1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/Config/config.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/GlobalValue.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/KnownBits.h" 46 #include "llvm/Support/MathExtras.h" 47 #include <cassert> 48 #include <cerrno> 49 #include <cfenv> 50 #include <cmath> 51 #include <cstddef> 52 #include <cstdint> 53 54 using namespace llvm; 55 56 namespace { 57 58 //===----------------------------------------------------------------------===// 59 // Constant Folding internal helper functions 60 //===----------------------------------------------------------------------===// 61 62 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 63 Constant *C, Type *SrcEltTy, 64 unsigned NumSrcElts, 65 const DataLayout &DL) { 66 // Now that we know that the input value is a vector of integers, just shift 67 // and insert them into our result. 68 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 69 for (unsigned i = 0; i != NumSrcElts; ++i) { 70 Constant *Element; 71 if (DL.isLittleEndian()) 72 Element = C->getAggregateElement(NumSrcElts - i - 1); 73 else 74 Element = C->getAggregateElement(i); 75 76 if (Element && isa<UndefValue>(Element)) { 77 Result <<= BitShift; 78 continue; 79 } 80 81 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 82 if (!ElementCI) 83 return ConstantExpr::getBitCast(C, DestTy); 84 85 Result <<= BitShift; 86 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 87 } 88 89 return nullptr; 90 } 91 92 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 93 /// This always returns a non-null constant, but it may be a 94 /// ConstantExpr if unfoldable. 95 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 96 // Catch the obvious splat cases. 97 if (C->isNullValue() && !DestTy->isX86_MMXTy()) 98 return Constant::getNullValue(DestTy); 99 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && 100 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 101 return Constant::getAllOnesValue(DestTy); 102 103 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 104 // Handle a vector->scalar integer/fp cast. 105 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 106 unsigned NumSrcElts = VTy->getNumElements(); 107 Type *SrcEltTy = VTy->getElementType(); 108 109 // If the vector is a vector of floating point, convert it to vector of int 110 // to simplify things. 111 if (SrcEltTy->isFloatingPointTy()) { 112 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 113 Type *SrcIVTy = 114 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 115 // Ask IR to do the conversion now that #elts line up. 116 C = ConstantExpr::getBitCast(C, SrcIVTy); 117 } 118 119 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 120 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 121 SrcEltTy, NumSrcElts, DL)) 122 return CE; 123 124 if (isa<IntegerType>(DestTy)) 125 return ConstantInt::get(DestTy, Result); 126 127 APFloat FP(DestTy->getFltSemantics(), Result); 128 return ConstantFP::get(DestTy->getContext(), FP); 129 } 130 } 131 132 // The code below only handles casts to vectors currently. 133 auto *DestVTy = dyn_cast<VectorType>(DestTy); 134 if (!DestVTy) 135 return ConstantExpr::getBitCast(C, DestTy); 136 137 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 138 // vector so the code below can handle it uniformly. 139 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 140 Constant *Ops = C; // don't take the address of C! 141 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 142 } 143 144 // If this is a bitcast from constant vector -> vector, fold it. 145 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 146 return ConstantExpr::getBitCast(C, DestTy); 147 148 // If the element types match, IR can fold it. 149 unsigned NumDstElt = DestVTy->getNumElements(); 150 unsigned NumSrcElt = C->getType()->getVectorNumElements(); 151 if (NumDstElt == NumSrcElt) 152 return ConstantExpr::getBitCast(C, DestTy); 153 154 Type *SrcEltTy = C->getType()->getVectorElementType(); 155 Type *DstEltTy = DestVTy->getElementType(); 156 157 // Otherwise, we're changing the number of elements in a vector, which 158 // requires endianness information to do the right thing. For example, 159 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 160 // folds to (little endian): 161 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 162 // and to (big endian): 163 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 164 165 // First thing is first. We only want to think about integer here, so if 166 // we have something in FP form, recast it as integer. 167 if (DstEltTy->isFloatingPointTy()) { 168 // Fold to an vector of integers with same size as our FP type. 169 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 170 Type *DestIVTy = 171 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt); 172 // Recursively handle this integer conversion, if possible. 173 C = FoldBitCast(C, DestIVTy, DL); 174 175 // Finally, IR can handle this now that #elts line up. 176 return ConstantExpr::getBitCast(C, DestTy); 177 } 178 179 // Okay, we know the destination is integer, if the input is FP, convert 180 // it to integer first. 181 if (SrcEltTy->isFloatingPointTy()) { 182 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 183 Type *SrcIVTy = 184 VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 185 // Ask IR to do the conversion now that #elts line up. 186 C = ConstantExpr::getBitCast(C, SrcIVTy); 187 // If IR wasn't able to fold it, bail out. 188 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 189 !isa<ConstantDataVector>(C)) 190 return C; 191 } 192 193 // Now we know that the input and output vectors are both integer vectors 194 // of the same size, and that their #elements is not the same. Do the 195 // conversion here, which depends on whether the input or output has 196 // more elements. 197 bool isLittleEndian = DL.isLittleEndian(); 198 199 SmallVector<Constant*, 32> Result; 200 if (NumDstElt < NumSrcElt) { 201 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 202 Constant *Zero = Constant::getNullValue(DstEltTy); 203 unsigned Ratio = NumSrcElt/NumDstElt; 204 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 205 unsigned SrcElt = 0; 206 for (unsigned i = 0; i != NumDstElt; ++i) { 207 // Build each element of the result. 208 Constant *Elt = Zero; 209 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 210 for (unsigned j = 0; j != Ratio; ++j) { 211 Constant *Src = C->getAggregateElement(SrcElt++); 212 if (Src && isa<UndefValue>(Src)) 213 Src = Constant::getNullValue(C->getType()->getVectorElementType()); 214 else 215 Src = dyn_cast_or_null<ConstantInt>(Src); 216 if (!Src) // Reject constantexpr elements. 217 return ConstantExpr::getBitCast(C, DestTy); 218 219 // Zero extend the element to the right size. 220 Src = ConstantExpr::getZExt(Src, Elt->getType()); 221 222 // Shift it to the right place, depending on endianness. 223 Src = ConstantExpr::getShl(Src, 224 ConstantInt::get(Src->getType(), ShiftAmt)); 225 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 226 227 // Mix it in. 228 Elt = ConstantExpr::getOr(Elt, Src); 229 } 230 Result.push_back(Elt); 231 } 232 return ConstantVector::get(Result); 233 } 234 235 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 236 unsigned Ratio = NumDstElt/NumSrcElt; 237 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 238 239 // Loop over each source value, expanding into multiple results. 240 for (unsigned i = 0; i != NumSrcElt; ++i) { 241 auto *Element = C->getAggregateElement(i); 242 243 if (!Element) // Reject constantexpr elements. 244 return ConstantExpr::getBitCast(C, DestTy); 245 246 if (isa<UndefValue>(Element)) { 247 // Correctly Propagate undef values. 248 Result.append(Ratio, UndefValue::get(DstEltTy)); 249 continue; 250 } 251 252 auto *Src = dyn_cast<ConstantInt>(Element); 253 if (!Src) 254 return ConstantExpr::getBitCast(C, DestTy); 255 256 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 257 for (unsigned j = 0; j != Ratio; ++j) { 258 // Shift the piece of the value into the right place, depending on 259 // endianness. 260 Constant *Elt = ConstantExpr::getLShr(Src, 261 ConstantInt::get(Src->getType(), ShiftAmt)); 262 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 263 264 // Truncate the element to an integer with the same pointer size and 265 // convert the element back to a pointer using a inttoptr. 266 if (DstEltTy->isPointerTy()) { 267 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 268 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 269 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 270 continue; 271 } 272 273 // Truncate and remember this piece. 274 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 275 } 276 } 277 278 return ConstantVector::get(Result); 279 } 280 281 } // end anonymous namespace 282 283 /// If this constant is a constant offset from a global, return the global and 284 /// the constant. Because of constantexprs, this function is recursive. 285 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 286 APInt &Offset, const DataLayout &DL) { 287 // Trivial case, constant is the global. 288 if ((GV = dyn_cast<GlobalValue>(C))) { 289 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 290 Offset = APInt(BitWidth, 0); 291 return true; 292 } 293 294 // Otherwise, if this isn't a constant expr, bail out. 295 auto *CE = dyn_cast<ConstantExpr>(C); 296 if (!CE) return false; 297 298 // Look through ptr->int and ptr->ptr casts. 299 if (CE->getOpcode() == Instruction::PtrToInt || 300 CE->getOpcode() == Instruction::BitCast) 301 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); 302 303 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 304 auto *GEP = dyn_cast<GEPOperator>(CE); 305 if (!GEP) 306 return false; 307 308 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 309 APInt TmpOffset(BitWidth, 0); 310 311 // If the base isn't a global+constant, we aren't either. 312 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) 313 return false; 314 315 // Otherwise, add any offset that our operands provide. 316 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 317 return false; 318 319 Offset = TmpOffset; 320 return true; 321 } 322 323 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 324 const DataLayout &DL) { 325 do { 326 Type *SrcTy = C->getType(); 327 328 // If the type sizes are the same and a cast is legal, just directly 329 // cast the constant. 330 if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) { 331 Instruction::CastOps Cast = Instruction::BitCast; 332 // If we are going from a pointer to int or vice versa, we spell the cast 333 // differently. 334 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 335 Cast = Instruction::IntToPtr; 336 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 337 Cast = Instruction::PtrToInt; 338 339 if (CastInst::castIsValid(Cast, C, DestTy)) 340 return ConstantExpr::getCast(Cast, C, DestTy); 341 } 342 343 // If this isn't an aggregate type, there is nothing we can do to drill down 344 // and find a bitcastable constant. 