1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalValue.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/IntrinsicsAArch64.h" 45 #include "llvm/IR/IntrinsicsAMDGPU.h" 46 #include "llvm/IR/IntrinsicsARM.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/KnownBits.h" 55 #include "llvm/Support/MathExtras.h" 56 #include <cassert> 57 #include <cerrno> 58 #include <cfenv> 59 #include <cmath> 60 #include <cstddef> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 67 ArrayRef<Constant *> Ops, 68 const DataLayout &DL, 69 const TargetLibraryInfo *TLI, 70 bool ForLoadOperand); 71 72 //===----------------------------------------------------------------------===// 73 // Constant Folding internal helper functions 74 //===----------------------------------------------------------------------===// 75 76 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 77 Constant *C, Type *SrcEltTy, 78 unsigned NumSrcElts, 79 const DataLayout &DL) { 80 // Now that we know that the input value is a vector of integers, just shift 81 // and insert them into our result. 82 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 83 for (unsigned i = 0; i != NumSrcElts; ++i) { 84 Constant *Element; 85 if (DL.isLittleEndian()) 86 Element = C->getAggregateElement(NumSrcElts - i - 1); 87 else 88 Element = C->getAggregateElement(i); 89 90 if (Element && isa<UndefValue>(Element)) { 91 Result <<= BitShift; 92 continue; 93 } 94 95 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 96 if (!ElementCI) 97 return ConstantExpr::getBitCast(C, DestTy); 98 99 Result <<= BitShift; 100 Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); 101 } 102 103 return nullptr; 104 } 105 106 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 107 /// This always returns a non-null constant, but it may be a 108 /// ConstantExpr if unfoldable. 109 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 110 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 111 "Invalid constantexpr bitcast!"); 112 113 // Catch the obvious splat cases. 114 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 115 return Constant::getNullValue(DestTy); 116 if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 117 !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! 118 return Constant::getAllOnesValue(DestTy); 119 120 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 121 // Handle a vector->scalar integer/fp cast. 122 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 123 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 124 Type *SrcEltTy = VTy->getElementType(); 125 126 // If the vector is a vector of floating point, convert it to vector of int 127 // to simplify things. 128 if (SrcEltTy->isFloatingPointTy()) { 129 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 130 auto *SrcIVTy = FixedVectorType::get( 131 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 132 // Ask IR to do the conversion now that #elts line up. 133 C = ConstantExpr::getBitCast(C, SrcIVTy); 134 } 135 136 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 137 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 138 SrcEltTy, NumSrcElts, DL)) 139 return CE; 140 141 if (isa<IntegerType>(DestTy)) 142 return ConstantInt::get(DestTy, Result); 143 144 APFloat FP(DestTy->getFltSemantics(), Result); 145 return ConstantFP::get(DestTy->getContext(), FP); 146 } 147 } 148 149 // The code below only handles casts to vectors currently. 150 auto *DestVTy = dyn_cast<VectorType>(DestTy); 151 if (!DestVTy) 152 return ConstantExpr::getBitCast(C, DestTy); 153 154 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 155 // vector so the code below can handle it uniformly. 156 if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { 157 Constant *Ops = C; // don't take the address of C! 158 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 159 } 160 161 // If this is a bitcast from constant vector -> vector, fold it. 162 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 163 return ConstantExpr::getBitCast(C, DestTy); 164 165 // If the element types match, IR can fold it. 166 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 167 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 168 if (NumDstElt == NumSrcElt) 169 return ConstantExpr::getBitCast(C, DestTy); 170 171 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 172 Type *DstEltTy = DestVTy->getElementType(); 173 174 // Otherwise, we're changing the number of elements in a vector, which 175 // requires endianness information to do the right thing. For example, 176 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 177 // folds to (little endian): 178 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 179 // and to (big endian): 180 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 181 182 // First thing is first. We only want to think about integer here, so if 183 // we have something in FP form, recast it as integer. 184 if (DstEltTy->isFloatingPointTy()) { 185 // Fold to an vector of integers with same size as our FP type. 186 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 187 auto *DestIVTy = FixedVectorType::get( 188 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 189 // Recursively handle this integer conversion, if possible. 190 C = FoldBitCast(C, DestIVTy, DL); 191 192 // Finally, IR can handle this now that #elts line up. 193 return ConstantExpr::getBitCast(C, DestTy); 194 } 195 196 // Okay, we know the destination is integer, if the input is FP, convert 197 // it to integer first. 198 if (SrcEltTy->isFloatingPointTy()) { 199 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 200 auto *SrcIVTy = FixedVectorType::get( 201 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 202 // Ask IR to do the conversion now that #elts line up. 203 C = ConstantExpr::getBitCast(C, SrcIVTy); 204 // If IR wasn't able to fold it, bail out. 205 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 206 !isa<ConstantDataVector>(C)) 207 return C; 208 } 209 210 // Now we know that the input and output vectors are both integer vectors 211 // of the same size, and that their #elements is not the same. Do the 212 // conversion here, which depends on whether the input or output has 213 // more elements. 214 bool isLittleEndian = DL.isLittleEndian(); 215 216 SmallVector<Constant*, 32> Result; 217 if (NumDstElt < NumSrcElt) { 218 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 219 Constant *Zero = Constant::getNullValue(DstEltTy); 220 unsigned Ratio = NumSrcElt/NumDstElt; 221 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 222 unsigned SrcElt = 0; 223 for (unsigned i = 0; i != NumDstElt; ++i) { 224 // Build each element of the result. 225 Constant *Elt = Zero; 226 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 227 for (unsigned j = 0; j != Ratio; ++j) { 228 Constant *Src = C->getAggregateElement(SrcElt++); 229 if (Src && isa<UndefValue>(Src)) 230 Src = Constant::getNullValue( 231 cast<VectorType>(C->getType())->getElementType()); 232 else 233 Src = dyn_cast_or_null<ConstantInt>(Src); 234 if (!Src) // Reject constantexpr elements. 235 return ConstantExpr::getBitCast(C, DestTy); 236 237 // Zero extend the element to the right size. 238 Src = ConstantExpr::getZExt(Src, Elt->getType()); 239 240 // Shift it to the right place, depending on endianness. 241 Src = ConstantExpr::getShl(Src, 242 ConstantInt::get(Src->getType(), ShiftAmt)); 243 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 244 245 // Mix it in. 246 Elt = ConstantExpr::getOr(Elt, Src); 247 } 248 Result.push_back(Elt); 249 } 250 return ConstantVector::get(Result); 251 } 252 253 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 254 unsigned Ratio = NumDstElt/NumSrcElt; 255 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 256 257 // Loop over each source value, expanding into multiple results. 258 for (unsigned i = 0; i != NumSrcElt; ++i) { 259 auto *Element = C->getAggregateElement(i); 260 261 if (!Element) // Reject constantexpr elements. 262 return ConstantExpr::getBitCast(C, DestTy); 263 264 if (isa<UndefValue>(Element)) { 265 // Correctly Propagate undef values. 266 Result.append(Ratio, UndefValue::get(DstEltTy)); 267 continue; 268 } 269 270 auto *Src = dyn_cast<ConstantInt>(Element); 271 if (!Src) 272 return ConstantExpr::getBitCast(C, DestTy); 273 274 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 275 for (unsigned j = 0; j != Ratio; ++j) { 276 // Shift the piece of the value into the right place, depending on 277 // endianness. 278 Constant *Elt = ConstantExpr::getLShr(Src, 279 ConstantInt::get(Src->getType(), ShiftAmt)); 280 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 281 282 // Truncate the element to an integer with the same pointer size and 283 // convert the element back to a pointer using a inttoptr. 284 if (DstEltTy->isPointerTy()) { 285 IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); 286 Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); 287 Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); 288 continue; 289 } 290 291 // Truncate and remember this piece. 292 Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); 293 } 294 } 295 296 return ConstantVector::get(Result); 297 } 298 299 } // end anonymous namespace 300 301 /// If this constant is a constant offset from a global, return the global and 302 /// the constant. Because of constantexprs, this function is recursive. 303 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 304 APInt &Offset, const DataLayout &DL, 305 DSOLocalEquivalent **DSOEquiv) { 306 if (DSOEquiv) 307 *DSOEquiv = nullptr; 308 309 // Trivial case, constant is the global. 310 if ((GV = dyn_cast<GlobalValue>(C))) { 311 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 312 Offset = APInt(BitWidth, 0); 313 return true; 314 } 315 316 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 317 if (DSOEquiv) 318 *DSOEquiv = FoundDSOEquiv; 319 GV = FoundDSOEquiv->getGlobalValue(); 320 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 321 Offset = APInt(BitWidth, 0); 322 return true; 323 } 324 325 // Otherwise, if this isn't a constant expr, bail out. 326 auto *CE = dyn_cast<ConstantExpr>(C); 327 if (!CE) return false; 328 329 // Look through ptr->int and ptr->ptr casts. 330 if (CE->getOpcode() == Instruction::PtrToInt || 331 CE->getOpcode() == Instruction::BitCast) 332 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 333 DSOEquiv); 334 335 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 336 auto *GEP = dyn_cast<GEPOperator>(CE); 337 if (!GEP) 338 return false; 339 340 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 341 APInt TmpOffset(BitWidth, 0); 342 343 // If the base isn't a global+constant, we aren't either. 344 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 345 DSOEquiv)) 346 return false; 347 348 // Otherwise, add any offset that our operands provide. 349 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 350 return false; 351 352 Offset = TmpOffset; 353 return true; 354 } 355 356 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 357 const DataLayout &DL) { 358 do { 359 Type *SrcTy = C->getType(); 360 uint64_t DestSize = DL.getTypeSizeInBits(DestTy); 361 uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy); 362 if (SrcSize < DestSize) 363 return nullptr; 364 365 // Catch the obvious splat cases (since all-zeros can coerce non-integral 366 // pointers legally). 367 if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy()) 368 return Constant::getNullValue(DestTy); 369 if (C->isAllOnesValue() && 370 (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() || 371 DestTy->isVectorTy()) && 372 !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() && 373 !DestTy->isPtrOrPtrVectorTy()) 374 // Get ones when the input is trivial, but 375 // only for supported types inside getAllOnesValue. 376 return Constant::getAllOnesValue(DestTy); 377 378 // If the type sizes are the same and a cast is legal, just directly 379 // cast the constant. 380 // But be careful not to coerce non-integral pointers illegally. 381 if (SrcSize == DestSize && 382 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 383 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 384 Instruction::CastOps Cast = Instruction::BitCast; 385 // If we are going from a pointer to int or vice versa, we spell the cast 386 // differently. 387 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 388 Cast = Instruction::IntToPtr; 389 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 390 Cast = Instruction::PtrToInt; 391 392 if (CastInst::castIsValid(Cast, C, DestTy)) 393 return ConstantExpr::getCast(Cast, C, DestTy); 394 } 395 396 // If this isn't an aggregate type, there is nothing we can do to drill down 397 // and find a bitcastable constant. 398 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 399 return nullptr; 400 401 // We're simulating a load through a pointer that was bitcast to point to 402 // a different type, so we can try to walk down through the initial 403 // elements of an aggregate to see if some part of the aggregate is 404 // castable to implement the "load" semantic model. 405 if (SrcTy->isStructTy()) { 406 // Struct types might have leading zero-length elements like [0 x i32], 407 // which are certainly not what we are looking for, so skip them. 408 unsigned Elem = 0; 409 Constant *ElemC; 410 do { 411 ElemC = C->getAggregateElement(Elem++); 412 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 413 C = ElemC; 414 } else { 415 C = C->getAggregateElement(0u); 416 } 417 } while (C); 418 419 return nullptr; 420 } 421 422 namespace { 423 424 /// Recursive helper to read bits out of global. C is the constant being copied 425 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 426 /// results into and BytesLeft is the number of bytes left in 427 /// the CurPtr buffer. DL is the DataLayout. 