1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/IntrinsicsAArch64.h" 45 #include "llvm/IR/IntrinsicsAMDGPU.h" 46 #include "llvm/IR/IntrinsicsARM.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MathExtras.h" 56 #include <cassert> 57 #include <cerrno> 58 #include <cfenv> 59 #include <cmath> 60 #include <cstddef> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 67 //===----------------------------------------------------------------------===// 68 // Constant Folding internal helper functions 69 //===----------------------------------------------------------------------===// 70 71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 72 Constant *C, Type *SrcEltTy, 73 unsigned NumSrcElts, 74 const DataLayout &DL) { 75 // Now that we know that the input value is a vector of integers, just shift 76 // and insert them into our result. 77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 78 for (unsigned i = 0; i != NumSrcElts; ++i) { 79 Constant *Element; 80 if (DL.isLittleEndian()) 81 Element = C->getAggregateElement(NumSrcElts - i - 1); 82 else 83 Element = C->getAggregateElement(i); 84 85 if (Element && isa<UndefValue>(Element)) { 86 Result <<= BitShift; 87 continue; 88 } 89 90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 91 if (!ElementCI) 92 return ConstantExpr::getBitCast(C, DestTy); 93 94 Result <<= BitShift; 95 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 96 } 97 98 return nullptr; 99 } 100 101 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 102 /// This always returns a non-null constant, but it may be a 103 /// ConstantExpr if unfoldable. 104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 106 "Invalid constantexpr bitcast!"); 107 108 // Catch the obvious splat cases. 109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 110 return Res; 111 112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 113 // Handle a vector->scalar integer/fp cast. 114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 116 Type *SrcEltTy = VTy->getElementType(); 117 118 // If the vector is a vector of floating point, convert it to vector of int 119 // to simplify things. 120 if (SrcEltTy->isFloatingPointTy()) { 121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 122 auto *SrcIVTy = FixedVectorType::get( 123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 124 // Ask IR to do the conversion now that #elts line up. 125 C = ConstantExpr::getBitCast(C, SrcIVTy); 126 } 127 128 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 130 SrcEltTy, NumSrcElts, DL)) 131 return CE; 132 133 if (isa<IntegerType>(DestTy)) 134 return ConstantInt::get(DestTy, Result); 135 136 APFloat FP(DestTy->getFltSemantics(), Result); 137 return ConstantFP::get(DestTy->getContext(), FP); 138 } 139 } 140 141 // The code below only handles casts to vectors currently. 142 auto *DestVTy = dyn_cast<VectorType>(DestTy); 143 if (!DestVTy) 144 return ConstantExpr::getBitCast(C, DestTy); 145 146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 147 // vector so the code below can handle it uniformly. 148 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 149 Constant *Ops = C; // don't take the address of C! 150 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 151 } 152 153 // If this is a bitcast from constant vector -> vector, fold it. 154 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 155 return ConstantExpr::getBitCast(C, DestTy); 156 157 // If the element types match, IR can fold it. 158 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 159 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 160 if (NumDstElt == NumSrcElt) 161 return ConstantExpr::getBitCast(C, DestTy); 162 163 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 164 Type *DstEltTy = DestVTy->getElementType(); 165 166 // Otherwise, we're changing the number of elements in a vector, which 167 // requires endianness information to do the right thing. For example, 168 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 169 // folds to (little endian): 170 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 171 // and to (big endian): 172 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 173 174 // First thing is first. We only want to think about integer here, so if 175 // we have something in FP form, recast it as integer. 176 if (DstEltTy->isFloatingPointTy()) { 177 // Fold to an vector of integers with same size as our FP type. 178 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 179 auto *DestIVTy = FixedVectorType::get( 180 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 181 // Recursively handle this integer conversion, if possible. 182 C = FoldBitCast(C, DestIVTy, DL); 183 184 // Finally, IR can handle this now that #elts line up. 185 return ConstantExpr::getBitCast(C, DestTy); 186 } 187 188 // Okay, we know the destination is integer, if the input is FP, convert 189 // it to integer first. 190 if (SrcEltTy->isFloatingPointTy()) { 191 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 192 auto *SrcIVTy = FixedVectorType::get( 193 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 194 // Ask IR to do the conversion now that #elts line up. 195 C = ConstantExpr::getBitCast(C, SrcIVTy); 196 // If IR wasn't able to fold it, bail out. 197 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 198 !isa<ConstantDataVector>(C)) 199 return C; 200 } 201 202 // Now we know that the input and output vectors are both integer vectors 203 // of the same size, and that their #elements is not the same. Do the 204 // conversion here, which depends on whether the input or output has 205 // more elements. 206 bool isLittleEndian = DL.isLittleEndian(); 207 208 SmallVector<Constant*, 32> Result; 209 if (NumDstElt < NumSrcElt) { 210 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 211 Constant *Zero = Constant::getNullValue(DstEltTy); 212 unsigned Ratio = NumSrcElt/NumDstElt; 213 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 214 unsigned SrcElt = 0; 215 for (unsigned i = 0; i != NumDstElt; ++i) { 216 // Build each element of the result. 217 Constant *Elt = Zero; 218 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 219 for (unsigned j = 0; j != Ratio; ++j) { 220 Constant *Src = C->getAggregateElement(SrcElt++); 221 if (Src && isa<UndefValue>(Src)) 222 Src = Constant::getNullValue( 223 cast<VectorType>(C->getType())->getElementType()); 224 else 225 Src = dyn_cast_or_null<ConstantInt>(Src); 226 if (!Src) // Reject constantexpr elements. 227 return ConstantExpr::getBitCast(C, DestTy); 228 229 // Zero extend the element to the right size. 230 Src = ConstantExpr::getZExt(Src, Elt->getType()); 231 232 // Shift it to the right place, depending on endianness. 233 Src = ConstantExpr::getShl(Src, 234 ConstantInt::get(Src->getType(), ShiftAmt)); 235 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 236 237 // Mix it in. 238 Elt = ConstantExpr::getOr(Elt, Src); 239 } 240 Result.push_back(Elt); 241 } 242 return ConstantVector::get(Result); 243 } 244 245 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 246 unsigned Ratio = NumDstElt/NumSrcElt; 247 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 248 249 // Loop over each source value, expanding into multiple results. 250 for (unsigned i = 0; i != NumSrcElt; ++i) { 251 auto *Element = C->getAggregateElement(i); 252 253 if (!Element) // Reject constantexpr elements. 254 return ConstantExpr::getBitCast(C, DestTy); 255 256 if (isa<UndefValue>(Element)) { 257 // Correctly Propagate undef values. 258 Result.append(Ratio, UndefValue::get(DstEltTy)); 259 continue; 260 } 261 262 auto *Src = dyn_cast<ConstantInt>(Element); 263 if (!Src) 264 return ConstantExpr::getBitCast(C, DestTy); 265 266 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 267 for (unsigned j = 0; j != Ratio; ++j) { 268 // Shift the piece of the value into the right place, depending on 269 // endianness. 270 Constant *Elt = ConstantExpr::getLShr(Src, 271 ConstantInt::get(Src->getType(), ShiftAmt)); 272 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 273 274 // Truncate the element to an integer with the same pointer size and 275 // convert the element back to a pointer using a inttoptr. 276 if (DstEltTy->isPointerTy()) { 277 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 278 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 279 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 280 continue; 281 } 282 283 // Truncate and remember this piece. 284 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 285 } 286 } 287 288 return ConstantVector::get(Result); 289 } 290 291 } // end anonymous namespace 292 293 /// If this constant is a constant offset from a global, return the global and 294 /// the constant. Because of constantexprs, this function is recursive. 295 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 296 APInt &Offset, const DataLayout &DL, 297 DSOLocalEquivalent **DSOEquiv) { 298 if (DSOEquiv) 299 *DSOEquiv = nullptr; 300 301 // Trivial case, constant is the global. 302 if ((GV = dyn_cast<GlobalValue>(C))) { 303 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 304 Offset = APInt(BitWidth, 0); 305 return true; 306 } 307 308 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 309 if (DSOEquiv) 310 *DSOEquiv = FoundDSOEquiv; 311 GV = FoundDSOEquiv->getGlobalValue(); 312 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 313 Offset = APInt(BitWidth, 0); 314 return true; 315 } 316 317 // Otherwise, if this isn't a constant expr, bail out. 318 auto *CE = dyn_cast<ConstantExpr>(C); 319 if (!CE) return false; 320 321 // Look through ptr->int and ptr->ptr casts. 322 if (CE->getOpcode() == Instruction::PtrToInt || 323 CE->getOpcode() == Instruction::BitCast) 324 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 325 DSOEquiv); 326 327 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 328 auto *GEP = dyn_cast<GEPOperator>(CE); 329 if (!GEP) 330 return false; 331 332 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 333 APInt TmpOffset(BitWidth, 0); 334 335 // If the base isn't a global+constant, we aren't either. 336 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 337 DSOEquiv)) 338 return false; 339 340 // Otherwise, add any offset that our operands provide. 341 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 342 return false; 343 344 Offset = TmpOffset; 345 return true; 346 } 347 348 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 349 const DataLayout &DL) { 350 do { 351 Type *SrcTy = C->getType(); 352 if (SrcTy == DestTy) 353 return C; 354 355 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 356 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 357 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 358 return nullptr; 359 360 // Catch the obvious splat cases (since all-zeros can coerce non-integral 361 // pointers legally). 362 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) 363 return Res; 364 365 // If the type sizes are the same and a cast is legal, just directly 366 // cast the constant. 367 // But be careful not to coerce non-integral pointers illegally. 368 if (SrcSize == DestSize && 369 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 370 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 371 Instruction::CastOps Cast = Instruction::BitCast; 372 // If we are going from a pointer to int or vice versa, we spell the cast 373 // differently. 374 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 375 Cast = Instruction::IntToPtr; 376 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 377 Cast = Instruction::PtrToInt; 378 379 if (CastInst::castIsValid(Cast, C, DestTy)) 380 return ConstantExpr::getCast(Cast, C, DestTy); 381 } 382 383 // If this isn't an aggregate type, there is nothing we can do to drill down 384 // and find a bitcastable constant. 385 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 386 return nullptr; 387 388 // We're simulating a load through a pointer that was bitcast to point to 389 // a different type, so we can try to walk down through the initial 390 // elements of an aggregate to see if some part of the aggregate is 391 // castable to implement the "load" semantic model. 392 if (SrcTy->isStructTy()) { 393 // Struct types might have leading zero-length elements like [0 x i32], 394 // which are certainly not what we are looking for, so skip them. 395 unsigned Elem = 0; 396 Constant *ElemC; 397 do { 398 ElemC = C->getAggregateElement(Elem++); 399 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 400 C = ElemC; 401 } else { 402 // For non-byte-sized vector elements, the first element is not 403 // necessarily located at the vector base address. 404 if (auto *VT = dyn_cast<VectorType>(SrcTy)) 405 if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) 406 return nullptr; 407 408 C = C->getAggregateElement(0u); 409 } 410 } while (C); 411 412 return nullptr; 413 } 414 415 namespace { 416 417 /// Recursive helper to read bits out of global. C is the constant being copied 418 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 419 /// results into and BytesLeft is the number of bytes left in 420 /// the CurPtr buffer. DL is the DataLayout. 421 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 422 unsigned BytesLeft, const DataLayout &DL) { 423 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 424 "Out of range access"); 425 426 // If this element is zero or undefined, we can just return since *CurPtr is 427 // zero initialized. 