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
2890   }
2891 
2892   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2893     const APInt *C0, *C1, *C2;
2894     if (!getConstIntOrUndef(Operands[0], C0) ||
2895         !getConstIntOrUndef(Operands[1], C1) ||
2896         !getConstIntOrUndef(Operands[2], C2))
2897       return nullptr;
2898 
2899     bool IsRight = IntrinsicID == Intrinsic::fshr;
2900     if (!C2)
2901       return Operands[IsRight ? 1 : 0];
2902     if (!C0 && !C1)
2903       return UndefValue::get(Ty);
2904 
2905     // The shift amount is interpreted as modulo the bitwidth. If the shift
2906     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2907     unsigned BitWidth = C2->getBitWidth();
2908     unsigned ShAmt = C2->urem(BitWidth);
2909     if (!ShAmt)
2910       return Operands[IsRight ? 1 : 0];
2911 
2912     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2913     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2914     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2915     if (!C0)
2916       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2917     if (!C1)
2918       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2919     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2920   }
2921 
2922   if (IntrinsicID == Intrinsic::amdgcn_perm)
2923     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
2924 
2925   return nullptr;
2926 }
2927 
2928 static Constant *ConstantFoldScalarCall(StringRef Name,
2929                                         Intrinsic::ID IntrinsicID,
2930                                         Type *Ty,
2931                                         ArrayRef<Constant *> Operands,
2932                                         const TargetLibraryInfo *TLI,
2933                                         const CallBase *Call) {
2934   if (Operands.size() == 1)
2935     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2936 
2937   if (Operands.size() == 2)
2938     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2939 
2940   if (Operands.size() == 3)
2941     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2942 
2943   return nullptr;
2944 }
2945 
2946 static Constant *ConstantFoldFixedVectorCall(
2947     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
2948     ArrayRef<Constant *> Operands, const DataLayout &DL,
2949     const TargetLibraryInfo *TLI, const CallBase *Call) {
2950   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
2951   SmallVector<Constant *, 4> Lane(Operands.size());
2952   Type *Ty = FVTy->getElementType();
2953 
2954   switch (IntrinsicID) {
2955   case Intrinsic::masked_load: {
2956     auto *SrcPtr = Operands[0];
2957     auto *Mask = Operands[2];
2958     auto *Passthru = Operands[3];
2959 
2960     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
2961 
2962     SmallVector<Constant *, 32> NewElements;
2963     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
2964       auto *MaskElt = Mask->getAggregateElement(I);
2965       if (!MaskElt)
2966         break;
2967       auto *PassthruElt = Passthru->getAggregateElement(I);
2968       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2969       if (isa<UndefValue>(MaskElt)) {
2970         if (PassthruElt)
2971           NewElements.push_back(PassthruElt);
2972         else if (VecElt)
2973           NewElements.push_back(VecElt);
2974         else
2975           return nullptr;
2976       }
2977       if (MaskElt->isNullValue()) {
2978         if (!PassthruElt)
2979           return nullptr;
2980         NewElements.push_back(PassthruElt);
2981       } else if (MaskElt->isOneValue()) {
2982         if (!VecElt)
2983           return nullptr;
2984         NewElements.push_back(VecElt);
2985       } else {
2986         return nullptr;
2987       }
2988     }
2989     if (NewElements.size() != FVTy->getNumElements())
2990       return nullptr;
2991     return ConstantVector::get(NewElements);
2992   }
2993   case Intrinsic::arm_mve_vctp8:
2994   case Intrinsic::arm_mve_vctp16:
2995   case Intrinsic::arm_mve_vctp32:
2996   case Intrinsic::arm_mve_vctp64: {
2997     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2998       unsigned Lanes = FVTy->getNumElements();
2999       uint64_t Limit = Op->getZExtValue();
3000 
3001       SmallVector<Constant *, 16> NCs;
3002       for (unsigned i = 0; i < Lanes; i++) {
3003         if (i < Limit)
3004           NCs.push_back(ConstantInt::getTrue(Ty));
3005         else
3006           NCs.push_back(ConstantInt::getFalse(Ty));
3007       }
3008       return ConstantVector::get(NCs);
3009     }
3010     break;
3011   }
3012   case Intrinsic::get_active_lane_mask: {
3013     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3014     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3015     if (Op0 && Op1) {
3016       unsigned Lanes = FVTy->getNumElements();
3017       uint64_t Base = Op0->getZExtValue();
3018       uint64_t Limit = Op1->getZExtValue();
3019 
3020       SmallVector<Constant *, 16> NCs;
3021       for (unsigned i = 0; i < Lanes; i++) {
3022         if (Base + i < Limit)
3023           NCs.push_back(ConstantInt::getTrue(Ty));
3024         else
3025           NCs.push_back(ConstantInt::getFalse(Ty));
3026       }
3027       return ConstantVector::get(NCs);
3028     }
3029     break;
3030   }
3031   default:
3032     break;
3033   }
3034 
3035   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3036     // Gather a column of constants.