345 if (!SrcTy->isAggregateType()) 346 return nullptr; 347 348 // We're simulating a load through a pointer that was bitcast to point to 349 // a different type, so we can try to walk down through the initial 350 // elements of an aggregate to see if some part of the aggregate is 351 // castable to implement the "load" semantic model. 352 if (SrcTy->isStructTy()) { 353 // Struct types might have leading zero-length elements like [0 x i32], 354 // which are certainly not what we are looking for, so skip them. 355 unsigned Elem = 0; 356 Constant *ElemC; 357 do { 358 ElemC = C->getAggregateElement(Elem++); 359 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0); 360 C = ElemC; 361 } else { 362 C = C->getAggregateElement(0u); 363 } 364 } while (C); 365 366 return nullptr; 367 } 368 369 namespace { 370 371 /// Recursive helper to read bits out of global. C is the constant being copied 372 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 373 /// results into and BytesLeft is the number of bytes left in 374 /// the CurPtr buffer. DL is the DataLayout. 375 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 376 unsigned BytesLeft, const DataLayout &DL) { 377 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 378 "Out of range access"); 379 380 // If this element is zero or undefined, we can just return since *CurPtr is 381 // zero initialized. 382 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 383 return true; 384 385 if (auto *CI = dyn_cast<ConstantInt>(C)) { 386 if (CI->getBitWidth() > 64 || 387 (CI->getBitWidth() & 7) != 0) 388 return false; 389 390 uint64_t Val = CI->getZExtValue(); 391 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 392 393 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 394 int n = ByteOffset; 395 if (!DL.isLittleEndian()) 396 n = IntBytes - n - 1; 397 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 398 ++ByteOffset; 399 } 400 return true; 401 } 402 403 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 404 if (CFP->getType()->isDoubleTy()) { 405 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 406 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 407 } 408 if (CFP->getType()->isFloatTy()){ 409 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 410 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 411 } 412 if (CFP->getType()->isHalfTy()){ 413 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 414 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 415 } 416 return false; 417 } 418 419 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 420 const StructLayout *SL = DL.getStructLayout(CS->getType()); 421 unsigned Index = SL->getElementContainingOffset(ByteOffset); 422 uint64_t CurEltOffset = SL->getElementOffset(Index); 423 ByteOffset -= CurEltOffset; 424 425 while (true) { 426 // If the element access is to the element itself and not to tail padding, 427 // read the bytes from the element. 428 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 429 430 if (ByteOffset < EltSize && 431 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 432 BytesLeft, DL)) 433 return false; 434 435 ++Index; 436 437 // Check to see if we read from the last struct element, if so we're done. 438 if (Index == CS->getType()->getNumElements()) 439 return true; 440 441 // If we read all of the bytes we needed from this element we're done. 442 uint64_t NextEltOffset = SL->getElementOffset(Index); 443 444 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 445 return true; 446 447 // Move to the next element of the struct. 448 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 449 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 450 ByteOffset = 0; 451 CurEltOffset = NextEltOffset; 452 } 453 // not reached. 454 } 455 456 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 457 isa<ConstantDataSequential>(C)) { 458 Type *EltTy = C->getType()->getSequentialElementType(); 459 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 460 uint64_t Index = ByteOffset / EltSize; 461 uint64_t Offset = ByteOffset - Index * EltSize; 462 uint64_t NumElts; 463 if (auto *AT = dyn_cast<ArrayType>(C->getType())) 464 NumElts = AT->getNumElements(); 465 else 466 NumElts = C->getType()->getVectorNumElements(); 467 468 for (; Index != NumElts; ++Index) { 469 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 470 BytesLeft, DL)) 471 return false; 472 473 uint64_t BytesWritten = EltSize - Offset; 474 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 475 if (BytesWritten >= BytesLeft) 476 return true; 477 478 Offset = 0; 479 BytesLeft -= BytesWritten; 480 CurPtr += BytesWritten; 481 } 482 return true; 483 } 484 485 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 486 if (CE->getOpcode() == Instruction::IntToPtr && 487 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 488 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 489 BytesLeft, DL); 490 } 491 } 492 493 // Otherwise, unknown initializer type. 494 return false; 495 } 496 497 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, 498 const DataLayout &DL) { 499 auto *PTy = cast<PointerType>(C->getType()); 500 auto *IntType = dyn_cast<IntegerType>(LoadTy); 501 502 // If this isn't an integer load we can't fold it directly. 503 if (!IntType) { 504 unsigned AS = PTy->getAddressSpace(); 505 506 // If this is a float/double load, we can try folding it as an int32/64 load 507 // and then bitcast the result. This can be useful for union cases. Note 508 // that address spaces don't matter here since we're not going to result in 509 // an actual new load. 510 Type *MapTy; 511 if (LoadTy->isHalfTy()) 512 MapTy = Type::getInt16Ty(C->getContext()); 513 else if (LoadTy->isFloatTy()) 514 MapTy = Type::getInt32Ty(C->getContext()); 515 else if (LoadTy->isDoubleTy()) 516 MapTy = Type::getInt64Ty(C->getContext()); 517 else if (LoadTy->isVectorTy()) { 518 MapTy = PointerType::getIntNTy(C->getContext(), 519 DL.getTypeSizeInBits(LoadTy)); 520 } else 521 return nullptr; 522 523 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); 524 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) 525 return FoldBitCast(Res, LoadTy, DL); 526 return nullptr; 527 } 528 529 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 530 if (BytesLoaded > 32 || BytesLoaded == 0) 531 return nullptr; 532 533 GlobalValue *GVal; 534 APInt OffsetAI; 535 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) 536 return nullptr; 537 538 auto *GV = dyn_cast<GlobalVariable>(GVal); 539 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 540 !GV->getInitializer()->getType()->isSized()) 541 return nullptr; 542 543 int64_t Offset = OffsetAI.getSExtValue(); 544 int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType()); 545 546 // If we're not accessing anything in this constant, the result is undefined. 547 if (Offset + BytesLoaded <= 0) 548 return UndefValue::get(IntType); 549 550 // If we're not accessing anything in this constant, the result is undefined. 551 if (Offset >= InitializerSize) 552 return UndefValue::get(IntType); 553 554 unsigned char RawBytes[32] = {0}; 555 unsigned char *CurPtr = RawBytes; 556 unsigned BytesLeft = BytesLoaded; 557 558 // If we're loading off the beginning of the global, some bytes may be valid. 559 if (Offset < 0) { 560 CurPtr += -Offset; 561 BytesLeft += Offset; 562 Offset = 0; 563 } 564 565 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) 566 return nullptr; 567 568 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 569 if (DL.isLittleEndian()) { 570 ResultVal = RawBytes[BytesLoaded - 1]; 571 for (unsigned i = 1; i != BytesLoaded; ++i) { 572 ResultVal <<= 8; 573 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 574 } 575 } else { 576 ResultVal = RawBytes[0]; 577 for (unsigned i = 1; i != BytesLoaded; ++i) { 578 ResultVal <<= 8; 579 ResultVal |= RawBytes[i]; 580 } 581 } 582 583 return ConstantInt::get(IntType->getContext(), ResultVal); 584 } 585 586 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, 587 const DataLayout &DL) { 588 auto *SrcPtr = CE->getOperand(0); 589 auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); 590 if (!SrcPtrTy) 591 return nullptr; 592 Type *SrcTy = SrcPtrTy->getPointerElementType(); 593 594 Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); 595 if (!C) 596 return nullptr; 597 598 return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); 599 } 600 601 } // end anonymous namespace 602 603 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 604 const DataLayout &DL) { 605 // First, try the easy cases: 606 if (auto *GV = dyn_cast<GlobalVariable>(C)) 607 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 608 return GV->getInitializer(); 609 610 if (auto *GA = dyn_cast<GlobalAlias>(C)) 611 if (GA->getAliasee() && !GA->isInterposable()) 612 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); 613 614 // If the loaded value isn't a constant expr, we can't handle it. 615 auto *CE = dyn_cast<ConstantExpr>(C); 616 if (!CE) 617 return nullptr; 618 619 if (CE->getOpcode() == Instruction::GetElementPtr) { 620 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { 621 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 622 if (Constant *V = 623 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) 624 return V; 625 } 626 } 627 } 628 629 if (CE->getOpcode() == Instruction::BitCast) 630 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) 631 return LoadedC; 632 633 // Instead of loading constant c string, use corresponding integer value 634 // directly if string length is small enough. 635 StringRef Str; 636 if (getConstantStringInfo(CE, Str) && !Str.empty()) { 637 size_t StrLen = Str.size(); 638 unsigned NumBits = Ty->getPrimitiveSizeInBits(); 639 // Replace load with immediate integer if the result is an integer or fp 640 // value. 641 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && 642 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { 643 APInt StrVal(NumBits, 0); 644 APInt SingleChar(NumBits, 0); 645 if (DL.isLittleEndian()) { 646 for (unsigned char C : reverse(Str.bytes())) { 647 SingleChar = static_cast<uint64_t>(C); 648 StrVal = (StrVal << 8) | SingleChar; 649 } 650 } else { 651 for (unsigned char C : Str.bytes()) { 652 SingleChar = static_cast<uint64_t>(C); 653 StrVal = (StrVal << 8) | SingleChar; 654 } 655 // Append NULL at the end. 656 SingleChar = 0; 657 StrVal = (StrVal << 8) | SingleChar; 658 } 659 660 Constant *Res = ConstantInt::get(CE->getContext(), StrVal); 661 if (Ty->isFloatingPointTy()) 662 Res = ConstantExpr::getBitCast(Res, Ty); 663 return Res; 664 } 665 } 666 667 // If this load comes from anywhere in a constant global, and if the global 668 // is all undef or zero, we know what it loads. 669 if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { 670 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 671 if (GV->getInitializer()->isNullValue()) 672 return Constant::getNullValue(Ty); 673 if (isa<UndefValue>(GV->getInitializer())) 674 return UndefValue::get(Ty); 675 } 676 } 677 678 // Try hard to fold loads from bitcasted strange and non-type-safe things. 