1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic IR ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in IR due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Config/config.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include <cassert>
47 #include <cerrno>
48 #include <cfenv>
49 #include <cmath>
50 #include <cstddef>
51 #include <cstdint>
52 
53 using namespace llvm;
54 
55 namespace {
56 
57 //===----------------------------------------------------------------------===//
58 // Constant Folding internal helper functions
59 //===----------------------------------------------------------------------===//
60 
61 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
62 /// This always returns a non-null constant, but it may be a
63 /// ConstantExpr if unfoldable.
64 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
65   // Catch the obvious splat cases.
66   if (C->isNullValue() && !DestTy->isX86_MMXTy())
67     return Constant::getNullValue(DestTy);
68   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
69       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
70     return Constant::getAllOnesValue(DestTy);
71 
72   // Handle a vector->integer cast.
73   if (auto *IT = dyn_cast<IntegerType>(DestTy)) {
74     auto *VTy = dyn_cast<VectorType>(C->getType());
75     if (!VTy)
76       return ConstantExpr::getBitCast(C, DestTy);
77 
78     unsigned NumSrcElts = VTy->getNumElements();
79     Type *SrcEltTy = VTy->getElementType();
80 
81     // If the vector is a vector of floating point, convert it to vector of int
82     // to simplify things.
83     if (SrcEltTy->isFloatingPointTy()) {
84       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
85       Type *SrcIVTy =
86         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
87       // Ask IR to do the conversion now that #elts line up.
88       C = ConstantExpr::getBitCast(C, SrcIVTy);
89     }
90 
91     // Now that we know that the input value is a vector of integers, just shift
92     // and insert them into our result.
93     unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
94     APInt Result(IT->getBitWidth(), 0);
95     for (unsigned i = 0; i != NumSrcElts; ++i) {
96       Constant *Element;
97       if (DL.isLittleEndian())
98         Element = C->getAggregateElement(NumSrcElts-i-1);
99       else
100         Element = C->getAggregateElement(i);
101 
102       if (Element && isa<UndefValue>(Element)) {
103         Result <<= BitShift;
104         continue;
105       }
106 
107       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
108       if (!ElementCI)
109         return ConstantExpr::getBitCast(C, DestTy);
110 
111       Result <<= BitShift;
112       Result |= ElementCI->getValue().zextOrSelf(IT->getBitWidth());
113     }
114 
115     return ConstantInt::get(IT, Result);
116   }
117 
118   // The code below only handles casts to vectors currently.
119   auto *DestVTy = dyn_cast<VectorType>(DestTy);
120   if (!DestVTy)
121     return ConstantExpr::getBitCast(C, DestTy);
122 
123   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
124   // vector so the code below can handle it uniformly.
125   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
126     Constant *Ops = C; // don't take the address of C!
127     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
128   }
129 
130   // If this is a bitcast from constant vector -> vector, fold it.
131   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
132     return ConstantExpr::getBitCast(C, DestTy);
133 
134   // If the element types match, IR can fold it.
135   unsigned NumDstElt = DestVTy->getNumElements();
136   unsigned NumSrcElt = C->getType()->getVectorNumElements();
137   if (NumDstElt == NumSrcElt)
138     return ConstantExpr::getBitCast(C, DestTy);
139 
140   Type *SrcEltTy = C->getType()->getVectorElementType();
141   Type *DstEltTy = DestVTy->getElementType();
142 
143   // Otherwise, we're changing the number of elements in a vector, which
144   // requires endianness information to do the right thing.  For example,
145   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
146   // folds to (little endian):
147   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
148   // and to (big endian):
149   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
150 
151   // First thing is first.  We only want to think about integer here, so if
152   // we have something in FP form, recast it as integer.
153   if (DstEltTy->isFloatingPointTy()) {
154     // Fold to an vector of integers with same size as our FP type.
155     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
156     Type *DestIVTy =
157       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
158     // Recursively handle this integer conversion, if possible.
159     C = FoldBitCast(C, DestIVTy, DL);
160 
161     // Finally, IR can handle this now that #elts line up.
162     return ConstantExpr::getBitCast(C, DestTy);
163   }
164 
165   // Okay, we know the destination is integer, if the input is FP, convert
166   // it to integer first.
167   if (SrcEltTy->isFloatingPointTy()) {
168     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
169     Type *SrcIVTy =
170       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
171     // Ask IR to do the conversion now that #elts line up.
172     C = ConstantExpr::getBitCast(C, SrcIVTy);
173     // If IR wasn't able to fold it, bail out.
174     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
175         !isa<ConstantDataVector>(C))
176       return C;
177   }
178 
179   // Now we know that the input and output vectors are both integer vectors
180   // of the same size, and that their #elements is not the same.  Do the
181   // conversion here, which depends on whether the input or output has
182   // more elements.
183   bool isLittleEndian = DL.isLittleEndian();
184 
185   SmallVector<Constant*, 32> Result;
186   if (NumDstElt < NumSrcElt) {
187     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
188     Constant *Zero = Constant::getNullValue(DstEltTy);
189     unsigned Ratio = NumSrcElt/NumDstElt;
190     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
191     unsigned SrcElt = 0;
192     for (unsigned i = 0; i != NumDstElt; ++i) {
193       // Build each element of the result.
194       Constant *Elt = Zero;
195       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
196       for (unsigned j = 0; j != Ratio; ++j) {
197         Constant *Src = C->getAggregateElement(SrcElt++);
198         if (Src && isa<UndefValue>(Src))
199           Src = Constant::getNullValue(C->getType()->getVectorElementType());
200         else
201           Src = dyn_cast_or_null<ConstantInt>(Src);
202         if (!Src)  // Reject constantexpr elements.
203           return ConstantExpr::getBitCast(C, DestTy);
204 
205         // Zero extend the element to the right size.
206         Src = ConstantExpr::getZExt(Src, Elt->getType());
207 
208         // Shift it to the right place, depending on endianness.
209         Src = ConstantExpr::getShl(Src,
210                                    ConstantInt::get(Src->getType(), ShiftAmt));
211         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
212 
213         // Mix it in.
214         Elt = ConstantExpr::getOr(Elt, Src);
215       }
216       Result.push_back(Elt);
217     }
218     return ConstantVector::get(Result);
219   }
220 
221   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
222   unsigned Ratio = NumDstElt/NumSrcElt;
223   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
224 
225   // Loop over each source value, expanding into multiple results.
226   for (unsigned i = 0; i != NumSrcElt; ++i) {
227     auto *Element = C->getAggregateElement(i);
228 
229     if (!Element) // Reject constantexpr elements.
230       return ConstantExpr::getBitCast(C, DestTy);
231 
232     if (isa<UndefValue>(Element)) {
233       // Correctly Propagate undef values.
234       Result.append(Ratio, UndefValue::get(DstEltTy));
235       continue;
236     }
237 
238     auto *Src = dyn_cast<ConstantInt>(Element);
239     if (!Src)
240       return ConstantExpr::getBitCast(C, DestTy);
241 
242     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
243     for (unsigned j = 0; j != Ratio; ++j) {
244       // Shift the piece of the value into the right place, depending on
245       // endianness.
246       Constant *Elt = ConstantExpr::getLShr(Src,
247                                   ConstantInt::get(Src->getType(), ShiftAmt));
248       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
249 
250       // Truncate the element to an integer with the same pointer size and
251       // convert the element back to a pointer using a inttoptr.
252       if (DstEltTy->isPointerTy()) {
253         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
254         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
255         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
256         continue;
257       }
258 
259       // Truncate and remember this piece.
260       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
261     }
262   }
263 
264   return ConstantVector::get(Result);
265 }
266 
267 } // end anonymous namespace
268 
269 /// If this constant is a constant offset from a global, return the global and
270 /// the constant. Because of constantexprs, this function is recursive.
271 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
272                                       APInt &Offset, const DataLayout &DL) {
273   // Trivial case, constant is the global.
274   if ((GV = dyn_cast<GlobalValue>(C))) {
275     unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
276     Offset = APInt(BitWidth, 0);
277     return true;
278   }
279 
280   // Otherwise, if this isn't a constant expr, bail out.