3037     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3038       // Some intrinsics use a scalar type for certain arguments.
3039       if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3040         Lane[J] = Operands[J];
3041         continue;
3042       }
3043 
3044       Constant *Agg = Operands[J]->getAggregateElement(I);
3045       if (!Agg)
3046         return nullptr;
3047 
3048       Lane[J] = Agg;
3049     }
3050 
3051     // Use the regular scalar folding to simplify this column.
3052     Constant *Folded =
3053         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3054     if (!Folded)
3055       return nullptr;
3056     Result[I] = Folded;
3057   }
3058 
3059   return ConstantVector::get(Result);
3060 }
3061 
3062 static Constant *ConstantFoldScalableVectorCall(
3063     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3064     ArrayRef<Constant *> Operands, const DataLayout &DL,
3065     const TargetLibraryInfo *TLI, const CallBase *Call) {
3066   switch (IntrinsicID) {
3067   case Intrinsic::aarch64_sve_convert_from_svbool: {
3068     auto *Src = dyn_cast<Constant>(Operands[0]);
3069     if (!Src || !Src->isNullValue())
3070       break;
3071 
3072     return ConstantInt::getFalse(SVTy);
3073   }
3074   default:
3075     break;
3076   }
3077   return nullptr;
3078 }
3079 
3080 } // end anonymous namespace
3081 
3082 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3083                                  ArrayRef<Constant *> Operands,
3084                                  const TargetLibraryInfo *TLI) {
3085   if (Call->isNoBuiltin())
3086     return nullptr;
3087   if (!F->hasName())
3088     return nullptr;
3089 
3090   // If this is not an intrinsic and not recognized as a library call, bail out.
3091   if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3092     if (!TLI)
3093       return nullptr;
3094     LibFunc LibF;
3095     if (!TLI->getLibFunc(*F, LibF))
3096       return nullptr;
3097   }
3098 
3099   StringRef Name = F->getName();
3100   Type *Ty = F->getReturnType();
3101   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3102     return ConstantFoldFixedVectorCall(
3103         Name, F->getIntrinsicID(), FVTy, Operands,
3104         F->getParent()->getDataLayout(), TLI, Call);
3105 
3106   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3107     return ConstantFoldScalableVectorCall(
3108         Name, F->getIntrinsicID(), SVTy, Operands,
3109         F->getParent()->getDataLayout(), TLI, Call);
3110 
3111   // TODO: If this is a library function, we already discovered that above,
3112   //       so we should pass the LibFunc, not the name (and it might be better
3113   //       still to separate intrinsic handling from libcalls).
3114   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3115                                 Call);
3116 }
3117 
3118 bool llvm::isMathLibCallNoop(const CallBase *Call,
3119                              const TargetLibraryInfo *TLI) {
3120   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3121   // (and to some extent ConstantFoldScalarCall).