428 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 429 unsigned BytesLeft, const DataLayout &DL) { 430 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 431 "Out of range access"); 432 433 // If this element is zero or undefined, we can just return since *CurPtr is 434 // zero initialized. 435 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 436 return true; 437 438 if (auto *CI = dyn_cast<ConstantInt>(C)) { 439 if (CI->getBitWidth() > 64 || 440 (CI->getBitWidth() & 7) != 0) 441 return false; 442 443 uint64_t Val = CI->getZExtValue(); 444 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 445 446 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 447 int n = ByteOffset; 448 if (!DL.isLittleEndian()) 449 n = IntBytes - n - 1; 450 CurPtr[i] = (unsigned char)(Val >> (n * 8)); 451 ++ByteOffset; 452 } 453 return true; 454 } 455 456 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 457 if (CFP->getType()->isDoubleTy()) { 458 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 459 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 460 } 461 if (CFP->getType()->isFloatTy()){ 462 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 463 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 464 } 465 if (CFP->getType()->isHalfTy()){ 466 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 467 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 468 } 469 return false; 470 } 471 472 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 473 const StructLayout *SL = DL.getStructLayout(CS->getType()); 474 unsigned Index = SL->getElementContainingOffset(ByteOffset); 475 uint64_t CurEltOffset = SL->getElementOffset(Index); 476 ByteOffset -= CurEltOffset; 477 478 while (true) { 479 // If the element access is to the element itself and not to tail padding, 480 // read the bytes from the element. 481 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 482 483 if (ByteOffset < EltSize && 484 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 485 BytesLeft, DL)) 486 return false; 487 488 ++Index; 489 490 // Check to see if we read from the last struct element, if so we're done. 491 if (Index == CS->getType()->getNumElements()) 492 return true; 493 494 // If we read all of the bytes we needed from this element we're done. 495 uint64_t NextEltOffset = SL->getElementOffset(Index); 496 497 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 498 return true; 499 500 // Move to the next element of the struct. 501 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 502 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 503 ByteOffset = 0; 504 CurEltOffset = NextEltOffset; 505 } 506 // not reached. 507 } 508 509 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 510 isa<ConstantDataSequential>(C)) { 511 uint64_t NumElts; 512 Type *EltTy; 513 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 514 NumElts = AT->getNumElements(); 515 EltTy = AT->getElementType(); 516 } else { 517 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 518 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 519 } 520 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 521 uint64_t Index = ByteOffset / EltSize; 522 uint64_t Offset = ByteOffset - Index * EltSize; 523 524 for (; Index != NumElts; ++Index) { 525 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 526 BytesLeft, DL)) 527 return false; 528 529 uint64_t BytesWritten = EltSize - Offset; 530 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 531 if (BytesWritten >= BytesLeft) 532 return true; 533 534 Offset = 0; 535 BytesLeft -= BytesWritten; 536 CurPtr += BytesWritten; 537 } 538 return true; 539 } 540 541 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 542 if (CE->getOpcode() == Instruction::IntToPtr && 543 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 544 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 545 BytesLeft, DL); 546 } 547 } 548 549 // Otherwise, unknown initializer type. 550 return false; 551 } 552 553 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, 554 const DataLayout &DL) { 555 // Bail out early. Not expect to load from scalable global variable. 556 if (isa<ScalableVectorType>(LoadTy)) 557 return nullptr; 558 559 auto *PTy = cast<PointerType>(C->getType()); 560 auto *IntType = dyn_cast<IntegerType>(LoadTy); 561 562 // If this isn't an integer load we can't fold it directly. 563 if (!IntType) { 564 unsigned AS = PTy->getAddressSpace(); 565 566 // If this is a float/double load, we can try folding it as an int32/64 load 567 // and then bitcast the result. This can be useful for union cases. Note 568 // that address spaces don't matter here since we're not going to result in 569 // an actual new load. 570 Type *MapTy; 571 if (LoadTy->isHalfTy()) 572 MapTy = Type::getInt16Ty(C->getContext()); 573 else if (LoadTy->isFloatTy()) 574 MapTy = Type::getInt32Ty(C->getContext()); 575 else if (LoadTy->isDoubleTy()) 576 MapTy = Type::getInt64Ty(C->getContext()); 577 else if (LoadTy->isVectorTy()) { 578 MapTy = PointerType::getIntNTy( 579 C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize()); 580 } else 581 return nullptr; 582 583 C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); 584 if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) { 585 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 586 !LoadTy->isX86_AMXTy()) 587 // Materializing a zero can be done trivially without a bitcast 588 return Constant::getNullValue(LoadTy); 589 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 590 Res = FoldBitCast(Res, CastTy, DL); 591 if (LoadTy->isPtrOrPtrVectorTy()) { 592 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 593 if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && 594 !LoadTy->isX86_AMXTy()) 595 return Constant::getNullValue(LoadTy); 596 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 597 // Be careful not to replace a load of an addrspace value with an inttoptr here 598 return nullptr; 599 Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy); 600 } 601 return Res; 602 } 603 return nullptr; 604 } 605 606 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 607 if (BytesLoaded > 32 || BytesLoaded == 0) 608 return nullptr; 609 610 GlobalValue *GVal; 611 APInt OffsetAI; 612 if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) 613 return nullptr; 614 615 auto *GV = dyn_cast<GlobalVariable>(GVal); 616 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 617 !GV->getInitializer()->getType()->isSized()) 618 return nullptr; 619 620 int64_t Offset = OffsetAI.getSExtValue(); 621 int64_t InitializerSize = 622 DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize(); 623 624 // If we're not accessing anything in this constant, the result is undefined. 625 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 626 return UndefValue::get(IntType); 627 628 // If we're not accessing anything in this constant, the result is undefined. 629 if (Offset >= InitializerSize) 630 return UndefValue::get(IntType); 631 632 unsigned char RawBytes[32] = {0}; 633 unsigned char *CurPtr = RawBytes; 634 unsigned BytesLeft = BytesLoaded; 635 636 // If we're loading off the beginning of the global, some bytes may be valid. 637 if (Offset < 0) { 638 CurPtr += -Offset; 639 BytesLeft += Offset; 640 Offset = 0; 641 } 642 643 if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) 644 return nullptr; 645 646 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 647 if (DL.isLittleEndian()) { 648 ResultVal = RawBytes[BytesLoaded - 1]; 649 for (unsigned i = 1; i != BytesLoaded; ++i) { 650 ResultVal <<= 8; 651 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 652 } 653 } else { 654 ResultVal = RawBytes[0]; 655 for (unsigned i = 1; i != BytesLoaded; ++i) { 656 ResultVal <<= 8; 657 ResultVal |= RawBytes[i]; 658 } 659 } 660 661 return ConstantInt::get(IntType->getContext(), ResultVal); 662 } 663 664 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, 665 const DataLayout &DL) { 666 auto *SrcPtr = CE->getOperand(0); 667 if (!SrcPtr->getType()->isPointerTy()) 668 return nullptr; 669 670 return ConstantFoldLoadFromConstPtr(SrcPtr, DestTy, DL); 671 } 672 673 } // end anonymous namespace 674 675 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 676 const DataLayout &DL) { 677 // First, try the easy cases: 678 if (auto *GV = dyn_cast<GlobalVariable>(C)) 679 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 680 return ConstantFoldLoadThroughBitcast(GV->getInitializer(), Ty, DL); 681 682 if (auto *GA = dyn_cast<GlobalAlias>(C)) 683 if (GA->getAliasee() && !GA->isInterposable()) 684 return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); 685 686 // If the loaded value isn't a constant expr, we can't handle it. 687 auto *CE = dyn_cast<ConstantExpr>(C); 688 if (!CE) 689 return nullptr; 690 691 if (CE->getOpcode() == Instruction::GetElementPtr) { 692 if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { 693 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 694 if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr( 695 GV->getInitializer(), CE, Ty, DL)) 696 return V; 697 } 698 } else { 699 // Try to simplify GEP if the pointer operand wasn't a GlobalVariable. 700 // SymbolicallyEvaluateGEP() with `ForLoadOperand = true` can potentially 701 // simplify the GEP more than it normally would have been, but should only 702 // be used for const folding loads. 703 SmallVector<Constant *> Ops; 704 for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I) 705 Ops.push_back(cast<Constant>(CE->getOperand(I))); 706 if (auto *Simplified = dyn_cast_or_null<ConstantExpr>( 707 SymbolicallyEvaluateGEP(cast<GEPOperator>(CE), Ops, DL, nullptr, 708 /*ForLoadOperand*/ true))) { 709 // If the symbolically evaluated GEP is another GEP, we can only const 710 // fold it if the resulting pointer operand is a GlobalValue. Otherwise 711 // there is nothing else to simplify since the GEP is already in the 712 // most simplified form. 713 if (isa<GEPOperator>(Simplified)) { 714 if (auto *GV = dyn_cast<GlobalVariable>(Simplified->getOperand(0))) { 715 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 716 if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr( 717 GV->getInitializer(), Simplified, Ty, DL)) 718 return V; 719 } 720 } 721 } else { 722 return ConstantFoldLoadFromConstPtr(Simplified, Ty, DL); 723 } 724 } 725 } 726 } 727 728 if (CE->getOpcode() == Instruction::BitCast) 729 if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) 730 return LoadedC; 731 732 // Instead of loading constant c string, use corresponding integer value 733 // directly if string length is small enough. 734 StringRef Str; 735 if (getConstantStringInfo(CE, Str) && !Str.empty()) { 736 size_t StrLen = Str.size(); 737 unsigned NumBits = Ty->getPrimitiveSizeInBits(); 738 // Replace load with immediate integer if the result is an integer or fp 739 // value. 740 if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && 741 (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { 742 APInt StrVal(NumBits, 0); 743 APInt SingleChar(NumBits, 0); 744 if (DL.isLittleEndian()) { 745 for (unsigned char C : reverse(Str.bytes())) { 746 SingleChar = static_cast<uint64_t>(C); 747 StrVal = (StrVal << 8) | SingleChar; 748 } 749 } else { 750 for (unsigned char C : Str.bytes()) { 751 SingleChar = static_cast<uint64_t>(C); 752 StrVal = (StrVal << 8) | SingleChar; 753 } 754 // Append NULL at the end. 755 SingleChar = 0; 756 StrVal = (StrVal << 8) | SingleChar; 757 } 758 759 Constant *Res = ConstantInt::get(CE->getContext(), StrVal); 760 if (Ty->isFloatingPointTy()) 761 Res = ConstantExpr::getBitCast(Res, Ty); 762 return Res; 763 } 764 } 765 766 // If this load comes from anywhere in a constant global, and if the global 767 // is all undef or zero, we know what it loads. 768 if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) { 769 if (GV->isConstant() && GV->hasDefinitiveInitializer()) { 770 if (GV->getInitializer()->isNullValue()) 771 return Constant::getNullValue(Ty); 772 if (isa<UndefValue>(GV->getInitializer())) 773 return UndefValue::get(Ty); 774 } 775 } 776 777 // Try hard to fold loads from bitcasted strange and non-type-safe things. 778 return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); 779 } 780 781 namespace { 782 783 /// One of Op0/Op1 is a constant expression. 784 /// Attempt to symbolically evaluate the result of a binary operator merging 785 /// these together. If target data info is available, it is provided as DL, 786 /// otherwise DL is null. 787 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 788 const DataLayout &DL) { 789 // SROA 790 791 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 792 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 793 // bits. 794 795 if (Opc == Instruction::And) { 796 KnownBits Known0 = computeKnownBits(Op0, DL); 797 KnownBits Known1 = computeKnownBits(Op1, DL); 798 if ((Known1.One | Known0.Zero).isAllOnesValue()) { 799 // All the bits of Op0 that the 'and' could be masking are already zero. 800 return Op0; 801 } 802 if ((Known0.One | Known1.Zero).isAllOnesValue()) { 803 // All the bits of Op1 that the 'and' could be masking are already zero. 804 return Op1; 805 } 806 807 Known0 &= Known1; 808 if (Known0.isConstant()) 809 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 810 } 811 812 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 813 // constant. This happens frequently when iterating over a global array. 814 if (Opc == Instruction::Sub) { 815 GlobalValue *GV1, *GV2; 816 APInt Offs1, Offs2; 817 818 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 819 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 820 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 821 822 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 823 // PtrToInt may change the bitwidth so we have convert to the right size 824 // first. 825 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 826 Offs2.zextOrTrunc(OpSize)); 827 } 828 } 829 830 return nullptr; 831 } 832 833 /// If array indices are not pointer-sized integers, explicitly cast them so 834 /// that they aren't implicitly casted by the getelementptr. 