428 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 429 return true; 430 431 if (auto *CI = dyn_cast<ConstantInt>(C)) { 432 if (CI->getBitWidth() > 64 || 433 (CI->getBitWidth() & 7) != 0) 434 return false; 435 436 uint64_t Val = CI->getZExtValue(); 437 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 438 439 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 440 int n = ByteOffset; 441 if (!DL.isLittleEndian()) 442 n = IntBytes - n - 1; 443 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 444 ++ByteOffset; 445 } 446 return true; 447 } 448 449 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 450 if (CFP->getType()->isDoubleTy()) { 451 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 452 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 453 } 454 if (CFP->getType()->isFloatTy()){ 455 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 456 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 457 } 458 if (CFP->getType()->isHalfTy()){ 459 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 460 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 461 } 462 return false; 463 } 464 465 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 466 const StructLayout *SL = DL.getStructLayout(CS->getType()); 467 unsigned Index = SL->getElementContainingOffset(ByteOffset); 468 uint64_t CurEltOffset = SL->getElementOffset(Index); 469 ByteOffset -= CurEltOffset; 470 471 while (true) { 472 // If the element access is to the element itself and not to tail padding, 473 // read the bytes from the element. 474 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 475 476 if (ByteOffset < EltSize && 477 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 478 BytesLeft, DL)) 479 return false; 480 481 ++Index; 482 483 // Check to see if we read from the last struct element, if so we're done. 484 if (Index == CS->getType()->getNumElements()) 485 return true; 486 487 // If we read all of the bytes we needed from this element we're done. 488 uint64_t NextEltOffset = SL->getElementOffset(Index); 489 490 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 491 return true; 492 493 // Move to the next element of the struct. 494 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 495 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 496 ByteOffset = 0; 497 CurEltOffset = NextEltOffset; 498 } 499 // not reached. 500 } 501 502 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 503 isa<ConstantDataSequential>(C)) { 504 uint64_t NumElts; 505 Type *EltTy; 506 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 507 NumElts = AT->getNumElements(); 508 EltTy = AT->getElementType(); 509 } else { 510 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 511 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 512 } 513 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 514 uint64_t Index = ByteOffset / EltSize; 515 uint64_t Offset = ByteOffset - Index * EltSize; 516 517 for (; Index != NumElts; ++Index) { 518 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 519 BytesLeft, DL)) 520 return false; 521 522 uint64_t BytesWritten = EltSize - Offset; 523 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 524 if (BytesWritten >= BytesLeft) 525 return true; 526 527 Offset = 0; 528 BytesLeft -= BytesWritten; 529 CurPtr += BytesWritten; 530 } 531 return true; 532 } 533 534 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 535 if (CE->getOpcode() == Instruction::IntToPtr && 536 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 537 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 538 BytesLeft, DL); 539 } 540 } 541 542 // Otherwise, unknown initializer type. 543 return false; 544 } 545 546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 547 int64_t Offset, const DataLayout &DL) { 548 // Bail out early. Not expect to load from scalable global variable. 549 if (isa<ScalableVectorType>(LoadTy)) 550 return nullptr; 551 552 auto *IntType = dyn_cast<IntegerType>(LoadTy); 553 554 // If this isn't an integer load we can't fold it directly. 555 if (!IntType) { 556 // If this is a float/double load, we can try folding it as an int32/64 load 557 // and then bitcast the result. This can be useful for union cases. Note 558 // that address spaces don't matter here since we're not going to result in 559 // an actual new load. 560 Type *MapTy; 561 if (LoadTy->isHalfTy()) 562 MapTy = Type::getInt16Ty(C->getContext()); 563 else if (LoadTy->isFloatTy()) 564 MapTy = Type::getInt32Ty(C->getContext()); 565 else if (LoadTy->isDoubleTy()) 566 MapTy = Type::getInt64Ty(C->getContext()); 567 else if (LoadTy->isVectorTy()) { 568 MapTy = PointerType::getIntNTy( 569 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 570 } else 571 return nullptr; 572 573 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 574 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 575 !LoadTy->isX86_AMXTy()) 576 // Materializing a zero can be done trivially without a bitcast 577 return Constant::getNullValue(LoadTy); 578 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 579 Res = FoldBitCast(Res, CastTy, DL); 580 if (LoadTy->isPtrOrPtrVectorTy()) { 581 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 582 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 583 !LoadTy->isX86_AMXTy()) 584 return Constant::getNullValue(LoadTy); 585 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 586 // Be careful not to replace a load of an addrspace value with an inttoptr here 587 return nullptr; 588 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 589 } 590 return Res; 591 } 592 return nullptr; 593 } 594 595 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 596 if (BytesLoaded > 32 || BytesLoaded == 0) 597 return nullptr; 598 599 int64_t InitializerSize = DL.getTypeAllocSize(C->getType()).getFixedSize(); 600 601 // If we're not accessing anything in this constant, the result is undefined. 602 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 603 return UndefValue::get(IntType); 604 605 // If we're not accessing anything in this constant, the result is undefined. 606 if (Offset >= InitializerSize) 607 return UndefValue::get(IntType); 608 609 unsigned char RawBytes[32] = {0}; 610 unsigned char *CurPtr = RawBytes; 611 unsigned BytesLeft = BytesLoaded; 612 613 // If we're loading off the beginning of the global, some bytes may be valid. 614 if (Offset < 0) { 615 CurPtr += -Offset; 616 BytesLeft += Offset; 617 Offset = 0; 618 } 619 620 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 621 return nullptr; 622 623 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 624 if (DL.isLittleEndian()) { 625 ResultVal = RawBytes[BytesLoaded - 1]; 626 for (unsigned i = 1; i != BytesLoaded; ++i) { 627 ResultVal <<= 8; 628 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 629 } 630 } else { 631 ResultVal = RawBytes[0]; 632 for (unsigned i = 1; i != BytesLoaded; ++i) { 633 ResultVal <<= 8; 634 ResultVal |= RawBytes[i]; 635 } 636 } 637 638 return ConstantInt::get(IntType->getContext(), ResultVal); 639 } 640 641 /// If this Offset points exactly to the start of an aggregate element, return 642 /// that element, otherwise return nullptr. 643 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 644 const DataLayout &DL) { 645 if (Offset.isZero()) 646 return Base; 647 648 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 649 return nullptr; 650 651 Type *ElemTy = Base->getType(); 652 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 653 if (!Offset.isZero() || !Indices[0].isZero()) 654 return nullptr; 655 656 Constant *C = Base; 657 for (const APInt &Index : drop_begin(Indices)) { 658 if (Index.isNegative() || Index.getActiveBits() >= 32) 659 return nullptr; 660 661 C = C->getAggregateElement(Index.getZExtValue()); 662 if (!C) 663 return nullptr; 664 } 665 666 return C; 667 } 668 669 } // end anonymous namespace 670 671 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 672 const APInt &Offset, 673 const DataLayout &DL) { 674 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 675 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 676 return Result; 677 678 // Explicitly check for out-of-bounds access, so we return undef even if the 679 // constant is a uniform value. 680 TypeSize Size = DL.getTypeAllocSize(C->getType()); 681 if (!Size.isScalable() && Offset.sge(Size.getFixedSize())) 682 return UndefValue::get(Ty); 683 684 // Try an offset-independent fold of a uniform value. 685 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty)) 686 return Result; 687 688 // Try hard to fold loads from bitcasted strange and non-type-safe things. 689 if (Offset.getMinSignedBits() <= 64) 690 if (Constant *Result = 691 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) 692 return Result; 693 694 return nullptr; 695 } 696 697 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 698 const DataLayout &DL) { 699 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 700 } 701 702 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 703 APInt Offset, 704 const DataLayout &DL) { 705 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 706 DL, Offset, /* AllowNonInbounds */ true)); 707 708 if (auto *GV = dyn_cast<GlobalVariable>(C)) 709 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 710 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 711 Offset, DL)) 712 return Result; 713 714 // If this load comes from anywhere in a uniform constant global, the value 715 // is always the same, regardless of the loaded offset. 716 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) { 717 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 718 if (Constant *Res = 719 ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty)) 720 return Res; 721 } 722 } 723 724 return nullptr; 725 } 726 727 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 728 const DataLayout &DL) { 729 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 730 return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL); 731 } 732 733 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) { 734 if (isa<PoisonValue>(C)) 735 return PoisonValue::get(Ty); 736 if (isa<UndefValue>(C)) 737 return UndefValue::get(Ty); 738 if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) 739 return Constant::getNullValue(Ty); 740 if (C->isAllOnesValue() && 741 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) 742 return Constant::getAllOnesValue(Ty); 743 return nullptr; 744 } 745 746 namespace { 747 748 /// One of Op0/Op1 is a constant expression. 749 /// Attempt to symbolically evaluate the result of a binary operator merging 750 /// these together. If target data info is available, it is provided as DL, 751 /// otherwise DL is null. 752 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 753 const DataLayout &DL) { 754 // SROA 755 756 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 757 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 758 // bits. 759 760 if (Opc == Instruction::And) { 761 KnownBits Known0 = computeKnownBits(Op0, DL); 762 KnownBits Known1 = computeKnownBits(Op1, DL); 763 if ((Known1.One | Known0.Zero).isAllOnes()) { 764 // All the bits of Op0 that the 'and' could be masking are already zero. 765 return Op0; 766 } 767 if ((Known0.One | Known1.Zero).isAllOnes()) { 768 // All the bits of Op1 that the 'and' could be masking are already zero. 769 return Op1; 770 } 771 772 Known0 &= Known1; 773 if (Known0.isConstant()) 774 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 775 } 776 777 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 778 // constant. This happens frequently when iterating over a global array. 779 if (Opc == Instruction::Sub) { 780 GlobalValue *GV1, *GV2; 781 APInt Offs1, Offs2; 782 783 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 784 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 785 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 786 787 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 788 // PtrToInt may change the bitwidth so we have convert to the right size 789 // first. 790 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 791 Offs2.zextOrTrunc(OpSize)); 792 } 793 } 794 795 return nullptr; 796 } 797 798 /// If array indices are not pointer-sized integers, explicitly cast them so 799 /// that they aren't implicitly casted by the getelementptr. 800 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 801 Type *ResultTy, Optional<unsigned> InRangeIndex, 802 const DataLayout &DL, const TargetLibraryInfo *TLI) { 803 Type *IntIdxTy = DL.getIndexType(ResultTy); 804 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 805 806 bool Any = false; 807 SmallVector<Constant*, 32> NewIdxs; 808 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 809 if ((i == 1 || 810 !isa<StructType>(GetElementPtrInst::getIndexedType( 811 SrcElemTy, Ops.slice(1, i - 1)))) && 812 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 813 Any = true; 814 Type *NewType = Ops[i]->getType()->isVectorTy() 815 ? IntIdxTy 816 : IntIdxScalarTy; 817 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 818 true, 819 NewType, 820 true), 821 Ops[i], NewType)); 822 } else 823 NewIdxs.push_back(Ops[i]); 824 } 825 826 if (!Any) 827 return nullptr; 828 829 Constant *C = ConstantExpr::getGetElementPtr( 830 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 831 return ConstantFoldConstant(C, DL, TLI); 832 } 833 834 /// Strip the pointer casts, but preserve the address space information. 