1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MathExtras.h"
56 #include <cassert>
57 #include <cerrno>
58 #include <cfenv>
59 #include <cmath>
60 #include <cstddef>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
67                                   ArrayRef<Constant *> Ops,
68                                   const DataLayout &DL,
69                                   const TargetLibraryInfo *TLI,
70                                   bool ForLoadOperand);
71 
72 //===----------------------------------------------------------------------===//
73 // Constant Folding internal helper functions
74 //===----------------------------------------------------------------------===//
75 
76 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
77                                         Constant *C, Type *SrcEltTy,
78                                         unsigned NumSrcElts,
79                                         const DataLayout &DL) {
80   // Now that we know that the input value is a vector of integers, just shift
81   // and insert them into our result.
82   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
83   for (unsigned i = 0; i != NumSrcElts; ++i) {
84     Constant *Element;
85     if (DL.isLittleEndian())
86       Element = C->getAggregateElement(NumSrcElts - i - 1);
87     else
88       Element = C->getAggregateElement(i);
89 
90     if (Element && isa<UndefValue>(Element)) {
91       Result <<= BitShift;
92       continue;
93     }
94 
95     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
96     if (!ElementCI)
97       return ConstantExpr::getBitCast(C, DestTy);
98 
99     Result <<= BitShift;
100     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
101   }
102 
103   return nullptr;
104 }
105 
106 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
107 /// This always returns a non-null constant, but it may be a
108 /// ConstantExpr if unfoldable.
109 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
110   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
111          "Invalid constantexpr bitcast!");
112 
113   // Catch the obvious splat cases.
114   if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
115     return Constant::getNullValue(DestTy);
116   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
117       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
118     return Constant::getAllOnesValue(DestTy);
119 
120   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
121     // Handle a vector->scalar integer/fp cast.
122     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
123       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
124       Type *SrcEltTy = VTy->getElementType();
125 
126       // If the vector is a vector of floating point, convert it to vector of int
127       // to simplify things.
128       if (SrcEltTy->isFloatingPointTy()) {
129         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
130         auto *SrcIVTy = FixedVectorType::get(
131             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
132         // Ask IR to do the conversion now that #elts line up.
133         C = ConstantExpr::getBitCast(C, SrcIVTy);
134       }
135 
136       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
137       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
138                                                 SrcEltTy, NumSrcElts, DL))
139         return CE;
140 
141       if (isa<IntegerType>(DestTy))
142         return ConstantInt::get(DestTy, Result);
143 
144       APFloat FP(DestTy->getFltSemantics(), Result);
145       return ConstantFP::get(DestTy->getContext(), FP);
146     }
147   }
148 
149   // The code below only handles casts to vectors currently.
150   auto *DestVTy = dyn_cast<VectorType>(DestTy);
151   if (!DestVTy)
152     return ConstantExpr::getBitCast(C, DestTy);
153 
154   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
155   // vector so the code below can handle it uniformly.
156   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
157     Constant *Ops = C; // don't take the address of C!
158     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159   }
160 
161   // If this is a bitcast from constant vector -> vector, fold it.
162   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
163     return ConstantExpr::getBitCast(C, DestTy);
164 
165   // If the element types match, IR can fold it.
166   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
167   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
168   if (NumDstElt == NumSrcElt)
169     return ConstantExpr::getBitCast(C, DestTy);
170 
171   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
172   Type *DstEltTy = DestVTy->getElementType();
173 
174   // Otherwise, we're changing the number of elements in a vector, which
175   // requires endianness information to do the right thing.  For example,
176   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
177   // folds to (little endian):
178   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
179   // and to (big endian):
180   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
181 
182   // First thing is first.  We only want to think about integer here, so if
183   // we have something in FP form, recast it as integer.
184   if (DstEltTy->isFloatingPointTy()) {
185     // Fold to an vector of integers with same size as our FP type.
186     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
187     auto *DestIVTy = FixedVectorType::get(
188         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
189     // Recursively handle this integer conversion, if possible.
190     C = FoldBitCast(C, DestIVTy, DL);
191 
192     // Finally, IR can handle this now that #elts line up.
193     return ConstantExpr::getBitCast(C, DestTy);
194   }
195 
196   // Okay, we know the destination is integer, if the input is FP, convert
197   // it to integer first.
198   if (SrcEltTy->isFloatingPointTy()) {
199     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
200     auto *SrcIVTy = FixedVectorType::get(
201         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
202     // Ask IR to do the conversion now that #elts line up.
203     C = ConstantExpr::getBitCast(C, SrcIVTy);
204     // If IR wasn't able to fold it, bail out.
205     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
206         !isa<ConstantDataVector>(C))
207       return C;
208   }
209 
210   // Now we know that the input and output vectors are both integer vectors
211   // of the same size, and that their #elements is not the same.  Do the
212   // conversion here, which depends on whether the input or output has
213   // more elements.