281   auto *CE = dyn_cast<ConstantExpr>(C);
282   if (!CE) return false;
283 
284   // Look through ptr->int and ptr->ptr casts.
285   if (CE->getOpcode() == Instruction::PtrToInt ||
286       CE->getOpcode() == Instruction::BitCast)
287     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
288 
289   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
290   auto *GEP = dyn_cast<GEPOperator>(CE);
291   if (!GEP)
292     return false;
293 
294   unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
295   APInt TmpOffset(BitWidth, 0);
296 
297   // If the base isn't a global+constant, we aren't either.
298   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
299     return false;
300 
301   // Otherwise, add any offset that our operands provide.
302   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
303     return false;
304 
305   Offset = TmpOffset;
306   return true;
307 }
308 
309 namespace {
310 
311 /// Recursive helper to read bits out of global. C is the constant being copied
312 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
313 /// results into and BytesLeft is the number of bytes left in
314 /// the CurPtr buffer. DL is the DataLayout.
315 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
316                         unsigned BytesLeft, const DataLayout &DL) {
317   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
318          "Out of range access");
319 
320   // If this element is zero or undefined, we can just return since *CurPtr is
321   // zero initialized.
322   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
323     return true;
324 
325   if (auto *CI = dyn_cast<ConstantInt>(C)) {
326     if (CI->getBitWidth() > 64 ||
327         (CI->getBitWidth() & 7) != 0)
328       return false;
329 
330     uint64_t Val = CI->getZExtValue();
331     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
332 
333     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
334       int n = ByteOffset;
335       if (!DL.isLittleEndian())
336         n = IntBytes - n - 1;
337       CurPtr[i] = (unsigned char)(Val >> (n * 8));
338       ++ByteOffset;
339     }
340     return true;
341   }
342 
343   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
344     if (CFP->getType()->isDoubleTy()) {
345       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
346       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
347     }
348     if (CFP->getType()->isFloatTy()){
349       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
350       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
351     }
352     if (CFP->getType()->isHalfTy()){
353       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
354       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
355     }
356     return false;
357   }
358 
359   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
360     const StructLayout *SL = DL.getStructLayout(CS->getType());
361     unsigned Index = SL->getElementContainingOffset(ByteOffset);
362     uint64_t CurEltOffset = SL->getElementOffset(Index);
363     ByteOffset -= CurEltOffset;
364 
365     while (true) {
366       // If the element access is to the element itself and not to tail padding,
367       // read the bytes from the element.
368       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
369 
370       if (ByteOffset < EltSize &&
371           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
372                               BytesLeft, DL))
373         return false;
374 
375       ++Index;
376 
377       // Check to see if we read from the last struct element, if so we're done.
378       if (Index == CS->getType()->getNumElements())
379         return true;
380 
381       // If we read all of the bytes we needed from this element we're done.
382       uint64_t NextEltOffset = SL->getElementOffset(Index);
383 
384       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
385         return true;
386 
387       // Move to the next element of the struct.
388       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
389       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
390       ByteOffset = 0;
391       CurEltOffset = NextEltOffset;
392     }
393     // not reached.
394   }
395 
396   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
397       isa<ConstantDataSequential>(C)) {
398     Type *EltTy = C->getType()->getSequentialElementType();
399     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
400     uint64_t Index = ByteOffset / EltSize;
401     uint64_t Offset = ByteOffset - Index * EltSize;
402     uint64_t NumElts;
403     if (auto *AT = dyn_cast<ArrayType>(C->getType()))
404       NumElts = AT->getNumElements();
405     else
406       NumElts = C->getType()->getVectorNumElements();
407 
408     for (; Index != NumElts; ++Index) {
409       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
410                               BytesLeft, DL))
411         return false;
412 
413       uint64_t BytesWritten = EltSize - Offset;
414       assert(BytesWritten <= EltSize && "Not indexing into this element?");
415       if (BytesWritten >= BytesLeft)
416         return true;
417 
418       Offset = 0;
419       BytesLeft -= BytesWritten;
420       CurPtr += BytesWritten;
421     }
422     return true;
423   }
424 
425   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
426     if (CE->getOpcode() == Instruction::IntToPtr &&
427         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
428       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
429                                 BytesLeft, DL);
430     }
431   }
432 
433   // Otherwise, unknown initializer type.
434   return false;
435 }
436 
437 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
438                                           const DataLayout &DL) {
439   auto *PTy = cast<PointerType>(C->getType());
440   auto *IntType = dyn_cast<IntegerType>(LoadTy);
441 
442   // If this isn't an integer load we can't fold it directly.
443   if (!IntType) {
444     unsigned AS = PTy->getAddressSpace();
445 
446     // If this is a float/double load, we can try folding it as an int32/64 load
447     // and then bitcast the result.  This can be useful for union cases.  Note
448     // that address spaces don't matter here since we're not going to result in
449     // an actual new load.
450     Type *MapTy;
451     if (LoadTy->isHalfTy())
452       MapTy = Type::getInt16Ty(C->getContext());
453     else if (LoadTy->isFloatTy())
454       MapTy = Type::getInt32Ty(C->getContext());
455     else if (LoadTy->isDoubleTy())
456       MapTy = Type::getInt64Ty(C->getContext());
457     else if (LoadTy->isVectorTy()) {
458       MapTy = PointerType::getIntNTy(C->getContext(),
459                                      DL.getTypeAllocSizeInBits(LoadTy));
460     } else
461       return nullptr;
462 
463     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
464     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL))
465       return FoldBitCast(Res, LoadTy, DL);
466     return nullptr;
467   }
468 
469   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
470   if (BytesLoaded > 32 || BytesLoaded == 0)
471     return nullptr;
472 
473   GlobalValue *GVal;
474   APInt OffsetAI;
475   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
476     return nullptr;
477 
478   auto *GV = dyn_cast<GlobalVariable>(GVal);
479   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
480       !GV->getInitializer()->getType()->isSized())
481     return nullptr;
482 
483   int64_t Offset = OffsetAI.getSExtValue();
484   int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
485 
486   // If we're not accessing anything in this constant, the result is undefined.
487   if (Offset + BytesLoaded <= 0)
488     return UndefValue::get(IntType);
489 
490   // If we're not accessing anything in this constant, the result is undefined.
491   if (Offset >= InitializerSize)
492     return UndefValue::get(IntType);
493 
494   unsigned char RawBytes[32] = {0};
495   unsigned char *CurPtr = RawBytes;
496   unsigned BytesLeft = BytesLoaded;
497 
498   // If we're loading off the beginning of the global, some bytes may be valid.
499   if (Offset < 0) {
500     CurPtr += -Offset;
501     BytesLeft += Offset;
502     Offset = 0;
503   }
504 
505   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
506     return nullptr;
507 
508   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
509   if (DL.isLittleEndian()) {
510     ResultVal = RawBytes[BytesLoaded - 1];
511     for (unsigned i = 1; i != BytesLoaded; ++i) {
512       ResultVal <<= 8;
513       ResultVal |= RawBytes[BytesLoaded - 1 - i];
514     }
515   } else {
516     ResultVal = RawBytes[0];
517     for (unsigned i = 1; i != BytesLoaded; ++i) {
518       ResultVal <<= 8;
519       ResultVal |= RawBytes[i];
520     }
521   }
522 
523   return ConstantInt::get(IntType->getContext(), ResultVal);
524 }
525 
526 Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE, Type *DestTy,
527                                          const DataLayout &DL) {
528   auto *SrcPtr = CE->getOperand(0);
529   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
530   if (!SrcPtrTy)
531     return nullptr;
532   Type *SrcTy = SrcPtrTy->getPointerElementType();
533 
534   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
535   if (!C)
536     return nullptr;
537 
538   do {
539     Type *SrcTy = C->getType();
540 
541     // If the type sizes are the same and a cast is legal, just directly
542     // cast the constant.