835 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 836 Type *ResultTy, Optional<unsigned> InRangeIndex, 837 const DataLayout &DL, const TargetLibraryInfo *TLI) { 838 Type *IntIdxTy = DL.getIndexType(ResultTy); 839 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 840 841 bool Any = false; 842 SmallVector<Constant*, 32> NewIdxs; 843 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 844 if ((i == 1 || 845 !isa<StructType>(GetElementPtrInst::getIndexedType( 846 SrcElemTy, Ops.slice(1, i - 1)))) && 847 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 848 Any = true; 849 Type *NewType = Ops[i]->getType()->isVectorTy() 850 ? IntIdxTy 851 : IntIdxScalarTy; 852 NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], 853 true, 854 NewType, 855 true), 856 Ops[i], NewType)); 857 } else 858 NewIdxs.push_back(Ops[i]); 859 } 860 861 if (!Any) 862 return nullptr; 863 864 Constant *C = ConstantExpr::getGetElementPtr( 865 SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); 866 return ConstantFoldConstant(C, DL, TLI); 867 } 868 869 /// Strip the pointer casts, but preserve the address space information. 870 Constant *StripPtrCastKeepAS(Constant *Ptr, bool ForLoadOperand) { 871 assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); 872 auto *OldPtrTy = cast<PointerType>(Ptr->getType()); 873 Ptr = cast<Constant>(Ptr->stripPointerCasts()); 874 if (ForLoadOperand) { 875 while (isa<GlobalAlias>(Ptr) && !cast<GlobalAlias>(Ptr)->isInterposable() && 876 !cast<GlobalAlias>(Ptr)->getBaseObject()->isInterposable()) { 877 Ptr = cast<GlobalAlias>(Ptr)->getAliasee(); 878 } 879 } 880 881 auto *NewPtrTy = cast<PointerType>(Ptr->getType()); 882 883 // Preserve the address space number of the pointer. 884 if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { 885 Ptr = ConstantExpr::getPointerCast( 886 Ptr, PointerType::getWithSamePointeeType(NewPtrTy, 887 OldPtrTy->getAddressSpace())); 888 } 889 return Ptr; 890 } 891 892 /// If we can symbolically evaluate the GEP constant expression, do so. 893 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 894 ArrayRef<Constant *> Ops, 895 const DataLayout &DL, 896 const TargetLibraryInfo *TLI, 897 bool ForLoadOperand) { 898 const GEPOperator *InnermostGEP = GEP; 899 bool InBounds = GEP->isInBounds(); 900 901 Type *SrcElemTy = GEP->getSourceElementType(); 902 Type *ResElemTy = GEP->getResultElementType(); 903 Type *ResTy = GEP->getType(); 904 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 905 return nullptr; 906 907 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, 908 GEP->getInRangeIndex(), DL, TLI)) 909 return C; 910 911 Constant *Ptr = Ops[0]; 912 if (!Ptr->getType()->isPointerTy()) 913 return nullptr; 914 915 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 916 917 // If this is "gep i8* Ptr, (sub 0, V)", fold this as: 918 // "inttoptr (sub (ptrtoint Ptr), V)" 919 if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { 920 auto *CE = dyn_cast<ConstantExpr>(Ops[1]); 921 assert((!CE || CE->getType() == IntIdxTy) && 922 "CastGEPIndices didn't canonicalize index types!"); 923 if (CE && CE->getOpcode() == Instruction::Sub && 924 CE->getOperand(0)->isNullValue()) { 925 Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); 926 Res = ConstantExpr::getSub(Res, CE->getOperand(1)); 927 Res = ConstantExpr::getIntToPtr(Res, ResTy); 928 return ConstantFoldConstant(Res, DL, TLI); 929 } 930 } 931 932 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 933 if (!isa<ConstantInt>(Ops[i])) 934 return nullptr; 935 936 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 937 APInt Offset = 938 APInt(BitWidth, 939 DL.getIndexedOffsetInType( 940 SrcElemTy, 941 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); 942 Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand); 943 944 // If this is a GEP of a GEP, fold it all into a single GEP. 945 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 946 InnermostGEP = GEP; 947 InBounds &= GEP->isInBounds(); 948 949 SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); 950 951 // Do not try the incorporate the sub-GEP if some index is not a number. 952 bool AllConstantInt = true; 953 for (Value *NestedOp : NestedOps) 954 if (!isa<ConstantInt>(NestedOp)) { 955 AllConstantInt = false; 956 break; 957 } 958 if (!AllConstantInt) 959 break; 960 961 Ptr = cast<Constant>(GEP->getOperand(0)); 962 SrcElemTy = GEP->getSourceElementType(); 963 Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); 964 Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand); 965 } 966 967 // If the base value for this address is a literal integer value, fold the 968 // getelementptr to the resulting integer value casted to the pointer type. 969 APInt BasePtr(BitWidth, 0); 970 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 971 if (CE->getOpcode() == Instruction::IntToPtr) { 972 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 973 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 974 } 975 } 976 977 auto *PTy = cast<PointerType>(Ptr->getType()); 978 if ((Ptr->isNullValue() || BasePtr != 0) && 979 !DL.isNonIntegralPointerType(PTy)) { 980 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 981 return ConstantExpr::getIntToPtr(C, ResTy); 982 } 983 984 // Otherwise form a regular getelementptr. Recompute the indices so that 985 // we eliminate over-indexing of the notional static type array bounds. 986 // This makes it easy to determine if the getelementptr is "inbounds". 987 // Also, this helps GlobalOpt do SROA on GlobalVariables. 988 989 // For GEPs of GlobalValues, use the value type even for opaque pointers. 990 // Otherwise use an i8 GEP. 991 if (auto *GV = dyn_cast<GlobalValue>(Ptr)) 992 SrcElemTy = GV->getValueType(); 993 else if (!PTy->isOpaque()) 994 SrcElemTy = PTy->getElementType(); 995 else 996 SrcElemTy = Type::getInt8Ty(Ptr->getContext()); 997 998 if (!SrcElemTy->isSized()) 999 return nullptr; 1000 1001 Type *ElemTy = SrcElemTy; 1002 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 1003 if (Offset != 0) 1004 return nullptr; 1005 1006 // Try to add additional zero indices to reach the desired result element 1007 // type. 1008 // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and 1009 // we'll have to insert a bitcast anyway? 1010 while (ElemTy != ResElemTy) { 1011 Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); 1012 if (!NextTy) 1013 break; 1014 1015 Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); 1016 ElemTy = NextTy; 1017 } 1018 1019 SmallVector<Constant *, 32> NewIdxs; 1020 for (const APInt &Index : Indices) 1021 NewIdxs.push_back(ConstantInt::get( 1022 Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); 1023 1024 // Preserve the inrange index from the innermost GEP if possible. We must 1025 // have calculated the same indices up to and including the inrange index. 1026 Optional<unsigned> InRangeIndex; 1027 if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) 1028 if (SrcElemTy == InnermostGEP->getSourceElementType() && 1029 NewIdxs.size() > *LastIRIndex) { 1030 InRangeIndex = LastIRIndex; 1031 for (unsigned I = 0; I <= *LastIRIndex; ++I) 1032 if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) 1033 return nullptr; 1034 } 1035 1036 // Create a GEP. 1037 Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, 1038 InBounds, InRangeIndex); 1039 assert( 1040 cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) && 1041 "Computed GetElementPtr has unexpected type!"); 1042 1043 // If we ended up indexing a member with a type that doesn't match 1044 // the type of what the original indices indexed, add a cast. 1045 if (C->getType() != ResTy) 1046 C = FoldBitCast(C, ResTy, DL); 1047 1048 return C; 1049 } 1050 1051 /// Attempt to constant fold an instruction with the 1052 /// specified opcode and operands. If successful, the constant result is 1053 /// returned, if not, null is returned. Note that this function can fail when 1054 /// attempting to fold instructions like loads and stores, which have no 1055 /// constant expression form. 1056 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 1057 ArrayRef<Constant *> Ops, 1058 const DataLayout &DL, 1059 const TargetLibraryInfo *TLI) { 1060 Type *DestTy = InstOrCE->getType(); 1061 1062 if (Instruction::isUnaryOp(Opcode)) 1063 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 1064 1065 if (Instruction::isBinaryOp(Opcode)) 1066 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1067 1068 if (Instruction::isCast(Opcode)) 1069 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1070 1071 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1072 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI, 1073 /*ForLoadOperand*/ false)) 1074 return C; 1075 1076 return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], 1077 Ops.slice(1), GEP->isInBounds(), 1078 GEP->getInRangeIndex()); 1079 } 1080 1081 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1082 return CE->getWithOperands(Ops); 1083 1084 switch (Opcode) { 1085 default: return nullptr; 1086 case Instruction::ICmp: 1087 case Instruction::FCmp: llvm_unreachable("Invalid for compares"); 1088 case Instruction::Freeze: 1089 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1090 case Instruction::Call: 1091 if (auto *F = dyn_cast<Function>(Ops.back())) { 1092 const auto *Call = cast<CallBase>(InstOrCE); 1093 if (canConstantFoldCallTo(Call, F)) 1094 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); 1095 } 1096 return nullptr; 1097 case Instruction::Select: 1098 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); 1099 case Instruction::ExtractElement: 1100 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1101 case Instruction::ExtractValue: 1102 return ConstantExpr::getExtractValue( 1103 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1104 case Instruction::InsertElement: 1105 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1106 case Instruction::ShuffleVector: 1107 return ConstantExpr::getShuffleVector( 1108 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1109 } 1110 } 1111 1112 } // end anonymous namespace 1113 1114 //===----------------------------------------------------------------------===// 1115 // Constant Folding public APIs 1116 //===----------------------------------------------------------------------===// 1117 1118 namespace { 1119 1120 Constant * 1121 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1122 const TargetLibraryInfo *TLI, 1123 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1124 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1125 return const_cast<Constant *>(C); 1126 1127 SmallVector<Constant *, 8> Ops; 1128 for (const Use &OldU : C->operands()) { 1129 Constant *OldC = cast<Constant>(&OldU); 1130 Constant *NewC = OldC; 1131 // Recursively fold the ConstantExpr's operands. If we have already folded 1132 // a ConstantExpr, we don't have to process it again. 1133 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1134 auto It = FoldedOps.find(OldC); 1135 if (It == FoldedOps.end()) { 1136 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1137 FoldedOps.insert({OldC, NewC}); 1138 } else { 1139 NewC = It->second; 1140 } 1141 } 1142 Ops.push_back(NewC); 1143 } 1144 1145 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1146 if (CE->isCompare()) 1147 return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], 1148 DL, TLI); 1149 1150 return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); 1151 } 1152 1153 assert(isa<ConstantVector>(C)); 1154 return ConstantVector::get(Ops); 1155 } 1156 1157 } // end anonymous namespace 1158 1159 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1160 const TargetLibraryInfo *TLI) { 1161 // Handle PHI nodes quickly here... 1162 if (auto *PN = dyn_cast<PHINode>(I)) { 1163 Constant *CommonValue = nullptr; 1164 1165 SmallDenseMap<Constant *, Constant *> FoldedOps; 1166 for (Value *Incoming : PN->incoming_values()) { 1167 // If the incoming value is undef then skip it. Note that while we could 1168 // skip the value if it is equal to the phi node itself we choose not to 1169 // because that would break the rule that constant folding only applies if 1170 // all operands are constants. 1171 if (isa<UndefValue>(Incoming)) 1172 continue; 1173 // If the incoming value is not a constant, then give up. 1174 auto *C = dyn_cast<Constant>(Incoming); 1175 if (!C) 1176 return nullptr; 1177 // Fold the PHI's operands. 1178 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1179 // If the incoming value is a different constant to 1180 // the one we saw previously, then give up. 1181 if (CommonValue && C != CommonValue) 1182 return nullptr; 1183 CommonValue = C; 1184 } 1185 1186 // If we reach here, all incoming values are the same constant or undef. 1187 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1188 } 1189 1190 // Scan the operand list, checking to see if they are all constants, if so, 1191 // hand off to ConstantFoldInstOperandsImpl. 1192 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1193 return nullptr; 1194 1195 SmallDenseMap<Constant *, Constant *> FoldedOps; 1196 SmallVector<Constant *, 8> Ops; 1197 for (const Use &OpU : I->operands()) { 1198 auto *Op = cast<Constant>(&OpU); 1199 // Fold the Instruction's operands. 