679 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); 680 } 681 682 namespace { 683 684 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { 685 if (LI->isVolatile()) return nullptr; 686 687 if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) 688 return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); 689 690 return nullptr; 691 } 692 693 /// One of Op0/Op1 is a constant expression. 694 /// Attempt to symbolically evaluate the result of a binary operator merging 695 /// these together. If target data info is available, it is provided as DL, 696 /// otherwise DL is null. 697 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 698 const DataLayout &DL) { 699 // SROA 700 701 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 702 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 703 // bits. 704 705 if (Opc == Instruction::And) { 706 KnownBits Known0 = computeKnownBits(Op0, DL); 707 KnownBits Known1 = computeKnownBits(Op1, DL); 708 if ((Known1.One | Known0.Zero).isAllOnesValue()) { 709 // All the bits of Op0 that the 'and' could be masking are already zero. 710 return Op0; 711 } 712 if ((Known0.One | Known1.Zero).isAllOnesValue()) { 713 // All the bits of Op1 that the 'and' could be masking are already zero. 714 return Op1; 715 } 716 717 Known0.Zero |= Known1.Zero; 718 Known0.One &= Known1.One; 719 if (Known0.isConstant()) 720 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 721 } 722 723 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 724 // constant. This happens frequently when iterating over a global array. 725 if (Opc == Instruction::Sub) { 726 GlobalValue *GV1, *GV2; 727 APInt Offs1, Offs2; 728 729 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 730 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 731 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 732 733 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 734 // PtrToInt may change the bitwidth so we have convert to the right size 735 // first. 736 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 737 Offs2.zextOrTrunc(OpSize)); 738 } 739 } 740 741 return nullptr; 742 } 743 744 /// If array indices are not pointer-sized integers, explicitly cast them so 745 /// that they aren't implicitly casted by the getelementptr. 746 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 747 Type *ResultTy, Optional<unsigned> InRangeIndex, 748 const DataLayout &DL, const TargetLibraryInfo *TLI) { 749 Type *IntPtrTy = DL.getIntPtrType(ResultTy); 750 Type *IntPtrScalarTy = IntPtrTy->getScalarType(); 751 752 bool Any = false; 753 SmallVector<Constant*, 32> NewIdxs; 754 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 755 if ((i == 1 || 756 !isa<StructType>(GetElementPtrInst::getIndexedType( 757 SrcElemTy, Ops.slice(1, i - 1)))) && 758 Ops[i]->getType()->getScalarType() != IntPtrScalarTy) { 759 Any = true; 760 Type *NewType = Ops[i]->getType()->isVectorTy() 761 ? IntPtrTy 762 : IntPtrTy->getScalarType(); 763 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 764 true, 765 NewType, 766 true), 767 Ops[i], NewType)); 768 } else 769 NewIdxs.push_back(Ops[i]); 770 } 771 772 if (!Any) 773 return nullptr; 774 775 Constant *C = ConstantExpr::getGetElementPtr( 776 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 777 if (Constant *Folded = ConstantFoldConstant(C, DL, TLI)) 778 C = Folded; 779 780 return C; 781 } 782 783 /// Strip the pointer casts, but preserve the address space information. 784 Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) { 785 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 786 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 787 Ptr = Ptr->stripPointerCasts(); 788 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 789 790 ElemTy = NewPtrTy->getPointerElementType(); 791 792 // Preserve the address space number of the pointer. 793 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 794 NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); 795 Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); 796 } 797 return Ptr; 798 } 799 800 /// If we can symbolically evaluate the GEP constant expression, do so. 801 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 802 ArrayRef<Constant *> Ops, 803 const DataLayout &DL, 804 const TargetLibraryInfo *TLI) { 805 const GEPOperator *InnermostGEP = GEP; 806 bool InBounds = GEP->isInBounds(); 807 808 Type *SrcElemTy = GEP->getSourceElementType(); 809 Type *ResElemTy = GEP->getResultElementType(); 810 Type *ResTy = GEP->getType(); 811 if (!SrcElemTy->isSized()) 812 return nullptr; 813 814 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 815 GEP->getInRangeIndex(), DL, TLI)) 816 return C; 817 818 Constant *Ptr = Ops[0]; 819 if (!Ptr->getType()->isPointerTy()) 820 return nullptr; 821 822 Type *IntPtrTy = DL.getIntPtrType(Ptr->getType()); 823 824 // If this is a constant expr gep that is effectively computing an 825 // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' 826 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 827 if (!isa<ConstantInt>(Ops[i])) { 828 829 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 830 // "inttoptr (sub (ptrtoint Ptr), V)" 831 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 832 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 833 assert((!CE || CE->getType() == IntPtrTy) && 834 "CastGEPIndices didn't canonicalize index types!"); 835 if (CE && CE->getOpcode() == Instruction::Sub && 836 CE->getOperand(0)->isNullValue()) { 837 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 838 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 839 Res = ConstantExpr::getIntToPtr(Res, ResTy); 840 if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI)) 841 Res = FoldedRes; 842 return Res; 843 } 844 } 845 return nullptr; 846 } 847 848 unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy); 849 APInt Offset = 850 APInt(BitWidth, 851 DL.getIndexedOffsetInType( 852 SrcElemTy, 853 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 854 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 855 856 // If this is a GEP of a GEP, fold it all into a single GEP. 857 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 858 InnermostGEP = GEP; 859 InBounds &= GEP->isInBounds(); 860 861 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 862 863 // Do not try the incorporate the sub-GEP if some index is not a number. 864 bool AllConstantInt = true; 865 for (Value *NestedOp : NestedOps) 866 if (!isa<ConstantInt>(NestedOp)) { 867 AllConstantInt = false; 868 break; 869 } 870 if (!AllConstantInt) 871 break; 872 873 Ptr = cast<Constant>(GEP->getOperand(0)); 874 SrcElemTy = GEP->getSourceElementType(); 875 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 876 Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); 877 } 878 879 // If the base value for this address is a literal integer value, fold the 880 // getelementptr to the resulting integer value casted to the pointer type. 881 APInt BasePtr(BitWidth, 0); 882 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 883 if (CE->getOpcode() == Instruction::IntToPtr) { 884 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 885 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 886 } 887 } 888 889 auto *PTy = cast<PointerType>(Ptr->getType()); 890 if ((Ptr->isNullValue() || BasePtr != 0) && 891 !DL.isNonIntegralPointerType(PTy)) { 892 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 893 return ConstantExpr::getIntToPtr(C, ResTy); 894 } 895 896 // Otherwise form a regular getelementptr. Recompute the indices so that 897 // we eliminate over-indexing of the notional static type array bounds. 898 // This makes it easy to determine if the getelementptr is "inbounds". 899 // Also, this helps GlobalOpt do SROA on GlobalVariables. 900 Type *Ty = PTy; 901 SmallVector<Constant *, 32> NewIdxs; 902 903 do { 904 if (!Ty->isStructTy()) { 905 if (Ty->isPointerTy()) { 906 // The only pointer indexing we'll do is on the first index of the GEP. 907 if (!NewIdxs.empty()) 908 break; 909 910 Ty = SrcElemTy; 911 912 // Only handle pointers to sized types, not pointers to functions. 913 if (!Ty->isSized()) 914 return nullptr; 915 } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) { 916 Ty = ATy->getElementType(); 917 } else { 918 // We've reached some non-indexable type. 919 break; 920 } 921 922 // Determine which element of the array the offset points into. 923 APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); 924 if (ElemSize == 0) { 925 // The element size is 0. This may be [0 x Ty]*, so just use a zero 926 // index for this level and proceed to the next level to see if it can 927 // accommodate the offset. 928 NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0)); 929 } else { 930 // The element size is non-zero divide the offset by the element 931 // size (rounding down), to compute the index at this level. 932 bool Overflow; 933 APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); 934 if (Overflow) 935 break; 936 Offset -= NewIdx * ElemSize; 937 NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx)); 938 } 939 } else { 940 auto *STy = cast<StructType>(Ty); 941 // If we end up with an offset that isn't valid for this struct type, we 942 // can't re-form this GEP in a regular form, so bail out. The pointer 943 // operand likely went through casts that are necessary to make the GEP 944 // sensible. 945 const StructLayout &SL = *DL.getStructLayout(STy); 946 if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) 947 break; 948 949 // Determine which field of the struct the offset points into. The 950 // getZExtValue is fine as we've already ensured that the offset is 951 // within the range representable by the StructLayout API. 952 unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); 953 NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 954 ElIdx)); 955 Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); 956 Ty = STy->getTypeAtIndex(ElIdx); 957 } 958 } while (Ty != ResElemTy); 959 960 // If we haven't used up the entire offset by descending the static 961 // type, then the offset is pointing into the middle of an indivisible 962 // member, so we can't simplify it. 963 if (Offset != 0) 964 return nullptr; 965 966 // Preserve the inrange index from the innermost GEP if possible. We must 967 // have calculated the same indices up to and including the inrange index. 