543     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
544       Instruction::CastOps Cast = Instruction::BitCast;
545       // If we are going from a pointer to int or vice versa, we spell the cast
546       // differently.
547       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
548         Cast = Instruction::IntToPtr;
549       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
550         Cast = Instruction::PtrToInt;
551 
552       if (CastInst::castIsValid(Cast, C, DestTy))
553         return ConstantExpr::getCast(Cast, C, DestTy);
554     }
555 
556     // If this isn't an aggregate type, there is nothing we can do to drill down
557     // and find a bitcastable constant.
558     if (!SrcTy->isAggregateType())
559       return nullptr;
560 
561     // We're simulating a load through a pointer that was bitcast to point to
562     // a different type, so we can try to walk down through the initial
563     // elements of an aggregate to see if some part of th e aggregate is
564     // castable to implement the "load" semantic model.
565     C = C->getAggregateElement(0u);
566   } while (C);
567 
568   return nullptr;
569 }
570 
571 } // end anonymous namespace
572 
573 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
574                                              const DataLayout &DL) {
575   // First, try the easy cases:
576   if (auto *GV = dyn_cast<GlobalVariable>(C))
577     if (GV->isConstant() && GV->hasDefinitiveInitializer())
578       return GV->getInitializer();
579 
580   if (auto *GA = dyn_cast<GlobalAlias>(C))
581     if (GA->getAliasee() && !GA->isInterposable())
582       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
583 
584   // If the loaded value isn't a constant expr, we can't handle it.
585   auto *CE = dyn_cast<ConstantExpr>(C);
586   if (!CE)
587     return nullptr;
588 
589   if (CE->getOpcode() == Instruction::GetElementPtr) {
590     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
591       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
592         if (Constant *V =
593              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
594           return V;
595       }
596     }
597   }
598 
599   if (CE->getOpcode() == Instruction::BitCast)
600     if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, Ty, DL))
601       return LoadedC;
602 
603   // Instead of loading constant c string, use corresponding integer value
604   // directly if string length is small enough.
605   StringRef Str;
606   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
607     size_t StrLen = Str.size();
608     unsigned NumBits = Ty->getPrimitiveSizeInBits();
609     // Replace load with immediate integer if the result is an integer or fp
610     // value.
611     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
612         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
613       APInt StrVal(NumBits, 0);
614       APInt SingleChar(NumBits, 0);
615       if (DL.isLittleEndian()) {
616         for (unsigned char C : reverse(Str.bytes())) {
617           SingleChar = static_cast<uint64_t>(C);
618           StrVal = (StrVal << 8) | SingleChar;
619         }
620       } else {
621         for (unsigned char C : Str.bytes()) {
622           SingleChar = static_cast<uint64_t>(C);
623           StrVal = (StrVal << 8) | SingleChar;
624         }
625         // Append NULL at the end.
626         SingleChar = 0;
627         StrVal = (StrVal << 8) | SingleChar;
628       }
629 
630       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
631       if (Ty->isFloatingPointTy())
632         Res = ConstantExpr::getBitCast(Res, Ty);
633       return Res;
634     }
635   }
636 
637   // If this load comes from anywhere in a constant global, and if the global
638   // is all undef or zero, we know what it loads.
639   if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
640     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
641       if (GV->getInitializer()->isNullValue())
642         return Constant::getNullValue(Ty);
643       if (isa<UndefValue>(GV->getInitializer()))
644         return UndefValue::get(Ty);
645     }
646   }
647 
648   // Try hard to fold loads from bitcasted strange and non-type-safe things.
649   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
650 }
651 
652 namespace {
653 
654 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
655   if (LI->isVolatile()) return nullptr;
656 
657   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
658     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
659 
660   return nullptr;
661 }
662 
663 /// One of Op0/Op1 is a constant expression.
664 /// Attempt to symbolically evaluate the result of a binary operator merging
665 /// these together.  If target data info is available, it is provided as DL,
666 /// otherwise DL is null.
667 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
668                                     const DataLayout &DL) {
669   // SROA
670 
671   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
672   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
673   // bits.
674 
675   if (Opc == Instruction::And) {
676     unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
677     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
678     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
679     computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
680     computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
681     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
682       // All the bits of Op0 that the 'and' could be masking are already zero.
683       return Op0;
684     }
685     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
686       // All the bits of Op1 that the 'and' could be masking are already zero.
687       return Op1;
688     }
689 
690     APInt KnownZero = KnownZero0 | KnownZero1;
691     APInt KnownOne = KnownOne0 & KnownOne1;
692     if ((KnownZero | KnownOne).isAllOnesValue()) {
693       return ConstantInt::get(Op0->getType(), KnownOne);
694     }
695   }
696 
697   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
698   // constant.  This happens frequently when iterating over a global array.
699   if (Opc == Instruction::Sub) {
700     GlobalValue *GV1, *GV2;
701     APInt Offs1, Offs2;
702 
703     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
704       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
705         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
706 
707         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
708         // PtrToInt may change the bitwidth so we have convert to the right size
709         // first.
710         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
711                                                 Offs2.zextOrTrunc(OpSize));
712       }
713   }
714 
715   return nullptr;
716 }
717 
718 /// If array indices are not pointer-sized integers, explicitly cast them so
719 /// that they aren't implicitly casted by the getelementptr.
720 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
721                          Type *ResultTy, const DataLayout &DL,
722                          const TargetLibraryInfo *TLI) {
723   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
724 
725   bool Any = false;
726   SmallVector<Constant*, 32> NewIdxs;
727   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
728     if ((i == 1 ||
729          !isa<StructType>(GetElementPtrInst::getIndexedType(SrcElemTy,
730              Ops.slice(1, i - 1)))) &&
731         Ops[i]->getType() != IntPtrTy) {
732       Any = true;
733       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
734                                                                       true,
735                                                                       IntPtrTy,
736                                                                       true),
737                                               Ops[i], IntPtrTy));
738     } else
739       NewIdxs.push_back(Ops[i]);
740   }
741 
742   if (!Any)
743     return nullptr;
744 
745   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs);
746   if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
747     C = Folded;
748 
749   return C;
750 }
751 
752 /// Strip the pointer casts, but preserve the address space information.
753 Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) {
754   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
755   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
756   Ptr = Ptr->stripPointerCasts();
757   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
758 
759   ElemTy = NewPtrTy->getPointerElementType();
760 
761   // Preserve the address space number of the pointer.
762   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
763     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
764     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
765   }
766   return Ptr;
767 }
768 
769 /// If we can symbolically evaluate the GEP constant expression, do so.
770 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
771                                   ArrayRef<Constant *> Ops,
772                                   const DataLayout &DL,
773                                   const TargetLibraryInfo *TLI) {
774   Type *SrcElemTy = GEP->getSourceElementType();
775   Type *ResElemTy = GEP->getResultElementType();
776   Type *ResTy = GEP->getType();
777   if (!SrcElemTy->isSized())
778     return nullptr;
779 
780   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, DL, TLI))
781     return C;
782 
783   Constant *Ptr = Ops[0];
784   if (!Ptr->getType()->isPointerTy())
785     return nullptr;
786 
787   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
788 
789   // If this is a constant expr gep that is effectively computing an
790   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
791   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
792     if (!isa<ConstantInt>(Ops[i])) {
793 
794       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
795       // "inttoptr (sub (ptrtoint Ptr), V)"
796       if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
797         auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
798         assert((!CE || CE->getType() == IntPtrTy) &&
799                "CastGEPIndices didn't canonicalize index types!");
800         if (CE && CE->getOpcode() == Instruction::Sub &&
801             CE->getOperand(0)->isNullValue()) {
802           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
803           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
804           Res = ConstantExpr::getIntToPtr(Res, ResTy);
805           if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
806             Res = FoldedRes;
807           return Res;
808         }
809       }
810       return nullptr;
811     }
812 
813   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
814   APInt Offset =
815       APInt(BitWidth,
816             DL.getIndexedOffsetInType(
817                 SrcElemTy,
818                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
819   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
820 
821   // If this is a GEP of a GEP, fold it all into a single GEP.