1200 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1201 Ops.push_back(Op); 1202 } 1203 1204 if (const auto *CI = dyn_cast<CmpInst>(I)) 1205 return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], 1206 DL, TLI); 1207 1208 if (const auto *LI = dyn_cast<LoadInst>(I)) { 1209 if (LI->isVolatile()) 1210 return nullptr; 1211 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1212 } 1213 1214 if (auto *IVI = dyn_cast<InsertValueInst>(I)) 1215 return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices()); 1216 1217 if (auto *EVI = dyn_cast<ExtractValueInst>(I)) 1218 return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices()); 1219 1220 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1221 } 1222 1223 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1224 const TargetLibraryInfo *TLI) { 1225 SmallDenseMap<Constant *, Constant *> FoldedOps; 1226 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1227 } 1228 1229 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1230 ArrayRef<Constant *> Ops, 1231 const DataLayout &DL, 1232 const TargetLibraryInfo *TLI) { 1233 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); 1234 } 1235 1236 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, 1237 Constant *Ops0, Constant *Ops1, 1238 const DataLayout &DL, 1239 const TargetLibraryInfo *TLI) { 1240 // fold: icmp (inttoptr x), null -> icmp x, 0 1241 // fold: icmp null, (inttoptr x) -> icmp 0, x 1242 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1243 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1244 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1245 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1246 // 1247 // FIXME: The following comment is out of data and the DataLayout is here now. 1248 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1249 // around to know if bit truncation is happening. 1250 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1251 if (Ops1->isNullValue()) { 1252 if (CE0->getOpcode() == Instruction::IntToPtr) { 1253 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1254 // Convert the integer value to the right size to ensure we get the 1255 // proper extension or truncation. 1256 Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1257 IntPtrTy, false); 1258 Constant *Null = Constant::getNullValue(C->getType()); 1259 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1260 } 1261 1262 // Only do this transformation if the int is intptrty in size, otherwise 1263 // there is a truncation or extension that we aren't modeling. 1264 if (CE0->getOpcode() == Instruction::PtrToInt) { 1265 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1266 if (CE0->getType() == IntPtrTy) { 1267 Constant *C = CE0->getOperand(0); 1268 Constant *Null = Constant::getNullValue(C->getType()); 1269 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1270 } 1271 } 1272 } 1273 1274 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1275 if (CE0->getOpcode() == CE1->getOpcode()) { 1276 if (CE0->getOpcode() == Instruction::IntToPtr) { 1277 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1278 1279 // Convert the integer value to the right size to ensure we get the 1280 // proper extension or truncation. 1281 Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), 1282 IntPtrTy, false); 1283 Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), 1284 IntPtrTy, false); 1285 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1286 } 1287 1288 // Only do this transformation if the int is intptrty in size, otherwise 1289 // there is a truncation or extension that we aren't modeling. 1290 if (CE0->getOpcode() == Instruction::PtrToInt) { 1291 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1292 if (CE0->getType() == IntPtrTy && 1293 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1294 return ConstantFoldCompareInstOperands( 1295 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1296 } 1297 } 1298 } 1299 } 1300 1301 // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) 1302 // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) 1303 if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && 1304 CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { 1305 Constant *LHS = ConstantFoldCompareInstOperands( 1306 Predicate, CE0->getOperand(0), Ops1, DL, TLI); 1307 Constant *RHS = ConstantFoldCompareInstOperands( 1308 Predicate, CE0->getOperand(1), Ops1, DL, TLI); 1309 unsigned OpC = 1310 Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; 1311 return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); 1312 } 1313 } else if (isa<ConstantExpr>(Ops1)) { 1314 // If RHS is a constant expression, but the left side isn't, swap the 1315 // operands and try again. 1316 Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); 1317 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1318 } 1319 1320 return ConstantExpr::getCompare(Predicate, Ops0, Ops1); 1321 } 1322 1323 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1324 const DataLayout &DL) { 1325 assert(Instruction::isUnaryOp(Opcode)); 1326 1327 return ConstantExpr::get(Opcode, Op); 1328 } 1329 1330 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1331 Constant *RHS, 1332 const DataLayout &DL) { 1333 assert(Instruction::isBinaryOp(Opcode)); 1334 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1335 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1336 return C; 1337 1338 return ConstantExpr::get(Opcode, LHS, RHS); 1339 } 1340 1341 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1342 Type *DestTy, const DataLayout &DL) { 1343 assert(Instruction::isCast(Opcode)); 1344 switch (Opcode) { 1345 default: 1346 llvm_unreachable("Missing case"); 1347 case Instruction::PtrToInt: 1348 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1349 Constant *FoldedValue = nullptr; 1350 // If the input is a inttoptr, eliminate the pair. This requires knowing 1351 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1352 if (CE->getOpcode() == Instruction::IntToPtr) { 1353 // zext/trunc the inttoptr to pointer size. 1354 FoldedValue = ConstantExpr::getIntegerCast( 1355 CE->getOperand(0), DL.getIntPtrType(CE->getType()), 1356 /*IsSigned=*/false); 1357 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1358 // If we have GEP, we can perform the following folds: 1359 // (ptrtoint (gep null, x)) -> x 1360 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1361 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1362 APInt BaseOffset(BitWidth, 0); 1363 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1364 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1365 if (Base->isNullValue()) { 1366 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1367 } 1368 } 1369 if (FoldedValue) { 1370 // Do a zext or trunc to get to the ptrtoint dest size. 1371 return ConstantExpr::getIntegerCast(FoldedValue, DestTy, 1372 /*IsSigned=*/false); 1373 } 1374 } 1375 return ConstantExpr::getCast(Opcode, C, DestTy); 1376 case Instruction::IntToPtr: 1377 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1378 // the int size is >= the ptr size and the address spaces are the same. 1379 // This requires knowing the width of a pointer, so it can't be done in 1380 // ConstantExpr::getCast. 1381 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1382 if (CE->getOpcode() == Instruction::PtrToInt) { 1383 Constant *SrcPtr = CE->getOperand(0); 1384 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1385 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1386 1387 if (MidIntSize >= SrcPtrSize) { 1388 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1389 if (SrcAS == DestTy->getPointerAddressSpace()) 1390 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1391 } 1392 } 1393 } 1394 1395 return ConstantExpr::getCast(Opcode, C, DestTy); 1396 case Instruction::Trunc: 1397 case Instruction::ZExt: 1398 case Instruction::SExt: 1399 case Instruction::FPTrunc: 1400 case Instruction::FPExt: 1401 case Instruction::UIToFP: 1402 case Instruction::SIToFP: 1403 case Instruction::FPToUI: 1404 case Instruction::FPToSI: 1405 case Instruction::AddrSpaceCast: 1406 return ConstantExpr::getCast(Opcode, C, DestTy); 1407 case Instruction::BitCast: 1408 return FoldBitCast(C, DestTy, DL); 1409 } 1410 } 1411 1412 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, 1413 ConstantExpr *CE, 1414 Type *Ty, 1415 const DataLayout &DL) { 1416 if (!CE->getOperand(1)->isNullValue()) 1417 return nullptr; // Do not allow stepping over the value! 1418 1419 // Loop over all of the operands, tracking down which value we are 1420 // addressing. 1421 for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { 1422 C = C->getAggregateElement(CE->getOperand(i)); 1423 if (!C) 1424 return nullptr; 1425 } 1426 return ConstantFoldLoadThroughBitcast(C, Ty, DL); 1427 } 1428 1429 Constant * 1430 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, 1431 ArrayRef<Constant *> Indices) { 1432 // Loop over all of the operands, tracking down which value we are 1433 // addressing. 1434 for (Constant *Index : Indices) { 1435 C = C->getAggregateElement(Index); 1436 if (!C) 1437 return nullptr; 1438 } 1439 return C; 1440 } 1441 1442 //===----------------------------------------------------------------------===// 1443 // Constant Folding for Calls 1444 // 1445 1446 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1447 if (Call->isNoBuiltin()) 1448 return false; 1449 switch (F->getIntrinsicID()) { 1450 // Operations that do not operate floating-point numbers and do not depend on 1451 // FP environment can be folded even in strictfp functions. 1452 case Intrinsic::bswap: 1453 case Intrinsic::ctpop: 1454 case Intrinsic::ctlz: 1455 case Intrinsic::cttz: 1456 case Intrinsic::fshl: 1457 case Intrinsic::fshr: 1458 case Intrinsic::launder_invariant_group: 1459 case Intrinsic::strip_invariant_group: 1460 case Intrinsic::masked_load: 1461 case Intrinsic::get_active_lane_mask: 1462 case Intrinsic::abs: 1463 case Intrinsic::smax: 1464 case Intrinsic::smin: 1465 case Intrinsic::umax: 1466 case Intrinsic::umin: 1467 case Intrinsic::sadd_with_overflow: 1468 case Intrinsic::uadd_with_overflow: 1469 case Intrinsic::ssub_with_overflow: 1470 case Intrinsic::usub_with_overflow: 1471 case Intrinsic::smul_with_overflow: 1472 case Intrinsic::umul_with_overflow: 1473 case Intrinsic::sadd_sat: 1474 case Intrinsic::uadd_sat: 1475 case Intrinsic::ssub_sat: 1476 case Intrinsic::usub_sat: 1477 case Intrinsic::smul_fix: 1478 case Intrinsic::smul_fix_sat: 1479 case Intrinsic::bitreverse: 1480 case Intrinsic::is_constant: 1481 case Intrinsic::vector_reduce_add: 1482 case Intrinsic::vector_reduce_mul: 1483 case Intrinsic::vector_reduce_and: 1484 case Intrinsic::vector_reduce_or: 1485 case Intrinsic::vector_reduce_xor: 1486 case Intrinsic::vector_reduce_smin: 1487 case Intrinsic::vector_reduce_smax: 1488 case Intrinsic::vector_reduce_umin: 1489 case Intrinsic::vector_reduce_umax: 1490 // Target intrinsics 1491 case Intrinsic::amdgcn_perm: 1492 case Intrinsic::arm_mve_vctp8: 1493 case Intrinsic::arm_mve_vctp16: 1494 case Intrinsic::arm_mve_vctp32: 1495 case Intrinsic::arm_mve_vctp64: 1496 case Intrinsic::aarch64_sve_convert_from_svbool: 1497 // WebAssembly float semantics are always known 1498 case Intrinsic::wasm_trunc_signed: 1499 case Intrinsic::wasm_trunc_unsigned: 1500 return true; 1501 1502 // Floating point operations cannot be folded in strictfp functions in 1503 // general case. They can be folded if FP environment is known to compiler. 1504 case Intrinsic::minnum: 1505 case Intrinsic::maxnum: 1506 case Intrinsic::minimum: 1507 case Intrinsic::maximum: 1508 case Intrinsic::log: 1509 case Intrinsic::log2: 1510 case Intrinsic::log10: 1511 case Intrinsic::exp: 1512 case Intrinsic::exp2: 1513 case Intrinsic::sqrt: 1514 case Intrinsic::sin: 1515 case Intrinsic::cos: 1516 case Intrinsic::pow: 1517 case Intrinsic::powi: 1518 case Intrinsic::fma: 1519 case Intrinsic::fmuladd: 1520 case Intrinsic::fptoui_sat: 1521 case Intrinsic::fptosi_sat: 1522 case Intrinsic::convert_from_fp16: 1523 case Intrinsic::convert_to_fp16: 1524 case Intrinsic::amdgcn_cos: 1525 case Intrinsic::amdgcn_cubeid: 1526 case Intrinsic::amdgcn_cubema: 1527 case Intrinsic::amdgcn_cubesc: 1528 case Intrinsic::amdgcn_cubetc: 1529 case Intrinsic::amdgcn_fmul_legacy: 1530 case Intrinsic::amdgcn_fma_legacy: 1531 case Intrinsic::amdgcn_fract: 1532 case Intrinsic::amdgcn_ldexp: 1533 case Intrinsic::amdgcn_sin: 1534 // The intrinsics below depend on rounding mode in MXCSR. 1535 case Intrinsic::x86_sse_cvtss2si: 1536 case Intrinsic::x86_sse_cvtss2si64: 1537 case Intrinsic::x86_sse_cvttss2si: 1538 case Intrinsic::x86_sse_cvttss2si64: 1539 case Intrinsic::x86_sse2_cvtsd2si: 1540 case Intrinsic::x86_sse2_cvtsd2si64: 1541 case Intrinsic::x86_sse2_cvttsd2si: 1542 case Intrinsic::x86_sse2_cvttsd2si64: 1543 case Intrinsic::x86_avx512_vcvtss2si32: 1544 case Intrinsic::x86_avx512_vcvtss2si64: 1545 case Intrinsic::x86_avx512_cvttss2si: 1546 case Intrinsic::x86_avx512_cvttss2si64: 1547 case Intrinsic::x86_avx512_vcvtsd2si32: 1548 case Intrinsic::x86_avx512_vcvtsd2si64: 1549 case Intrinsic::x86_avx512_cvttsd2si: 1550 case Intrinsic::x86_avx512_cvttsd2si64: 1551 case Intrinsic::x86_avx512_vcvtss2usi32: 1552 case Intrinsic::x86_avx512_vcvtss2usi64: 1553 case Intrinsic::x86_avx512_cvttss2usi: 1554 case Intrinsic::x86_avx512_cvttss2usi64: 1555 case Intrinsic::x86_avx512_vcvtsd2usi32: 1556 case Intrinsic::x86_avx512_vcvtsd2usi64: 1557 case Intrinsic::x86_avx512_cvttsd2usi: 1558 case Intrinsic::x86_avx512_cvttsd2usi64: 1559 return !Call->isStrictFP(); 1560 1561 // Sign operations are actually bitwise operations, they do not raise 1562 // exceptions even for SNANs. 1563 case Intrinsic::fabs: 1564 case Intrinsic::copysign: 1565 // Non-constrained variants of rounding operations means default FP 1566 // environment, they can be folded in any case. 1567 case Intrinsic::ceil: 1568 case Intrinsic::floor: 1569 case Intrinsic::round: 1570 case Intrinsic::roundeven: 1571 case Intrinsic::trunc: 1572 case Intrinsic::nearbyint: 1573 case Intrinsic::rint: 1574 // Constrained intrinsics can be folded if FP environment is known 1575 // to compiler. 