835 Constant *StripPtrCastKeepAS(Constant *Ptr) { 836 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 837 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 838 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 839 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 840 841 // Preserve the address space number of the pointer. 842 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 843 Ptr = ConstantExpr::getPointerCast( 844 Ptr, PointerType::getWithSamePointeeType(NewPtrTy, 845 OldPtrTy->getAddressSpace())); 846 } 847 return Ptr; 848 } 849 850 /// If we can symbolically evaluate the GEP constant expression, do so. 851 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 852 ArrayRef<Constant *> Ops, 853 const DataLayout &DL, 854 const TargetLibraryInfo *TLI) { 855 const GEPOperator *InnermostGEP = GEP; 856 bool InBounds = GEP->isInBounds(); 857 858 Type *SrcElemTy = GEP->getSourceElementType(); 859 Type *ResElemTy = GEP->getResultElementType(); 860 Type *ResTy = GEP->getType(); 861 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 862 return nullptr; 863 864 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 865 GEP->getInRangeIndex(), DL, TLI)) 866 return C; 867 868 Constant *Ptr = Ops[0]; 869 if (!Ptr->getType()->isPointerTy()) 870 return nullptr; 871 872 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 873 874 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 875 // "inttoptr (sub (ptrtoint Ptr), V)" 876 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 877 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 878 assert((!CE || CE->getType() == IntIdxTy) && 879 "CastGEPIndices didn't canonicalize index types!"); 880 if (CE && CE->getOpcode() == Instruction::Sub && 881 CE->getOperand(0)->isNullValue()) { 882 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 883 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 884 Res = ConstantExpr::getIntToPtr(Res, ResTy); 885 return ConstantFoldConstant(Res, DL, TLI); 886 } 887 } 888 889 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 890 if (!isa<ConstantInt>(Ops[i])) 891 return nullptr; 892 893 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 894 APInt Offset = 895 APInt(BitWidth, 896 DL.getIndexedOffsetInType( 897 SrcElemTy, 898 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 899 Ptr = StripPtrCastKeepAS(Ptr); 900 901 // If this is a GEP of a GEP, fold it all into a single GEP. 902 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 903 InnermostGEP = GEP; 904 InBounds &= GEP->isInBounds(); 905 906 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 907 908 // Do not try the incorporate the sub-GEP if some index is not a number. 909 bool AllConstantInt = true; 910 for (Value *NestedOp : NestedOps) 911 if (!isa<ConstantInt>(NestedOp)) { 912 AllConstantInt = false; 913 break; 914 } 915 if (!AllConstantInt) 916 break; 917 918 Ptr = cast<Constant>(GEP->getOperand(0)); 919 SrcElemTy = GEP->getSourceElementType(); 920 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 921 Ptr = StripPtrCastKeepAS(Ptr); 922 } 923 924 // If the base value for this address is a literal integer value, fold the 925 // getelementptr to the resulting integer value casted to the pointer type. 926 APInt BasePtr(BitWidth, 0); 927 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 928 if (CE->getOpcode() == Instruction::IntToPtr) { 929 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 930 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 931 } 932 } 933 934 auto *PTy = cast<PointerType>(Ptr->getType()); 935 if ((Ptr->isNullValue() || BasePtr != 0) && 936 !DL.isNonIntegralPointerType(PTy)) { 937 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 938 return ConstantExpr::getIntToPtr(C, ResTy); 939 } 940 941 // Otherwise form a regular getelementptr. Recompute the indices so that 942 // we eliminate over-indexing of the notional static type array bounds. 943 // This makes it easy to determine if the getelementptr is "inbounds". 944 // Also, this helps GlobalOpt do SROA on GlobalVariables. 945 946 // For GEPs of GlobalValues, use the value type even for opaque pointers. 947 // Otherwise use an i8 GEP. 948 if (auto *GV = dyn_cast<GlobalValue>(Ptr)) 949 SrcElemTy = GV->getValueType(); 950 else if (!PTy->isOpaque()) 951 SrcElemTy = PTy->getElementType(); 952 else 953 SrcElemTy = Type::getInt8Ty(Ptr->getContext()); 954 955 if (!SrcElemTy->isSized()) 956 return nullptr; 957 958 Type *ElemTy = SrcElemTy; 959 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 960 if (Offset != 0) 961 return nullptr; 962 963 // Try to add additional zero indices to reach the desired result element 964 // type. 965 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and 966 // we'll have to insert a bitcast anyway? 967 while (ElemTy != ResElemTy) { 968 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); 969 if (!NextTy) 970 break; 971 972 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); 973 ElemTy = NextTy; 974 } 975 976 SmallVector<Constant *, 32> NewIdxs; 977 for (const APInt &Index : Indices) 978 NewIdxs.push_back(ConstantInt::get( 979 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); 980 981 // Preserve the inrange index from the innermost GEP if possible. We must 982 // have calculated the same indices up to and including the inrange index. 983 Optional<unsigned> InRangeIndex; 984 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 985 if (SrcElemTy == InnermostGEP->getSourceElementType() && 986 NewIdxs.size() > *LastIRIndex) { 987 InRangeIndex = LastIRIndex; 988 for (unsigned I = 0; I <= *LastIRIndex; ++I) 989 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 990 return nullptr; 991 } 992 993 // Create a GEP. 994 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 995 InBounds, InRangeIndex); 996 assert( 997 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && 998 "Computed GetElementPtr has unexpected type!"); 999 1000 // If we ended up indexing a member with a type that doesn't match 1001 // the type of what the original indices indexed, add a cast. 1002 if (C->getType() != ResTy) 1003 C = FoldBitCast(C, ResTy, DL); 1004 1005 return C; 1006 } 1007 1008 /// Attempt to constant fold an instruction with the 1009 /// specified opcode and operands. If successful, the constant result is 1010 /// returned, if not, null is returned. Note that this function can fail when 1011 /// attempting to fold instructions like loads and stores, which have no 1012 /// constant expression form. 1013 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 1014 ArrayRef<Constant *> Ops, 1015 const DataLayout &DL, 1016 const TargetLibraryInfo *TLI) { 1017 Type *DestTy = InstOrCE->getType(); 1018 1019 if (Instruction::isUnaryOp(Opcode)) 1020 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1021 1022 if (Instruction::isBinaryOp(Opcode)) 1023 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1024 1025 if (Instruction::isCast(Opcode)) 1026 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1027 1028 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1029 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1030 return C; 1031 1032 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1033 Ops.slice(1), GEP->isInBounds(), 1034 GEP->getInRangeIndex()); 1035 } 1036 1037 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1038 return CE->getWithOperands(Ops); 1039 1040 switch (Opcode) { 1041 default: return nullptr; 1042 case Instruction::ICmp: 1043 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1044 case Instruction::Freeze: 1045 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1046 case Instruction::Call: 1047 if (auto *F = dyn_cast<Function>(Ops.back())) { 1048 const auto *Call = cast<CallBase>(InstOrCE); 1049 if (canConstantFoldCallTo(Call, F)) 1050 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1051 } 1052 return nullptr; 1053 case Instruction::Select: 1054 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1055 case Instruction::ExtractElement: 1056 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1057 case Instruction::ExtractValue: 1058 return ConstantExpr::getExtractValue( 1059 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1060 case Instruction::InsertElement: 1061 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1062 case Instruction::ShuffleVector: 1063 return ConstantExpr::getShuffleVector( 1064 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1065 } 1066 } 1067 1068 } // end anonymous namespace 1069 1070 //===----------------------------------------------------------------------===// 1071 // Constant Folding public APIs 1072 //===----------------------------------------------------------------------===// 1073 1074 namespace { 1075 1076 Constant * 1077 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1078 const TargetLibraryInfo *TLI, 1079 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1080 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1081 return const_cast<Constant *>(C); 1082 1083 SmallVector<Constant *, 8> Ops; 1084 for (const Use &OldU : C->operands()) { 1085 Constant *OldC = cast<Constant>(&OldU); 1086 Constant *NewC = OldC; 1087 // Recursively fold the ConstantExpr's operands. If we have already folded 1088 // a ConstantExpr, we don't have to process it again. 1089 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1090 auto It = FoldedOps.find(OldC); 1091 if (It == FoldedOps.end()) { 1092 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1093 FoldedOps.insert({OldC, NewC}); 1094 } else { 1095 NewC = It->second; 1096 } 1097 } 1098 Ops.push_back(NewC); 1099 } 1100 1101 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1102 if (CE->isCompare()) 1103 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1104 DL, TLI); 1105 1106 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1107 } 1108 1109 assert(isa<ConstantVector>(C)); 1110 return ConstantVector::get(Ops); 1111 } 1112 1113 } // end anonymous namespace 1114 1115 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1116 const TargetLibraryInfo *TLI) { 1117 // Handle PHI nodes quickly here... 1118 if (auto *PN = dyn_cast<PHINode>(I)) { 1119 Constant *CommonValue = nullptr; 1120 1121 SmallDenseMap<Constant *, Constant *> FoldedOps; 1122 for (Value *Incoming : PN->incoming_values()) { 1123 // If the incoming value is undef then skip it. Note that while we could 1124 // skip the value if it is equal to the phi node itself we choose not to 1125 // because that would break the rule that constant folding only applies if 1126 // all operands are constants. 1127 if (isa<UndefValue>(Incoming)) 1128 continue; 1129 // If the incoming value is not a constant, then give up. 1130 auto *C = dyn_cast<Constant>(Incoming); 1131 if (!C) 1132 return nullptr; 1133 // Fold the PHI's operands. 1134 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1135 // If the incoming value is a different constant to 1136 // the one we saw previously, then give up. 1137 if (CommonValue && C != CommonValue) 1138 return nullptr; 1139 CommonValue = C; 1140 } 1141 1142 // If we reach here, all incoming values are the same constant or undef. 1143 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1144 } 1145 1146 // Scan the operand list, checking to see if they are all constants, if so, 1147 // hand off to ConstantFoldInstOperandsImpl. 1148 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1149 return nullptr; 1150 1151 SmallDenseMap<Constant *, Constant *> FoldedOps; 1152 SmallVector<Constant *, 8> Ops; 1153 for (const Use &OpU : I->operands()) { 1154 auto *Op = cast<Constant>(&OpU); 1155 // Fold the Instruction's operands. 1156 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1157 Ops.push_back(Op); 1158 } 1159 1160 if (const auto *CI = dyn_cast<CmpInst>(I)) 1161 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1162 DL, TLI); 1163 1164 if (const auto *LI = dyn_cast<LoadInst>(I)) { 1165 if (LI->isVolatile()) 1166 return nullptr; 1167 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1168 } 1169 1170 if (auto *IVI = dyn_cast<InsertValueInst>(I)) 1171 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices()); 1172 1173 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) 1174 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices()); 1175 1176 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1177 } 1178 1179 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1180 const TargetLibraryInfo *TLI) { 1181 SmallDenseMap<Constant *, Constant *> FoldedOps; 1182 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1183 } 1184 1185 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1186 ArrayRef<Constant *> Ops, 1187 const DataLayout &DL, 1188 const TargetLibraryInfo *TLI) { 1189 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1190 } 1191 1192 Constant *llvm::ConstantFoldCompareInstOperands(unsigned IntPredicate, 1193 Constant *Ops0, Constant *Ops1, 1194 const DataLayout &DL, 1195 const TargetLibraryInfo *TLI) { 1196 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; 1197 // fold: icmp (inttoptr x), null -> icmp x, 0 1198 // fold: icmp null, (inttoptr x) -> icmp 0, x 1199 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1200 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1201 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1202 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1203 // 1204 // FIXME: The following comment is out of data and the DataLayout is here now. 1205 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1206 // around to know if bit truncation is happening. 