822   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
823     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
824 
825     // Do not try the incorporate the sub-GEP if some index is not a number.
826     bool AllConstantInt = true;
827     for (Value *NestedOp : NestedOps)
828       if (!isa<ConstantInt>(NestedOp)) {
829         AllConstantInt = false;
830         break;
831       }
832     if (!AllConstantInt)
833       break;
834 
835     Ptr = cast<Constant>(GEP->getOperand(0));
836     SrcElemTy = GEP->getSourceElementType();
837     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
838     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
839   }
840 
841   // If the base value for this address is a literal integer value, fold the
842   // getelementptr to the resulting integer value casted to the pointer type.
843   APInt BasePtr(BitWidth, 0);
844   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
845     if (CE->getOpcode() == Instruction::IntToPtr) {
846       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
847         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
848     }
849   }
850 
851   auto *PTy = cast<PointerType>(Ptr->getType());
852   if ((Ptr->isNullValue() || BasePtr != 0) &&
853       !DL.isNonIntegralPointerType(PTy)) {
854     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
855     return ConstantExpr::getIntToPtr(C, ResTy);
856   }
857 
858   // Otherwise form a regular getelementptr. Recompute the indices so that
859   // we eliminate over-indexing of the notional static type array bounds.
860   // This makes it easy to determine if the getelementptr is "inbounds".
861   // Also, this helps GlobalOpt do SROA on GlobalVariables.
862   Type *Ty = PTy;
863   SmallVector<Constant *, 32> NewIdxs;
864 
865   do {
866     if (!Ty->isStructTy()) {
867       if (Ty->isPointerTy()) {
868         // The only pointer indexing we'll do is on the first index of the GEP.
869         if (!NewIdxs.empty())
870           break;
871 
872         Ty = SrcElemTy;
873 
874         // Only handle pointers to sized types, not pointers to functions.
875         if (!Ty->isSized())
876           return nullptr;
877       } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
878         Ty = ATy->getElementType();
879       } else {
880         // We've reached some non-indexable type.
881         break;
882       }
883 
884       // Determine which element of the array the offset points into.
885       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
886       if (ElemSize == 0) {
887         // The element size is 0. This may be [0 x Ty]*, so just use a zero
888         // index for this level and proceed to the next level to see if it can
889         // accommodate the offset.
890         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
891       } else {
892         // The element size is non-zero divide the offset by the element
893         // size (rounding down), to compute the index at this level.
894         bool Overflow;
895         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
896         if (Overflow)
897           break;
898         Offset -= NewIdx * ElemSize;
899         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
900       }
901     } else {
902       auto *STy = cast<StructType>(Ty);
903       // If we end up with an offset that isn't valid for this struct type, we
904       // can't re-form this GEP in a regular form, so bail out. The pointer
905       // operand likely went through casts that are necessary to make the GEP
906       // sensible.
907       const StructLayout &SL = *DL.getStructLayout(STy);
908       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
909         break;
910 
911       // Determine which field of the struct the offset points into. The
912       // getZExtValue is fine as we've already ensured that the offset is
913       // within the range representable by the StructLayout API.
914       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
915       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
916                                          ElIdx));
917       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
918       Ty = STy->getTypeAtIndex(ElIdx);
919     }
920   } while (Ty != ResElemTy);
921 
922   // If we haven't used up the entire offset by descending the static
923   // type, then the offset is pointing into the middle of an indivisible
924   // member, so we can't simplify it.
925   if (Offset != 0)
926     return nullptr;
927 
928   // Create a GEP.
929   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs);
930   assert(C->getType()->getPointerElementType() == Ty &&
931          "Computed GetElementPtr has unexpected type!");
932 
933   // If we ended up indexing a member with a type that doesn't match
934   // the type of what the original indices indexed, add a cast.
935   if (Ty != ResElemTy)
936     C = FoldBitCast(C, ResTy, DL);
937 
938   return C;
939 }
940 
941 /// Attempt to constant fold an instruction with the
942 /// specified opcode and operands.  If successful, the constant result is
943 /// returned, if not, null is returned.  Note that this function can fail when
944 /// attempting to fold instructions like loads and stores, which have no
945 /// constant expression form.
946 ///
947 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
948 /// information, due to only being passed an opcode and operands. Constant
949 /// folding using this function strips this information.
950 ///
951 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
952                                        ArrayRef<Constant *> Ops,
953                                        const DataLayout &DL,
954                                        const TargetLibraryInfo *TLI) {
955   Type *DestTy = InstOrCE->getType();
956 
957   // Handle easy binops first.
958   if (Instruction::isBinaryOp(Opcode))
959     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
960 
961   if (Instruction::isCast(Opcode))
962     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
963 
964   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
965     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
966       return C;
967 
968     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(),
969                                           Ops[0], Ops.slice(1));
970   }
971 
972   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
973     return CE->getWithOperands(Ops);
974 
975   switch (Opcode) {
976   default: return nullptr;
977   case Instruction::ICmp:
978   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
979   case Instruction::Call:
980     if (auto *F = dyn_cast<Function>(Ops.back()))
981       if (canConstantFoldCallTo(F))
982         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
983     return nullptr;
984   case Instruction::Select:
985     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
986   case Instruction::ExtractElement:
987     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
988   case Instruction::InsertElement:
989     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
990   case Instruction::ShuffleVector:
991     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
992   }
993 }
994 
995 } // end anonymous namespace
996 
997 //===----------------------------------------------------------------------===//
998 // Constant Folding public APIs
999 //===----------------------------------------------------------------------===//
1000 
1001 namespace {
1002 
1003 Constant *
1004 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1005                          const TargetLibraryInfo *TLI,
1006                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1007   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1008     return nullptr;
1009 
1010   SmallVector<Constant *, 8> Ops;
1011   for (const Use &NewU : C->operands()) {
1012     auto *NewC = cast<Constant>(&NewU);
1013     // Recursively fold the ConstantExpr's operands. If we have already folded
1014     // a ConstantExpr, we don't have to process it again.
1015     if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
1016       auto It = FoldedOps.find(NewC);
1017       if (It == FoldedOps.end()) {
1018         if (auto *FoldedC =
1019                 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
1020           NewC = FoldedC;
1021           FoldedOps.insert({NewC, FoldedC});
1022         } else {
1023           FoldedOps.insert({NewC, NewC});
1024         }
1025       } else {
1026         NewC = It->second;
1027       }
1028     }
1029     Ops.push_back(NewC);
1030   }
1031 
1032   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1033     if (CE->isCompare())
1034       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1035                                              DL, TLI);
1036 
1037     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1038   }
1039 
1040   assert(isa<ConstantVector>(C));
1041   return ConstantVector::get(Ops);
1042 }
1043 
1044 } // end anonymous namespace
1045 
1046 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1047                                         const TargetLibraryInfo *TLI) {
1048   // Handle PHI nodes quickly here...
1049   if (auto *PN = dyn_cast<PHINode>(I)) {
1050     Constant *CommonValue = nullptr;
1051 
1052     SmallDenseMap<Constant *, Constant *> FoldedOps;
1053     for (Value *Incoming : PN->incoming_values()) {
1054       // If the incoming value is undef then skip it.  Note that while we could
1055       // skip the value if it is equal to the phi node itself we choose not to
1056       // because that would break the rule that constant folding only applies if
1057       // all operands are constants.
1058       if (isa<UndefValue>(Incoming))
1059         continue;
1060       // If the incoming value is not a constant, then give up.
1061       auto *C = dyn_cast<Constant>(Incoming);
1062       if (!C)
1063         return nullptr;
1064       // Fold the PHI's operands.
1065       if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
1066         C = FoldedC;
1067       // If the incoming value is a different constant to
1068       // the one we saw previously, then give up.
1069       if (CommonValue && C != CommonValue)
1070         return nullptr;
1071       CommonValue = C;
1072     }
1073 
1074     // If we reach here, all incoming values are the same constant or undef.
1075     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1076   }
1077 
1078   // Scan the operand list, checking to see if they are all constants, if so,
1079   // hand off to ConstantFoldInstOperandsImpl.