1576 case Intrinsic::experimental_constrained_fma: 1577 case Intrinsic::experimental_constrained_fmuladd: 1578 case Intrinsic::experimental_constrained_fadd: 1579 case Intrinsic::experimental_constrained_fsub: 1580 case Intrinsic::experimental_constrained_fmul: 1581 case Intrinsic::experimental_constrained_fdiv: 1582 case Intrinsic::experimental_constrained_frem: 1583 case Intrinsic::experimental_constrained_ceil: 1584 case Intrinsic::experimental_constrained_floor: 1585 case Intrinsic::experimental_constrained_round: 1586 case Intrinsic::experimental_constrained_roundeven: 1587 case Intrinsic::experimental_constrained_trunc: 1588 case Intrinsic::experimental_constrained_nearbyint: 1589 case Intrinsic::experimental_constrained_rint: 1590 return true; 1591 default: 1592 return false; 1593 case Intrinsic::not_intrinsic: break; 1594 } 1595 1596 if (!F->hasName() || Call->isStrictFP()) 1597 return false; 1598 1599 // In these cases, the check of the length is required. We don't want to 1600 // return true for a name like "cos\0blah" which strcmp would return equal to 1601 // "cos", but has length 8. 1602 StringRef Name = F->getName(); 1603 switch (Name[0]) { 1604 default: 1605 return false; 1606 case 'a': 1607 return Name == "acos" || Name == "acosf" || 1608 Name == "asin" || Name == "asinf" || 1609 Name == "atan" || Name == "atanf" || 1610 Name == "atan2" || Name == "atan2f"; 1611 case 'c': 1612 return Name == "ceil" || Name == "ceilf" || 1613 Name == "cos" || Name == "cosf" || 1614 Name == "cosh" || Name == "coshf"; 1615 case 'e': 1616 return Name == "exp" || Name == "expf" || 1617 Name == "exp2" || Name == "exp2f"; 1618 case 'f': 1619 return Name == "fabs" || Name == "fabsf" || 1620 Name == "floor" || Name == "floorf" || 1621 Name == "fmod" || Name == "fmodf"; 1622 case 'l': 1623 return Name == "log" || Name == "logf" || 1624 Name == "log2" || Name == "log2f" || 1625 Name == "log10" || Name == "log10f"; 1626 case 'n': 1627 return Name == "nearbyint" || Name == "nearbyintf"; 1628 case 'p': 1629 return Name == "pow" || Name == "powf"; 1630 case 'r': 1631 return Name == "remainder" || Name == "remainderf" || 1632 Name == "rint" || Name == "rintf" || 1633 Name == "round" || Name == "roundf"; 1634 case 's': 1635 return Name == "sin" || Name == "sinf" || 1636 Name == "sinh" || Name == "sinhf" || 1637 Name == "sqrt" || Name == "sqrtf"; 1638 case 't': 1639 return Name == "tan" || Name == "tanf" || 1640 Name == "tanh" || Name == "tanhf" || 1641 Name == "trunc" || Name == "truncf"; 1642 case '_': 1643 // Check for various function names that get used for the math functions 1644 // when the header files are preprocessed with the macro 1645 // __FINITE_MATH_ONLY__ enabled. 1646 // The '12' here is the length of the shortest name that can match. 1647 // We need to check the size before looking at Name[1] and Name[2] 1648 // so we may as well check a limit that will eliminate mismatches. 1649 if (Name.size() < 12 || Name[1] != '_') 1650 return false; 1651 switch (Name[2]) { 1652 default: 1653 return false; 1654 case 'a': 1655 return Name == "__acos_finite" || Name == "__acosf_finite" || 1656 Name == "__asin_finite" || Name == "__asinf_finite" || 1657 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1658 case 'c': 1659 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1660 case 'e': 1661 return Name == "__exp_finite" || Name == "__expf_finite" || 1662 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1663 case 'l': 1664 return Name == "__log_finite" || Name == "__logf_finite" || 1665 Name == "__log10_finite" || Name == "__log10f_finite"; 1666 case 'p': 1667 return Name == "__pow_finite" || Name == "__powf_finite"; 1668 case 's': 1669 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1670 } 1671 } 1672 } 1673 1674 namespace { 1675 1676 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1677 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1678 APFloat APF(V); 1679 bool unused; 1680 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1681 return ConstantFP::get(Ty->getContext(), APF); 1682 } 1683 if (Ty->isDoubleTy()) 1684 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1685 llvm_unreachable("Can only constant fold half/float/double"); 1686 } 1687 1688 /// Clear the floating-point exception state. 1689 inline void llvm_fenv_clearexcept() { 1690 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1691 feclearexcept(FE_ALL_EXCEPT); 1692 #endif 1693 errno = 0; 1694 } 1695 1696 /// Test if a floating-point exception was raised. 1697 inline bool llvm_fenv_testexcept() { 1698 int errno_val = errno; 1699 if (errno_val == ERANGE || errno_val == EDOM) 1700 return true; 1701 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1702 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1703 return true; 1704 #endif 1705 return false; 1706 } 1707 1708 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1709 Type *Ty) { 1710 llvm_fenv_clearexcept(); 1711 double Result = NativeFP(V.convertToDouble()); 1712 if (llvm_fenv_testexcept()) { 1713 llvm_fenv_clearexcept(); 1714 return nullptr; 1715 } 1716 1717 return GetConstantFoldFPValue(Result, Ty); 1718 } 1719 1720 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1721 const APFloat &V, const APFloat &W, Type *Ty) { 1722 llvm_fenv_clearexcept(); 1723 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1724 if (llvm_fenv_testexcept()) { 1725 llvm_fenv_clearexcept(); 1726 return nullptr; 1727 } 1728 1729 return GetConstantFoldFPValue(Result, Ty); 1730 } 1731 1732 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1733 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1734 if (!VT) 1735 return nullptr; 1736 1737 // This isn't strictly necessary, but handle the special/common case of zero: 1738 // all integer reductions of a zero input produce zero. 1739 if (isa<ConstantAggregateZero>(Op)) 1740 return ConstantInt::get(VT->getElementType(), 0); 1741 1742 // This is the same as the underlying binops - poison propagates. 1743 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1744 return PoisonValue::get(VT->getElementType()); 1745 1746 // TODO: Handle undef. 1747 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1748 return nullptr; 1749 1750 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1751 if (!EltC) 1752 return nullptr; 1753 1754 APInt Acc = EltC->getValue(); 1755 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1756 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1757 return nullptr; 1758 const APInt &X = EltC->getValue(); 1759 switch (IID) { 1760 case Intrinsic::vector_reduce_add: 1761 Acc = Acc + X; 1762 break; 1763 case Intrinsic::vector_reduce_mul: 1764 Acc = Acc * X; 1765 break; 1766 case Intrinsic::vector_reduce_and: 1767 Acc = Acc & X; 1768 break; 1769 case Intrinsic::vector_reduce_or: 1770 Acc = Acc | X; 1771 break; 1772 case Intrinsic::vector_reduce_xor: 1773 Acc = Acc ^ X; 1774 break; 1775 case Intrinsic::vector_reduce_smin: 1776 Acc = APIntOps::smin(Acc, X); 1777 break; 1778 case Intrinsic::vector_reduce_smax: 1779 Acc = APIntOps::smax(Acc, X); 1780 break; 1781 case Intrinsic::vector_reduce_umin: 1782 Acc = APIntOps::umin(Acc, X); 1783 break; 1784 case Intrinsic::vector_reduce_umax: 1785 Acc = APIntOps::umax(Acc, X); 1786 break; 1787 } 1788 } 1789 1790 return ConstantInt::get(Op->getContext(), Acc); 1791 } 1792 1793 /// Attempt to fold an SSE floating point to integer conversion of a constant 1794 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1795 /// used (toward nearest, ties to even). This matches the behavior of the 1796 /// non-truncating SSE instructions in the default rounding mode. The desired 1797 /// integer type Ty is used to select how many bits are available for the 1798 /// result. Returns null if the conversion cannot be performed, otherwise 1799 /// returns the Constant value resulting from the conversion. 1800 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1801 Type *Ty, bool IsSigned) { 1802 // All of these conversion intrinsics form an integer of at most 64bits. 1803 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1804 assert(ResultWidth <= 64 && 1805 "Can only constant fold conversions to 64 and 32 bit ints"); 1806 1807 uint64_t UIntVal; 1808 bool isExact = false; 1809 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1810 : APFloat::rmNearestTiesToEven; 1811 APFloat::opStatus status = 1812 Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, 1813 IsSigned, mode, &isExact); 1814 if (status != APFloat::opOK && 1815 (!roundTowardZero || status != APFloat::opInexact)) 1816 return nullptr; 1817 return ConstantInt::get(Ty, UIntVal, IsSigned); 1818 } 1819 1820 double getValueAsDouble(ConstantFP *Op) { 1821 Type *Ty = Op->getType(); 1822 1823 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1824 return Op->getValueAPF().convertToDouble(); 1825 1826 bool unused; 1827 APFloat APF = Op->getValueAPF(); 1828 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1829 return APF.convertToDouble(); 1830 } 1831 1832 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1833 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1834 C = &CI->getValue(); 1835 return true; 1836 } 1837 if (isa<UndefValue>(Op)) { 1838 C = nullptr; 1839 return true; 1840 } 1841 return false; 1842 } 1843 1844 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1845 /// to be folded. 1846 /// 1847 /// \param CI Constrained intrinsic call. 1848 /// \param St Exception flags raised during constant evaluation. 1849 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1850 APFloat::opStatus St) { 1851 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1852 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1853 1854 // If the operation does not change exception status flags, it is safe 1855 // to fold. 1856 if (St == APFloat::opStatus::opOK) { 1857 // When FP exceptions are not ignored, intrinsic call will not be 1858 // eliminated, because it is considered as having side effect. But we 1859 // know that its evaluation does not raise exceptions, so side effect 1860 // is absent. To allow removing the call, mark it as not accessing memory. 1861 if (EB && *EB != fp::ExceptionBehavior::ebIgnore) 1862 CI->addFnAttr(Attribute::ReadNone); 1863 return true; 1864 } 1865 1866 // If evaluation raised FP exception, the result can depend on rounding 1867 // mode. If the latter is unknown, folding is not possible. 1868 if (!ORM || *ORM == RoundingMode::Dynamic) 1869 return false; 1870 1871 // If FP exceptions are ignored, fold the call, even if such exception is 1872 // raised. 1873 if (!EB || *EB != fp::ExceptionBehavior::ebStrict) 1874 return true; 1875 1876 // Leave the calculation for runtime so that exception flags be correctly set 1877 // in hardware. 1878 return false; 1879 } 1880 1881 /// Returns the rounding mode that should be used for constant evaluation. 1882 static RoundingMode 1883 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1884 Optional<RoundingMode> ORM = CI->getRoundingMode(); 1885 if (!ORM || *ORM == RoundingMode::Dynamic) 1886 // Even if the rounding mode is unknown, try evaluating the operation. 1887 // If it does not raise inexact exception, rounding was not applied, 1888 // so the result is exact and does not depend on rounding mode. Whether 1889 // other FP exceptions are raised, it does not depend on rounding mode. 1890 return RoundingMode::NearestTiesToEven; 1891 return *ORM; 1892 } 1893 1894 static Constant *ConstantFoldScalarCall1(StringRef Name, 1895 Intrinsic::ID IntrinsicID, 1896 Type *Ty, 1897 ArrayRef<Constant *> Operands, 1898 const TargetLibraryInfo *TLI, 1899 const CallBase *Call) { 1900 assert(Operands.size() == 1 && "Wrong number of operands."); 1901 1902 if (IntrinsicID == Intrinsic::is_constant) { 1903 // We know we have a "Constant" argument. But we want to only 1904 // return true for manifest constants, not those that depend on 1905 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 1906 if (Operands[0]->isManifestConstant()) 1907 return ConstantInt::getTrue(Ty->getContext()); 1908 return nullptr; 1909 } 1910 if (isa<UndefValue>(Operands[0])) { 1911 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 1912 // ctpop() is between 0 and bitwidth, pick 0 for undef. 1913 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 1914 if (IntrinsicID == Intrinsic::cos || 1915 IntrinsicID == Intrinsic::ctpop || 1916 IntrinsicID == Intrinsic::fptoui_sat || 1917 IntrinsicID == Intrinsic::fptosi_sat) 1918 return Constant::getNullValue(Ty); 1919 if (IntrinsicID == Intrinsic::bswap || 1920 IntrinsicID == Intrinsic::bitreverse || 1921 IntrinsicID == Intrinsic::launder_invariant_group || 1922 IntrinsicID == Intrinsic::strip_invariant_group) 1923 return Operands[0]; 1924 } 1925 1926 if (isa<ConstantPointerNull>(Operands[0])) { 1927 // launder(null) == null == strip(null) iff in addrspace 0 1928 if (IntrinsicID == Intrinsic::launder_invariant_group || 1929 IntrinsicID == Intrinsic::strip_invariant_group) { 1930 // If instruction is not yet put in a basic block (e.g. when cloning 1931 // a function during inlining), Call's caller may not be available. 1932 // So check Call's BB first before querying Call->getCaller. 1933 const Function *Caller = 1934 Call->getParent() ? Call->getCaller() : nullptr; 1935 if (Caller && 1936 !NullPointerIsDefined( 1937 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 1938 return Operands[0]; 1939 } 1940 return nullptr; 1941 } 1942 } 1943 1944 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 1945 if (IntrinsicID == Intrinsic::convert_to_fp16) { 1946 APFloat Val(Op->getValueAPF()); 1947 1948 bool lost = false; 1949 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 1950 1951 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 1952 } 1953 1954 APFloat U = Op->getValueAPF(); 1955 1956 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 1957 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 1958 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 1959 1960 if (U.isNaN()) 1961 return nullptr; 1962 1963 unsigned Width = Ty->getIntegerBitWidth(); 1964 APSInt Int(Width, !Signed); 1965 bool IsExact = false; 1966 APFloat::opStatus Status = 1967 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1968 1969 if (Status == APFloat::opOK || Status == APFloat::opInexact) 1970 return ConstantInt::get(Ty, Int); 1971 1972 return nullptr; 1973 } 1974 1975 if (IntrinsicID == Intrinsic::fptoui_sat || 1976 IntrinsicID == Intrinsic::fptosi_sat) { 1977 // convertToInteger() already has the desired saturation semantics. 