968 Optional<unsigned> InRangeIndex; 969 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 970 if (SrcElemTy == InnermostGEP->getSourceElementType() && 971 NewIdxs.size() > *LastIRIndex) { 972 InRangeIndex = LastIRIndex; 973 for (unsigned I = 0; I <= *LastIRIndex; ++I) 974 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 975 return nullptr; 976 } 977 978 // Create a GEP. 979 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 980 InBounds, InRangeIndex); 981 assert(C->getType()->getPointerElementType() == Ty && 982 "Computed GetElementPtr has unexpected type!"); 983 984 // If we ended up indexing a member with a type that doesn't match 985 // the type of what the original indices indexed, add a cast. 986 if (Ty != ResElemTy) 987 C = FoldBitCast(C, ResTy, DL); 988 989 return C; 990 } 991 992 /// Attempt to constant fold an instruction with the 993 /// specified opcode and operands. If successful, the constant result is 994 /// returned, if not, null is returned. Note that this function can fail when 995 /// attempting to fold instructions like loads and stores, which have no 996 /// constant expression form. 997 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 998 ArrayRef<Constant *> Ops, 999 const DataLayout &DL, 1000 const TargetLibraryInfo *TLI) { 1001 Type *DestTy = InstOrCE->getType(); 1002 1003 if (Instruction::isUnaryOp(Opcode)) 1004 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1005 1006 if (Instruction::isBinaryOp(Opcode)) 1007 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1008 1009 if (Instruction::isCast(Opcode)) 1010 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1011 1012 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1013 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1014 return C; 1015 1016 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1017 Ops.slice(1), GEP->isInBounds(), 1018 GEP->getInRangeIndex()); 1019 } 1020 1021 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1022 return CE->getWithOperands(Ops); 1023 1024 switch (Opcode) { 1025 default: return nullptr; 1026 case Instruction::ICmp: 1027 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1028 case Instruction::Call: 1029 if (auto *F = dyn_cast<Function>(Ops.back())) { 1030 const auto *Call = cast<CallBase>(InstOrCE); 1031 if (canConstantFoldCallTo(Call, F)) 1032 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1033 } 1034 return nullptr; 1035 case Instruction::Select: 1036 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1037 case Instruction::ExtractElement: 1038 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1039 case Instruction::InsertElement: 1040 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1041 case Instruction::ShuffleVector: 1042 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); 1043 } 1044 } 1045 1046 } // end anonymous namespace 1047 1048 //===----------------------------------------------------------------------===// 1049 // Constant Folding public APIs 1050 //===----------------------------------------------------------------------===// 1051 1052 namespace { 1053 1054 Constant * 1055 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1056 const TargetLibraryInfo *TLI, 1057 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1058 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1059 return nullptr; 1060 1061 SmallVector<Constant *, 8> Ops; 1062 for (const Use &NewU : C->operands()) { 1063 auto *NewC = cast<Constant>(&NewU); 1064 // Recursively fold the ConstantExpr's operands. If we have already folded 1065 // a ConstantExpr, we don't have to process it again. 1066 if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) { 1067 auto It = FoldedOps.find(NewC); 1068 if (It == FoldedOps.end()) { 1069 if (auto *FoldedC = 1070 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) { 1071 FoldedOps.insert({NewC, FoldedC}); 1072 NewC = FoldedC; 1073 } else { 1074 FoldedOps.insert({NewC, NewC}); 1075 } 1076 } else { 1077 NewC = It->second; 1078 } 1079 } 1080 Ops.push_back(NewC); 1081 } 1082 1083 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1084 if (CE->isCompare()) 1085 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1086 DL, TLI); 1087 1088 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1089 } 1090 1091 assert(isa<ConstantVector>(C)); 1092 return ConstantVector::get(Ops); 1093 } 1094 1095 } // end anonymous namespace 1096 1097 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1098 const TargetLibraryInfo *TLI) { 1099 // Handle PHI nodes quickly here... 1100 if (auto *PN = dyn_cast<PHINode>(I)) { 1101 Constant *CommonValue = nullptr; 1102 1103 SmallDenseMap<Constant *, Constant *> FoldedOps; 1104 for (Value *Incoming : PN->incoming_values()) { 1105 // If the incoming value is undef then skip it. Note that while we could 1106 // skip the value if it is equal to the phi node itself we choose not to 1107 // because that would break the rule that constant folding only applies if 1108 // all operands are constants. 1109 if (isa<UndefValue>(Incoming)) 1110 continue; 1111 // If the incoming value is not a constant, then give up. 1112 auto *C = dyn_cast<Constant>(Incoming); 1113 if (!C) 1114 return nullptr; 1115 // Fold the PHI's operands. 1116 if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps)) 1117 C = FoldedC; 1118 // If the incoming value is a different constant to 1119 // the one we saw previously, then give up. 1120 if (CommonValue && C != CommonValue) 1121 return nullptr; 1122 CommonValue = C; 1123 } 1124 1125 // If we reach here, all incoming values are the same constant or undef. 1126 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1127 } 1128 1129 // Scan the operand list, checking to see if they are all constants, if so, 1130 // hand off to ConstantFoldInstOperandsImpl. 1131 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1132 return nullptr; 1133 1134 SmallDenseMap<Constant *, Constant *> FoldedOps; 1135 SmallVector<Constant *, 8> Ops; 1136 for (const Use &OpU : I->operands()) { 1137 auto *Op = cast<Constant>(&OpU); 1138 // Fold the Instruction's operands. 1139 if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps)) 1140 Op = FoldedOp; 1141 1142 Ops.push_back(Op); 1143 } 1144 1145 if (const auto *CI = dyn_cast<CmpInst>(I)) 1146 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1147 DL, TLI); 1148 1149 if (const auto *LI = dyn_cast<LoadInst>(I)) 1150 return ConstantFoldLoadInst(LI, DL); 1151 1152 if (auto *IVI = dyn_cast<InsertValueInst>(I)) { 1153 return ConstantExpr::getInsertValue( 1154 cast<Constant>(IVI->getAggregateOperand()), 1155 cast<Constant>(IVI->getInsertedValueOperand()), 1156 IVI->getIndices()); 1157 } 1158 1159 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { 1160 return ConstantExpr::getExtractValue( 1161 cast<Constant>(EVI->getAggregateOperand()), 1162 EVI->getIndices()); 1163 } 1164 1165 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1166 } 1167 1168 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1169 const TargetLibraryInfo *TLI) { 1170 SmallDenseMap<Constant *, Constant *> FoldedOps; 1171 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1172 } 1173 1174 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1175 ArrayRef<Constant *> Ops, 1176 const DataLayout &DL, 1177 const TargetLibraryInfo *TLI) { 1178 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1179 } 1180 1181 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1182 Constant *Ops0, Constant *Ops1, 1183 const DataLayout &DL, 1184 const TargetLibraryInfo *TLI) { 1185 // fold: icmp (inttoptr x), null -> icmp x, 0 1186 // fold: icmp null, (inttoptr x) -> icmp 0, x 1187 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1188 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1189 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1190 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1191 // 1192 // FIXME: The following comment is out of data and the DataLayout is here now. 1193 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1194 // around to know if bit truncation is happening. 1195 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1196 if (Ops1->isNullValue()) { 1197 if (CE0->getOpcode() == Instruction::IntToPtr) { 1198 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1199 // Convert the integer value to the right size to ensure we get the 1200 // proper extension or truncation. 1201 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1202 IntPtrTy, false); 1203 Constant *Null = Constant::getNullValue(C->getType()); 1204 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1205 } 1206 1207 // Only do this transformation if the int is intptrty in size, otherwise 1208 // there is a truncation or extension that we aren't modeling. 1209 if (CE0->getOpcode() == Instruction::PtrToInt) { 1210 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1211 if (CE0->getType() == IntPtrTy) { 1212 Constant *C = CE0->getOperand(0); 1213 Constant *Null = Constant::getNullValue(C->getType()); 1214 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1215 } 1216 } 1217 } 1218 1219 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1220 if (CE0->getOpcode() == CE1->getOpcode()) { 1221 if (CE0->getOpcode() == Instruction::IntToPtr) { 1222 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1223 1224 // Convert the integer value to the right size to ensure we get the 1225 // proper extension or truncation. 1226 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1227 IntPtrTy, false); 1228 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1229 IntPtrTy, false); 1230 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1231 } 1232 1233 // Only do this transformation if the int is intptrty in size, otherwise 1234 // there is a truncation or extension that we aren't modeling. 1235 if (CE0->getOpcode() == Instruction::PtrToInt) { 1236 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1237 if (CE0->getType() == IntPtrTy && 1238 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1239 return ConstantFoldCompareInstOperands( 1240 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1241 } 1242 } 1243 } 1244 } 1245 1246 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1247 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1248 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1249 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1250 Constant *LHS = ConstantFoldCompareInstOperands( 1251 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1252 Constant *RHS = ConstantFoldCompareInstOperands( 1253 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1254 unsigned OpC = 1255 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1256 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1257 } 1258 } else if (isa<ConstantExpr>(Ops1)) { 1259 // If RHS is a constant expression, but the left side isn't, swap the 1260 // operands and try again. 