1207 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1208 if (Ops1->isNullValue()) { 1209 if (CE0->getOpcode() == Instruction::IntToPtr) { 1210 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1211 // Convert the integer value to the right size to ensure we get the 1212 // proper extension or truncation. 1213 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1214 IntPtrTy, false); 1215 Constant *Null = Constant::getNullValue(C->getType()); 1216 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1217 } 1218 1219 // Only do this transformation if the int is intptrty in size, otherwise 1220 // there is a truncation or extension that we aren't modeling. 1221 if (CE0->getOpcode() == Instruction::PtrToInt) { 1222 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1223 if (CE0->getType() == IntPtrTy) { 1224 Constant *C = CE0->getOperand(0); 1225 Constant *Null = Constant::getNullValue(C->getType()); 1226 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1227 } 1228 } 1229 } 1230 1231 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1232 if (CE0->getOpcode() == CE1->getOpcode()) { 1233 if (CE0->getOpcode() == Instruction::IntToPtr) { 1234 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1235 1236 // Convert the integer value to the right size to ensure we get the 1237 // proper extension or truncation. 1238 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1239 IntPtrTy, false); 1240 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1241 IntPtrTy, false); 1242 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1243 } 1244 1245 // Only do this transformation if the int is intptrty in size, otherwise 1246 // there is a truncation or extension that we aren't modeling. 1247 if (CE0->getOpcode() == Instruction::PtrToInt) { 1248 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1249 if (CE0->getType() == IntPtrTy && 1250 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1251 return ConstantFoldCompareInstOperands( 1252 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1253 } 1254 } 1255 } 1256 } 1257 1258 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1259 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1260 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1261 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1262 Constant *LHS = ConstantFoldCompareInstOperands( 1263 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1264 Constant *RHS = ConstantFoldCompareInstOperands( 1265 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1266 unsigned OpC = 1267 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1268 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1269 } 1270 1271 // Convert pointer comparison (base+offset1) pred (base+offset2) into 1272 // offset1 pred offset2, for the case where the offset is inbounds. This 1273 // only works for equality and unsigned comparison, as inbounds permits 1274 // crossing the sign boundary. However, the offset comparison itself is 1275 // signed. 1276 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { 1277 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); 1278 APInt Offset0(IndexWidth, 0); 1279 Value *Stripped0 = 1280 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); 1281 APInt Offset1(IndexWidth, 0); 1282 Value *Stripped1 = 1283 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); 1284 if (Stripped0 == Stripped1) 1285 return ConstantExpr::getCompare( 1286 ICmpInst::getSignedPredicate(Predicate), 1287 ConstantInt::get(CE0->getContext(), Offset0), 1288 ConstantInt::get(CE0->getContext(), Offset1)); 1289 } 1290 } else if (isa<ConstantExpr>(Ops1)) { 1291 // If RHS is a constant expression, but the left side isn't, swap the 1292 // operands and try again. 1293 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1294 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1295 } 1296 1297 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1298 } 1299 1300 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1301 const DataLayout &DL) { 1302 assert(Instruction::isUnaryOp(Opcode)); 1303 1304 return ConstantExpr::get(Opcode, Op); 1305 } 1306 1307 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1308 Constant *RHS, 1309 const DataLayout &DL) { 1310 assert(Instruction::isBinaryOp(Opcode)); 1311 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1312 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1313 return C; 1314 1315 return ConstantExpr::get(Opcode, LHS, RHS); 1316 } 1317 1318 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1319 Type *DestTy, const DataLayout &DL) { 1320 assert(Instruction::isCast(Opcode)); 1321 switch (Opcode) { 1322 default: 1323 llvm_unreachable("Missing case"); 1324 case Instruction::PtrToInt: 1325 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1326 Constant *FoldedValue = nullptr; 1327 // If the input is a inttoptr, eliminate the pair. This requires knowing 1328 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1329 if (CE->getOpcode() == Instruction::IntToPtr) { 1330 // zext/trunc the inttoptr to pointer size. 1331 FoldedValue = ConstantExpr::getIntegerCast( 1332 CE->getOperand(0), DL.getIntPtrType(CE->getType()), 1333 /*IsSigned=*/false); 1334 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1335 // If we have GEP, we can perform the following folds: 1336 // (ptrtoint (gep null, x)) -> x 1337 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1338 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1339 APInt BaseOffset(BitWidth, 0); 1340 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1341 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1342 if (Base->isNullValue()) { 1343 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1344 } 1345 } 1346 if (FoldedValue) { 1347 // Do a zext or trunc to get to the ptrtoint dest size. 1348 return ConstantExpr::getIntegerCast(FoldedValue, DestTy, 1349 /*IsSigned=*/false); 1350 } 1351 } 1352 return ConstantExpr::getCast(Opcode, C, DestTy); 1353 case Instruction::IntToPtr: 1354 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1355 // the int size is >= the ptr size and the address spaces are the same. 1356 // This requires knowing the width of a pointer, so it can't be done in 1357 // ConstantExpr::getCast. 1358 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1359 if (CE->getOpcode() == Instruction::PtrToInt) { 1360 Constant *SrcPtr = CE->getOperand(0); 1361 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1362 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1363 1364 if (MidIntSize >= SrcPtrSize) { 1365 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1366 if (SrcAS == DestTy->getPointerAddressSpace()) 1367 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1368 } 1369 } 1370 } 1371 1372 return ConstantExpr::getCast(Opcode, C, DestTy); 1373 case Instruction::Trunc: 1374 case Instruction::ZExt: 1375 case Instruction::SExt: 1376 case Instruction::FPTrunc: 1377 case Instruction::FPExt: 1378 case Instruction::UIToFP: 1379 case Instruction::SIToFP: 1380 case Instruction::FPToUI: 1381 case Instruction::FPToSI: 1382 case Instruction::AddrSpaceCast: 1383 return ConstantExpr::getCast(Opcode, C, DestTy); 1384 case Instruction::BitCast: 1385 return FoldBitCast(C, DestTy, DL); 1386 } 1387 } 1388 1389 //===----------------------------------------------------------------------===// 1390 // Constant Folding for Calls 1391 // 1392 1393 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1394 if (Call->isNoBuiltin()) 1395 return false; 1396 switch (F->getIntrinsicID()) { 1397 // Operations that do not operate floating-point numbers and do not depend on 1398 // FP environment can be folded even in strictfp functions. 1399 case Intrinsic::bswap: 1400 case Intrinsic::ctpop: 1401 case Intrinsic::ctlz: 1402 case Intrinsic::cttz: 1403 case Intrinsic::fshl: 1404 case Intrinsic::fshr: 1405 case Intrinsic::launder_invariant_group: 1406 case Intrinsic::strip_invariant_group: 1407 case Intrinsic::masked_load: 1408 case Intrinsic::get_active_lane_mask: 1409 case Intrinsic::abs: 1410 case Intrinsic::smax: 1411 case Intrinsic::smin: 1412 case Intrinsic::umax: 1413 case Intrinsic::umin: 1414 case Intrinsic::sadd_with_overflow: 1415 case Intrinsic::uadd_with_overflow: 1416 case Intrinsic::ssub_with_overflow: 1417 case Intrinsic::usub_with_overflow: 1418 case Intrinsic::smul_with_overflow: 1419 case Intrinsic::umul_with_overflow: 1420 case Intrinsic::sadd_sat: 1421 case Intrinsic::uadd_sat: 1422 case Intrinsic::ssub_sat: 1423 case Intrinsic::usub_sat: 1424 case Intrinsic::smul_fix: 1425 case Intrinsic::smul_fix_sat: 1426 case Intrinsic::bitreverse: 1427 case Intrinsic::is_constant: 1428 case Intrinsic::vector_reduce_add: 1429 case Intrinsic::vector_reduce_mul: 1430 case Intrinsic::vector_reduce_and: 1431 case Intrinsic::vector_reduce_or: 1432 case Intrinsic::vector_reduce_xor: 1433 case Intrinsic::vector_reduce_smin: 1434 case Intrinsic::vector_reduce_smax: 1435 case Intrinsic::vector_reduce_umin: 1436 case Intrinsic::vector_reduce_umax: 1437 // Target intrinsics 1438 case Intrinsic::amdgcn_perm: 1439 case Intrinsic::arm_mve_vctp8: 1440 case Intrinsic::arm_mve_vctp16: 1441 case Intrinsic::arm_mve_vctp32: 1442 case Intrinsic::arm_mve_vctp64: 1443 case Intrinsic::aarch64_sve_convert_from_svbool: 1444 // WebAssembly float semantics are always known 1445 case Intrinsic::wasm_trunc_signed: 1446 case Intrinsic::wasm_trunc_unsigned: 1447 return true; 1448 1449 // Floating point operations cannot be folded in strictfp functions in 1450 // general case. They can be folded if FP environment is known to compiler. 1451 case Intrinsic::minnum: 1452 case Intrinsic::maxnum: 1453 case Intrinsic::minimum: 1454 case Intrinsic::maximum: 1455 case Intrinsic::log: 1456 case Intrinsic::log2: 1457 case Intrinsic::log10: 1458 case Intrinsic::exp: 1459 case Intrinsic::exp2: 1460 case Intrinsic::sqrt: 1461 case Intrinsic::sin: 1462 case Intrinsic::cos: 1463 case Intrinsic::pow: 1464 case Intrinsic::powi: 1465 case Intrinsic::fma: 1466 case Intrinsic::fmuladd: 1467 case Intrinsic::fptoui_sat: 1468 case Intrinsic::fptosi_sat: 1469 case Intrinsic::convert_from_fp16: 1470 case Intrinsic::convert_to_fp16: 1471 case Intrinsic::amdgcn_cos: 1472 case Intrinsic::amdgcn_cubeid: 1473 case Intrinsic::amdgcn_cubema: 1474 case Intrinsic::amdgcn_cubesc: 1475 case Intrinsic::amdgcn_cubetc: 1476 case Intrinsic::amdgcn_fmul_legacy: 1477 case Intrinsic::amdgcn_fma_legacy: 1478 case Intrinsic::amdgcn_fract: 1479 case Intrinsic::amdgcn_ldexp: 1480 case Intrinsic::amdgcn_sin: 1481 // The intrinsics below depend on rounding mode in MXCSR. 1482 case Intrinsic::x86_sse_cvtss2si: 1483 case Intrinsic::x86_sse_cvtss2si64: 1484 case Intrinsic::x86_sse_cvttss2si: 1485 case Intrinsic::x86_sse_cvttss2si64: 1486 case Intrinsic::x86_sse2_cvtsd2si: 1487 case Intrinsic::x86_sse2_cvtsd2si64: 1488 case Intrinsic::x86_sse2_cvttsd2si: 1489 case Intrinsic::x86_sse2_cvttsd2si64: 1490 case Intrinsic::x86_avx512_vcvtss2si32: 1491 case Intrinsic::x86_avx512_vcvtss2si64: 1492 case Intrinsic::x86_avx512_cvttss2si: 1493 case Intrinsic::x86_avx512_cvttss2si64: 1494 case Intrinsic::x86_avx512_vcvtsd2si32: 1495 case Intrinsic::x86_avx512_vcvtsd2si64: 1496 case Intrinsic::x86_avx512_cvttsd2si: 1497 case Intrinsic::x86_avx512_cvttsd2si64: 1498 case Intrinsic::x86_avx512_vcvtss2usi32: 1499 case Intrinsic::x86_avx512_vcvtss2usi64: 1500 case Intrinsic::x86_avx512_cvttss2usi: 1501 case Intrinsic::x86_avx512_cvttss2usi64: 1502 case Intrinsic::x86_avx512_vcvtsd2usi32: 1503 case Intrinsic::x86_avx512_vcvtsd2usi64: 1504 case Intrinsic::x86_avx512_cvttsd2usi: 1505 case Intrinsic::x86_avx512_cvttsd2usi64: 1506 return !Call->isStrictFP(); 1507 1508 // Sign operations are actually bitwise operations, they do not raise 1509 // exceptions even for SNANs. 1510 case Intrinsic::fabs: 1511 case Intrinsic::copysign: 1512 // Non-constrained variants of rounding operations means default FP 1513 // environment, they can be folded in any case. 1514 case Intrinsic::ceil: 1515 case Intrinsic::floor: 1516 case Intrinsic::round: 1517 case Intrinsic::roundeven: 1518 case Intrinsic::trunc: 1519 case Intrinsic::nearbyint: 1520 case Intrinsic::rint: 1521 // Constrained intrinsics can be folded if FP environment is known 1522 // to compiler. 1523 case Intrinsic::experimental_constrained_fma: 1524 case Intrinsic::experimental_constrained_fmuladd: 1525 case Intrinsic::experimental_constrained_fadd: 1526 case Intrinsic::experimental_constrained_fsub: 1527 case Intrinsic::experimental_constrained_fmul: 1528 case Intrinsic::experimental_constrained_fdiv: 1529 case Intrinsic::experimental_constrained_frem: 1530 case Intrinsic::experimental_constrained_ceil: 1531 case Intrinsic::experimental_constrained_floor: 1532 case Intrinsic::experimental_constrained_round: 1533 case Intrinsic::experimental_constrained_roundeven: 1534 case Intrinsic::experimental_constrained_trunc: 1535 case Intrinsic::experimental_constrained_nearbyint: 1536 case Intrinsic::experimental_constrained_rint: 1537 return true; 1538 default: 1539 return false; 1540 case Intrinsic::not_intrinsic: break; 1541 } 1542 1543 if (!F->hasName() || Call->isStrictFP()) 1544 return false; 1545 1546 // In these cases, the check of the length is required. We don't want to 1547 // return true for a name like "cos\0blah" which strcmp would return equal to 1548 // "cos", but has length 8. 