1080   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1081     return nullptr;
1082 
1083   SmallDenseMap<Constant *, Constant *> FoldedOps;
1084   SmallVector<Constant *, 8> Ops;
1085   for (const Use &OpU : I->operands()) {
1086     auto *Op = cast<Constant>(&OpU);
1087     // Fold the Instruction's operands.
1088     if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
1089       Op = FoldedOp;
1090 
1091     Ops.push_back(Op);
1092   }
1093 
1094   if (const auto *CI = dyn_cast<CmpInst>(I))
1095     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1096                                            DL, TLI);
1097 
1098   if (const auto *LI = dyn_cast<LoadInst>(I))
1099     return ConstantFoldLoadInst(LI, DL);
1100 
1101   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1102     return ConstantExpr::getInsertValue(
1103                                 cast<Constant>(IVI->getAggregateOperand()),
1104                                 cast<Constant>(IVI->getInsertedValueOperand()),
1105                                 IVI->getIndices());
1106   }
1107 
1108   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1109     return ConstantExpr::getExtractValue(
1110                                     cast<Constant>(EVI->getAggregateOperand()),
1111                                     EVI->getIndices());
1112   }
1113 
1114   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1115 }
1116 
1117 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1118                                      const TargetLibraryInfo *TLI) {
1119   SmallDenseMap<Constant *, Constant *> FoldedOps;
1120   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1121 }
1122 
1123 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1124                                          ArrayRef<Constant *> Ops,
1125                                          const DataLayout &DL,
1126                                          const TargetLibraryInfo *TLI) {
1127   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1128 }
1129 
1130 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1131                                                 Constant *Ops0, Constant *Ops1,
1132                                                 const DataLayout &DL,
1133                                                 const TargetLibraryInfo *TLI) {
1134   // fold: icmp (inttoptr x), null         -> icmp x, 0
1135   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1136   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1137   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1138   //
1139   // FIXME: The following comment is out of data and the DataLayout is here now.
1140   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1141   // around to know if bit truncation is happening.
1142   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1143     if (Ops1->isNullValue()) {
1144       if (CE0->getOpcode() == Instruction::IntToPtr) {
1145         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1146         // Convert the integer value to the right size to ensure we get the
1147         // proper extension or truncation.
1148         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1149                                                    IntPtrTy, false);
1150         Constant *Null = Constant::getNullValue(C->getType());
1151         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1152       }
1153 
1154       // Only do this transformation if the int is intptrty in size, otherwise
1155       // there is a truncation or extension that we aren't modeling.
1156       if (CE0->getOpcode() == Instruction::PtrToInt) {
1157         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1158         if (CE0->getType() == IntPtrTy) {
1159           Constant *C = CE0->getOperand(0);
1160           Constant *Null = Constant::getNullValue(C->getType());
1161           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1162         }
1163       }
1164     }
1165 
1166     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1167       if (CE0->getOpcode() == CE1->getOpcode()) {
1168         if (CE0->getOpcode() == Instruction::IntToPtr) {
1169           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1170 
1171           // Convert the integer value to the right size to ensure we get the
1172           // proper extension or truncation.
1173           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1174                                                       IntPtrTy, false);
1175           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1176                                                       IntPtrTy, false);
1177           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1178         }
1179 
1180         // Only do this transformation if the int is intptrty in size, otherwise
1181         // there is a truncation or extension that we aren't modeling.
1182         if (CE0->getOpcode() == Instruction::PtrToInt) {
1183           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1184           if (CE0->getType() == IntPtrTy &&
1185               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1186             return ConstantFoldCompareInstOperands(
1187                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1188           }
1189         }
1190       }
1191     }
1192 
1193     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1194     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1195     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1196         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1197       Constant *LHS = ConstantFoldCompareInstOperands(
1198           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1199       Constant *RHS = ConstantFoldCompareInstOperands(
1200           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1201       unsigned OpC =
1202         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1203       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1204     }
1205   }
1206 
1207   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1208 }
1209 
1210 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1211                                              Constant *RHS,
1212                                              const DataLayout &DL) {
1213   assert(Instruction::isBinaryOp(Opcode));
1214   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1215     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1216       return C;
1217 
1218   return ConstantExpr::get(Opcode, LHS, RHS);
1219 }
1220 
1221 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1222                                         Type *DestTy, const DataLayout &DL) {
1223   assert(Instruction::isCast(Opcode));
1224   switch (Opcode) {
1225   default:
1226     llvm_unreachable("Missing case");
1227   case Instruction::PtrToInt:
1228     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1229     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1230     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1231       if (CE->getOpcode() == Instruction::IntToPtr) {
1232         Constant *Input = CE->getOperand(0);
1233         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1234         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1235         if (PtrWidth < InWidth) {
1236           Constant *Mask =
1237             ConstantInt::get(CE->getContext(),
1238                              APInt::getLowBitsSet(InWidth, PtrWidth));
1239           Input = ConstantExpr::getAnd(Input, Mask);
1240         }
1241         // Do a zext or trunc to get to the dest size.
1242         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1243       }
1244     }
1245     return ConstantExpr::getCast(Opcode, C, DestTy);
1246   case Instruction::IntToPtr:
1247     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1248     // the int size is >= the ptr size and the address spaces are the same.
1249     // This requires knowing the width of a pointer, so it can't be done in
1250     // ConstantExpr::getCast.
1251     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1252       if (CE->getOpcode() == Instruction::PtrToInt) {
1253         Constant *SrcPtr = CE->getOperand(0);
1254         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1255         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1256 
1257         if (MidIntSize >= SrcPtrSize) {
1258           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1259           if (SrcAS == DestTy->getPointerAddressSpace())
1260             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1261         }
1262       }
1263     }
1264 
1265     return ConstantExpr::getCast(Opcode, C, DestTy);
1266   case Instruction::Trunc:
1267   case Instruction::ZExt:
1268   case Instruction::SExt:
1269   case Instruction::FPTrunc:
1270   case Instruction::FPExt:
1271   case Instruction::UIToFP:
1272   case Instruction::SIToFP:
1273   case Instruction::FPToUI:
1274   case Instruction::FPToSI:
1275   case Instruction::AddrSpaceCast:
1276       return ConstantExpr::getCast(Opcode, C, DestTy);
1277   case Instruction::BitCast:
1278     return FoldBitCast(C, DestTy, DL);
1279   }
1280 }
1281 
1282 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1283                                                        ConstantExpr *CE) {
1284   if (!CE->getOperand(1)->isNullValue())
1285     return nullptr;  // Do not allow stepping over the value!
1286 
1287   // Loop over all of the operands, tracking down which value we are
1288   // addressing.
1289   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1290     C = C->getAggregateElement(CE->getOperand(i));
1291     if (!C)
1292       return nullptr;
1293   }
1294   return C;
1295 }
1296 
1297 Constant *
1298 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1299                                         ArrayRef<Constant *> Indices) {
1300   // Loop over all of the operands, tracking down which value we are
1301   // addressing.