1261 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1262 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1263 } 1264 1265 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1266 } 1267 1268 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1269 const DataLayout &DL) { 1270 assert(Instruction::isUnaryOp(Opcode)); 1271 1272 return ConstantExpr::get(Opcode, Op); 1273 } 1274 1275 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1276 Constant *RHS, 1277 const DataLayout &DL) { 1278 assert(Instruction::isBinaryOp(Opcode)); 1279 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1280 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1281 return C; 1282 1283 return ConstantExpr::get(Opcode, LHS, RHS); 1284 } 1285 1286 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1287 Type *DestTy, const DataLayout &DL) { 1288 assert(Instruction::isCast(Opcode)); 1289 switch (Opcode) { 1290 default: 1291 llvm_unreachable("Missing case"); 1292 case Instruction::PtrToInt: 1293 // If the input is a inttoptr, eliminate the pair. This requires knowing 1294 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1295 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1296 if (CE->getOpcode() == Instruction::IntToPtr) { 1297 Constant *Input = CE->getOperand(0); 1298 unsigned InWidth = Input->getType()->getScalarSizeInBits(); 1299 unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); 1300 if (PtrWidth < InWidth) { 1301 Constant *Mask = 1302 ConstantInt::get(CE->getContext(), 1303 APInt::getLowBitsSet(InWidth, PtrWidth)); 1304 Input = ConstantExpr::getAnd(Input, Mask); 1305 } 1306 // Do a zext or trunc to get to the dest size. 1307 return ConstantExpr::getIntegerCast(Input, DestTy, false); 1308 } 1309 } 1310 return ConstantExpr::getCast(Opcode, C, DestTy); 1311 case Instruction::IntToPtr: 1312 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1313 // the int size is >= the ptr size and the address spaces are the same. 1314 // This requires knowing the width of a pointer, so it can't be done in 1315 // ConstantExpr::getCast. 1316 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1317 if (CE->getOpcode() == Instruction::PtrToInt) { 1318 Constant *SrcPtr = CE->getOperand(0); 1319 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1320 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1321 1322 if (MidIntSize >= SrcPtrSize) { 1323 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1324 if (SrcAS == DestTy->getPointerAddressSpace()) 1325 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1326 } 1327 } 1328 } 1329 1330 return ConstantExpr::getCast(Opcode, C, DestTy); 1331 case Instruction::Trunc: 1332 case Instruction::ZExt: 1333 case Instruction::SExt: 1334 case Instruction::FPTrunc: 1335 case Instruction::FPExt: 1336 case Instruction::UIToFP: 1337 case Instruction::SIToFP: 1338 case Instruction::FPToUI: 1339 case Instruction::FPToSI: 1340 case Instruction::AddrSpaceCast: 1341 return ConstantExpr::getCast(Opcode, C, DestTy); 1342 case Instruction::BitCast: 1343 return FoldBitCast(C, DestTy, DL); 1344 } 1345 } 1346 1347 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1348 ConstantExpr *CE) { 1349 if (!CE->getOperand(1)->isNullValue()) 1350 return nullptr; // Do not allow stepping over the value! 1351 1352 // Loop over all of the operands, tracking down which value we are 1353 // addressing. 1354 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1355 C = C->getAggregateElement(CE->getOperand(i)); 1356 if (!C) 1357 return nullptr; 1358 } 1359 return C; 1360 } 1361 1362 Constant * 1363 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, 1364 ArrayRef<Constant *> Indices) { 1365 // Loop over all of the operands, tracking down which value we are 1366 // addressing. 1367 for (Constant *Index : Indices) { 1368 C = C->getAggregateElement(Index); 1369 if (!C) 1370 return nullptr; 1371 } 1372 return C; 1373 } 1374 1375 //===----------------------------------------------------------------------===// 1376 // Constant Folding for Calls 1377 // 1378 1379 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1380 if (Call->isNoBuiltin() || Call->isStrictFP()) 1381 return false; 1382 switch (F->getIntrinsicID()) { 1383 case Intrinsic::fabs: 1384 case Intrinsic::minnum: 1385 case Intrinsic::maxnum: 1386 case Intrinsic::minimum: 1387 case Intrinsic::maximum: 1388 case Intrinsic::log: 1389 case Intrinsic::log2: 1390 case Intrinsic::log10: 1391 case Intrinsic::exp: 1392 case Intrinsic::exp2: 1393 case Intrinsic::floor: 1394 case Intrinsic::ceil: 1395 case Intrinsic::sqrt: 1396 case Intrinsic::sin: 1397 case Intrinsic::cos: 1398 case Intrinsic::trunc: 1399 case Intrinsic::rint: 1400 case Intrinsic::nearbyint: 1401 case Intrinsic::pow: 1402 case Intrinsic::powi: 1403 case Intrinsic::bswap: 1404 case Intrinsic::ctpop: 1405 case Intrinsic::ctlz: 1406 case Intrinsic::cttz: 1407 case Intrinsic::fshl: 1408 case Intrinsic::fshr: 1409 case Intrinsic::fma: 1410 case Intrinsic::fmuladd: 1411 case Intrinsic::copysign: 1412 case Intrinsic::launder_invariant_group: 1413 case Intrinsic::strip_invariant_group: 1414 case Intrinsic::round: 1415 case Intrinsic::masked_load: 1416 case Intrinsic::sadd_with_overflow: 1417 case Intrinsic::uadd_with_overflow: 1418 case Intrinsic::ssub_with_overflow: 1419 case Intrinsic::usub_with_overflow: 1420 case Intrinsic::smul_with_overflow: 1421 case Intrinsic::umul_with_overflow: 1422 case Intrinsic::sadd_sat: 1423 case Intrinsic::uadd_sat: 1424 case Intrinsic::ssub_sat: 1425 case Intrinsic::usub_sat: 1426 case Intrinsic::smul_fix: 1427 case Intrinsic::smul_fix_sat: 1428 case Intrinsic::convert_from_fp16: 1429 case Intrinsic::convert_to_fp16: 1430 case Intrinsic::bitreverse: 1431 case Intrinsic::x86_sse_cvtss2si: 1432 case Intrinsic::x86_sse_cvtss2si64: 1433 case Intrinsic::x86_sse_cvttss2si: 1434 case Intrinsic::x86_sse_cvttss2si64: 1435 case Intrinsic::x86_sse2_cvtsd2si: 1436 case Intrinsic::x86_sse2_cvtsd2si64: 1437 case Intrinsic::x86_sse2_cvttsd2si: 1438 case Intrinsic::x86_sse2_cvttsd2si64: 1439 case Intrinsic::x86_avx512_vcvtss2si32: 1440 case Intrinsic::x86_avx512_vcvtss2si64: 1441 case Intrinsic::x86_avx512_cvttss2si: 1442 case Intrinsic::x86_avx512_cvttss2si64: 1443 case Intrinsic::x86_avx512_vcvtsd2si32: 1444 case Intrinsic::x86_avx512_vcvtsd2si64: 1445 case Intrinsic::x86_avx512_cvttsd2si: 1446 case Intrinsic::x86_avx512_cvttsd2si64: 1447 case Intrinsic::x86_avx512_vcvtss2usi32: 1448 case Intrinsic::x86_avx512_vcvtss2usi64: 1449 case Intrinsic::x86_avx512_cvttss2usi: 1450 case Intrinsic::x86_avx512_cvttss2usi64: 1451 case Intrinsic::x86_avx512_vcvtsd2usi32: 1452 case Intrinsic::x86_avx512_vcvtsd2usi64: 1453 case Intrinsic::x86_avx512_cvttsd2usi: 1454 case Intrinsic::x86_avx512_cvttsd2usi64: 1455 case Intrinsic::is_constant: 1456 return true; 1457 default: 1458 return false; 1459 case Intrinsic::not_intrinsic: break; 1460 } 1461 1462 if (!F->hasName()) 1463 return false; 1464 StringRef Name = F->getName(); 1465 1466 // In these cases, the check of the length is required. We don't want to 1467 // return true for a name like "cos\0blah" which strcmp would return equal to 1468 // "cos", but has length 8. 1469 switch (Name[0]) { 1470 default: 1471 return false; 1472 case 'a': 1473 return Name == "acos" || Name == "asin" || Name == "atan" || 1474 Name == "atan2" || Name == "acosf" || Name == "asinf" || 1475 Name == "atanf" || Name == "atan2f"; 1476 case 'c': 1477 return Name == "ceil" || Name == "cos" || Name == "cosh" || 1478 Name == "ceilf" || Name == "cosf" || Name == "coshf"; 1479 case 'e': 1480 return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f"; 1481 case 'f': 1482 return Name == "fabs" || Name == "floor" || Name == "fmod" || 1483 Name == "fabsf" || Name == "floorf" || Name == "fmodf"; 1484 case 'l': 1485 return Name == "log" || Name == "log10" || Name == "logf" || 1486 Name == "log10f"; 1487 case 'p': 1488 return Name == "pow" || Name == "powf"; 1489 case 'r': 1490 return Name == "round" || Name == "roundf"; 1491 case 's': 1492 return Name == "sin" || Name == "sinh" || Name == "sqrt" || 1493 Name == "sinf" || Name == "sinhf" || Name == "sqrtf"; 1494 case 't': 1495 return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf"; 1496 case '_': 1497 1498 // Check for various function names that get used for the math functions 1499 // when the header files are preprocessed with the macro 1500 // __FINITE_MATH_ONLY__ enabled. 1501 // The '12' here is the length of the shortest name that can match. 1502 // We need to check the size before looking at Name[1] and Name[2] 1503 // so we may as well check a limit that will eliminate mismatches. 1504 if (Name.size() < 12 || Name[1] != '_') 1505 return false; 1506 switch (Name[2]) { 1507 default: 1508 return false; 1509 case 'a': 1510 return Name == "__acos_finite" || Name == "__acosf_finite" || 1511 Name == "__asin_finite" || Name == "__asinf_finite" || 1512 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1513 case 'c': 1514 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1515 case 'e': 1516 return Name == "__exp_finite" || Name == "__expf_finite" || 1517 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1518 case 'l': 1519 return Name == "__log_finite" || Name == "__logf_finite" || 1520 Name == "__log10_finite" || Name == "__log10f_finite"; 1521 case 'p': 1522 return Name == "__pow_finite" || Name == "__powf_finite"; 1523 case 's': 1524 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1525 } 1526 } 1527 } 1528 1529 namespace { 1530 1531 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1532 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1533 APFloat APF(V); 1534 bool unused; 1535 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1536 return ConstantFP::get(Ty->getContext(), APF); 1537 } 1538 if (Ty->isDoubleTy()) 1539 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1540 llvm_unreachable("Can only constant fold half/float/double"); 1541 } 1542 1543 /// Clear the floating-point exception state. 1544 inline void llvm_fenv_clearexcept() { 1545 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1546 feclearexcept(FE_ALL_EXCEPT); 1547 #endif 1548 errno = 0; 1549 } 1550 1551 /// Test if a floating-point exception was raised. 1552 inline bool llvm_fenv_testexcept() { 1553 int errno_val = errno; 1554 if (errno_val == ERANGE || errno_val == EDOM) 1555 return true; 1556 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1557 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1558 return true; 1559 #endif 1560 return false; 1561 } 1562 1563 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { 1564 llvm_fenv_clearexcept(); 1565 V = NativeFP(V); 1566 if (llvm_fenv_testexcept()) { 1567 llvm_fenv_clearexcept(); 1568 return nullptr; 1569 } 1570 1571 return GetConstantFoldFPValue(V, Ty); 1572 } 1573 1574 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, 1575 double W, Type *Ty) { 1576 llvm_fenv_clearexcept(); 1577 V = NativeFP(V, W); 1578 if (llvm_fenv_testexcept()) { 1579 llvm_fenv_clearexcept(); 1580 return nullptr; 1581 } 1582 1583 return GetConstantFoldFPValue(V, Ty); 1584 } 1585 1586 /// Attempt to fold an SSE floating point to integer conversion of a constant 1587 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1588 /// used (toward nearest, ties to even). This matches the behavior of the 1589 /// non-truncating SSE instructions in the default rounding mode. The desired 1590 /// integer type Ty is used to select how many bits are available for the 1591 /// result. Returns null if the conversion cannot be performed, otherwise 1592 /// returns the Constant value resulting from the conversion. 