1978 APSInt Int(Ty->getIntegerBitWidth(), 1979 IntrinsicID == Intrinsic::fptoui_sat); 1980 bool IsExact; 1981 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 1982 return ConstantInt::get(Ty, Int); 1983 } 1984 1985 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 1986 return nullptr; 1987 1988 // Use internal versions of these intrinsics. 1989 1990 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 1991 U.roundToIntegral(APFloat::rmNearestTiesToEven); 1992 return ConstantFP::get(Ty->getContext(), U); 1993 } 1994 1995 if (IntrinsicID == Intrinsic::round) { 1996 U.roundToIntegral(APFloat::rmNearestTiesToAway); 1997 return ConstantFP::get(Ty->getContext(), U); 1998 } 1999 2000 if (IntrinsicID == Intrinsic::roundeven) { 2001 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2002 return ConstantFP::get(Ty->getContext(), U); 2003 } 2004 2005 if (IntrinsicID == Intrinsic::ceil) { 2006 U.roundToIntegral(APFloat::rmTowardPositive); 2007 return ConstantFP::get(Ty->getContext(), U); 2008 } 2009 2010 if (IntrinsicID == Intrinsic::floor) { 2011 U.roundToIntegral(APFloat::rmTowardNegative); 2012 return ConstantFP::get(Ty->getContext(), U); 2013 } 2014 2015 if (IntrinsicID == Intrinsic::trunc) { 2016 U.roundToIntegral(APFloat::rmTowardZero); 2017 return ConstantFP::get(Ty->getContext(), U); 2018 } 2019 2020 if (IntrinsicID == Intrinsic::fabs) { 2021 U.clearSign(); 2022 return ConstantFP::get(Ty->getContext(), U); 2023 } 2024 2025 if (IntrinsicID == Intrinsic::amdgcn_fract) { 2026 // The v_fract instruction behaves like the OpenCL spec, which defines 2027 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 2028 // there to prevent fract(-small) from returning 1.0. It returns the 2029 // largest positive floating-point number less than 1.0." 2030 APFloat FloorU(U); 2031 FloorU.roundToIntegral(APFloat::rmTowardNegative); 2032 APFloat FractU(U - FloorU); 2033 APFloat AlmostOne(U.getSemantics(), 1); 2034 AlmostOne.next(/*nextDown*/ true); 2035 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 2036 } 2037 2038 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 2039 // raise FP exceptions, unless the argument is signaling NaN. 2040 2041 Optional<APFloat::roundingMode> RM; 2042 switch (IntrinsicID) { 2043 default: 2044 break; 2045 case Intrinsic::experimental_constrained_nearbyint: 2046 case Intrinsic::experimental_constrained_rint: { 2047 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2048 RM = CI->getRoundingMode(); 2049 if (!RM || RM.getValue() == RoundingMode::Dynamic) 2050 return nullptr; 2051 break; 2052 } 2053 case Intrinsic::experimental_constrained_round: 2054 RM = APFloat::rmNearestTiesToAway; 2055 break; 2056 case Intrinsic::experimental_constrained_ceil: 2057 RM = APFloat::rmTowardPositive; 2058 break; 2059 case Intrinsic::experimental_constrained_floor: 2060 RM = APFloat::rmTowardNegative; 2061 break; 2062 case Intrinsic::experimental_constrained_trunc: 2063 RM = APFloat::rmTowardZero; 2064 break; 2065 } 2066 if (RM) { 2067 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2068 if (U.isFinite()) { 2069 APFloat::opStatus St = U.roundToIntegral(*RM); 2070 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2071 St == APFloat::opInexact) { 2072 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2073 if (EB && *EB == fp::ebStrict) 2074 return nullptr; 2075 } 2076 } else if (U.isSignaling()) { 2077 Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2078 if (EB && *EB != fp::ebIgnore) 2079 return nullptr; 2080 U = APFloat::getQNaN(U.getSemantics()); 2081 } 2082 return ConstantFP::get(Ty->getContext(), U); 2083 } 2084 2085 /// We only fold functions with finite arguments. Folding NaN and inf is 2086 /// likely to be aborted with an exception anyway, and some host libms 2087 /// have known errors raising exceptions. 2088 if (!U.isFinite()) 2089 return nullptr; 2090 2091 /// Currently APFloat versions of these functions do not exist, so we use 2092 /// the host native double versions. Float versions are not called 2093 /// directly but for all these it is true (float)(f((double)arg)) == 2094 /// f(arg). Long double not supported yet. 2095 APFloat APF = Op->getValueAPF(); 2096 2097 switch (IntrinsicID) { 2098 default: break; 2099 case Intrinsic::log: 2100 return ConstantFoldFP(log, APF, Ty); 2101 case Intrinsic::log2: 2102 // TODO: What about hosts that lack a C99 library? 2103 return ConstantFoldFP(Log2, APF, Ty); 2104 case Intrinsic::log10: 2105 // TODO: What about hosts that lack a C99 library? 2106 return ConstantFoldFP(log10, APF, Ty); 2107 case Intrinsic::exp: 2108 return ConstantFoldFP(exp, APF, Ty); 2109 case Intrinsic::exp2: 2110 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2111 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2112 case Intrinsic::sin: 2113 return ConstantFoldFP(sin, APF, Ty); 2114 case Intrinsic::cos: 2115 return ConstantFoldFP(cos, APF, Ty); 2116 case Intrinsic::sqrt: 2117 return ConstantFoldFP(sqrt, APF, Ty); 2118 case Intrinsic::amdgcn_cos: 2119 case Intrinsic::amdgcn_sin: { 2120 double V = getValueAsDouble(Op); 2121 if (V < -256.0 || V > 256.0) 2122 // The gfx8 and gfx9 architectures handle arguments outside the range 2123 // [-256, 256] differently. This should be a rare case so bail out 2124 // rather than trying to handle the difference. 2125 return nullptr; 2126 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2127 double V4 = V * 4.0; 2128 if (V4 == floor(V4)) { 2129 // Force exact results for quarter-integer inputs. 2130 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2131 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2132 } else { 2133 if (IsCos) 2134 V = cos(V * 2.0 * numbers::pi); 2135 else 2136 V = sin(V * 2.0 * numbers::pi); 2137 } 2138 return GetConstantFoldFPValue(V, Ty); 2139 } 2140 } 2141 2142 if (!TLI) 2143 return nullptr; 2144 2145 LibFunc Func = NotLibFunc; 2146 TLI->getLibFunc(Name, Func); 2147 switch (Func) { 2148 default: 2149 break; 2150 case LibFunc_acos: 2151 case LibFunc_acosf: 2152 case LibFunc_acos_finite: 2153 case LibFunc_acosf_finite: 2154 if (TLI->has(Func)) 2155 return ConstantFoldFP(acos, APF, Ty); 2156 break; 2157 case LibFunc_asin: 2158 case LibFunc_asinf: 2159 case LibFunc_asin_finite: 2160 case LibFunc_asinf_finite: 2161 if (TLI->has(Func)) 2162 return ConstantFoldFP(asin, APF, Ty); 2163 break; 2164 case LibFunc_atan: 2165 case LibFunc_atanf: 2166 if (TLI->has(Func)) 2167 return ConstantFoldFP(atan, APF, Ty); 2168 break; 2169 case LibFunc_ceil: 2170 case LibFunc_ceilf: 2171 if (TLI->has(Func)) { 2172 U.roundToIntegral(APFloat::rmTowardPositive); 2173 return ConstantFP::get(Ty->getContext(), U); 2174 } 2175 break; 2176 case LibFunc_cos: 2177 case LibFunc_cosf: 2178 if (TLI->has(Func)) 2179 return ConstantFoldFP(cos, APF, Ty); 2180 break; 2181 case LibFunc_cosh: 2182 case LibFunc_coshf: 2183 case LibFunc_cosh_finite: 2184 case LibFunc_coshf_finite: 2185 if (TLI->has(Func)) 2186 return ConstantFoldFP(cosh, APF, Ty); 2187 break; 2188 case LibFunc_exp: 2189 case LibFunc_expf: 2190 case LibFunc_exp_finite: 2191 case LibFunc_expf_finite: 2192 if (TLI->has(Func)) 2193 return ConstantFoldFP(exp, APF, Ty); 2194 break; 2195 case LibFunc_exp2: 2196 case LibFunc_exp2f: 2197 case LibFunc_exp2_finite: 2198 case LibFunc_exp2f_finite: 2199 if (TLI->has(Func)) 2200 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2201 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2202 break; 2203 case LibFunc_fabs: 2204 case LibFunc_fabsf: 2205 if (TLI->has(Func)) { 2206 U.clearSign(); 2207 return ConstantFP::get(Ty->getContext(), U); 2208 } 2209 break; 2210 case LibFunc_floor: 2211 case LibFunc_floorf: 2212 if (TLI->has(Func)) { 2213 U.roundToIntegral(APFloat::rmTowardNegative); 2214 return ConstantFP::get(Ty->getContext(), U); 2215 } 2216 break; 2217 case LibFunc_log: 2218 case LibFunc_logf: 2219 case LibFunc_log_finite: 2220 case LibFunc_logf_finite: 2221 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2222 return ConstantFoldFP(log, APF, Ty); 2223 break; 2224 case LibFunc_log2: 2225 case LibFunc_log2f: 2226 case LibFunc_log2_finite: 2227 case LibFunc_log2f_finite: 2228 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2229 // TODO: What about hosts that lack a C99 library? 2230 return ConstantFoldFP(Log2, APF, Ty); 2231 break; 2232 case LibFunc_log10: 2233 case LibFunc_log10f: 2234 case LibFunc_log10_finite: 2235 case LibFunc_log10f_finite: 2236 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2237 // TODO: What about hosts that lack a C99 library? 2238 return ConstantFoldFP(log10, APF, Ty); 2239 break; 2240 case LibFunc_nearbyint: 2241 case LibFunc_nearbyintf: 2242 case LibFunc_rint: 2243 case LibFunc_rintf: 2244 if (TLI->has(Func)) { 2245 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2246 return ConstantFP::get(Ty->getContext(), U); 2247 } 2248 break; 2249 case LibFunc_round: 2250 case LibFunc_roundf: 2251 if (TLI->has(Func)) { 2252 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2253 return ConstantFP::get(Ty->getContext(), U); 2254 } 2255 break; 2256 case LibFunc_sin: 2257 case LibFunc_sinf: 2258 if (TLI->has(Func)) 2259 return ConstantFoldFP(sin, APF, Ty); 2260 break; 2261 case LibFunc_sinh: 2262 case LibFunc_sinhf: 2263 case LibFunc_sinh_finite: 2264 case LibFunc_sinhf_finite: 2265 if (TLI->has(Func)) 2266 return ConstantFoldFP(sinh, APF, Ty); 2267 break; 2268 case LibFunc_sqrt: 2269 case LibFunc_sqrtf: 2270 if (!APF.isNegative() && TLI->has(Func)) 2271 return ConstantFoldFP(sqrt, APF, Ty); 2272 break; 2273 case LibFunc_tan: 2274 case LibFunc_tanf: 2275 if (TLI->has(Func)) 2276 return ConstantFoldFP(tan, APF, Ty); 2277 break; 2278 case LibFunc_tanh: 2279 case LibFunc_tanhf: 2280 if (TLI->has(Func)) 2281 return ConstantFoldFP(tanh, APF, Ty); 2282 break; 2283 case LibFunc_trunc: 2284 case LibFunc_truncf: 2285 if (TLI->has(Func)) { 2286 U.roundToIntegral(APFloat::rmTowardZero); 2287 return ConstantFP::get(Ty->getContext(), U); 2288 } 2289 break; 2290 } 2291 return nullptr; 2292 } 2293 2294 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2295 switch (IntrinsicID) { 2296 case Intrinsic::bswap: 2297 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2298 case Intrinsic::ctpop: 2299 return ConstantInt::get(Ty, Op->getValue().countPopulation()); 2300 case Intrinsic::bitreverse: 2301 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2302 case Intrinsic::convert_from_fp16: { 2303 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2304 2305 bool lost = false; 2306 APFloat::opStatus status = Val.convert( 2307 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2308 2309 // Conversion is always precise. 2310 (void)status; 2311 assert(status == APFloat::opOK && !lost && 2312 "Precision lost during fp16 constfolding"); 2313 2314 return ConstantFP::get(Ty->getContext(), Val); 2315 } 2316 default: 2317 return nullptr; 2318 } 2319 } 2320 2321 switch (IntrinsicID) { 2322 default: break; 2323 case Intrinsic::vector_reduce_add: 2324 case Intrinsic::vector_reduce_mul: 2325 case Intrinsic::vector_reduce_and: 2326 case Intrinsic::vector_reduce_or: 2327 case Intrinsic::vector_reduce_xor: 2328 case Intrinsic::vector_reduce_smin: 2329 case Intrinsic::vector_reduce_smax: 2330 case Intrinsic::vector_reduce_umin: 2331 case Intrinsic::vector_reduce_umax: 2332 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2333 return C; 2334 break; 2335 } 2336 2337 // Support ConstantVector in case we have an Undef in the top. 2338 if (isa<ConstantVector>(Operands[0]) || 2339 isa<ConstantDataVector>(Operands[0])) { 2340 auto *Op = cast<Constant>(Operands[0]); 2341 switch (IntrinsicID) { 2342 default: break; 2343 case Intrinsic::x86_sse_cvtss2si: 2344 case Intrinsic::x86_sse_cvtss2si64: 2345 case Intrinsic::x86_sse2_cvtsd2si: 2346 case Intrinsic::x86_sse2_cvtsd2si64: 2347 if (ConstantFP *FPOp = 2348 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2349 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2350 /*roundTowardZero=*/false, Ty, 2351 /*IsSigned*/true); 2352 break; 2353 case Intrinsic::x86_sse_cvttss2si: 2354 case Intrinsic::x86_sse_cvttss2si64: 2355 case Intrinsic::x86_sse2_cvttsd2si: 2356 case Intrinsic::x86_sse2_cvttsd2si64: 2357 if (ConstantFP *FPOp = 2358 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2359 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2360 /*roundTowardZero=*/true, Ty, 2361 /*IsSigned*/true); 2362 break; 2363 } 2364 } 2365 2366 return nullptr; 2367 } 2368 2369 static Constant *ConstantFoldScalarCall2(StringRef Name, 2370 Intrinsic::ID IntrinsicID, 2371 Type *Ty, 2372 ArrayRef<Constant *> Operands, 2373 const TargetLibraryInfo *TLI, 2374 const CallBase *Call) { 2375 assert(Operands.size() == 2 && "Wrong number of operands."); 2376 2377 if (Ty->isFloatingPointTy()) { 2378 // TODO: We should have undef handling for all of the FP intrinsics that 2379 // are attempted to be folded in this function. 2380 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2381 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2382 switch (IntrinsicID) { 2383 case Intrinsic::maxnum: 2384 case Intrinsic::minnum: 2385 case Intrinsic::maximum: 2386 case Intrinsic::minimum: 2387 // If one argument is undef, return the other argument. 