1549 StringRef Name = F->getName(); 1550 switch (Name[0]) { 1551 default: 1552 return false; 1553 case 'a': 1554 return Name == "acos" || Name == "acosf" || 1555 Name == "asin" || Name == "asinf" || 1556 Name == "atan" || Name == "atanf" || 1557 Name == "atan2" || Name == "atan2f"; 1558 case 'c': 1559 return Name == "ceil" || Name == "ceilf" || 1560 Name == "cos" || Name == "cosf" || 1561 Name == "cosh" || Name == "coshf"; 1562 case 'e': 1563 return Name == "exp" || Name == "expf" || 1564 Name == "exp2" || Name == "exp2f"; 1565 case 'f': 1566 return Name == "fabs" || Name == "fabsf" || 1567 Name == "floor" || Name == "floorf" || 1568 Name == "fmod" || Name == "fmodf"; 1569 case 'l': 1570 return Name == "log" || Name == "logf" || 1571 Name == "log2" || Name == "log2f" || 1572 Name == "log10" || Name == "log10f"; 1573 case 'n': 1574 return Name == "nearbyint" || Name == "nearbyintf"; 1575 case 'p': 1576 return Name == "pow" || Name == "powf"; 1577 case 'r': 1578 return Name == "remainder" || Name == "remainderf" || 1579 Name == "rint" || Name == "rintf" || 1580 Name == "round" || Name == "roundf"; 1581 case 's': 1582 return Name == "sin" || Name == "sinf" || 1583 Name == "sinh" || Name == "sinhf" || 1584 Name == "sqrt" || Name == "sqrtf"; 1585 case 't': 1586 return Name == "tan" || Name == "tanf" || 1587 Name == "tanh" || Name == "tanhf" || 1588 Name == "trunc" || Name == "truncf"; 1589 case '_': 1590 // Check for various function names that get used for the math functions 1591 // when the header files are preprocessed with the macro 1592 // __FINITE_MATH_ONLY__ enabled. 1593 // The '12' here is the length of the shortest name that can match. 1594 // We need to check the size before looking at Name[1] and Name[2] 1595 // so we may as well check a limit that will eliminate mismatches. 1596 if (Name.size() < 12 || Name[1] != '_') 1597 return false; 1598 switch (Name[2]) { 1599 default: 1600 return false; 1601 case 'a': 1602 return Name == "__acos_finite" || Name == "__acosf_finite" || 1603 Name == "__asin_finite" || Name == "__asinf_finite" || 1604 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1605 case 'c': 1606 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1607 case 'e': 1608 return Name == "__exp_finite" || Name == "__expf_finite" || 1609 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1610 case 'l': 1611 return Name == "__log_finite" || Name == "__logf_finite" || 1612 Name == "__log10_finite" || Name == "__log10f_finite"; 1613 case 'p': 1614 return Name == "__pow_finite" || Name == "__powf_finite"; 1615 case 's': 1616 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1617 } 1618 } 1619 } 1620 1621 namespace { 1622 1623 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1624 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1625 APFloat APF(V); 1626 bool unused; 1627 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1628 return ConstantFP::get(Ty->getContext(), APF); 1629 } 1630 if (Ty->isDoubleTy()) 1631 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1632 llvm_unreachable("Can only constant fold half/float/double"); 1633 } 1634 1635 /// Clear the floating-point exception state. 1636 inline void llvm_fenv_clearexcept() { 1637 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1638 feclearexcept(FE_ALL_EXCEPT); 1639 #endif 1640 errno = 0; 1641 } 1642 1643 /// Test if a floating-point exception was raised. 1644 inline bool llvm_fenv_testexcept() { 1645 int errno_val = errno; 1646 if (errno_val == ERANGE || errno_val == EDOM) 1647 return true; 1648 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1649 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1650 return true; 1651 #endif 1652 return false; 1653 } 1654 1655 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1656 Type *Ty) { 1657 llvm_fenv_clearexcept(); 1658 double Result = NativeFP(V.convertToDouble()); 1659 if (llvm_fenv_testexcept()) { 1660 llvm_fenv_clearexcept(); 1661 return nullptr; 1662 } 1663 1664 return GetConstantFoldFPValue(Result, Ty); 1665 } 1666 1667 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1668 const APFloat &V, const APFloat &W, Type *Ty) { 1669 llvm_fenv_clearexcept(); 1670 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1671 if (llvm_fenv_testexcept()) { 1672 llvm_fenv_clearexcept(); 1673 return nullptr; 1674 } 1675 1676 return GetConstantFoldFPValue(Result, Ty); 1677 } 1678 1679 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1680 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1681 if (!VT) 1682 return nullptr; 1683 1684 // This isn't strictly necessary, but handle the special/common case of zero: 1685 // all integer reductions of a zero input produce zero. 1686 if (isa<ConstantAggregateZero>(Op)) 1687 return ConstantInt::get(VT->getElementType(), 0); 1688 1689 // This is the same as the underlying binops - poison propagates. 1690 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1691 return PoisonValue::get(VT->getElementType()); 1692 1693 // TODO: Handle undef. 1694 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1695 return nullptr; 1696 1697 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1698 if (!EltC) 1699 return nullptr; 1700 1701 APInt Acc = EltC->getValue(); 1702 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1703 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1704 return nullptr; 1705 const APInt &X = EltC->getValue(); 1706 switch (IID) { 1707 case Intrinsic::vector_reduce_add: 1708 Acc = Acc + X; 1709 break; 1710 case Intrinsic::vector_reduce_mul: 1711 Acc = Acc * X; 1712 break; 1713 case Intrinsic::vector_reduce_and: 1714 Acc = Acc & X; 1715 break; 1716 case Intrinsic::vector_reduce_or: 1717 Acc = Acc | X; 1718 break; 1719 case Intrinsic::vector_reduce_xor: 1720 Acc = Acc ^ X; 1721 break; 1722 case Intrinsic::vector_reduce_smin: 1723 Acc = APIntOps::smin(Acc, X); 1724 break; 1725 case Intrinsic::vector_reduce_smax: 1726 Acc = APIntOps::smax(Acc, X); 1727 break; 1728 case Intrinsic::vector_reduce_umin: 1729 Acc = APIntOps::umin(Acc, X); 1730 break; 1731 case Intrinsic::vector_reduce_umax: 1732 Acc = APIntOps::umax(Acc, X); 1733 break; 1734 } 1735 } 1736 1737 return ConstantInt::get(Op->getContext(), Acc); 1738 } 1739 1740 /// Attempt to fold an SSE floating point to integer conversion of a constant 1741 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1742 /// used (toward nearest, ties to even). This matches the behavior of the 1743 /// non-truncating SSE instructions in the default rounding mode. The desired 1744 /// integer type Ty is used to select how many bits are available for the 1745 /// result. Returns null if the conversion cannot be performed, otherwise 1746 /// returns the Constant value resulting from the conversion. 1747 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1748 Type *Ty, bool IsSigned) { 1749 // All of these conversion intrinsics form an integer of at most 64bits. 1750 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1751 assert(ResultWidth <= 64 && 1752 "Can only constant fold conversions to 64 and 32 bit ints"); 1753 1754 uint64_t UIntVal; 1755 bool isExact = false; 1756 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1757 : APFloat::rmNearestTiesToEven; 1758 APFloat::opStatus status = 1759 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1760 IsSigned, mode, &isExact); 1761 if (status != APFloat::opOK && 1762 (!roundTowardZero || status != APFloat::opInexact)) 1763 return nullptr; 1764 return ConstantInt::get(Ty, UIntVal, IsSigned); 1765 } 1766 1767 double getValueAsDouble(ConstantFP *Op) { 1768 Type *Ty = Op->getType(); 1769 1770 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1771 return Op->getValueAPF().convertToDouble(); 1772 1773 bool unused; 1774 APFloat APF = Op->getValueAPF(); 1775 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1776 return APF.convertToDouble(); 1777 } 1778 1779 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1780 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1781 C = &CI->getValue(); 1782 return true; 1783 } 1784 if (isa<UndefValue>(Op)) { 1785 C = nullptr; 1786 return true; 1787 } 1788 return false; 1789 } 1790 1791 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1792 /// to be folded. 1793 /// 1794 /// \param CI Constrained intrinsic call. 1795 /// \param St Exception flags raised during constant evaluation. 1796 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1797 APFloat::opStatus St) { 1798 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1799 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1800 1801 // If the operation does not change exception status flags, it is safe 1802 // to fold. 1803 if (St == APFloat::opStatus::opOK) 1804 return true; 1805 1806 // If evaluation raised FP exception, the result can depend on rounding 1807 // mode. If the latter is unknown, folding is not possible. 1808 if (!ORM || *ORM == RoundingMode::Dynamic) 1809 return false; 1810 1811 // If FP exceptions are ignored, fold the call, even if such exception is 1812 // raised. 1813 if (!EB || *EB != fp::ExceptionBehavior::ebStrict) 1814 return true; 1815 1816 // Leave the calculation for runtime so that exception flags be correctly set 1817 // in hardware. 1818 return false; 1819 } 1820 1821 /// Returns the rounding mode that should be used for constant evaluation. 1822 static RoundingMode 1823 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1824 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1825 if (!ORM || *ORM == RoundingMode::Dynamic) 1826 // Even if the rounding mode is unknown, try evaluating the operation. 1827 // If it does not raise inexact exception, rounding was not applied, 1828 // so the result is exact and does not depend on rounding mode. Whether 1829 // other FP exceptions are raised, it does not depend on rounding mode. 1830 return RoundingMode::NearestTiesToEven; 1831 return *ORM; 1832 } 1833 1834 static Constant *ConstantFoldScalarCall1(StringRef Name, 1835 Intrinsic::ID IntrinsicID, 1836 Type *Ty, 1837 ArrayRef<Constant *> Operands, 1838 const TargetLibraryInfo *TLI, 1839 const CallBase *Call) { 1840 assert(Operands.size() == 1 && "Wrong number of operands."); 1841 1842 if (IntrinsicID == Intrinsic::is_constant) { 1843 // We know we have a "Constant" argument. But we want to only 1844 // return true for manifest constants, not those that depend on 1845 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1846 if (Operands[0]->isManifestConstant()) 1847 return ConstantInt::getTrue(Ty->getContext()); 1848 return nullptr; 1849 } 1850 if (isa<UndefValue>(Operands[0])) { 1851 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1852 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1853 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 1854 if (IntrinsicID == Intrinsic::cos || 1855 IntrinsicID == Intrinsic::ctpop || 1856 IntrinsicID == Intrinsic::fptoui_sat || 1857 IntrinsicID == Intrinsic::fptosi_sat) 1858 return Constant::getNullValue(Ty); 1859 if (IntrinsicID == Intrinsic::bswap || 1860 IntrinsicID == Intrinsic::bitreverse || 1861 IntrinsicID == Intrinsic::launder_invariant_group || 1862 IntrinsicID == Intrinsic::strip_invariant_group) 1863 return Operands[0]; 1864 } 1865 1866 if (isa<ConstantPointerNull>(Operands[0])) { 1867 // launder(null) == null == strip(null) iff in addrspace 0 1868 if (IntrinsicID == Intrinsic::launder_invariant_group || 1869 IntrinsicID == Intrinsic::strip_invariant_group) { 1870 // If instruction is not yet put in a basic block (e.g. when cloning 1871 // a function during inlining), Call's caller may not be available. 1872 // So check Call's BB first before querying Call->getCaller. 1873 const Function *Caller = 1874 Call->getParent() ? Call->getCaller() : nullptr; 1875 if (Caller && 1876 !NullPointerIsDefined( 1877 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1878 return Operands[0]; 1879 } 1880 return nullptr; 1881 } 1882 } 1883 1884 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1885 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1886 APFloat Val(Op->getValueAPF()); 1887 1888 bool lost = false; 1889 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1890 1891 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1892 } 1893 1894 APFloat U = Op->getValueAPF(); 1895 1896 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 1897 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 1898 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 1899 1900 if (U.isNaN()) 1901 return nullptr; 1902 1903 unsigned Width = Ty->getIntegerBitWidth(); 1904 APSInt Int(Width, !Signed); 1905 bool IsExact = false; 1906 APFloat::opStatus Status = 1907 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1908 1909 if (Status == APFloat::opOK || Status == APFloat::opInexact) 1910 return ConstantInt::get(Ty, Int); 1911 1912 return nullptr; 1913 } 1914 1915 if (IntrinsicID == Intrinsic::fptoui_sat || 1916 IntrinsicID == Intrinsic::fptosi_sat) { 1917 // convertToInteger() already has the desired saturation semantics. 1918 APSInt Int(Ty->getIntegerBitWidth(), 1919 IntrinsicID == Intrinsic::fptoui_sat); 1920 bool IsExact; 1921 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1922 return ConstantInt::get(Ty, Int); 1923 } 1924 1925 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1926 return nullptr; 1927 1928 // Use internal versions of these intrinsics. 