1593 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1594 Type *Ty, bool IsSigned) { 1595 // All of these conversion intrinsics form an integer of at most 64bits. 1596 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1597 assert(ResultWidth <= 64 && 1598 "Can only constant fold conversions to 64 and 32 bit ints"); 1599 1600 uint64_t UIntVal; 1601 bool isExact = false; 1602 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1603 : APFloat::rmNearestTiesToEven; 1604 APFloat::opStatus status = 1605 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1606 IsSigned, mode, &isExact); 1607 if (status != APFloat::opOK && 1608 (!roundTowardZero || status != APFloat::opInexact)) 1609 return nullptr; 1610 return ConstantInt::get(Ty, UIntVal, IsSigned); 1611 } 1612 1613 double getValueAsDouble(ConstantFP *Op) { 1614 Type *Ty = Op->getType(); 1615 1616 if (Ty->isFloatTy()) 1617 return Op->getValueAPF().convertToFloat(); 1618 1619 if (Ty->isDoubleTy()) 1620 return Op->getValueAPF().convertToDouble(); 1621 1622 bool unused; 1623 APFloat APF = Op->getValueAPF(); 1624 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1625 return APF.convertToDouble(); 1626 } 1627 1628 static bool isManifestConstant(const Constant *c) { 1629 if (isa<ConstantData>(c)) { 1630 return true; 1631 } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) { 1632 for (const Value *subc : c->operand_values()) { 1633 if (!isManifestConstant(cast<Constant>(subc))) 1634 return false; 1635 } 1636 return true; 1637 } 1638 return false; 1639 } 1640 1641 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1642 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1643 C = &CI->getValue(); 1644 return true; 1645 } 1646 if (isa<UndefValue>(Op)) { 1647 C = nullptr; 1648 return true; 1649 } 1650 return false; 1651 } 1652 1653 static Constant *ConstantFoldScalarCall1(StringRef Name, 1654 Intrinsic::ID IntrinsicID, 1655 Type *Ty, 1656 ArrayRef<Constant *> Operands, 1657 const TargetLibraryInfo *TLI, 1658 const CallBase *Call) { 1659 assert(Operands.size() == 1 && "Wrong number of operands."); 1660 1661 if (IntrinsicID == Intrinsic::is_constant) { 1662 // We know we have a "Constant" argument. But we want to only 1663 // return true for manifest constants, not those that depend on 1664 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1665 if (isManifestConstant(Operands[0])) 1666 return ConstantInt::getTrue(Ty->getContext()); 1667 return nullptr; 1668 } 1669 if (isa<UndefValue>(Operands[0])) { 1670 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1671 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1672 if (IntrinsicID == Intrinsic::cos || 1673 IntrinsicID == Intrinsic::ctpop) 1674 return Constant::getNullValue(Ty); 1675 if (IntrinsicID == Intrinsic::bswap || 1676 IntrinsicID == Intrinsic::bitreverse || 1677 IntrinsicID == Intrinsic::launder_invariant_group || 1678 IntrinsicID == Intrinsic::strip_invariant_group) 1679 return Operands[0]; 1680 } 1681 1682 if (isa<ConstantPointerNull>(Operands[0])) { 1683 // launder(null) == null == strip(null) iff in addrspace 0 1684 if (IntrinsicID == Intrinsic::launder_invariant_group || 1685 IntrinsicID == Intrinsic::strip_invariant_group) { 1686 // If instruction is not yet put in a basic block (e.g. when cloning 1687 // a function during inlining), Call's caller may not be available. 1688 // So check Call's BB first before querying Call->getCaller. 1689 const Function *Caller = 1690 Call->getParent() ? Call->getCaller() : nullptr; 1691 if (Caller && 1692 !NullPointerIsDefined( 1693 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1694 return Operands[0]; 1695 } 1696 return nullptr; 1697 } 1698 } 1699 1700 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1701 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1702 APFloat Val(Op->getValueAPF()); 1703 1704 bool lost = false; 1705 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1706 1707 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1708 } 1709 1710 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1711 return nullptr; 1712 1713 if (IntrinsicID == Intrinsic::round) { 1714 APFloat V = Op->getValueAPF(); 1715 V.roundToIntegral(APFloat::rmNearestTiesToAway); 1716 return ConstantFP::get(Ty->getContext(), V); 1717 } 1718 1719 if (IntrinsicID == Intrinsic::floor) { 1720 APFloat V = Op->getValueAPF(); 1721 V.roundToIntegral(APFloat::rmTowardNegative); 1722 return ConstantFP::get(Ty->getContext(), V); 1723 } 1724 1725 if (IntrinsicID == Intrinsic::ceil) { 1726 APFloat V = Op->getValueAPF(); 1727 V.roundToIntegral(APFloat::rmTowardPositive); 1728 return ConstantFP::get(Ty->getContext(), V); 1729 } 1730 1731 if (IntrinsicID == Intrinsic::trunc) { 1732 APFloat V = Op->getValueAPF(); 1733 V.roundToIntegral(APFloat::rmTowardZero); 1734 return ConstantFP::get(Ty->getContext(), V); 1735 } 1736 1737 if (IntrinsicID == Intrinsic::rint) { 1738 APFloat V = Op->getValueAPF(); 1739 V.roundToIntegral(APFloat::rmNearestTiesToEven); 1740 return ConstantFP::get(Ty->getContext(), V); 1741 } 1742 1743 if (IntrinsicID == Intrinsic::nearbyint) { 1744 APFloat V = Op->getValueAPF(); 1745 V.roundToIntegral(APFloat::rmNearestTiesToEven); 1746 return ConstantFP::get(Ty->getContext(), V); 1747 } 1748 1749 /// We only fold functions with finite arguments. Folding NaN and inf is 1750 /// likely to be aborted with an exception anyway, and some host libms 1751 /// have known errors raising exceptions. 1752 if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity()) 1753 return nullptr; 1754 1755 /// Currently APFloat versions of these functions do not exist, so we use 1756 /// the host native double versions. Float versions are not called 1757 /// directly but for all these it is true (float)(f((double)arg)) == 1758 /// f(arg). Long double not supported yet. 1759 double V = getValueAsDouble(Op); 1760 1761 switch (IntrinsicID) { 1762 default: break; 1763 case Intrinsic::fabs: 1764 return ConstantFoldFP(fabs, V, Ty); 1765 case Intrinsic::log2: 1766 return ConstantFoldFP(Log2, V, Ty); 1767 case Intrinsic::log: 1768 return ConstantFoldFP(log, V, Ty); 1769 case Intrinsic::log10: 1770 return ConstantFoldFP(log10, V, Ty); 1771 case Intrinsic::exp: 1772 return ConstantFoldFP(exp, V, Ty); 1773 case Intrinsic::exp2: 1774 return ConstantFoldFP(exp2, V, Ty); 1775 case Intrinsic::sin: 1776 return ConstantFoldFP(sin, V, Ty); 1777 case Intrinsic::cos: 1778 return ConstantFoldFP(cos, V, Ty); 1779 case Intrinsic::sqrt: 1780 return ConstantFoldFP(sqrt, V, Ty); 1781 } 1782 1783 if (!TLI) 1784 return nullptr; 1785 1786 char NameKeyChar = Name[0]; 1787 if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_') 1788 NameKeyChar = Name[2]; 1789 1790 switch (NameKeyChar) { 1791 case 'a': 1792 if ((Name == "acos" && TLI->has(LibFunc_acos)) || 1793 (Name == "acosf" && TLI->has(LibFunc_acosf)) || 1794 (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) || 1795 (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite))) 1796 return ConstantFoldFP(acos, V, Ty); 1797 else if ((Name == "asin" && TLI->has(LibFunc_asin)) || 1798 (Name == "asinf" && TLI->has(LibFunc_asinf)) || 1799 (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) || 1800 (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite))) 1801 return ConstantFoldFP(asin, V, Ty); 1802 else if ((Name == "atan" && TLI->has(LibFunc_atan)) || 1803 (Name == "atanf" && TLI->has(LibFunc_atanf))) 1804 return ConstantFoldFP(atan, V, Ty); 1805 break; 1806 case 'c': 1807 if ((Name == "ceil" && TLI->has(LibFunc_ceil)) || 1808 (Name == "ceilf" && TLI->has(LibFunc_ceilf))) 1809 return ConstantFoldFP(ceil, V, Ty); 1810 else if ((Name == "cos" && TLI->has(LibFunc_cos)) || 1811 (Name == "cosf" && TLI->has(LibFunc_cosf))) 1812 return ConstantFoldFP(cos, V, Ty); 1813 else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) || 1814 (Name == "coshf" && TLI->has(LibFunc_coshf)) || 1815 (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) || 1816 (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite))) 1817 return ConstantFoldFP(cosh, V, Ty); 1818 break; 1819 case 'e': 1820 if ((Name == "exp" && TLI->has(LibFunc_exp)) || 1821 (Name == "expf" && TLI->has(LibFunc_expf)) || 1822 (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) || 1823 (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite))) 1824 return ConstantFoldFP(exp, V, Ty); 1825 if ((Name == "exp2" && TLI->has(LibFunc_exp2)) || 1826 (Name == "exp2f" && TLI->has(LibFunc_exp2f)) || 1827 (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) || 1828 (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite))) 1829 // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a 1830 // C99 library. 1831 return ConstantFoldBinaryFP(pow, 2.0, V, Ty); 1832 break; 1833 case 'f': 1834 if ((Name == "fabs" && TLI->has(LibFunc_fabs)) || 1835 (Name == "fabsf" && TLI->has(LibFunc_fabsf))) 1836 return ConstantFoldFP(fabs, V, Ty); 1837 else if ((Name == "floor" && TLI->has(LibFunc_floor)) || 1838 (Name == "floorf" && TLI->has(LibFunc_floorf))) 1839 return ConstantFoldFP(floor, V, Ty); 1840 break; 1841 case 'l': 1842 if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) || 1843 (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) || 1844 (Name == "__log_finite" && V > 0 && 1845 TLI->has(LibFunc_log_finite)) || 1846 (Name == "__logf_finite" && V > 0 && 1847 TLI->has(LibFunc_logf_finite))) 1848 return ConstantFoldFP(log, V, Ty); 1849 else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) || 1850 (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) || 1851 (Name == "__log10_finite" && V > 0 && 1852 TLI->has(LibFunc_log10_finite)) || 1853 (Name == "__log10f_finite" && V > 0 && 1854 TLI->has(LibFunc_log10f_finite))) 1855 return ConstantFoldFP(log10, V, Ty); 1856 break; 1857 case 'r': 1858 if ((Name == "round" && TLI->has(LibFunc_round)) || 1859 (Name == "roundf" && TLI->has(LibFunc_roundf))) 1860 return ConstantFoldFP(round, V, Ty); 1861 break; 1862 case 's': 1863 if ((Name == "sin" && TLI->has(LibFunc_sin)) || 1864 (Name == "sinf" && TLI->has(LibFunc_sinf))) 1865 return ConstantFoldFP(sin, V, Ty); 1866 else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) || 1867 (Name == "sinhf" && TLI->has(LibFunc_sinhf)) || 1868 (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) || 1869 (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite))) 1870 return ConstantFoldFP(sinh, V, Ty); 1871 else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) || 1872 (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf))) 1873 return ConstantFoldFP(sqrt, V, Ty); 1874 break; 1875 case 't': 1876 if ((Name == "tan" && TLI->has(LibFunc_tan)) || 1877 (Name == "tanf" && TLI->has(LibFunc_tanf))) 1878 return ConstantFoldFP(tan, V, Ty); 1879 else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) || 1880 (Name == "tanhf" && TLI->has(LibFunc_tanhf))) 1881 return ConstantFoldFP(tanh, V, Ty); 1882 break; 1883 default: 1884 break; 1885 } 1886 return nullptr; 1887 } 1888 1889 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 1890 switch (IntrinsicID) { 1891 case Intrinsic::bswap: 1892 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 1893 case Intrinsic::ctpop: 1894 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 1895 case Intrinsic::bitreverse: 1896 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 1897 case Intrinsic::convert_from_fp16: { 1898 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 1899 1900 bool lost = false; 1901 APFloat::opStatus status = Val.convert( 1902 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 1903 1904 // Conversion is always precise. 