214   bool isLittleEndian = DL.isLittleEndian();
215 
216   SmallVector<Constant*, 32> Result;
217   if (NumDstElt < NumSrcElt) {
218     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
219     Constant *Zero = Constant::getNullValue(DstEltTy);
220     unsigned Ratio = NumSrcElt/NumDstElt;
221     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
222     unsigned SrcElt = 0;
223     for (unsigned i = 0; i != NumDstElt; ++i) {
224       // Build each element of the result.
225       Constant *Elt = Zero;
226       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
227       for (unsigned j = 0; j != Ratio; ++j) {
228         Constant *Src = C->getAggregateElement(SrcElt++);
229         if (Src && isa<UndefValue>(Src))
230           Src = Constant::getNullValue(
231               cast<VectorType>(C->getType())->getElementType());
232         else
233           Src = dyn_cast_or_null<ConstantInt>(Src);
234         if (!Src)  // Reject constantexpr elements.
235           return ConstantExpr::getBitCast(C, DestTy);
236 
237         // Zero extend the element to the right size.
238         Src = ConstantExpr::getZExt(Src, Elt->getType());
239 
240         // Shift it to the right place, depending on endianness.
241         Src = ConstantExpr::getShl(Src,
242                                    ConstantInt::get(Src->getType(), ShiftAmt));
243         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
244 
245         // Mix it in.
246         Elt = ConstantExpr::getOr(Elt, Src);
247       }
248       Result.push_back(Elt);
249     }
250     return ConstantVector::get(Result);
251   }
252 
253   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
254   unsigned Ratio = NumDstElt/NumSrcElt;
255   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
256 
257   // Loop over each source value, expanding into multiple results.
258   for (unsigned i = 0; i != NumSrcElt; ++i) {
259     auto *Element = C->getAggregateElement(i);
260 
261     if (!Element) // Reject constantexpr elements.
262       return ConstantExpr::getBitCast(C, DestTy);
263 
264     if (isa<UndefValue>(Element)) {
265       // Correctly Propagate undef values.
266       Result.append(Ratio, UndefValue::get(DstEltTy));
267       continue;
268     }
269 
270     auto *Src = dyn_cast<ConstantInt>(Element);
271     if (!Src)
272       return ConstantExpr::getBitCast(C, DestTy);
273 
274     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
275     for (unsigned j = 0; j != Ratio; ++j) {
276       // Shift the piece of the value into the right place, depending on
277       // endianness.
278       Constant *Elt = ConstantExpr::getLShr(Src,
279                                   ConstantInt::get(Src->getType(), ShiftAmt));
280       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
281 
282       // Truncate the element to an integer with the same pointer size and
283       // convert the element back to a pointer using a inttoptr.
284       if (DstEltTy->isPointerTy()) {
285         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
286         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
287         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
288         continue;
289       }
290 
291       // Truncate and remember this piece.
292       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
293     }
294   }
295 
296   return ConstantVector::get(Result);
297 }
298 
299 } // end anonymous namespace
300 
301 /// If this constant is a constant offset from a global, return the global and
302 /// the constant. Because of constantexprs, this function is recursive.
303 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
304                                       APInt &Offset, const DataLayout &DL,
305                                       DSOLocalEquivalent **DSOEquiv) {
306   if (DSOEquiv)
307     *DSOEquiv = nullptr;
308 
309   // Trivial case, constant is the global.
310   if ((GV = dyn_cast<GlobalValue>(C))) {
311     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
312     Offset = APInt(BitWidth, 0);
313     return true;
314   }
315 
316   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
317     if (DSOEquiv)
318       *DSOEquiv = FoundDSOEquiv;
319     GV = FoundDSOEquiv->getGlobalValue();
320     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
321     Offset = APInt(BitWidth, 0);
322     return true;
323   }
324 
325   // Otherwise, if this isn't a constant expr, bail out.
326   auto *CE = dyn_cast<ConstantExpr>(C);
327   if (!CE) return false;
328 
329   // Look through ptr->int and ptr->ptr casts.
330   if (CE->getOpcode() == Instruction::PtrToInt ||
331       CE->getOpcode() == Instruction::BitCast)
332     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
333                                       DSOEquiv);
334 
335   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
336   auto *GEP = dyn_cast<GEPOperator>(CE);
337   if (!GEP)
338     return false;
339 
340   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
341   APInt TmpOffset(BitWidth, 0);
342 
343   // If the base isn't a global+constant, we aren't either.
344   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
345                                   DSOEquiv))
346     return false;
347 
348   // Otherwise, add any offset that our operands provide.
349   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
350     return false;
351 
352   Offset = TmpOffset;
353   return true;
354 }
355 
356 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
357                                          const DataLayout &DL) {
358   do {
359     Type *SrcTy = C->getType();
360     uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
361     uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
362     if (SrcSize < DestSize)
363       return nullptr;
364 
365     // Catch the obvious splat cases (since all-zeros can coerce non-integral
366     // pointers legally).