3122   if (Call->isNoBuiltin() || Call->isStrictFP())
3123     return false;
3124   Function *F = Call->getCalledFunction();
3125   if (!F)
3126     return false;
3127 
3128   LibFunc Func;
3129   if (!TLI || !TLI->getLibFunc(*F, Func))
3130     return false;
3131 
3132   if (Call->arg_size() == 1) {
3133     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3134       const APFloat &Op = OpC->getValueAPF();
3135       switch (Func) {
3136       case LibFunc_logl:
3137       case LibFunc_log:
3138       case LibFunc_logf:
3139       case LibFunc_log2l:
3140       case LibFunc_log2:
3141       case LibFunc_log2f:
3142       case LibFunc_log10l:
3143       case LibFunc_log10:
3144       case LibFunc_log10f:
3145         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3146 
3147       case LibFunc_expl:
3148       case LibFunc_exp:
3149       case LibFunc_expf:
3150         // FIXME: These boundaries are slightly conservative.
3151         if (OpC->getType()->isDoubleTy())
3152           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3153         if (OpC->getType()->isFloatTy())
3154           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3155         break;
3156 
3157       case LibFunc_exp2l:
3158       case LibFunc_exp2:
3159       case LibFunc_exp2f:
3160         // FIXME: These boundaries are slightly conservative.
3161         if (OpC->getType()->isDoubleTy())
3162           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3163         if (OpC->getType()->isFloatTy())
3164           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3165         break;
3166 
3167       case LibFunc_sinl:
3168       case LibFunc_sin:
3169       case LibFunc_sinf:
3170       case LibFunc_cosl:
3171       case LibFunc_cos:
3172       case LibFunc_cosf:
3173         return !Op.isInfinity();
3174 
3175       case LibFunc_tanl:
3176       case LibFunc_tan:
3177       case LibFunc_tanf: {
3178         // FIXME: Stop using the host math library.
3179         // FIXME: The computation isn't done in the right precision.
3180         Type *Ty = OpC->getType();
3181         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3182           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3183         break;
3184       }
3185 
3186       case LibFunc_asinl:
3187       case LibFunc_asin:
3188       case LibFunc_asinf:
3189       case LibFunc_acosl:
3190       case LibFunc_acos:
3191       case LibFunc_acosf:
3192         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3193                  Op > APFloat(Op.getSemantics(), "1"));
3194 
3195       case LibFunc_sinh:
3196       case LibFunc_cosh:
3197       case LibFunc_sinhf:
3198       case LibFunc_coshf:
3199       case LibFunc_sinhl:
3200       case LibFunc_coshl:
3201         // FIXME: These boundaries are slightly conservative.
3202         if (OpC->getType()->isDoubleTy())
3203           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3204         if (OpC->getType()->isFloatTy())
3205           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3206         break;
3207 
3208       case LibFunc_sqrtl:
3209       case LibFunc_sqrt:
3210       case LibFunc_sqrtf:
3211         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3212 
3213       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3214       // maybe others?
3215       default:
3216         break;
3217       }
3218     }
3219   }
3220 
3221   if (Call->arg_size() == 2) {
3222     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3223     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3224     if (Op0C && Op1C) {
3225       const APFloat &Op0 = Op0C->getValueAPF();
3226       const APFloat &Op1 = Op1C->getValueAPF();
3227 
3228       switch (Func) {
3229       case LibFunc_powl:
3230       case LibFunc_pow:
3231       case LibFunc_powf: {
3232         // FIXME: Stop using the host math library.
3233         // FIXME: The computation isn't done in the right precision.
3234         Type *Ty = Op0C->getType();
3235         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3236           if (Ty == Op1C->getType())
3237             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3238         }
3239         break;
3240       }
3241 
3242       case LibFunc_fmodl:
3243       case LibFunc_fmod:
3244       case LibFunc_fmodf:
3245       case LibFunc_remainderl:
3246       case LibFunc_remainder:
3247       case LibFunc_remainderf:
3248         return Op0.isNaN() || Op1.isNaN() ||
3249                (!Op0.isInfinity() && !Op1.isZero());
3250 
3251       default:
3252         break;
3253       }
3254     }
3255   }
3256 
3257   return false;
3258 }
3259 
3260 void TargetFolder::anchor() {}
3261