2388 if (IsOp0Undef) 2389 return Operands[1]; 2390 if (IsOp1Undef) 2391 return Operands[0]; 2392 break; 2393 } 2394 } 2395 2396 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2397 if (!Ty->isFloatingPointTy()) 2398 return nullptr; 2399 APFloat Op1V = Op1->getValueAPF(); 2400 2401 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2402 if (Op2->getType() != Op1->getType()) 2403 return nullptr; 2404 APFloat Op2V = Op2->getValueAPF(); 2405 2406 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2407 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2408 APFloat Res = Op1V; 2409 APFloat::opStatus St; 2410 switch (IntrinsicID) { 2411 default: 2412 return nullptr; 2413 case Intrinsic::experimental_constrained_fadd: 2414 St = Res.add(Op2V, RM); 2415 break; 2416 case Intrinsic::experimental_constrained_fsub: 2417 St = Res.subtract(Op2V, RM); 2418 break; 2419 case Intrinsic::experimental_constrained_fmul: 2420 St = Res.multiply(Op2V, RM); 2421 break; 2422 case Intrinsic::experimental_constrained_fdiv: 2423 St = Res.divide(Op2V, RM); 2424 break; 2425 case Intrinsic::experimental_constrained_frem: 2426 St = Res.mod(Op2V); 2427 break; 2428 } 2429 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2430 St)) 2431 return ConstantFP::get(Ty->getContext(), Res); 2432 return nullptr; 2433 } 2434 2435 switch (IntrinsicID) { 2436 default: 2437 break; 2438 case Intrinsic::copysign: 2439 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2440 case Intrinsic::minnum: 2441 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2442 case Intrinsic::maxnum: 2443 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2444 case Intrinsic::minimum: 2445 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2446 case Intrinsic::maximum: 2447 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2448 } 2449 2450 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2451 return nullptr; 2452 2453 switch (IntrinsicID) { 2454 default: 2455 break; 2456 case Intrinsic::pow: 2457 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2458 case Intrinsic::amdgcn_fmul_legacy: 2459 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2460 // NaN or infinity, gives +0.0. 2461 if (Op1V.isZero() || Op2V.isZero()) 2462 return ConstantFP::getNullValue(Ty); 2463 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2464 } 2465 2466 if (!TLI) 2467 return nullptr; 2468 2469 LibFunc Func = NotLibFunc; 2470 TLI->getLibFunc(Name, Func); 2471 switch (Func) { 2472 default: 2473 break; 2474 case LibFunc_pow: 2475 case LibFunc_powf: 2476 case LibFunc_pow_finite: 2477 case LibFunc_powf_finite: 2478 if (TLI->has(Func)) 2479 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2480 break; 2481 case LibFunc_fmod: 2482 case LibFunc_fmodf: 2483 if (TLI->has(Func)) { 2484 APFloat V = Op1->getValueAPF(); 2485 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2486 return ConstantFP::get(Ty->getContext(), V); 2487 } 2488 break; 2489 case LibFunc_remainder: 2490 case LibFunc_remainderf: 2491 if (TLI->has(Func)) { 2492 APFloat V = Op1->getValueAPF(); 2493 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2494 return ConstantFP::get(Ty->getContext(), V); 2495 } 2496 break; 2497 case LibFunc_atan2: 2498 case LibFunc_atan2f: 2499 case LibFunc_atan2_finite: 2500 case LibFunc_atan2f_finite: 2501 if (TLI->has(Func)) 2502 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2503 break; 2504 } 2505 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2506 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2507 return nullptr; 2508 if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) 2509 return ConstantFP::get( 2510 Ty->getContext(), 2511 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2512 (int)Op2C->getZExtValue()))); 2513 if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) 2514 return ConstantFP::get( 2515 Ty->getContext(), 2516 APFloat((float)std::pow((float)Op1V.convertToDouble(), 2517 (int)Op2C->getZExtValue()))); 2518 if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) 2519 return ConstantFP::get( 2520 Ty->getContext(), 2521 APFloat((double)std::pow(Op1V.convertToDouble(), 2522 (int)Op2C->getZExtValue()))); 2523 2524 if (IntrinsicID == Intrinsic::amdgcn_ldexp) { 2525 // FIXME: Should flush denorms depending on FP mode, but that's ignored 2526 // everywhere else. 2527 2528 // scalbn is equivalent to ldexp with float radix 2 2529 APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(), 2530 APFloat::rmNearestTiesToEven); 2531 return ConstantFP::get(Ty->getContext(), Result); 2532 } 2533 } 2534 return nullptr; 2535 } 2536 2537 if (Operands[0]->getType()->isIntegerTy() && 2538 Operands[1]->getType()->isIntegerTy()) { 2539 const APInt *C0, *C1; 2540 if (!getConstIntOrUndef(Operands[0], C0) || 2541 !getConstIntOrUndef(Operands[1], C1)) 2542 return nullptr; 2543 2544 unsigned BitWidth = Ty->getScalarSizeInBits(); 2545 switch (IntrinsicID) { 2546 default: break; 2547 case Intrinsic::smax: 2548 if (!C0 && !C1) 2549 return UndefValue::get(Ty); 2550 if (!C0 || !C1) 2551 return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth)); 2552 return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1); 2553 2554 case Intrinsic::smin: 2555 if (!C0 && !C1) 2556 return UndefValue::get(Ty); 2557 if (!C0 || !C1) 2558 return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth)); 2559 return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1); 2560 2561 case Intrinsic::umax: 2562 if (!C0 && !C1) 2563 return UndefValue::get(Ty); 2564 if (!C0 || !C1) 2565 return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth)); 2566 return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1); 2567 2568 case Intrinsic::umin: 2569 if (!C0 && !C1) 2570 return UndefValue::get(Ty); 2571 if (!C0 || !C1) 2572 return ConstantInt::get(Ty, APInt::getMinValue(BitWidth)); 2573 return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1); 2574 2575 case Intrinsic::usub_with_overflow: 2576 case Intrinsic::ssub_with_overflow: 2577 // X - undef -> { 0, false } 2578 // undef - X -> { 0, false } 2579 if (!C0 || !C1) 2580 return Constant::getNullValue(Ty); 2581 LLVM_FALLTHROUGH; 2582 case Intrinsic::uadd_with_overflow: 2583 case Intrinsic::sadd_with_overflow: 2584 // X + undef -> { -1, false } 2585 // undef + x -> { -1, false } 2586 if (!C0 || !C1) { 2587 return ConstantStruct::get( 2588 cast<StructType>(Ty), 2589 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2590 Constant::getNullValue(Ty->getStructElementType(1))}); 2591 } 2592 LLVM_FALLTHROUGH; 2593 case Intrinsic::smul_with_overflow: 2594 case Intrinsic::umul_with_overflow: { 2595 // undef * X -> { 0, false } 2596 // X * undef -> { 0, false } 2597 if (!C0 || !C1) 2598 return Constant::getNullValue(Ty); 2599 2600 APInt Res; 2601 bool Overflow; 2602 switch (IntrinsicID) { 2603 default: llvm_unreachable("Invalid case"); 2604 case Intrinsic::sadd_with_overflow: 2605 Res = C0->sadd_ov(*C1, Overflow); 2606 break; 2607 case Intrinsic::uadd_with_overflow: 2608 Res = C0->uadd_ov(*C1, Overflow); 2609 break; 2610 case Intrinsic::ssub_with_overflow: 2611 Res = C0->ssub_ov(*C1, Overflow); 2612 break; 2613 case Intrinsic::usub_with_overflow: 2614 Res = C0->usub_ov(*C1, Overflow); 2615 break; 2616 case Intrinsic::smul_with_overflow: 2617 Res = C0->smul_ov(*C1, Overflow); 2618 break; 2619 case Intrinsic::umul_with_overflow: 2620 Res = C0->umul_ov(*C1, Overflow); 2621 break; 2622 } 2623 Constant *Ops[] = { 2624 ConstantInt::get(Ty->getContext(), Res), 2625 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2626 }; 2627 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2628 } 2629 case Intrinsic::uadd_sat: 2630 case Intrinsic::sadd_sat: 2631 if (!C0 && !C1) 2632 return UndefValue::get(Ty); 2633 if (!C0 || !C1) 2634 return Constant::getAllOnesValue(Ty); 2635 if (IntrinsicID == Intrinsic::uadd_sat) 2636 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2637 else 2638 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2639 case Intrinsic::usub_sat: 2640 case Intrinsic::ssub_sat: 2641 if (!C0 && !C1) 2642 return UndefValue::get(Ty); 2643 if (!C0 || !C1) 2644 return Constant::getNullValue(Ty); 2645 if (IntrinsicID == Intrinsic::usub_sat) 2646 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2647 else 2648 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2649 case Intrinsic::cttz: 2650 case Intrinsic::ctlz: 2651 assert(C1 && "Must be constant int"); 2652 2653 // cttz(0, 1) and ctlz(0, 1) are undef. 2654 if (C1->isOneValue() && (!C0 || C0->isNullValue())) 2655 return UndefValue::get(Ty); 2656 if (!C0) 2657 return Constant::getNullValue(Ty); 2658 if (IntrinsicID == Intrinsic::cttz) 2659 return ConstantInt::get(Ty, C0->countTrailingZeros()); 2660 else 2661 return ConstantInt::get(Ty, C0->countLeadingZeros()); 2662 2663 case Intrinsic::abs: 2664 // Undef or minimum val operand with poison min --> undef 2665 assert(C1 && "Must be constant int"); 2666 if (C1->isOneValue() && (!C0 || C0->isMinSignedValue())) 2667 return UndefValue::get(Ty); 2668 2669 // Undef operand with no poison min --> 0 (sign bit must be clear) 2670 if (C1->isNullValue() && !C0) 2671 return Constant::getNullValue(Ty); 2672 2673 return ConstantInt::get(Ty, C0->abs()); 2674 } 2675 2676 return nullptr; 2677 } 2678 2679 // Support ConstantVector in case we have an Undef in the top. 2680 if ((isa<ConstantVector>(Operands[0]) || 2681 isa<ConstantDataVector>(Operands[0])) && 2682 // Check for default rounding mode. 2683 // FIXME: Support other rounding modes? 2684 isa<ConstantInt>(Operands[1]) && 2685 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2686 auto *Op = cast<Constant>(Operands[0]); 2687 switch (IntrinsicID) { 2688 default: break; 2689 case Intrinsic::x86_avx512_vcvtss2si32: 2690 case Intrinsic::x86_avx512_vcvtss2si64: 2691 case Intrinsic::x86_avx512_vcvtsd2si32: 2692 case Intrinsic::x86_avx512_vcvtsd2si64: 2693 if (ConstantFP *FPOp = 2694 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2695 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2696 /*roundTowardZero=*/false, Ty, 2697 /*IsSigned*/true); 2698 break; 2699 case Intrinsic::x86_avx512_vcvtss2usi32: 2700 case Intrinsic::x86_avx512_vcvtss2usi64: 2701 case Intrinsic::x86_avx512_vcvtsd2usi32: 2702 case Intrinsic::x86_avx512_vcvtsd2usi64: 2703 if (ConstantFP *FPOp = 2704 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2705 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2706 /*roundTowardZero=*/false, Ty, 2707 /*IsSigned*/false); 2708 break; 2709 case Intrinsic::x86_avx512_cvttss2si: 2710 case Intrinsic::x86_avx512_cvttss2si64: 2711 case Intrinsic::x86_avx512_cvttsd2si: 2712 case Intrinsic::x86_avx512_cvttsd2si64: 2713 if (ConstantFP *FPOp = 2714 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2715 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2716 /*roundTowardZero=*/true, Ty, 2717 /*IsSigned*/true); 2718 break; 2719 case Intrinsic::x86_avx512_cvttss2usi: 2720 case Intrinsic::x86_avx512_cvttss2usi64: 2721 case Intrinsic::x86_avx512_cvttsd2usi: 2722 case Intrinsic::x86_avx512_cvttsd2usi64: 2723 if (ConstantFP *FPOp = 2724 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2725 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2726 /*roundTowardZero=*/true, Ty, 2727 /*IsSigned*/false); 2728 break; 2729 } 2730 } 2731 return nullptr; 2732 } 2733 2734 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 2735 const APFloat &S0, 2736 const APFloat &S1, 2737 const APFloat &S2) { 2738 unsigned ID; 2739 const fltSemantics &Sem = S0.getSemantics(); 2740 APFloat MA(Sem), SC(Sem), TC(Sem); 2741 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 2742 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 2743 // S2 < 0 2744 ID = 5; 2745 SC = -S0; 2746 } else { 2747 ID = 4; 2748 SC = S0; 2749 } 2750 MA = S2; 2751 TC = -S1; 2752 } else if (abs(S1) >= abs(S0)) { 2753 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 2754 // S1 < 0 2755 ID = 3; 2756 TC = -S2; 2757 } else { 2758 ID = 2; 2759 TC = S2; 2760 } 2761 MA = S1; 2762 SC = S0; 2763 } else { 2764 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 2765 // S0 < 0 2766 ID = 1; 2767 SC = S2; 2768 } else { 2769 ID = 0; 2770 SC = -S2; 2771 } 2772 MA = S0; 2773 TC = -S1; 2774 } 2775 switch (IntrinsicID) { 2776 default: 2777 llvm_unreachable("unhandled amdgcn cube intrinsic"); 2778 case Intrinsic::amdgcn_cubeid: 2779 return APFloat(Sem, ID); 2780 case Intrinsic::amdgcn_cubema: 2781 return MA + MA; 2782 case Intrinsic::amdgcn_cubesc: 2783 return SC; 2784 case Intrinsic::amdgcn_cubetc: 2785 return TC; 2786 } 2787 } 2788 2789 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 2790 Type *Ty) { 2791 const APInt *C0, *C1, *C2; 2792 if (!getConstIntOrUndef(Operands[0], C0) || 2793 !getConstIntOrUndef(Operands[1], C1) || 2794 !getConstIntOrUndef(Operands[2], C2)) 2795 return nullptr; 2796 2797 if (!C2) 2798 return UndefValue::get(Ty); 2799 2800 APInt Val(32, 0); 2801 unsigned NumUndefBytes = 0; 2802 for (unsigned I = 0; I < 32; I += 8) { 2803 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 2804 unsigned B = 0; 2805 2806 if (Sel >= 13) 2807 B = 0xff; 2808 else if (Sel == 12) 2809 B = 0x00; 2810 else { 2811 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 2812 if (!Src) 2813 ++NumUndefBytes; 2814 else if (Sel < 8) 2815 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 2816 else 2817 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 2818 } 2819 2820 Val.insertBits(B, I, 8); 2821 } 2822 2823 if (NumUndefBytes == 4) 2824 return UndefValue::get(Ty); 2825 2826 return ConstantInt::get(Ty, Val); 2827 } 2828 2829 static Constant *ConstantFoldScalarCall3(StringRef Name, 2830 Intrinsic::ID IntrinsicID, 2831 Type *Ty, 2832 ArrayRef<Constant *> Operands, 2833 const TargetLibraryInfo *TLI, 2834 const CallBase *Call) { 2835 assert(Operands.size() == 3 && "Wrong number of operands."); 2836 2837 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2838 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2839 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 2840 const APFloat &C1 = Op1->getValueAPF(); 2841 const APFloat &C2 = Op2->getValueAPF(); 2842 const APFloat &C3 = Op3->getValueAPF(); 2843 2844 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 2845 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2846 APFloat Res = C1; 2847 APFloat::opStatus St; 2848 switch (IntrinsicID) { 2849 default: 2850 return nullptr; 2851 case Intrinsic::experimental_constrained_fma: 2852 case Intrinsic::experimental_constrained_fmuladd: 2853 St = Res.fusedMultiplyAdd(C2, C3, RM); 2854 break; 2855 } 2856 if (mayFoldConstrained( 2857 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 2858 return ConstantFP::get(Ty->getContext(), Res); 2859 return nullptr; 2860 } 2861 2862 switch (IntrinsicID) { 2863 default: break; 2864 case Intrinsic::amdgcn_fma_legacy: { 2865 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2866 // NaN or infinity, gives +0.0. 