1905 (void)status; 1906 assert(status == APFloat::opOK && !lost && 1907 "Precision lost during fp16 constfolding"); 1908 1909 return ConstantFP::get(Ty->getContext(), Val); 1910 } 1911 default: 1912 return nullptr; 1913 } 1914 } 1915 1916 // Support ConstantVector in case we have an Undef in the top. 1917 if (isa<ConstantVector>(Operands[0]) || 1918 isa<ConstantDataVector>(Operands[0])) { 1919 auto *Op = cast<Constant>(Operands[0]); 1920 switch (IntrinsicID) { 1921 default: break; 1922 case Intrinsic::x86_sse_cvtss2si: 1923 case Intrinsic::x86_sse_cvtss2si64: 1924 case Intrinsic::x86_sse2_cvtsd2si: 1925 case Intrinsic::x86_sse2_cvtsd2si64: 1926 if (ConstantFP *FPOp = 1927 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 1928 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 1929 /*roundTowardZero=*/false, Ty, 1930 /*IsSigned*/true); 1931 break; 1932 case Intrinsic::x86_sse_cvttss2si: 1933 case Intrinsic::x86_sse_cvttss2si64: 1934 case Intrinsic::x86_sse2_cvttsd2si: 1935 case Intrinsic::x86_sse2_cvttsd2si64: 1936 if (ConstantFP *FPOp = 1937 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 1938 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 1939 /*roundTowardZero=*/true, Ty, 1940 /*IsSigned*/true); 1941 break; 1942 } 1943 } 1944 1945 return nullptr; 1946 } 1947 1948 static Constant *ConstantFoldScalarCall2(StringRef Name, 1949 Intrinsic::ID IntrinsicID, 1950 Type *Ty, 1951 ArrayRef<Constant *> Operands, 1952 const TargetLibraryInfo *TLI, 1953 const CallBase *Call) { 1954 assert(Operands.size() == 2 && "Wrong number of operands."); 1955 1956 if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 1957 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1958 return nullptr; 1959 double Op1V = getValueAsDouble(Op1); 1960 1961 if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 1962 if (Op2->getType() != Op1->getType()) 1963 return nullptr; 1964 1965 double Op2V = getValueAsDouble(Op2); 1966 if (IntrinsicID == Intrinsic::pow) { 1967 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 1968 } 1969 if (IntrinsicID == Intrinsic::copysign) { 1970 APFloat V1 = Op1->getValueAPF(); 1971 const APFloat &V2 = Op2->getValueAPF(); 1972 V1.copySign(V2); 1973 return ConstantFP::get(Ty->getContext(), V1); 1974 } 1975 1976 if (IntrinsicID == Intrinsic::minnum) { 1977 const APFloat &C1 = Op1->getValueAPF(); 1978 const APFloat &C2 = Op2->getValueAPF(); 1979 return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); 1980 } 1981 1982 if (IntrinsicID == Intrinsic::maxnum) { 1983 const APFloat &C1 = Op1->getValueAPF(); 1984 const APFloat &C2 = Op2->getValueAPF(); 1985 return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); 1986 } 1987 1988 if (IntrinsicID == Intrinsic::minimum) { 1989 const APFloat &C1 = Op1->getValueAPF(); 1990 const APFloat &C2 = Op2->getValueAPF(); 1991 return ConstantFP::get(Ty->getContext(), minimum(C1, C2)); 1992 } 1993 1994 if (IntrinsicID == Intrinsic::maximum) { 1995 const APFloat &C1 = Op1->getValueAPF(); 1996 const APFloat &C2 = Op2->getValueAPF(); 1997 return ConstantFP::get(Ty->getContext(), maximum(C1, C2)); 1998 } 1999 2000 if (!TLI) 2001 return nullptr; 2002 if ((Name == "pow" && TLI->has(LibFunc_pow)) || 2003 (Name == "powf" && TLI->has(LibFunc_powf)) || 2004 (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) || 2005 (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite))) 2006 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2007 if ((Name == "fmod" && TLI->has(LibFunc_fmod)) || 2008 (Name == "fmodf" && TLI->has(LibFunc_fmodf))) 2009 return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty); 2010 if ((Name == "atan2" && TLI->has(LibFunc_atan2)) || 2011 (Name == "atan2f" && TLI->has(LibFunc_atan2f)) || 2012 (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) || 2013 (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite))) 2014 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2015 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2016 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2017 return ConstantFP::get(Ty->getContext(), 2018 APFloat((float)std::pow((float)Op1V, 2019 (int)Op2C->getZExtValue()))); 2020 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2021 return ConstantFP::get(Ty->getContext(), 2022 APFloat((float)std::pow((float)Op1V, 2023 (int)Op2C->getZExtValue()))); 2024 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2025 return ConstantFP::get(Ty->getContext(), 2026 APFloat((double)std::pow((double)Op1V, 2027 (int)Op2C->getZExtValue()))); 2028 } 2029 return nullptr; 2030 } 2031 2032 if (Operands[0]->getType()->isIntegerTy() && 2033 Operands[1]->getType()->isIntegerTy()) { 2034 const APInt *C0, *C1; 2035 if (!getConstIntOrUndef(Operands[0], C0) || 2036 !getConstIntOrUndef(Operands[1], C1)) 2037 return nullptr; 2038 2039 switch (IntrinsicID) { 2040 default: break; 2041 case Intrinsic::smul_with_overflow: 2042 case Intrinsic::umul_with_overflow: 2043 // Even if both operands are undef, we cannot fold muls to undef 2044 // in the general case. For example, on i2 there are no inputs 2045 // that would produce { i2 -1, i1 true } as the result. 2046 if (!C0 || !C1) 2047 return Constant::getNullValue(Ty); 2048 LLVM_FALLTHROUGH; 2049 case Intrinsic::sadd_with_overflow: 2050 case Intrinsic::uadd_with_overflow: 2051 case Intrinsic::ssub_with_overflow: 2052 case Intrinsic::usub_with_overflow: { 2053 if (!C0 || !C1) 2054 return UndefValue::get(Ty); 2055 2056 APInt Res; 2057 bool Overflow; 2058 switch (IntrinsicID) { 2059 default: llvm_unreachable("Invalid case"); 2060 case Intrinsic::sadd_with_overflow: 2061 Res = C0->sadd_ov(*C1, Overflow); 2062 break; 2063 case Intrinsic::uadd_with_overflow: 2064 Res = C0->uadd_ov(*C1, Overflow); 2065 break; 2066 case Intrinsic::ssub_with_overflow: 2067 Res = C0->ssub_ov(*C1, Overflow); 2068 break; 2069 case Intrinsic::usub_with_overflow: 2070 Res = C0->usub_ov(*C1, Overflow); 2071 break; 2072 case Intrinsic::smul_with_overflow: 2073 Res = C0->smul_ov(*C1, Overflow); 2074 break; 2075 case Intrinsic::umul_with_overflow: 2076 Res = C0->umul_ov(*C1, Overflow); 2077 break; 2078 } 2079 Constant *Ops[] = { 2080 ConstantInt::get(Ty->getContext(), Res), 2081 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2082 }; 2083 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2084 } 2085 case Intrinsic::uadd_sat: 2086 case Intrinsic::sadd_sat: 2087 if (!C0 && !C1) 2088 return UndefValue::get(Ty); 2089 if (!C0 || !C1) 2090 return Constant::getAllOnesValue(Ty); 2091 if (IntrinsicID == Intrinsic::uadd_sat) 2092 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2093 else 2094 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2095 case Intrinsic::usub_sat: 2096 case Intrinsic::ssub_sat: 2097 if (!C0 && !C1) 2098 return UndefValue::get(Ty); 2099 if (!C0 || !C1) 2100 return Constant::getNullValue(Ty); 2101 if (IntrinsicID == Intrinsic::usub_sat) 2102 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2103 else 2104 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2105 case Intrinsic::cttz: 2106 case Intrinsic::ctlz: 2107 assert(C1 && "Must be constant int"); 2108 2109 // cttz(0, 1) and ctlz(0, 1) are undef. 2110 if (C1->isOneValue() && (!C0 || C0->isNullValue())) 2111 return UndefValue::get(Ty); 2112 if (!C0) 2113 return Constant::getNullValue(Ty); 2114 if (IntrinsicID == Intrinsic::cttz) 2115 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2116 else 2117 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2118 } 2119 2120 return nullptr; 2121 } 2122 2123 // Support ConstantVector in case we have an Undef in the top. 2124 if ((isa<ConstantVector>(Operands[0]) || 2125 isa<ConstantDataVector>(Operands[0])) && 2126 // Check for default rounding mode. 2127 // FIXME: Support other rounding modes? 2128 isa<ConstantInt>(Operands[1]) && 2129 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2130 auto *Op = cast<Constant>(Operands[0]); 2131 switch (IntrinsicID) { 2132 default: break; 2133 case Intrinsic::x86_avx512_vcvtss2si32: 2134 case Intrinsic::x86_avx512_vcvtss2si64: 2135 case Intrinsic::x86_avx512_vcvtsd2si32: 2136 case Intrinsic::x86_avx512_vcvtsd2si64: 2137 if (ConstantFP *FPOp = 2138 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2139 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2140 /*roundTowardZero=*/false, Ty, 2141 /*IsSigned*/true); 2142 break; 2143 case Intrinsic::x86_avx512_vcvtss2usi32: 2144 case Intrinsic::x86_avx512_vcvtss2usi64: 2145 case Intrinsic::x86_avx512_vcvtsd2usi32: 2146 case Intrinsic::x86_avx512_vcvtsd2usi64: 2147 if (ConstantFP *FPOp = 2148 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2149 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2150 /*roundTowardZero=*/false, Ty, 2151 /*IsSigned*/false); 2152 break; 2153 case Intrinsic::x86_avx512_cvttss2si: 2154 case Intrinsic::x86_avx512_cvttss2si64: 2155 case Intrinsic::x86_avx512_cvttsd2si: 2156 case Intrinsic::x86_avx512_cvttsd2si64: 2157 if (ConstantFP *FPOp = 2158 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2159 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2160 /*roundTowardZero=*/true, Ty, 2161 /*IsSigned*/true); 2162 break; 2163 case Intrinsic::x86_avx512_cvttss2usi: 2164 case Intrinsic::x86_avx512_cvttss2usi64: 2165 case Intrinsic::x86_avx512_cvttsd2usi: 2166 case Intrinsic::x86_avx512_cvttsd2usi64: 2167 if (ConstantFP *FPOp = 2168 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2169 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2170 /*roundTowardZero=*/true, Ty, 2171 /*IsSigned*/false); 2172 break; 2173 } 2174 } 2175 return nullptr; 2176 } 2177 2178 static Constant *ConstantFoldScalarCall3(StringRef Name, 2179 Intrinsic::ID IntrinsicID, 2180 Type *Ty, 2181 ArrayRef<Constant *> Operands, 2182 const TargetLibraryInfo *TLI, 2183 const CallBase *Call) { 2184 assert(Operands.size() == 3 && "Wrong number of operands."); 2185 2186 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2187 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2188 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2189 switch (IntrinsicID) { 2190 default: break; 2191 case Intrinsic::fma: 2192 case Intrinsic::fmuladd: { 2193 APFloat V = Op1->getValueAPF(); 2194 APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(), 2195 