1929 1930 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1931 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1932 return ConstantFP::get(Ty->getContext(), U); 1933 } 1934 1935 if (IntrinsicID == Intrinsic::round) { 1936 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1937 return ConstantFP::get(Ty->getContext(), U); 1938 } 1939 1940 if (IntrinsicID == Intrinsic::roundeven) { 1941 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1942 return ConstantFP::get(Ty->getContext(), U); 1943 } 1944 1945 if (IntrinsicID == Intrinsic::ceil) { 1946 U.roundToIntegral(APFloat::rmTowardPositive); 1947 return ConstantFP::get(Ty->getContext(), U); 1948 } 1949 1950 if (IntrinsicID == Intrinsic::floor) { 1951 U.roundToIntegral(APFloat::rmTowardNegative); 1952 return ConstantFP::get(Ty->getContext(), U); 1953 } 1954 1955 if (IntrinsicID == Intrinsic::trunc) { 1956 U.roundToIntegral(APFloat::rmTowardZero); 1957 return ConstantFP::get(Ty->getContext(), U); 1958 } 1959 1960 if (IntrinsicID == Intrinsic::fabs) { 1961 U.clearSign(); 1962 return ConstantFP::get(Ty->getContext(), U); 1963 } 1964 1965 if (IntrinsicID == Intrinsic::amdgcn_fract) { 1966 // The v_fract instruction behaves like the OpenCL spec, which defines 1967 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 1968 // there to prevent fract(-small) from returning 1.0. It returns the 1969 // largest positive floating-point number less than 1.0." 1970 APFloat FloorU(U); 1971 FloorU.roundToIntegral(APFloat::rmTowardNegative); 1972 APFloat FractU(U - FloorU); 1973 APFloat AlmostOne(U.getSemantics(), 1); 1974 AlmostOne.next(/*nextDown*/ true); 1975 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 1976 } 1977 1978 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 1979 // raise FP exceptions, unless the argument is signaling NaN. 1980 1981 Optional<APFloat::roundingMode> RM; 1982 switch (IntrinsicID) { 1983 default: 1984 break; 1985 case Intrinsic::experimental_constrained_nearbyint: 1986 case Intrinsic::experimental_constrained_rint: { 1987 auto CI = cast<ConstrainedFPIntrinsic>(Call); 1988 RM = CI->getRoundingMode(); 1989 if (!RM || RM.getValue() == RoundingMode::Dynamic) 1990 return nullptr; 1991 break; 1992 } 1993 case Intrinsic::experimental_constrained_round: 1994 RM = APFloat::rmNearestTiesToAway; 1995 break; 1996 case Intrinsic::experimental_constrained_ceil: 1997 RM = APFloat::rmTowardPositive; 1998 break; 1999 case Intrinsic::experimental_constrained_floor: 2000 RM = APFloat::rmTowardNegative; 2001 break; 2002 case Intrinsic::experimental_constrained_trunc: 2003 RM = APFloat::rmTowardZero; 2004 break; 2005 } 2006 if (RM) { 2007 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2008 if (U.isFinite()) { 2009 APFloat::opStatus St = U.roundToIntegral(*RM); 2010 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2011 St == APFloat::opInexact) { 2012 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2013 if (EB && *EB == fp::ebStrict) 2014 return nullptr; 2015 } 2016 } else if (U.isSignaling()) { 2017 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2018 if (EB && *EB != fp::ebIgnore) 2019 return nullptr; 2020 U = APFloat::getQNaN(U.getSemantics()); 2021 } 2022 return ConstantFP::get(Ty->getContext(), U); 2023 } 2024 2025 /// We only fold functions with finite arguments. Folding NaN and inf is 2026 /// likely to be aborted with an exception anyway, and some host libms 2027 /// have known errors raising exceptions. 2028 if (!U.isFinite()) 2029 return nullptr; 2030 2031 /// Currently APFloat versions of these functions do not exist, so we use 2032 /// the host native double versions. Float versions are not called 2033 /// directly but for all these it is true (float)(f((double)arg)) == 2034 /// f(arg). Long double not supported yet. 2035 const APFloat &APF = Op->getValueAPF(); 2036 2037 switch (IntrinsicID) { 2038 default: break; 2039 case Intrinsic::log: 2040 return ConstantFoldFP(log, APF, Ty); 2041 case Intrinsic::log2: 2042 // TODO: What about hosts that lack a C99 library? 2043 return ConstantFoldFP(Log2, APF, Ty); 2044 case Intrinsic::log10: 2045 // TODO: What about hosts that lack a C99 library? 2046 return ConstantFoldFP(log10, APF, Ty); 2047 case Intrinsic::exp: 2048 return ConstantFoldFP(exp, APF, Ty); 2049 case Intrinsic::exp2: 2050 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2051 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2052 case Intrinsic::sin: 2053 return ConstantFoldFP(sin, APF, Ty); 2054 case Intrinsic::cos: 2055 return ConstantFoldFP(cos, APF, Ty); 2056 case Intrinsic::sqrt: 2057 return ConstantFoldFP(sqrt, APF, Ty); 2058 case Intrinsic::amdgcn_cos: 2059 case Intrinsic::amdgcn_sin: { 2060 double V = getValueAsDouble(Op); 2061 if (V < -256.0 || V > 256.0) 2062 // The gfx8 and gfx9 architectures handle arguments outside the range 2063 // [-256, 256] differently. This should be a rare case so bail out 2064 // rather than trying to handle the difference. 2065 return nullptr; 2066 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2067 double V4 = V * 4.0; 2068 if (V4 == floor(V4)) { 2069 // Force exact results for quarter-integer inputs. 2070 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2071 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2072 } else { 2073 if (IsCos) 2074 V = cos(V * 2.0 * numbers::pi); 2075 else 2076 V = sin(V * 2.0 * numbers::pi); 2077 } 2078 return GetConstantFoldFPValue(V, Ty); 2079 } 2080 } 2081 2082 if (!TLI) 2083 return nullptr; 2084 2085 LibFunc Func = NotLibFunc; 2086 if (!TLI->getLibFunc(Name, Func)) 2087 return nullptr; 2088 2089 switch (Func) { 2090 default: 2091 break; 2092 case LibFunc_acos: 2093 case LibFunc_acosf: 2094 case LibFunc_acos_finite: 2095 case LibFunc_acosf_finite: 2096 if (TLI->has(Func)) 2097 return ConstantFoldFP(acos, APF, Ty); 2098 break; 2099 case LibFunc_asin: 2100 case LibFunc_asinf: 2101 case LibFunc_asin_finite: 2102 case LibFunc_asinf_finite: 2103 if (TLI->has(Func)) 2104 return ConstantFoldFP(asin, APF, Ty); 2105 break; 2106 case LibFunc_atan: 2107 case LibFunc_atanf: 2108 if (TLI->has(Func)) 2109 return ConstantFoldFP(atan, APF, Ty); 2110 break; 2111 case LibFunc_ceil: 2112 case LibFunc_ceilf: 2113 if (TLI->has(Func)) { 2114 U.roundToIntegral(APFloat::rmTowardPositive); 2115 return ConstantFP::get(Ty->getContext(), U); 2116 } 2117 break; 2118 case LibFunc_cos: 2119 case LibFunc_cosf: 2120 if (TLI->has(Func)) 2121 return ConstantFoldFP(cos, APF, Ty); 2122 break; 2123 case LibFunc_cosh: 2124 case LibFunc_coshf: 2125 case LibFunc_cosh_finite: 2126 case LibFunc_coshf_finite: 2127 if (TLI->has(Func)) 2128 return ConstantFoldFP(cosh, APF, Ty); 2129 break; 2130 case LibFunc_exp: 2131 case LibFunc_expf: 2132 case LibFunc_exp_finite: 2133 case LibFunc_expf_finite: 2134 if (TLI->has(Func)) 2135 return ConstantFoldFP(exp, APF, Ty); 2136 break; 2137 case LibFunc_exp2: 2138 case LibFunc_exp2f: 2139 case LibFunc_exp2_finite: 2140 case LibFunc_exp2f_finite: 2141 if (TLI->has(Func)) 2142 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2143 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2144 break; 2145 case LibFunc_fabs: 2146 case LibFunc_fabsf: 2147 if (TLI->has(Func)) { 2148 U.clearSign(); 2149 return ConstantFP::get(Ty->getContext(), U); 2150 } 2151 break; 2152 case LibFunc_floor: 2153 case LibFunc_floorf: 2154 if (TLI->has(Func)) { 2155 U.roundToIntegral(APFloat::rmTowardNegative); 2156 return ConstantFP::get(Ty->getContext(), U); 2157 } 2158 break; 2159 case LibFunc_log: 2160 case LibFunc_logf: 2161 case LibFunc_log_finite: 2162 case LibFunc_logf_finite: 2163 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2164 return ConstantFoldFP(log, APF, Ty); 2165 break; 2166 case LibFunc_log2: 2167 case LibFunc_log2f: 2168 case LibFunc_log2_finite: 2169 case LibFunc_log2f_finite: 2170 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2171 // TODO: What about hosts that lack a C99 library? 2172 return ConstantFoldFP(Log2, APF, Ty); 2173 break; 2174 case LibFunc_log10: 2175 case LibFunc_log10f: 2176 case LibFunc_log10_finite: 2177 case LibFunc_log10f_finite: 2178 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2179 // TODO: What about hosts that lack a C99 library? 2180 return ConstantFoldFP(log10, APF, Ty); 2181 break; 2182 case LibFunc_nearbyint: 2183 case LibFunc_nearbyintf: 2184 case LibFunc_rint: 2185 case LibFunc_rintf: 2186 if (TLI->has(Func)) { 2187 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2188 return ConstantFP::get(Ty->getContext(), U); 2189 } 2190 break; 2191 case LibFunc_round: 2192 case LibFunc_roundf: 2193 if (TLI->has(Func)) { 2194 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2195 return ConstantFP::get(Ty->getContext(), U); 2196 } 2197 break; 2198 case LibFunc_sin: 2199 case LibFunc_sinf: 2200 if (TLI->has(Func)) 2201 return ConstantFoldFP(sin, APF, Ty); 2202 break; 2203 case LibFunc_sinh: 2204 case LibFunc_sinhf: 2205 case LibFunc_sinh_finite: 2206 case LibFunc_sinhf_finite: 2207 if (TLI->has(Func)) 2208 return ConstantFoldFP(sinh, APF, Ty); 2209 break; 2210 case LibFunc_sqrt: 2211 case LibFunc_sqrtf: 2212 if (!APF.isNegative() && TLI->has(Func)) 2213 return ConstantFoldFP(sqrt, APF, Ty); 2214 break; 2215 case LibFunc_tan: 2216 case LibFunc_tanf: 2217 if (TLI->has(Func)) 2218 return ConstantFoldFP(tan, APF, Ty); 2219 break; 2220 case LibFunc_tanh: 2221 case LibFunc_tanhf: 2222 if (TLI->has(Func)) 2223 return ConstantFoldFP(tanh, APF, Ty); 2224 break; 2225 case LibFunc_trunc: 2226 case LibFunc_truncf: 2227 if (TLI->has(Func)) { 2228 U.roundToIntegral(APFloat::rmTowardZero); 2229 return ConstantFP::get(Ty->getContext(), U); 2230 } 2231 break; 2232 } 2233 return nullptr; 2234 } 2235 2236 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2237 switch (IntrinsicID) { 2238 case Intrinsic::bswap: 2239 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2240 case Intrinsic::ctpop: 2241 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2242 case Intrinsic::bitreverse: 2243 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2244 case Intrinsic::convert_from_fp16: { 2245 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2246 2247 bool lost = false; 2248 APFloat::opStatus status = Val.convert( 2249 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2250 2251 // Conversion is always precise. 2252 (void)status; 2253 assert(status == APFloat::opOK && !lost && 2254 "Precision lost during fp16 constfolding"); 2255 2256 return ConstantFP::get(Ty->getContext(), Val); 2257 } 2258 default: 2259 return nullptr; 2260 } 2261 } 2262 2263 switch (IntrinsicID) { 2264 default: break; 2265 case Intrinsic::vector_reduce_add: 2266 case Intrinsic::vector_reduce_mul: 2267 case Intrinsic::vector_reduce_and: 2268 case Intrinsic::vector_reduce_or: 2269 case Intrinsic::vector_reduce_xor: 2270 case Intrinsic::vector_reduce_smin: 2271 case Intrinsic::vector_reduce_smax: 2272 case Intrinsic::vector_reduce_umin: 2273 case Intrinsic::vector_reduce_umax: 2274 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2275 return C; 2276 break; 2277 } 2278 2279 // Support ConstantVector in case we have an Undef in the top. 2280 if (isa<ConstantVector>(Operands[0]) || 2281 isa<ConstantDataVector>(Operands[0])) { 2282 auto *Op = cast<Constant>(Operands[0]); 2283 switch (IntrinsicID) { 2284 default: break; 2285 case Intrinsic::x86_sse_cvtss2si: 2286 case Intrinsic::x86_sse_cvtss2si64: 2287 case Intrinsic::x86_sse2_cvtsd2si: 2288 case Intrinsic::x86_sse2_cvtsd2si64: 2289 if (ConstantFP *FPOp = 2290 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2291 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2292 /*roundTowardZero=*/false, Ty, 2293 /*IsSigned*/true); 2294 break; 2295 case Intrinsic::x86_sse_cvttss2si: 2296 case Intrinsic::x86_sse_cvttss2si64: 2297 case Intrinsic::x86_sse2_cvttsd2si: 2298 case Intrinsic::x86_sse2_cvttsd2si64: 2299 if (ConstantFP *FPOp = 2300 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2301 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2302 /*roundTowardZero=*/true, Ty, 2303 /*IsSigned*/true); 2304 break; 2305 } 2306 } 2307 2308 return nullptr; 2309 } 2310 2311 static Constant *ConstantFoldScalarCall2(StringRef Name, 2312 Intrinsic::ID IntrinsicID, 2313 Type *Ty, 2314 ArrayRef<Constant *> Operands, 2315 const TargetLibraryInfo *TLI, 2316 const CallBase *Call) { 2317 assert(Operands.size() == 2 && "Wrong number of operands."); 2318 2319 if (Ty->isFloatingPointTy()) { 2320 // TODO: We should have undef handling for all of the FP intrinsics that 2321 // are attempted to be folded in this function. 2322 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2323 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2324 switch (IntrinsicID) { 2325 case Intrinsic::maxnum: 2326 case Intrinsic::minnum: 2327 case Intrinsic::maximum: 2328 case Intrinsic::minimum: 2329 // If one argument is undef, return the other argument. 