2867 if (C1.isZero() || C2.isZero()) { 2868 // It's tempting to just return C3 here, but that would give the 2869 // wrong result if C3 was -0.0. 2870 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 2871 } 2872 LLVM_FALLTHROUGH; 2873 } 2874 case Intrinsic::fma: 2875 case Intrinsic::fmuladd: { 2876 APFloat V = C1; 2877 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 2878 return ConstantFP::get(Ty->getContext(), V); 2879 } 2880 case Intrinsic::amdgcn_cubeid: 2881 case Intrinsic::amdgcn_cubema: 2882 case Intrinsic::amdgcn_cubesc: 2883 case Intrinsic::amdgcn_cubetc: { 2884 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 2885 return ConstantFP::get(Ty->getContext(), V); 2886 } 2887 } 2888 } 2889 } 2890 } 2891 2892 if (IntrinsicID == Intrinsic::smul_fix || 2893 IntrinsicID == Intrinsic::smul_fix_sat) { 2894 // poison * C -> poison 2895 // C * poison -> poison 2896 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2897 return PoisonValue::get(Ty); 2898 2899 const APInt *C0, *C1; 2900 if (!getConstIntOrUndef(Operands[0], C0) || 2901 !getConstIntOrUndef(Operands[1], C1)) 2902 return nullptr; 2903 2904 // undef * C -> 0 2905 // C * undef -> 0 2906 if (!C0 || !C1) 2907 return Constant::getNullValue(Ty); 2908 2909 // This code performs rounding towards negative infinity in case the result 2910 // cannot be represented exactly for the given scale. Targets that do care 2911 // about rounding should use a target hook for specifying how rounding 2912 // should be done, and provide their own folding to be consistent with 2913 // rounding. This is the same approach as used by 2914 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 2915 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 2916 unsigned Width = C0->getBitWidth(); 2917 assert(Scale < Width && "Illegal scale."); 2918 unsigned ExtendedWidth = Width * 2; 2919 APInt Product = (C0->sextOrSelf(ExtendedWidth) * 2920 C1->sextOrSelf(ExtendedWidth)).ashr(Scale); 2921 if (IntrinsicID == Intrinsic::smul_fix_sat) { 2922 APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); 2923 APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); 2924 Product = APIntOps::smin(Product, Max); 2925 Product = APIntOps::smax(Product, Min); 2926 } 2927 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 2928 } 2929 2930 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 2931 const APInt *C0, *C1, *C2; 2932 if (!getConstIntOrUndef(Operands[0], C0) || 2933 !getConstIntOrUndef(Operands[1], C1) || 2934 !getConstIntOrUndef(Operands[2], C2)) 2935 return nullptr; 2936 2937 bool IsRight = IntrinsicID == Intrinsic::fshr; 2938 if (!C2) 2939 return Operands[IsRight ? 1 : 0]; 2940 if (!C0 && !C1) 2941 return UndefValue::get(Ty); 2942 2943 // The shift amount is interpreted as modulo the bitwidth. If the shift 2944 // amount is effectively 0, avoid UB due to oversized inverse shift below. 2945 unsigned BitWidth = C2->getBitWidth(); 2946 unsigned ShAmt = C2->urem(BitWidth); 2947 if (!ShAmt) 2948 return Operands[IsRight ? 1 : 0]; 2949 2950 // (C0 << ShlAmt) | (C1 >> LshrAmt) 2951 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 2952 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 2953 if (!C0) 2954 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 2955 if (!C1) 2956 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 2957 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 2958 } 2959 2960 if (IntrinsicID == Intrinsic::amdgcn_perm) 2961 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 2962 2963 return nullptr; 2964 } 2965 2966 static Constant *ConstantFoldScalarCall(StringRef Name, 2967 Intrinsic::ID IntrinsicID, 2968 Type *Ty, 2969 ArrayRef<Constant *> Operands, 2970 const TargetLibraryInfo *TLI, 2971 const CallBase *Call) { 2972 if (Operands.size() == 1) 2973 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 2974 2975 if (Operands.size() == 2) 2976 return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); 2977 2978 if (Operands.size() == 3) 2979 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 2980 2981 return nullptr; 2982 } 2983 2984 static Constant *ConstantFoldFixedVectorCall( 2985 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 2986 ArrayRef<Constant *> Operands, const DataLayout &DL, 2987 const TargetLibraryInfo *TLI, const CallBase *Call) { 2988 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 2989 SmallVector<Constant *, 4> Lane(Operands.size()); 2990 Type *Ty = FVTy->getElementType(); 2991 2992 switch (IntrinsicID) { 2993 case Intrinsic::masked_load: { 2994 auto *SrcPtr = Operands[0]; 2995 auto *Mask = Operands[2]; 2996 auto *Passthru = Operands[3]; 2997 2998 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 2999 3000 SmallVector<Constant *, 32> NewElements; 3001 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3002 auto *MaskElt = Mask->getAggregateElement(I); 3003 if (!MaskElt) 3004 break; 3005 auto *PassthruElt = Passthru->getAggregateElement(I); 3006 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 3007 if (isa<UndefValue>(MaskElt)) { 3008 if (PassthruElt) 3009 NewElements.push_back(PassthruElt); 3010 else if (VecElt) 3011 NewElements.push_back(VecElt); 3012 else 3013 return nullptr; 3014 } 3015 if (MaskElt->isNullValue()) { 3016 if (!PassthruElt) 3017 return nullptr; 3018 NewElements.push_back(PassthruElt); 3019 } else if (MaskElt->isOneValue()) { 3020 if (!VecElt) 3021 return nullptr; 3022 NewElements.push_back(VecElt); 3023 } else { 3024 return nullptr; 3025 } 3026 } 3027 if (NewElements.size() != FVTy->getNumElements()) 3028 return nullptr; 3029 return ConstantVector::get(NewElements); 3030 } 3031 case Intrinsic::arm_mve_vctp8: 3032 case Intrinsic::arm_mve_vctp16: 3033 case Intrinsic::arm_mve_vctp32: 3034 case Intrinsic::arm_mve_vctp64: { 3035 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 3036 unsigned Lanes = FVTy->getNumElements(); 3037 uint64_t Limit = Op->getZExtValue(); 3038 // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make 3039 // sure we get the limit right in that case and set all relevant lanes. 3040 if (IntrinsicID == Intrinsic::arm_mve_vctp64) 3041 Limit *= 2; 3042 3043 SmallVector<Constant *, 16> NCs; 3044 for (unsigned i = 0; i < Lanes; i++) { 3045 if (i < Limit) 3046 NCs.push_back(ConstantInt::getTrue(Ty)); 3047 else 3048 NCs.push_back(ConstantInt::getFalse(Ty)); 3049 } 3050 return ConstantVector::get(NCs); 3051 } 3052 break; 3053 } 3054 case Intrinsic::get_active_lane_mask: { 3055 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 3056 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 3057 if (Op0 && Op1) { 3058 unsigned Lanes = FVTy->getNumElements(); 3059 uint64_t Base = Op0->getZExtValue(); 3060 uint64_t Limit = Op1->getZExtValue(); 3061 3062 SmallVector<Constant *, 16> NCs; 3063 for (unsigned i = 0; i < Lanes; i++) { 3064 if (Base + i < Limit) 3065 NCs.push_back(ConstantInt::getTrue(Ty)); 3066 else 3067 NCs.push_back(ConstantInt::getFalse(Ty)); 3068 } 3069 return ConstantVector::get(NCs); 3070 } 3071 break; 3072 } 3073 default: 3074 break; 3075 } 3076 3077 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3078 // Gather a column of constants. 3079 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3080 // Some intrinsics use a scalar type for certain arguments. 3081 if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { 3082 Lane[J] = Operands[J]; 3083 continue; 3084 } 3085 3086 Constant *Agg = Operands[J]->getAggregateElement(I); 3087 if (!Agg) 3088 return nullptr; 3089 3090 Lane[J] = Agg; 3091 } 3092 3093 // Use the regular scalar folding to simplify this column. 3094 Constant *Folded = 3095 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3096 if (!Folded) 3097 return nullptr; 3098 Result[I] = Folded; 3099 } 3100 3101 return ConstantVector::get(Result); 3102 } 3103 3104 static Constant *ConstantFoldScalableVectorCall( 3105 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3106 ArrayRef<Constant *> Operands, const DataLayout &DL, 3107 const TargetLibraryInfo *TLI, const CallBase *Call) { 3108 switch (IntrinsicID) { 3109 case Intrinsic::aarch64_sve_convert_from_svbool: { 3110 auto *Src = dyn_cast<Constant>(Operands[0]); 3111 if (!Src || !Src->isNullValue()) 3112 break; 3113 3114 return ConstantInt::getFalse(SVTy); 3115 } 3116 default: 3117 break; 3118 } 3119 return nullptr; 3120 } 3121 3122 } // end anonymous namespace 3123 3124 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3125 ArrayRef<Constant *> Operands, 3126 const TargetLibraryInfo *TLI) { 3127 if (Call->isNoBuiltin()) 3128 return nullptr; 3129 if (!F->hasName()) 3130 return nullptr; 3131 3132 // If this is not an intrinsic and not recognized as a library call, bail out. 3133 if (F->getIntrinsicID() == Intrinsic::not_intrinsic) { 3134 if (!TLI) 3135 return nullptr; 3136 LibFunc LibF; 3137 if (!TLI->getLibFunc(*F, LibF)) 3138 return nullptr; 3139 } 3140 3141 StringRef Name = F->getName(); 3142 Type *Ty = F->getReturnType(); 3143 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3144 return ConstantFoldFixedVectorCall( 3145 Name, F->getIntrinsicID(), FVTy, Operands, 3146 F->getParent()->getDataLayout(), TLI, Call); 3147 3148 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3149 return ConstantFoldScalableVectorCall( 3150 Name, F->getIntrinsicID(), SVTy, Operands, 3151 F->getParent()->getDataLayout(), TLI, Call); 3152 3153 // TODO: If this is a library function, we already discovered that above, 3154 // so we should pass the LibFunc, not the name (and it might be better 3155 // still to separate intrinsic handling from libcalls). 3156 return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, 3157 Call); 3158 } 3159 3160 bool llvm::isMathLibCallNoop(const CallBase *Call, 3161 const TargetLibraryInfo *TLI) { 3162 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3163 // (and to some extent ConstantFoldScalarCall). 3164 if (Call->isNoBuiltin() || Call->isStrictFP()) 3165 return false; 3166 Function *F = Call->getCalledFunction(); 3167 if (!F) 3168 return false; 3169 3170 LibFunc Func; 3171 if (!TLI || !TLI->getLibFunc(*F, Func)) 3172 return false; 3173 3174 if (Call->getNumArgOperands() == 1) { 3175 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3176 const APFloat &Op = OpC->getValueAPF(); 3177 switch (Func) { 3178 case LibFunc_logl: 3179 case LibFunc_log: 3180 case LibFunc_logf: 3181 case LibFunc_log2l: 3182 case LibFunc_log2: 3183 case LibFunc_log2f: 3184 case LibFunc_log10l: 3185 case LibFunc_log10: 3186 case LibFunc_log10f: 3187 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3188 3189 case LibFunc_expl: 3190 case LibFunc_exp: 3191 case LibFunc_expf: 3192 // FIXME: These boundaries are slightly conservative. 3193 if (OpC->getType()->isDoubleTy()) 3194 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3195 if (OpC->getType()->isFloatTy()) 3196 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3197 break; 3198 3199 case LibFunc_exp2l: 3200 case LibFunc_exp2: 3201 case LibFunc_exp2f: 3202 // FIXME: These boundaries are slightly conservative. 3203 if (OpC->getType()->isDoubleTy()) 3204 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3205 if (OpC->getType()->isFloatTy()) 3206 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3207 break; 3208 3209 case LibFunc_sinl: 3210 case LibFunc_sin: 3211 case LibFunc_sinf: 3212 case LibFunc_cosl: 3213 case LibFunc_cos: 3214 case LibFunc_cosf: 3215 return !Op.isInfinity(); 3216 3217 case LibFunc_tanl: 3218 case LibFunc_tan: 3219 case LibFunc_tanf: { 3220 // FIXME: Stop using the host math library. 3221 // FIXME: The computation isn't done in the right precision. 3222 Type *Ty = OpC->getType(); 3223 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3224 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3225 break; 3226 } 3227 3228 case LibFunc_asinl: 3229 case LibFunc_asin: 3230 case LibFunc_asinf: 3231 case LibFunc_acosl: 3232 case LibFunc_acos: 3233 case LibFunc_acosf: 3234 return !(Op < APFloat(Op.getSemantics(), "-1") || 3235 Op > APFloat(Op.getSemantics(), "1")); 3236 3237 case LibFunc_sinh: 3238 case LibFunc_cosh: 3239 case LibFunc_sinhf: 3240 case LibFunc_coshf: 3241 case LibFunc_sinhl: 3242 case LibFunc_coshl: 3243 // FIXME: These boundaries are slightly conservative. 3244 if (OpC->getType()->isDoubleTy()) 3245 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3246 if (OpC->getType()->isFloatTy()) 3247 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3248 break; 3249 3250 case LibFunc_sqrtl: 3251 case LibFunc_sqrt: 3252 case LibFunc_sqrtf: 3253 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3254 3255 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3256 // maybe others? 3257 default: 3258 break; 3259 } 3260 } 3261 } 3262 3263 if (Call->getNumArgOperands() == 2) { 3264 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3265 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3266 if (Op0C && Op1C) { 3267 const APFloat &Op0 = Op0C->getValueAPF(); 3268 const APFloat &Op1 = Op1C->getValueAPF(); 3269 3270 switch (Func) { 3271 case LibFunc_powl: 3272 case LibFunc_pow: 3273 case LibFunc_powf: { 3274 // FIXME: Stop using the host math library. 3275 // FIXME: The computation isn't done in the right precision. 3276 Type *Ty = Op0C->getType(); 3277 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3278 if (Ty == Op1C->getType()) 3279 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3280 } 3281 break; 3282 } 3283 3284 case LibFunc_fmodl: 3285 case LibFunc_fmod: 3286 case LibFunc_fmodf: 3287 case LibFunc_remainderl: 3288 case LibFunc_remainder: 3289 case LibFunc_remainderf: 3290 return Op0.isNaN() || Op1.isNaN() || 3291 (!Op0.isInfinity() && !Op1.isZero()); 3292 3293 default: 3294 break; 3295 } 3296 } 3297 } 3298 3299 return false; 3300 } 3301 3302 void TargetFolder::anchor() {} 3303