1302   for (Constant *Index : Indices) {
1303     C = C->getAggregateElement(Index);
1304     if (!C)
1305       return nullptr;
1306   }
1307   return C;
1308 }
1309 
1310 //===----------------------------------------------------------------------===//
1311 //  Constant Folding for Calls
1312 //
1313 
1314 bool llvm::canConstantFoldCallTo(const Function *F) {
1315   switch (F->getIntrinsicID()) {
1316   case Intrinsic::fabs:
1317   case Intrinsic::minnum:
1318   case Intrinsic::maxnum:
1319   case Intrinsic::log:
1320   case Intrinsic::log2:
1321   case Intrinsic::log10:
1322   case Intrinsic::exp:
1323   case Intrinsic::exp2:
1324   case Intrinsic::floor:
1325   case Intrinsic::ceil:
1326   case Intrinsic::sqrt:
1327   case Intrinsic::sin:
1328   case Intrinsic::cos:
1329   case Intrinsic::trunc:
1330   case Intrinsic::rint:
1331   case Intrinsic::nearbyint:
1332   case Intrinsic::pow:
1333   case Intrinsic::powi:
1334   case Intrinsic::bswap:
1335   case Intrinsic::ctpop:
1336   case Intrinsic::ctlz:
1337   case Intrinsic::cttz:
1338   case Intrinsic::fma:
1339   case Intrinsic::fmuladd:
1340   case Intrinsic::copysign:
1341   case Intrinsic::round:
1342   case Intrinsic::masked_load:
1343   case Intrinsic::sadd_with_overflow:
1344   case Intrinsic::uadd_with_overflow:
1345   case Intrinsic::ssub_with_overflow:
1346   case Intrinsic::usub_with_overflow:
1347   case Intrinsic::smul_with_overflow:
1348   case Intrinsic::umul_with_overflow:
1349   case Intrinsic::convert_from_fp16:
1350   case Intrinsic::convert_to_fp16:
1351   case Intrinsic::bitreverse:
1352   case Intrinsic::x86_sse_cvtss2si:
1353   case Intrinsic::x86_sse_cvtss2si64:
1354   case Intrinsic::x86_sse_cvttss2si:
1355   case Intrinsic::x86_sse_cvttss2si64:
1356   case Intrinsic::x86_sse2_cvtsd2si:
1357   case Intrinsic::x86_sse2_cvtsd2si64:
1358   case Intrinsic::x86_sse2_cvttsd2si:
1359   case Intrinsic::x86_sse2_cvttsd2si64:
1360     return true;
1361   default:
1362     return false;
1363   case 0: break;
1364   }
1365 
1366   if (!F->hasName())
1367     return false;
1368   StringRef Name = F->getName();
1369 
1370   // In these cases, the check of the length is required.  We don't want to
1371   // return true for a name like "cos\0blah" which strcmp would return equal to
1372   // "cos", but has length 8.
1373   switch (Name[0]) {
1374   default:
1375     return false;
1376   case 'a':
1377     return Name == "acos" || Name == "asin" || Name == "atan" ||
1378            Name == "atan2" || Name == "acosf" || Name == "asinf" ||
1379            Name == "atanf" || Name == "atan2f";
1380   case 'c':
1381     return Name == "ceil" || Name == "cos" || Name == "cosh" ||
1382            Name == "ceilf" || Name == "cosf" || Name == "coshf";
1383   case 'e':
1384     return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
1385   case 'f':
1386     return Name == "fabs" || Name == "floor" || Name == "fmod" ||
1387            Name == "fabsf" || Name == "floorf" || Name == "fmodf";
1388   case 'l':
1389     return Name == "log" || Name == "log10" || Name == "logf" ||
1390            Name == "log10f";
1391   case 'p':
1392     return Name == "pow" || Name == "powf";
1393   case 's':
1394     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1395            Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
1396   case 't':
1397     return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
1398   }
1399 }
1400 
1401 namespace {
1402 
1403 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1404   if (Ty->isHalfTy()) {
1405     APFloat APF(V);
1406     bool unused;
1407     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1408     return ConstantFP::get(Ty->getContext(), APF);
1409   }
1410   if (Ty->isFloatTy())
1411     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1412   if (Ty->isDoubleTy())
1413     return ConstantFP::get(Ty->getContext(), APFloat(V));
1414   llvm_unreachable("Can only constant fold half/float/double");
1415 }
1416 
1417 /// Clear the floating-point exception state.
1418 inline void llvm_fenv_clearexcept() {
1419 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1420   feclearexcept(FE_ALL_EXCEPT);
1421 #endif
1422   errno = 0;
1423 }
1424 
1425 /// Test if a floating-point exception was raised.
1426 inline bool llvm_fenv_testexcept() {
1427   int errno_val = errno;
1428   if (errno_val == ERANGE || errno_val == EDOM)
1429     return true;
1430 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1431   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1432     return true;
1433 #endif
1434   return false;
1435 }
1436 
1437 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1438   llvm_fenv_clearexcept();
1439   V = NativeFP(V);
1440   if (llvm_fenv_testexcept()) {
1441     llvm_fenv_clearexcept();
1442     return nullptr;
1443   }
1444 
1445   return GetConstantFoldFPValue(V, Ty);
1446 }
1447 
1448 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1449                                double W, Type *Ty) {
1450   llvm_fenv_clearexcept();
1451   V = NativeFP(V, W);
1452   if (llvm_fenv_testexcept()) {
1453     llvm_fenv_clearexcept();
1454     return nullptr;
1455   }
1456 
1457   return GetConstantFoldFPValue(V, Ty);
1458 }
1459 
1460 /// Attempt to fold an SSE floating point to integer conversion of a constant
1461 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1462 /// used (toward nearest, ties to even). This matches the behavior of the
1463 /// non-truncating SSE instructions in the default rounding mode. The desired
1464 /// integer type Ty is used to select how many bits are available for the
1465 /// result. Returns null if the conversion cannot be performed, otherwise
1466 /// returns the Constant value resulting from the conversion.
1467 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1468                                       Type *Ty) {
1469   // All of these conversion intrinsics form an integer of at most 64bits.
1470   unsigned ResultWidth = Ty->getIntegerBitWidth();
1471   assert(ResultWidth <= 64 &&
1472          "Can only constant fold conversions to 64 and 32 bit ints");
1473 
1474   uint64_t UIntVal;
1475   bool isExact = false;
1476   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1477                                               : APFloat::rmNearestTiesToEven;
1478   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1479                                                   /*isSigned=*/true, mode,
1480                                                   &isExact);
1481   if (status != APFloat::opOK &&
1482       (!roundTowardZero || status != APFloat::opInexact))
1483     return nullptr;
1484   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1485 }
1486 
1487 double getValueAsDouble(ConstantFP *Op) {
1488   Type *Ty = Op->getType();
1489 
1490   if (Ty->isFloatTy())
1491     return Op->getValueAPF().convertToFloat();
1492 
1493   if (Ty->isDoubleTy())
1494     return Op->getValueAPF().convertToDouble();
1495 
1496   bool unused;
1497   APFloat APF = Op->getValueAPF();
1498   APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1499   return APF.convertToDouble();
1500 }
1501 
1502 Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID, Type *Ty,
1503                                  ArrayRef<Constant *> Operands,
1504                                  const TargetLibraryInfo *TLI) {
1505   if (Operands.size() == 1) {
1506     if (isa<UndefValue>(Operands[0])) {
1507       // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN
1508       if (IntrinsicID == Intrinsic::cos)
1509         return Constant::getNullValue(Ty);
1510     }
1511     if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1512       if (IntrinsicID == Intrinsic::convert_to_fp16) {
1513         APFloat Val(Op->getValueAPF());
1514 
1515         bool lost = false;
1516         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1517 
1518         return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1519       }
1520 
1521       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1522         return nullptr;
1523 
1524       if (IntrinsicID == Intrinsic::round) {
1525         APFloat V = Op->getValueAPF();
1526         V.roundToIntegral(APFloat::rmNearestTiesToAway);
1527         return ConstantFP::get(Ty->getContext(), V);
1528       }
1529 
1530       if (IntrinsicID == Intrinsic::floor) {
1531         APFloat V = Op->getValueAPF();
1532         V.roundToIntegral(APFloat::rmTowardNegative);
1533         return ConstantFP::get(Ty->getContext(), V);
1534       }
1535 
1536       if (IntrinsicID == Intrinsic::ceil) {
1537         APFloat V = Op->getValueAPF();
1538         V.roundToIntegral(APFloat::rmTowardPositive);
1539         return ConstantFP::get(Ty->getContext(), V);
1540       }
1541 
1542       if (IntrinsicID == Intrinsic::trunc) {
1543         APFloat V = Op->getValueAPF();
1544         V.roundToIntegral(APFloat::rmTowardZero);
1545         return ConstantFP::get(Ty->getContext(), V);
1546       }
1547 
1548       if (IntrinsicID == Intrinsic::rint) {
1549         APFloat V = Op->getValueAPF();
1550         V.roundToIntegral(APFloat::rmNearestTiesToEven);
1551         return ConstantFP::get(Ty->getContext(), V);
1552       }
1553 
1554       if (IntrinsicID == Intrinsic::nearbyint) {
1555         APFloat V = Op->getValueAPF();
1556         V.roundToIntegral(APFloat::rmNearestTiesToEven);
1557         return ConstantFP::get(Ty->getContext(), V);
1558       }
1559 
1560       /// We only fold functions with finite arguments. Folding NaN and inf is
1561       /// likely to be aborted with an exception anyway, and some host libms
1562       /// have known errors raising exceptions.