2330 if (IsOp0Undef) 2331 return Operands[1]; 2332 if (IsOp1Undef) 2333 return Operands[0]; 2334 break; 2335 } 2336 } 2337 2338 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2339 if (!Ty->isFloatingPointTy()) 2340 return nullptr; 2341 const APFloat &Op1V = Op1->getValueAPF(); 2342 2343 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2344 if (Op2->getType() != Op1->getType()) 2345 return nullptr; 2346 const APFloat &Op2V = Op2->getValueAPF(); 2347 2348 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2349 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2350 APFloat Res = Op1V; 2351 APFloat::opStatus St; 2352 switch (IntrinsicID) { 2353 default: 2354 return nullptr; 2355 case Intrinsic::experimental_constrained_fadd: 2356 St = Res.add(Op2V, RM); 2357 break; 2358 case Intrinsic::experimental_constrained_fsub: 2359 St = Res.subtract(Op2V, RM); 2360 break; 2361 case Intrinsic::experimental_constrained_fmul: 2362 St = Res.multiply(Op2V, RM); 2363 break; 2364 case Intrinsic::experimental_constrained_fdiv: 2365 St = Res.divide(Op2V, RM); 2366 break; 2367 case Intrinsic::experimental_constrained_frem: 2368 St = Res.mod(Op2V); 2369 break; 2370 } 2371 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2372 St)) 2373 return ConstantFP::get(Ty->getContext(), Res); 2374 return nullptr; 2375 } 2376 2377 switch (IntrinsicID) { 2378 default: 2379 break; 2380 case Intrinsic::copysign: 2381 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2382 case Intrinsic::minnum: 2383 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2384 case Intrinsic::maxnum: 2385 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2386 case Intrinsic::minimum: 2387 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2388 case Intrinsic::maximum: 2389 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2390 } 2391 2392 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2393 return nullptr; 2394 2395 switch (IntrinsicID) { 2396 default: 2397 break; 2398 case Intrinsic::pow: 2399 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2400 case Intrinsic::amdgcn_fmul_legacy: 2401 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2402 // NaN or infinity, gives +0.0. 2403 if (Op1V.isZero() || Op2V.isZero()) 2404 return ConstantFP::getNullValue(Ty); 2405 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2406 } 2407 2408 if (!TLI) 2409 return nullptr; 2410 2411 LibFunc Func = NotLibFunc; 2412 if (!TLI->getLibFunc(Name, Func)) 2413 return nullptr; 2414 2415 switch (Func) { 2416 default: 2417 break; 2418 case LibFunc_pow: 2419 case LibFunc_powf: 2420 case LibFunc_pow_finite: 2421 case LibFunc_powf_finite: 2422 if (TLI->has(Func)) 2423 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2424 break; 2425 case LibFunc_fmod: 2426 case LibFunc_fmodf: 2427 if (TLI->has(Func)) { 2428 APFloat V = Op1->getValueAPF(); 2429 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2430 return ConstantFP::get(Ty->getContext(), V); 2431 } 2432 break; 2433 case LibFunc_remainder: 2434 case LibFunc_remainderf: 2435 if (TLI->has(Func)) { 2436 APFloat V = Op1->getValueAPF(); 2437 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2438 return ConstantFP::get(Ty->getContext(), V); 2439 } 2440 break; 2441 case LibFunc_atan2: 2442 case LibFunc_atan2f: 2443 case LibFunc_atan2_finite: 2444 case LibFunc_atan2f_finite: 2445 if (TLI->has(Func)) 2446 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2447 break; 2448 } 2449 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2450 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2451 return nullptr; 2452 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2453 return ConstantFP::get( 2454 Ty->getContext(), 2455 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2456 (int)Op2C->getZExtValue()))); 2457 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2458 return ConstantFP::get( 2459 Ty->getContext(), 2460 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2461 (int)Op2C->getZExtValue()))); 2462 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2463 return ConstantFP::get( 2464 Ty->getContext(), 2465 APFloat((double)std::pow(Op1V.convertToDouble(), 2466 (int)Op2C->getZExtValue()))); 2467 2468 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2469 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2470 // everywhere else. 2471 2472 // scalbn is equivalent to ldexp with float radix 2 2473 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2474 APFloat::rmNearestTiesToEven); 2475 return ConstantFP::get(Ty->getContext(), Result); 2476 } 2477 } 2478 return nullptr; 2479 } 2480 2481 if (Operands[0]->getType()->isIntegerTy() && 2482 Operands[1]->getType()->isIntegerTy()) { 2483 const APInt *C0, *C1; 2484 if (!getConstIntOrUndef(Operands[0], C0) || 2485 !getConstIntOrUndef(Operands[1], C1)) 2486 return nullptr; 2487 2488 switch (IntrinsicID) { 2489 default: break; 2490 case Intrinsic::smax: 2491 case Intrinsic::smin: 2492 case Intrinsic::umax: 2493 case Intrinsic::umin: 2494 if (!C0 && !C1) 2495 return UndefValue::get(Ty); 2496 if (!C0 || !C1) 2497 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); 2498 return ConstantInt::get( 2499 Ty, ICmpInst::compare(*C0, *C1, 2500 MinMaxIntrinsic::getPredicate(IntrinsicID)) 2501 ? *C0 2502 : *C1); 2503 2504 case Intrinsic::usub_with_overflow: 2505 case Intrinsic::ssub_with_overflow: 2506 // X - undef -> { 0, false } 2507 // undef - X -> { 0, false } 2508 if (!C0 || !C1) 2509 return Constant::getNullValue(Ty); 2510 LLVM_FALLTHROUGH; 2511 case Intrinsic::uadd_with_overflow: 2512 case Intrinsic::sadd_with_overflow: 2513 // X + undef -> { -1, false } 2514 // undef + x -> { -1, false } 2515 if (!C0 || !C1) { 2516 return ConstantStruct::get( 2517 cast<StructType>(Ty), 2518 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2519 Constant::getNullValue(Ty->getStructElementType(1))}); 2520 } 2521 LLVM_FALLTHROUGH; 2522 case Intrinsic::smul_with_overflow: 2523 case Intrinsic::umul_with_overflow: { 2524 // undef * X -> { 0, false } 2525 // X * undef -> { 0, false } 2526 if (!C0 || !C1) 2527 return Constant::getNullValue(Ty); 2528 2529 APInt Res; 2530 bool Overflow; 2531 switch (IntrinsicID) { 2532 default: llvm_unreachable("Invalid case"); 2533 case Intrinsic::sadd_with_overflow: 2534 Res = C0->sadd_ov(*C1, Overflow); 2535 break; 2536 case Intrinsic::uadd_with_overflow: 2537 Res = C0->uadd_ov(*C1, Overflow); 2538 break; 2539 case Intrinsic::ssub_with_overflow: 2540 Res = C0->ssub_ov(*C1, Overflow); 2541 break; 2542 case Intrinsic::usub_with_overflow: 2543 Res = C0->usub_ov(*C1, Overflow); 2544 break; 2545 case Intrinsic::smul_with_overflow: 2546 Res = C0->smul_ov(*C1, Overflow); 2547 break; 2548 case Intrinsic::umul_with_overflow: 2549 Res = C0->umul_ov(*C1, Overflow); 2550 break; 2551 } 2552 Constant *Ops[] = { 2553 ConstantInt::get(Ty->getContext(), Res), 2554 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2555 }; 2556 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2557 } 2558 case Intrinsic::uadd_sat: 2559 case Intrinsic::sadd_sat: 2560 if (!C0 && !C1) 2561 return UndefValue::get(Ty); 2562 if (!C0 || !C1) 2563 return Constant::getAllOnesValue(Ty); 2564 if (IntrinsicID == Intrinsic::uadd_sat) 2565 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2566 else 2567 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2568 case Intrinsic::usub_sat: 2569 case Intrinsic::ssub_sat: 2570 if (!C0 && !C1) 2571 return UndefValue::get(Ty); 2572 if (!C0 || !C1) 2573 return Constant::getNullValue(Ty); 2574 if (IntrinsicID == Intrinsic::usub_sat) 2575 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2576 else 2577 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2578 case Intrinsic::cttz: 2579 case Intrinsic::ctlz: 2580 assert(C1 && "Must be constant int"); 2581 2582 // cttz(0, 1) and ctlz(0, 1) are undef. 2583 if (C1->isOne() && (!C0 || C0->isZero())) 2584 return UndefValue::get(Ty); 2585 if (!C0) 2586 return Constant::getNullValue(Ty); 2587 if (IntrinsicID == Intrinsic::cttz) 2588 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2589 else 2590 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2591 2592 case Intrinsic::abs: 2593 assert(C1 && "Must be constant int"); 2594 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); 2595 2596 // Undef or minimum val operand with poison min --> undef 2597 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2598 return UndefValue::get(Ty); 2599 2600 // Undef operand with no poison min --> 0 (sign bit must be clear) 2601 if (!C0) 2602 return Constant::getNullValue(Ty); 2603 2604 return ConstantInt::get(Ty, C0->abs()); 2605 } 2606 2607 return nullptr; 2608 } 2609 2610 // Support ConstantVector in case we have an Undef in the top. 2611 if ((isa<ConstantVector>(Operands[0]) || 2612 isa<ConstantDataVector>(Operands[0])) && 2613 // Check for default rounding mode. 2614 // FIXME: Support other rounding modes? 2615 isa<ConstantInt>(Operands[1]) && 2616 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2617 auto *Op = cast<Constant>(Operands[0]); 2618 switch (IntrinsicID) { 2619 default: break; 2620 case Intrinsic::x86_avx512_vcvtss2si32: 2621 case Intrinsic::x86_avx512_vcvtss2si64: 2622 case Intrinsic::x86_avx512_vcvtsd2si32: 2623 case Intrinsic::x86_avx512_vcvtsd2si64: 2624 if (ConstantFP *FPOp = 2625 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2626 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2627 /*roundTowardZero=*/false, Ty, 2628 /*IsSigned*/true); 2629 break; 2630 case Intrinsic::x86_avx512_vcvtss2usi32: 2631 case Intrinsic::x86_avx512_vcvtss2usi64: 2632 case Intrinsic::x86_avx512_vcvtsd2usi32: 2633 case Intrinsic::x86_avx512_vcvtsd2usi64: 2634 if (ConstantFP *FPOp = 2635 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2636 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2637 /*roundTowardZero=*/false, Ty, 2638 /*IsSigned*/false); 2639 break; 2640 case Intrinsic::x86_avx512_cvttss2si: 2641 case Intrinsic::x86_avx512_cvttss2si64: 2642 case Intrinsic::x86_avx512_cvttsd2si: 2643 case Intrinsic::x86_avx512_cvttsd2si64: 2644 if (ConstantFP *FPOp = 2645 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2646 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2647 /*roundTowardZero=*/true, Ty, 2648 /*IsSigned*/true); 2649 break; 2650 case Intrinsic::x86_avx512_cvttss2usi: 2651 case Intrinsic::x86_avx512_cvttss2usi64: 2652 case Intrinsic::x86_avx512_cvttsd2usi: 2653 case Intrinsic::x86_avx512_cvttsd2usi64: 2654 if (ConstantFP *FPOp = 2655 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2656 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2657 /*roundTowardZero=*/true, Ty, 2658 /*IsSigned*/false); 2659 break; 2660 } 2661 } 2662 return nullptr; 2663 } 2664 2665 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2666 const APFloat &S0, 2667 const APFloat &S1, 2668 const APFloat &S2) { 2669 unsigned ID; 2670 const fltSemantics &Sem = S0.getSemantics(); 2671 APFloat MA(Sem), SC(Sem), TC(Sem); 2672 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2673 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2674 // S2 < 0 2675 ID = 5; 2676 SC = -S0; 2677 } else { 2678 ID = 4; 2679 SC = S0; 2680 } 2681 MA = S2; 2682 TC = -S1; 2683 } else if (abs(S1) >= abs(S0)) { 2684 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2685 // S1 < 0 2686 ID = 3; 2687 TC = -S2; 2688 } else { 2689 ID = 2; 2690 TC = S2; 2691 } 2692 MA = S1; 2693 SC = S0; 2694 } else { 2695 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2696 // S0 < 0 2697 ID = 1; 2698 SC = S2; 2699 } else { 2700 ID = 0; 2701 SC = -S2; 2702 } 2703 MA = S0; 2704 TC = -S1; 2705 } 2706 switch (IntrinsicID) { 2707 default: 2708 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2709 case Intrinsic::amdgcn_cubeid: 2710 return APFloat(Sem, ID); 2711 case Intrinsic::amdgcn_cubema: 2712 return MA + MA; 2713 case Intrinsic::amdgcn_cubesc: 2714 return SC; 2715 case Intrinsic::amdgcn_cubetc: 2716 return TC; 2717 } 2718 } 2719 2720 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2721 Type *Ty) { 2722 const APInt *C0, *C1, *C2; 2723 if (!getConstIntOrUndef(Operands[0], C0) || 2724 !getConstIntOrUndef(Operands[1], C1) || 2725 !getConstIntOrUndef(Operands[2], C2)) 2726 return nullptr; 2727 2728 if (!C2) 2729 return UndefValue::get(Ty); 2730 2731 APInt Val(32, 0); 2732 unsigned NumUndefBytes = 0; 2733 for (unsigned I = 0; I < 32; I += 8) { 2734 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2735 unsigned B = 0; 2736 2737 if (Sel >= 13) 2738 B = 0xff; 2739 else if (Sel == 12) 2740 B = 0x00; 2741 else { 2742 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 2743 if (!Src) 2744 ++NumUndefBytes; 2745 else if (Sel < 8) 2746 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 2747 else 2748 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 2749 } 2750 2751 Val.insertBits(B, I, 8); 2752 } 2753 2754 if (NumUndefBytes == 4) 2755 return UndefValue::get(Ty); 2756 2757 return ConstantInt::get(Ty, Val); 2758 } 2759 2760 static Constant *ConstantFoldScalarCall3(StringRef Name, 2761 Intrinsic::ID IntrinsicID, 2762 Type *Ty, 2763 ArrayRef<Constant *> Operands, 2764 const TargetLibraryInfo *TLI, 2765 const CallBase *Call) { 2766 assert(Operands.size() == 3 && "Wrong number of operands."); 2767 2768 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2769 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2770 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2771 const APFloat &C1 = Op1->getValueAPF(); 2772 const APFloat &C2 = Op2->getValueAPF(); 2773 const APFloat &C3 = Op3->getValueAPF(); 2774 2775 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2776 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2777 APFloat Res = C1; 2778 APFloat::opStatus St; 2779 switch (IntrinsicID) { 2780 default: 2781 return nullptr; 2782 case Intrinsic::experimental_constrained_fma: 2783 case Intrinsic::experimental_constrained_fmuladd: 2784 St = Res.fusedMultiplyAdd(C2, C3, RM); 2785 break; 2786 } 2787 if (mayFoldConstrained( 2788 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 2789 return ConstantFP::get(Ty->getContext(), Res); 2790 return nullptr; 2791 } 2792 2793 switch (IntrinsicID) { 2794 default: break; 2795 case Intrinsic::amdgcn_fma_legacy: { 2796 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2797 // NaN or infinity, gives +0.0. 