Op3->getValueAPF(), 2196 APFloat::rmNearestTiesToEven); 2197 if (s != APFloat::opInvalidOp) 2198 return ConstantFP::get(Ty->getContext(), V); 2199 2200 return nullptr; 2201 } 2202 } 2203 } 2204 } 2205 } 2206 2207 if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { 2208 if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { 2209 if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) { 2210 switch (IntrinsicID) { 2211 default: break; 2212 case Intrinsic::smul_fix: 2213 case Intrinsic::smul_fix_sat: { 2214 // This code performs rounding towards negative infinity in case the 2215 // result cannot be represented exactly for the given scale. Targets 2216 // that do care about rounding should use a target hook for specifying 2217 // how rounding should be done, and provide their own folding to be 2218 // consistent with rounding. This is the same approach as used by 2219 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2220 APInt Lhs = Op1->getValue(); 2221 APInt Rhs = Op2->getValue(); 2222 unsigned Scale = Op3->getValue().getZExtValue(); 2223 unsigned Width = Lhs.getBitWidth(); 2224 assert(Scale < Width && "Illegal scale."); 2225 unsigned ExtendedWidth = Width * 2; 2226 APInt Product = (Lhs.sextOrSelf(ExtendedWidth) * 2227 Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale); 2228 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2229 APInt MaxValue = 2230 APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2231 APInt MinValue = 2232 APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2233 Product = APIntOps::smin(Product, MaxValue); 2234 Product = APIntOps::smax(Product, MinValue); 2235 } 2236 return ConstantInt::get(Ty->getContext(), 2237 Product.sextOrTrunc(Width)); 2238 } 2239 } 2240 } 2241 } 2242 } 2243 2244 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2245 const APInt *C0, *C1, *C2; 2246 if (!getConstIntOrUndef(Operands[0], C0) || 2247 !getConstIntOrUndef(Operands[1], C1) || 2248 !getConstIntOrUndef(Operands[2], C2)) 2249 return nullptr; 2250 2251 bool IsRight = IntrinsicID == Intrinsic::fshr; 2252 if (!C2) 2253 return Operands[IsRight ? 1 : 0]; 2254 if (!C0 && !C1) 2255 return UndefValue::get(Ty); 2256 2257 // The shift amount is interpreted as modulo the bitwidth. If the shift 2258 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2259 unsigned BitWidth = C2->getBitWidth(); 2260 unsigned ShAmt = C2->urem(BitWidth); 2261 if (!ShAmt) 2262 return Operands[IsRight ? 1 : 0]; 2263 2264 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2265 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2266 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2267 if (!C0) 2268 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2269 if (!C1) 2270 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2271 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2272 } 2273 2274 return nullptr; 2275 } 2276 2277 static Constant *ConstantFoldScalarCall(StringRef Name, 2278 Intrinsic::ID IntrinsicID, 2279 Type *Ty, 2280 ArrayRef<Constant *> Operands, 2281 const TargetLibraryInfo *TLI, 2282 const CallBase *Call) { 2283 if (Operands.size() == 1) 2284 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2285 2286 if (Operands.size() == 2) 2287 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2288 2289 if (Operands.size() == 3) 2290 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2291 2292 return nullptr; 2293 } 2294 2295 static Constant *ConstantFoldVectorCall(StringRef Name, 2296 Intrinsic::ID IntrinsicID, 2297 VectorType *VTy, 2298 ArrayRef<Constant *> Operands, 2299 const DataLayout &DL, 2300 const TargetLibraryInfo *TLI, 2301 const CallBase *Call) { 2302 SmallVector<Constant *, 4> Result(VTy->getNumElements()); 2303 SmallVector<Constant *, 4> Lane(Operands.size()); 2304 Type *Ty = VTy->getElementType(); 2305 2306 if (IntrinsicID == Intrinsic::masked_load) { 2307 auto *SrcPtr = Operands[0]; 2308 auto *Mask = Operands[2]; 2309 auto *Passthru = Operands[3]; 2310 2311 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); 2312 2313 SmallVector<Constant *, 32> NewElements; 2314 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 2315 auto *MaskElt = Mask->getAggregateElement(I); 2316 if (!MaskElt) 2317 break; 2318 auto *PassthruElt = Passthru->getAggregateElement(I); 2319 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 2320 if (isa<UndefValue>(MaskElt)) { 2321 if (PassthruElt) 2322 NewElements.push_back(PassthruElt); 2323 else if (VecElt) 2324 NewElements.push_back(VecElt); 2325 else 2326 return nullptr; 2327 } 2328 if (MaskElt->isNullValue()) { 2329 if (!PassthruElt) 2330 return nullptr; 2331 NewElements.push_back(PassthruElt); 2332 } else if (MaskElt->isOneValue()) { 2333 if (!VecElt) 2334 return nullptr; 2335 NewElements.push_back(VecElt); 2336 } else { 2337 return nullptr; 2338 } 2339 } 2340 if (NewElements.size() != VTy->getNumElements()) 2341 return nullptr; 2342 return ConstantVector::get(NewElements); 2343 } 2344 2345 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { 2346 // Gather a column of constants. 2347 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 2348 // Some intrinsics use a scalar type for certain arguments. 2349 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 2350 Lane[J] = Operands[J]; 2351 continue; 2352 } 2353 2354 Constant *Agg = Operands[J]->getAggregateElement(I); 2355 if (!Agg) 2356 return nullptr; 2357 2358 Lane[J] = Agg; 2359 } 2360 2361 // Use the regular scalar folding to simplify this column. 2362 Constant *Folded = 2363 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 2364 if (!Folded) 2365 return nullptr; 2366 Result[I] = Folded; 2367 } 2368 2369 return ConstantVector::get(Result); 2370 } 2371 2372 } // end anonymous namespace 2373 2374 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 2375 ArrayRef<Constant *> Operands, 2376 const TargetLibraryInfo *TLI) { 2377 if (Call->isNoBuiltin() || Call->isStrictFP()) 2378 return nullptr; 2379 if (!F->hasName()) 2380 return nullptr; 2381 StringRef Name = F->getName(); 2382 2383 Type *Ty = F->getReturnType(); 2384 2385 if (auto *VTy = dyn_cast<VectorType>(Ty)) 2386 return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, 2387 F->getParent()->getDataLayout(), TLI, Call); 2388 2389 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 2390 Call); 2391 } 2392 2393 bool llvm::isMathLibCallNoop(const CallBase *Call, 2394 const TargetLibraryInfo *TLI) { 2395 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 2396 // (and to some extent ConstantFoldScalarCall). 2397 if (Call->isNoBuiltin() || Call->isStrictFP()) 2398 return false; 2399 Function *F = Call->getCalledFunction(); 2400 if (!F) 2401 return false; 2402 2403 LibFunc Func; 2404 if (!TLI || !TLI->getLibFunc(*F, Func)) 2405 return false; 2406 2407 if (Call->getNumArgOperands() == 1) { 2408 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 2409 const APFloat &Op = OpC->getValueAPF(); 2410 switch (Func) { 2411 case LibFunc_logl: 2412 case LibFunc_log: 2413 case LibFunc_logf: 2414 case LibFunc_log2l: 2415 case LibFunc_log2: 2416 case LibFunc_log2f: 2417 case LibFunc_log10l: 2418 case LibFunc_log10: 2419 case LibFunc_log10f: 2420 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 2421 2422 case LibFunc_expl: 2423 case LibFunc_exp: 2424 case LibFunc_expf: 2425 // FIXME: These boundaries are slightly conservative. 2426 if (OpC->getType()->isDoubleTy()) 2427 return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan && 2428 Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan; 2429 if (OpC->getType()->isFloatTy()) 2430 return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan && 2431 Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan; 2432 break; 2433 2434 case LibFunc_exp2l: 2435 case LibFunc_exp2: 2436 case LibFunc_exp2f: 2437 // FIXME: These boundaries are slightly conservative. 2438 if (OpC->getType()->isDoubleTy()) 2439 return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan && 2440 Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan; 2441 if (OpC->getType()->isFloatTy()) 2442 return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan && 2443 Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan; 2444 break; 2445 2446 case LibFunc_sinl: 2447 case LibFunc_sin: 2448 case LibFunc_sinf: 2449 case LibFunc_cosl: 2450 case LibFunc_cos: 2451 case LibFunc_cosf: 2452 return !Op.isInfinity(); 2453 2454 case LibFunc_tanl: 2455 case LibFunc_tan: 2456 case LibFunc_tanf: { 2457 // FIXME: Stop using the host math library. 2458 // FIXME: The computation isn't done in the right precision. 2459 Type *Ty = OpC->getType(); 2460 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2461 double OpV = getValueAsDouble(OpC); 2462 return ConstantFoldFP(tan, OpV, Ty) != nullptr; 2463 } 2464 break; 2465 } 2466 2467 case LibFunc_asinl: 2468 case LibFunc_asin: 2469 case LibFunc_asinf: 2470 case LibFunc_acosl: 2471 case LibFunc_acos: 2472 case LibFunc_acosf: 2473 return Op.compare(APFloat(Op.getSemantics(), "-1")) != 2474 APFloat::cmpLessThan && 2475 Op.compare(APFloat(Op.getSemantics(), "1")) != 2476 APFloat::cmpGreaterThan; 2477 2478 case LibFunc_sinh: 2479 case LibFunc_cosh: 2480 case LibFunc_sinhf: 2481 case LibFunc_coshf: 2482 case LibFunc_sinhl: 2483 case LibFunc_coshl: 2484 // FIXME: These boundaries are slightly conservative. 2485 if (OpC->getType()->isDoubleTy()) 2486 return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan && 2487 Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan; 2488 if (OpC->getType()->isFloatTy()) 2489 return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan && 2490 Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan; 2491 break; 2492 2493 case LibFunc_sqrtl: 2494 case LibFunc_sqrt: 2495 case LibFunc_sqrtf: 2496 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 2497 2498 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 2499 // maybe others? 2500 default: 2501 break; 2502 } 2503 } 2504 } 2505 2506 if (Call->getNumArgOperands() == 2) { 2507 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 2508 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 2509 if (Op0C && Op1C) { 2510 const APFloat &Op0 = Op0C->getValueAPF(); 2511 const APFloat &Op1 = Op1C->getValueAPF(); 2512 2513 switch (Func) { 2514 case LibFunc_powl: 2515 case LibFunc_pow: 2516 case LibFunc_powf: { 2517 // FIXME: Stop using the host math library. 2518 // FIXME: The computation isn't done in the right precision. 2519 Type *Ty = Op0C->getType(); 2520 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 2521 if (Ty == Op1C->getType()) { 2522 double Op0V = getValueAsDouble(Op0C); 2523 double Op1V = getValueAsDouble(Op1C); 2524 return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; 2525 } 2526 } 2527 break; 2528 } 2529 2530 case LibFunc_fmodl: 2531 case LibFunc_fmod: 2532 case LibFunc_fmodf: 2533 return Op0.isNaN() || Op1.isNaN() || 2534 (!Op0.isInfinity() && !Op1.isZero()); 2535 2536 default: 2537 break; 2538 } 2539 } 2540 } 2541 2542 return false; 2543 } 2544