1563       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1564         return nullptr;
1565 
1566       /// Currently APFloat versions of these functions do not exist, so we use
1567       /// the host native double versions.  Float versions are not called
1568       /// directly but for all these it is true (float)(f((double)arg)) ==
1569       /// f(arg).  Long double not supported yet.
1570       double V = getValueAsDouble(Op);
1571 
1572       switch (IntrinsicID) {
1573         default: break;
1574         case Intrinsic::fabs:
1575           return ConstantFoldFP(fabs, V, Ty);
1576         case Intrinsic::log2:
1577           return ConstantFoldFP(Log2, V, Ty);
1578         case Intrinsic::log:
1579           return ConstantFoldFP(log, V, Ty);
1580         case Intrinsic::log10:
1581           return ConstantFoldFP(log10, V, Ty);
1582         case Intrinsic::exp:
1583           return ConstantFoldFP(exp, V, Ty);
1584         case Intrinsic::exp2:
1585           return ConstantFoldFP(exp2, V, Ty);
1586         case Intrinsic::sin:
1587           return ConstantFoldFP(sin, V, Ty);
1588         case Intrinsic::cos:
1589           return ConstantFoldFP(cos, V, Ty);
1590       }
1591 
1592       if (!TLI)
1593         return nullptr;
1594 
1595       switch (Name[0]) {
1596       case 'a':
1597         if ((Name == "acos" && TLI->has(LibFunc::acos)) ||
1598             (Name == "acosf" && TLI->has(LibFunc::acosf)))
1599           return ConstantFoldFP(acos, V, Ty);
1600         else if ((Name == "asin" && TLI->has(LibFunc::asin)) ||
1601                  (Name == "asinf" && TLI->has(LibFunc::asinf)))
1602           return ConstantFoldFP(asin, V, Ty);
1603         else if ((Name == "atan" && TLI->has(LibFunc::atan)) ||
1604                  (Name == "atanf" && TLI->has(LibFunc::atanf)))
1605           return ConstantFoldFP(atan, V, Ty);
1606         break;
1607       case 'c':
1608         if ((Name == "ceil" && TLI->has(LibFunc::ceil)) ||
1609             (Name == "ceilf" && TLI->has(LibFunc::ceilf)))
1610           return ConstantFoldFP(ceil, V, Ty);
1611         else if ((Name == "cos" && TLI->has(LibFunc::cos)) ||
1612                  (Name == "cosf" && TLI->has(LibFunc::cosf)))
1613           return ConstantFoldFP(cos, V, Ty);
1614         else if ((Name == "cosh" && TLI->has(LibFunc::cosh)) ||
1615                  (Name == "coshf" && TLI->has(LibFunc::coshf)))
1616           return ConstantFoldFP(cosh, V, Ty);
1617         break;
1618       case 'e':
1619         if ((Name == "exp" && TLI->has(LibFunc::exp)) ||
1620             (Name == "expf" && TLI->has(LibFunc::expf)))
1621           return ConstantFoldFP(exp, V, Ty);
1622         if ((Name == "exp2" && TLI->has(LibFunc::exp2)) ||
1623             (Name == "exp2f" && TLI->has(LibFunc::exp2f)))
1624           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1625           // C99 library.
1626           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1627         break;
1628       case 'f':
1629         if ((Name == "fabs" && TLI->has(LibFunc::fabs)) ||
1630             (Name == "fabsf" && TLI->has(LibFunc::fabsf)))
1631           return ConstantFoldFP(fabs, V, Ty);
1632         else if ((Name == "floor" && TLI->has(LibFunc::floor)) ||
1633                  (Name == "floorf" && TLI->has(LibFunc::floorf)))
1634           return ConstantFoldFP(floor, V, Ty);
1635         break;
1636       case 'l':
1637         if ((Name == "log" && V > 0 && TLI->has(LibFunc::log)) ||
1638             (Name == "logf" && V > 0 && TLI->has(LibFunc::logf)))
1639           return ConstantFoldFP(log, V, Ty);
1640         else if ((Name == "log10" && V > 0 && TLI->has(LibFunc::log10)) ||
1641                  (Name == "log10f" && V > 0 && TLI->has(LibFunc::log10f)))
1642           return ConstantFoldFP(log10, V, Ty);
1643         else if (IntrinsicID == Intrinsic::sqrt &&
1644                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1645           if (V >= -0.0)
1646             return ConstantFoldFP(sqrt, V, Ty);
1647           else {
1648             // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
1649             // all guarantee or favor returning NaN - the square root of a
1650             // negative number is not defined for the LLVM sqrt intrinsic.
1651             // This is because the intrinsic should only be emitted in place of
1652             // libm's sqrt function when using "no-nans-fp-math".
1653             return UndefValue::get(Ty);
1654           }
1655         }
1656         break;
1657       case 's':
1658         if ((Name == "sin" && TLI->has(LibFunc::sin)) ||
1659             (Name == "sinf" && TLI->has(LibFunc::sinf)))
1660           return ConstantFoldFP(sin, V, Ty);
1661         else if ((Name == "sinh" && TLI->has(LibFunc::sinh)) ||
1662                  (Name == "sinhf" && TLI->has(LibFunc::sinhf)))
1663           return ConstantFoldFP(sinh, V, Ty);
1664         else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt)) ||
1665                  (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf)))
1666           return ConstantFoldFP(sqrt, V, Ty);
1667         break;
1668       case 't':
1669         if ((Name == "tan" && TLI->has(LibFunc::tan)) ||
1670             (Name == "tanf" && TLI->has(LibFunc::tanf)))
1671           return ConstantFoldFP(tan, V, Ty);
1672         else if ((Name == "tanh" && TLI->has(LibFunc::tanh)) ||
1673                  (Name == "tanhf" && TLI->has(LibFunc::tanhf)))
1674           return ConstantFoldFP(tanh, V, Ty);
1675         break;
1676       default:
1677         break;
1678       }
1679       return nullptr;
1680     }
1681 
1682     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
1683       switch (IntrinsicID) {
1684       case Intrinsic::bswap:
1685         return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1686       case Intrinsic::ctpop:
1687         return ConstantInt::get(Ty, Op->getValue().countPopulation());
1688       case Intrinsic::bitreverse:
1689         return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
1690       case Intrinsic::convert_from_fp16: {
1691         APFloat Val(APFloat::IEEEhalf, Op->getValue());
1692 
1693         bool lost = false;
1694         APFloat::opStatus status = Val.convert(
1695             Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
1696 
1697         // Conversion is always precise.
1698         (void)status;
1699         assert(status == APFloat::opOK && !lost &&
1700                "Precision lost during fp16 constfolding");
1701 
1702         return ConstantFP::get(Ty->getContext(), Val);
1703       }
1704       default:
1705         return nullptr;
1706       }
1707     }
1708 
1709     // Support ConstantVector in case we have an Undef in the top.