2798 if (C1.isZero() || C2.isZero()) { 2799 // It's tempting to just return C3 here, but that would give the 2800 // wrong result if C3 was -0.0. 2801 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 2802 } 2803 LLVM_FALLTHROUGH; 2804 } 2805 case Intrinsic::fma: 2806 case Intrinsic::fmuladd: { 2807 APFloat V = C1; 2808 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 2809 return ConstantFP::get(Ty->getContext(), V); 2810 } 2811 case Intrinsic::amdgcn_cubeid: 2812 case Intrinsic::amdgcn_cubema: 2813 case Intrinsic::amdgcn_cubesc: 2814 case Intrinsic::amdgcn_cubetc: { 2815 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 2816 return ConstantFP::get(Ty->getContext(), V); 2817 } 2818 } 2819 } 2820 } 2821 } 2822 2823 if (IntrinsicID == Intrinsic::smul_fix || 2824 IntrinsicID == Intrinsic::smul_fix_sat) { 2825 // poison * C -> poison 2826 // C * poison -> poison 2827 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2828 return PoisonValue::get(Ty); 2829 2830 const APInt *C0, *C1; 2831 if (!getConstIntOrUndef(Operands[0], C0) || 2832 !getConstIntOrUndef(Operands[1], C1)) 2833 return nullptr; 2834 2835 // undef * C -> 0 2836 // C * undef -> 0 2837 if (!C0 || !C1) 2838 return Constant::getNullValue(Ty); 2839 2840 // This code performs rounding towards negative infinity in case the result 2841 // cannot be represented exactly for the given scale. Targets that do care 2842 // about rounding should use a target hook for specifying how rounding 2843 // should be done, and provide their own folding to be consistent with 2844 // rounding. This is the same approach as used by 2845 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2846 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 2847 unsigned Width = C0->getBitWidth(); 2848 assert(Scale < Width && "Illegal scale."); 2849 unsigned ExtendedWidth = Width * 2; 2850 APInt Product = (C0->sextOrSelf(ExtendedWidth) * 2851 C1->sextOrSelf(ExtendedWidth)).ashr(Scale); 2852 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2853 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2854 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2855 Product = APIntOps::smin(Product, Max); 2856 Product = APIntOps::smax(Product, Min); 2857 } 2858 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 2859 } 2860 2861 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2862 const APInt *C0, *C1, *C2; 2863 if (!getConstIntOrUndef(Operands[0], C0) || 2864 !getConstIntOrUndef(Operands[1], C1) || 2865 !getConstIntOrUndef(Operands[2], C2)) 2866 return nullptr; 2867 2868 bool IsRight = IntrinsicID == Intrinsic::fshr; 2869 if (!C2) 2870 return Operands[IsRight ? 1 : 0]; 2871 if (!C0 && !C1) 2872 return UndefValue::get(Ty); 2873 2874 // The shift amount is interpreted as modulo the bitwidth. If the shift 2875 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2876 unsigned BitWidth = C2->getBitWidth(); 2877 unsigned ShAmt = C2->urem(BitWidth); 2878 if (!ShAmt) 2879 return Operands[IsRight ? 1 : 0]; 2880 2881 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2882 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2883 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2884 if (!C0) 2885 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2886 if (!C1) 2887 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2888 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2889 } 2890 2891 if (IntrinsicID == Intrinsic::amdgcn_perm) 2892 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 2893 2894 return nullptr; 2895 } 2896 2897 static Constant *ConstantFoldScalarCall(StringRef Name, 2898 Intrinsic::ID IntrinsicID, 2899 Type *Ty, 2900 ArrayRef<Constant *> Operands, 2901 const TargetLibraryInfo *TLI, 2902 const CallBase *Call) { 2903 if (Operands.size() == 1) 2904 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2905 2906 if (Operands.size() == 2) 2907 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2908 2909 if (Operands.size() == 3) 2910 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2911 2912 return nullptr; 2913 } 2914 2915 static Constant *ConstantFoldFixedVectorCall( 2916 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 2917 ArrayRef<Constant *> Operands, const DataLayout &DL, 2918 const TargetLibraryInfo *TLI, const CallBase *Call) { 2919 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 2920 SmallVector<Constant *, 4> Lane(Operands.size()); 2921 Type *Ty = FVTy->getElementType(); 2922 2923 switch (IntrinsicID) { 2924 case Intrinsic::masked_load: { 2925 auto *SrcPtr = Operands[0]; 2926 auto *Mask = Operands[2]; 2927 auto *Passthru = Operands[3]; 2928 2929 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 2930 2931 SmallVector<Constant *, 32> NewElements; 2932 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 2933 auto *MaskElt = Mask->getAggregateElement(I); 2934 if (!MaskElt) 2935 break; 2936 auto *PassthruElt = Passthru->getAggregateElement(I); 2937 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2938 if (isa<UndefValue>(MaskElt)) { 2939 if (PassthruElt) 2940 NewElements.push_back(PassthruElt); 2941 else if (VecElt) 2942 NewElements.push_back(VecElt); 2943 else 2944 return nullptr; 2945 } 2946 if (MaskElt->isNullValue()) { 2947 if (!PassthruElt) 2948 return nullptr; 2949 NewElements.push_back(PassthruElt); 2950 } else if (MaskElt->isOneValue()) { 2951 if (!VecElt) 2952 return nullptr; 2953 NewElements.push_back(VecElt); 2954 } else { 2955 return nullptr; 2956 } 2957 } 2958 if (NewElements.size() != FVTy->getNumElements()) 2959 return nullptr; 2960 return ConstantVector::get(NewElements); 2961 } 2962 case Intrinsic::arm_mve_vctp8: 2963 case Intrinsic::arm_mve_vctp16: 2964 case Intrinsic::arm_mve_vctp32: 2965 case Intrinsic::arm_mve_vctp64: { 2966 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2967 unsigned Lanes = FVTy->getNumElements(); 2968 uint64_t Limit = Op->getZExtValue(); 2969 2970 SmallVector<Constant *, 16> NCs; 2971 for (unsigned i = 0; i < Lanes; i++) { 2972 if (i < Limit) 2973 NCs.push_back(ConstantInt::getTrue(Ty)); 2974 else 2975 NCs.push_back(ConstantInt::getFalse(Ty)); 2976 } 2977 return ConstantVector::get(NCs); 2978 } 2979 break; 2980 } 2981 case Intrinsic::get_active_lane_mask: { 2982 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 2983 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 2984 if (Op0 && Op1) { 2985 unsigned Lanes = FVTy->getNumElements(); 2986 uint64_t Base = Op0->getZExtValue(); 2987 uint64_t Limit = Op1->getZExtValue(); 2988 2989 SmallVector<Constant *, 16> NCs; 2990 for (unsigned i = 0; i < Lanes; i++) { 2991 if (Base + i < Limit) 2992 NCs.push_back(ConstantInt::getTrue(Ty)); 2993 else 2994 NCs.push_back(ConstantInt::getFalse(Ty)); 2995 } 2996 return ConstantVector::get(NCs); 2997 } 2998 break; 2999 } 3000 default: 3001 break; 3002 } 3003 3004 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3005 // Gather a column of constants. 3006 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3007 // Some intrinsics use a scalar type for certain arguments. 3008 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 3009 Lane[J] = Operands[J]; 3010 continue; 3011 } 3012 3013 Constant *Agg = Operands[J]->getAggregateElement(I); 3014 if (!Agg) 3015 return nullptr; 3016 3017 Lane[J] = Agg; 3018 } 3019 3020 // Use the regular scalar folding to simplify this column. 3021 Constant *Folded = 3022 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3023 if (!Folded) 3024 return nullptr; 3025 Result[I] = Folded; 3026 } 3027 3028 return ConstantVector::get(Result); 3029 } 3030 3031 static Constant *ConstantFoldScalableVectorCall( 3032 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3033 ArrayRef<Constant *> Operands, const DataLayout &DL, 3034 const TargetLibraryInfo *TLI, const CallBase *Call) { 3035 switch (IntrinsicID) { 3036 case Intrinsic::aarch64_sve_convert_from_svbool: { 3037 auto *Src = dyn_cast<Constant>(Operands[0]); 3038 if (!Src || !Src->isNullValue()) 3039 break; 3040 3041 return ConstantInt::getFalse(SVTy); 3042 } 3043 default: 3044 break; 3045 } 3046 return nullptr; 3047 } 3048 3049 } // end anonymous namespace 3050 3051 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3052 ArrayRef<Constant *> Operands, 3053 const TargetLibraryInfo *TLI) { 3054 if (Call->isNoBuiltin()) 3055 return nullptr; 3056 if (!F->hasName()) 3057 return nullptr; 3058 3059 // If this is not an intrinsic and not recognized as a library call, bail out. 3060 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) { 3061 if (!TLI) 3062 return nullptr; 3063 LibFunc LibF; 3064 if (!TLI->getLibFunc(*F, LibF)) 3065 return nullptr; 3066 } 3067 3068 StringRef Name = F->getName(); 3069 Type *Ty = F->getReturnType(); 3070 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3071 return ConstantFoldFixedVectorCall( 3072 Name, F->getIntrinsicID(), FVTy, Operands, 3073 F->getParent()->getDataLayout(), TLI, Call); 3074 3075 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3076 return ConstantFoldScalableVectorCall( 3077 Name, F->getIntrinsicID(), SVTy, Operands, 3078 F->getParent()->getDataLayout(), TLI, Call); 3079 3080 // TODO: If this is a library function, we already discovered that above, 3081 // so we should pass the LibFunc, not the name (and it might be better 3082 // still to separate intrinsic handling from libcalls). 3083 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3084 Call); 3085 } 3086 3087 bool llvm::isMathLibCallNoop(const CallBase *Call, 3088 const TargetLibraryInfo *TLI) { 3089 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3090 // (and to some extent ConstantFoldScalarCall). 3091 if (Call->isNoBuiltin() || Call->isStrictFP()) 3092 return false; 3093 Function *F = Call->getCalledFunction(); 3094 if (!F) 3095 return false; 3096 3097 LibFunc Func; 3098 if (!TLI || !TLI->getLibFunc(*F, Func)) 3099 return false; 3100 3101 if (Call->arg_size() == 1) { 3102 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3103 const APFloat &Op = OpC->getValueAPF(); 3104 switch (Func) { 3105 case LibFunc_logl: 3106 case LibFunc_log: 3107 case LibFunc_logf: 3108 case LibFunc_log2l: 3109 case LibFunc_log2: 3110 case LibFunc_log2f: 3111 case LibFunc_log10l: 3112 case LibFunc_log10: 3113 case LibFunc_log10f: 3114 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3115 3116 case LibFunc_expl: 3117 case LibFunc_exp: 3118 case LibFunc_expf: 3119 // FIXME: These boundaries are slightly conservative. 3120 if (OpC->getType()->isDoubleTy()) 3121 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3122 if (OpC->getType()->isFloatTy()) 3123 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3124 break; 3125 3126 case LibFunc_exp2l: 3127 case LibFunc_exp2: 3128 case LibFunc_exp2f: 3129 // FIXME: These boundaries are slightly conservative. 3130 if (OpC->getType()->isDoubleTy()) 3131 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3132 if (OpC->getType()->isFloatTy()) 3133 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3134 break; 3135 3136 case LibFunc_sinl: 3137 case LibFunc_sin: 3138 case LibFunc_sinf: 3139 case LibFunc_cosl: 3140 case LibFunc_cos: 3141 case LibFunc_cosf: 3142 return !Op.isInfinity(); 3143 3144 case LibFunc_tanl: 3145 case LibFunc_tan: 3146 case LibFunc_tanf: { 3147 // FIXME: Stop using the host math library. 3148 // FIXME: The computation isn't done in the right precision. 3149 Type *Ty = OpC->getType(); 3150 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3151 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3152 break; 3153 } 3154 3155 case LibFunc_asinl: 3156 case LibFunc_asin: 3157 case LibFunc_asinf: 3158 case LibFunc_acosl: 3159 case LibFunc_acos: 3160 case LibFunc_acosf: 3161 return !(Op < APFloat(Op.getSemantics(), "-1") || 3162 Op > APFloat(Op.getSemantics(), "1")); 3163 3164 case LibFunc_sinh: 3165 case LibFunc_cosh: 3166 case LibFunc_sinhf: 3167 case LibFunc_coshf: 3168 case LibFunc_sinhl: 3169 case LibFunc_coshl: 3170 // FIXME: These boundaries are slightly conservative. 3171 if (OpC->getType()->isDoubleTy()) 3172 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3173 if (OpC->getType()->isFloatTy()) 3174 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3175 break; 3176 3177 case LibFunc_sqrtl: 3178 case LibFunc_sqrt: 3179 case LibFunc_sqrtf: 3180 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3181 3182 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3183 // maybe others? 3184 default: 3185 break; 3186 } 3187 } 3188 } 3189 3190 if (Call->arg_size() == 2) { 3191 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3192 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3193 if (Op0C && Op1C) { 3194 const APFloat &Op0 = Op0C->getValueAPF(); 3195 const APFloat &Op1 = Op1C->getValueAPF(); 3196 3197 switch (Func) { 3198 case LibFunc_powl: 3199 case LibFunc_pow: 3200 case LibFunc_powf: { 3201 // FIXME: Stop using the host math library. 3202 // FIXME: The computation isn't done in the right precision. 3203 Type *Ty = Op0C->getType(); 3204 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3205 if (Ty == Op1C->getType()) 3206 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3207 } 3208 break; 3209 } 3210 3211 case LibFunc_fmodl: 3212 case LibFunc_fmod: 3213 case LibFunc_fmodf: 3214 case LibFunc_remainderl: 3215 case LibFunc_remainder: 3216 case LibFunc_remainderf: 3217 return Op0.isNaN() || Op1.isNaN() || 3218 (!Op0.isInfinity() && !Op1.isZero()); 3219 3220 default: 3221 break; 3222 } 3223 } 3224 } 3225 3226 return false; 3227 } 3228 3229 void TargetFolder::anchor() {} 3230