1710     if (isa<ConstantVector>(Operands[0]) ||
1711         isa<ConstantDataVector>(Operands[0])) {
1712       auto *Op = cast<Constant>(Operands[0]);
1713       switch (IntrinsicID) {
1714       default: break;
1715       case Intrinsic::x86_sse_cvtss2si:
1716       case Intrinsic::x86_sse_cvtss2si64:
1717       case Intrinsic::x86_sse2_cvtsd2si:
1718       case Intrinsic::x86_sse2_cvtsd2si64:
1719         if (ConstantFP *FPOp =
1720                 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1721           return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
1722                                              /*roundTowardZero=*/false, Ty);
1723       case Intrinsic::x86_sse_cvttss2si:
1724       case Intrinsic::x86_sse_cvttss2si64:
1725       case Intrinsic::x86_sse2_cvttsd2si:
1726       case Intrinsic::x86_sse2_cvttsd2si64:
1727         if (ConstantFP *FPOp =
1728                 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1729           return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
1730                                              /*roundTowardZero=*/true, Ty);
1731       }
1732     }
1733 
1734     if (isa<UndefValue>(Operands[0])) {
1735       if (IntrinsicID == Intrinsic::bswap)
1736         return Operands[0];
1737       return nullptr;
1738     }
1739 
1740     return nullptr;
1741   }
1742 
1743   if (Operands.size() == 2) {
1744     if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1745       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1746         return nullptr;
1747       double Op1V = getValueAsDouble(Op1);
1748 
1749       if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1750         if (Op2->getType() != Op1->getType())
1751           return nullptr;
1752 
1753         double Op2V = getValueAsDouble(Op2);
1754         if (IntrinsicID == Intrinsic::pow) {
1755           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1756         }
1757         if (IntrinsicID == Intrinsic::copysign) {
1758           APFloat V1 = Op1->getValueAPF();
1759           const APFloat &V2 = Op2->getValueAPF();
1760           V1.copySign(V2);
1761           return ConstantFP::get(Ty->getContext(), V1);
1762         }
1763 
1764         if (IntrinsicID == Intrinsic::minnum) {
1765           const APFloat &C1 = Op1->getValueAPF();
1766           const APFloat &C2 = Op2->getValueAPF();
1767           return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
1768         }
1769 
1770         if (IntrinsicID == Intrinsic::maxnum) {
1771           const APFloat &C1 = Op1->getValueAPF();
1772           const APFloat &C2 = Op2->getValueAPF();
1773           return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
1774         }
1775 
1776         if (!TLI)
1777           return nullptr;
1778         if ((Name == "pow" && TLI->has(LibFunc::pow)) ||
1779             (Name == "powf" && TLI->has(LibFunc::powf)))
1780           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1781         if ((Name == "fmod" && TLI->has(LibFunc::fmod)) ||
1782             (Name == "fmodf" && TLI->has(LibFunc::fmodf)))
1783           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1784         if ((Name == "atan2" && TLI->has(LibFunc::atan2)) ||
1785             (Name == "atan2f" && TLI->has(LibFunc::atan2f)))
1786           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1787       } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1788         if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1789           return ConstantFP::get(Ty->getContext(),
1790                                  APFloat((float)std::pow((float)Op1V,
1791                                                  (int)Op2C->getZExtValue())));
1792         if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1793           return ConstantFP::get(Ty->getContext(),
1794                                  APFloat((float)std::pow((float)Op1V,
1795                                                  (int)Op2C->getZExtValue())));
1796         if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1797           return ConstantFP::get(Ty->getContext(),
1798                                  APFloat((double)std::pow((double)Op1V,
1799                                                    (int)Op2C->getZExtValue())));
1800       }
1801       return nullptr;
1802     }
1803 
1804     if (auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1805       if (auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1806         switch (IntrinsicID) {
1807         default: break;
1808         case Intrinsic::sadd_with_overflow:
1809         case Intrinsic::uadd_with_overflow:
1810         case Intrinsic::ssub_with_overflow:
1811         case Intrinsic::usub_with_overflow:
1812         case Intrinsic::smul_with_overflow:
1813         case Intrinsic::umul_with_overflow: {
1814           APInt Res;
1815           bool Overflow;
1816           switch (IntrinsicID) {
1817           default: llvm_unreachable("Invalid case");
1818           case Intrinsic::sadd_with_overflow:
1819             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1820             break;
1821           case Intrinsic::uadd_with_overflow:
1822             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1823             break;
1824           case Intrinsic::ssub_with_overflow:
1825             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1826             break;
1827           case Intrinsic::usub_with_overflow:
1828             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1829             break;
1830           case Intrinsic::smul_with_overflow:
1831             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1832             break;
1833           case Intrinsic::umul_with_overflow:
1834             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1835             break;
1836           }
1837           Constant *Ops[] = {
1838             ConstantInt::get(Ty->getContext(), Res),
1839             ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1840           };
1841           return ConstantStruct::get(cast<StructType>(Ty), Ops);
1842         }
1843         case Intrinsic::cttz:
1844           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1845             return UndefValue::get(Ty);
1846           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1847         case Intrinsic::ctlz:
1848           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1849             return UndefValue::get(Ty);
1850           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1851         }
1852       }
1853 
1854       return nullptr;
1855     }
1856     return nullptr;
1857   }
1858 
1859   if (Operands.size() != 3)
1860     return nullptr;
1861 
1862   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1863     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1864       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1865         switch (IntrinsicID) {
1866         default: break;
1867         case Intrinsic::fma:
1868         case Intrinsic::fmuladd: {
1869           APFloat V = Op1->getValueAPF();
1870           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1871                                                    Op3->getValueAPF(),
1872                                                    APFloat::rmNearestTiesToEven);
1873           if (s != APFloat::opInvalidOp)
1874             return ConstantFP::get(Ty->getContext(), V);
1875 
1876           return nullptr;
1877         }
1878         }
1879       }
1880     }
1881   }
1882 
1883   return nullptr;
1884 }
1885 
1886 Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1887                                  VectorType *VTy, ArrayRef<Constant *> Operands,
1888                                  const DataLayout &DL,
1889                                  const TargetLibraryInfo *TLI) {
1890   SmallVector<Constant *, 4> Result(VTy->getNumElements());
1891   SmallVector<Constant *, 4> Lane(Operands.size());
1892   Type *Ty = VTy->getElementType();
1893 
1894   if (IntrinsicID == Intrinsic::masked_load) {
1895     auto *SrcPtr = Operands[0];
1896     auto *Mask = Operands[2];
1897     auto *Passthru = Operands[3];
1898 
1899     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
1900 
1901     SmallVector<Constant *, 32> NewElements;
1902     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1903       auto *MaskElt = Mask->getAggregateElement(I);
1904       if (!MaskElt)
1905         break;
1906       auto *PassthruElt = Passthru->getAggregateElement(I);
1907       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
1908       if (isa<UndefValue>(MaskElt)) {
1909         if (PassthruElt)
1910           NewElements.push_back(PassthruElt);
1911         else if (VecElt)
1912           NewElements.push_back(VecElt);
1913         else
1914           return nullptr;
1915       }
1916       if (MaskElt->isNullValue()) {
1917         if (!PassthruElt)
1918           return nullptr;
1919         NewElements.push_back(PassthruElt);
1920       } else if (MaskElt->isOneValue()) {
1921         if (!VecElt)
1922           return nullptr;
1923         NewElements.push_back(VecElt);
1924       } else {
1925         return nullptr;
1926       }
1927     }
1928     if (NewElements.size() != VTy->getNumElements())
1929       return nullptr;
1930     return ConstantVector::get(NewElements);
1931   }
1932 
1933   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1934     // Gather a column of constants.
1935     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1936       Constant *Agg = Operands[J]->getAggregateElement(I);
1937       if (!Agg)
1938         return nullptr;
1939 
1940       Lane[J] = Agg;
1941     }
1942 
1943     // Use the regular scalar folding to simplify this column.
1944     Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1945     if (!Folded)
1946       return nullptr;
1947     Result[I] = Folded;
1948   }
1949 
1950   return ConstantVector::get(Result);
1951 }
1952 
1953 } // end anonymous namespace
1954 
1955 Constant *
1956 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1957                        const TargetLibraryInfo *TLI) {
1958   if (!F->hasName())
1959     return nullptr;
1960   StringRef Name = F->getName();
1961 
1962   Type *Ty = F->getReturnType();
1963 
1964   if (auto *VTy = dyn_cast<VectorType>(Ty))
1965     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
1966                                   F->getParent()->getDataLayout(), TLI);
1967 
1968   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1969 }
1970