367     if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
368       return Constant::getNullValue(DestTy);
369     if (C->isAllOnesValue() &&
370         (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
371          DestTy->isVectorTy()) &&
372         !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
373         !DestTy->isPtrOrPtrVectorTy())
374       // Get ones when the input is trivial, but
375       // only for supported types inside getAllOnesValue.
376       return Constant::getAllOnesValue(DestTy);
377 
378     // If the type sizes are the same and a cast is legal, just directly
379     // cast the constant.
380     // But be careful not to coerce non-integral pointers illegally.
381     if (SrcSize == DestSize &&
382         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
383             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
384       Instruction::CastOps Cast = Instruction::BitCast;
385       // If we are going from a pointer to int or vice versa, we spell the cast
386       // differently.
387       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
388         Cast = Instruction::IntToPtr;
389       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
390         Cast = Instruction::PtrToInt;
391 
392       if (CastInst::castIsValid(Cast, C, DestTy))
393         return ConstantExpr::getCast(Cast, C, DestTy);
394     }
395 
396     // If this isn't an aggregate type, there is nothing we can do to drill down
397     // and find a bitcastable constant.
398     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
399       return nullptr;
400 
401     // We're simulating a load through a pointer that was bitcast to point to
402     // a different type, so we can try to walk down through the initial
403     // elements of an aggregate to see if some part of the aggregate is
404     // castable to implement the "load" semantic model.
405     if (SrcTy->isStructTy()) {
406       // Struct types might have leading zero-length elements like [0 x i32],
407       // which are certainly not what we are looking for, so skip them.
408       unsigned Elem = 0;
409       Constant *ElemC;
410       do {
411         ElemC = C->getAggregateElement(Elem++);
412       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
413       C = ElemC;
414     } else {
415       C = C->getAggregateElement(0u);
416     }
417   } while (C);
418 
419   return nullptr;
420 }
421 
422 namespace {
423 
424 /// Recursive helper to read bits out of global. C is the constant being copied
425 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
426 /// results into and BytesLeft is the number of bytes left in
427 /// the CurPtr buffer. DL is the DataLayout.
428 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
429                         unsigned BytesLeft, const DataLayout &DL) {
430   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
431          "Out of range access");
432 
433   // If this element is zero or undefined, we can just return since *CurPtr is
434   // zero initialized.
435   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
436     return true;
437 
438   if (auto *CI = dyn_cast<ConstantInt>(C)) {
439     if (CI->getBitWidth() > 64 ||
440         (CI->getBitWidth() & 7) != 0)
441       return false;
442 
443     uint64_t Val = CI->getZExtValue();
444     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
445 
446     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
447       int n = ByteOffset;
448       if (!DL.isLittleEndian())
449         n = IntBytes - n - 1;
450       CurPtr[i] = (unsigned char)(Val >> (n * 8));
451       ++ByteOffset;
452     }
453     return true;
454   }
455 
456   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
457     if (CFP->getType()->isDoubleTy()) {
458       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
459       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
460     }
461     if (CFP->getType()->isFloatTy()){
462       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
463       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
464     }
465     if (CFP->getType()->isHalfTy()){
466       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
467       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
468     }
469     return false;
470   }
471 
472   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
473     const StructLayout *SL = DL.getStructLayout(CS->getType());
474     unsigned Index = SL->getElementContainingOffset(ByteOffset);
475     uint64_t CurEltOffset = SL->getElementOffset(Index);
476     ByteOffset -= CurEltOffset;
477 
478     while (true) {
479       // If the element access is to the element itself and not to tail padding,
480       // read the bytes from the element.
481       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
482 
483       if (ByteOffset < EltSize &&
484           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
485                               BytesLeft, DL))
486         return false;
487 
488       ++Index;
489 
490       // Check to see if we read from the last struct element, if so we're done.
491       if (Index == CS->getType()->getNumElements())
492         return true;
493 
494       // If we read all of the bytes we needed from this element we're done.
495       uint64_t NextEltOffset = SL->getElementOffset(Index);
496 
497       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
498         return true;
499 
500       // Move to the next element of the struct.
501       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
502       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
503       ByteOffset = 0;
504       CurEltOffset = NextEltOffset;
505     }
506     // not reached.
507   }
508 
509   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
510       isa<ConstantDataSequential>(C)) {
511     uint64_t NumElts;
512     Type *EltTy;
513     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
514       NumElts = AT->getNumElements();
515       EltTy = AT->getElementType();
516     } else {
517       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
518       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
519     }
520     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
521     uint64_t Index = ByteOffset / EltSize;
522     uint64_t Offset = ByteOffset - Index * EltSize;
523 
524     for (; Index != NumElts; ++Index) {
525       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
526                               BytesLeft, DL))
527         return false;
528 
529       uint64_t BytesWritten = EltSize - Offset;
530       assert(BytesWritten <= EltSize && "Not indexing into this element?");
531       if (BytesWritten >= BytesLeft)
532         return true;
533 
534       Offset = 0;
535       BytesLeft -= BytesWritten;
536       CurPtr += BytesWritten;
537     }
538     return true;
539   }
540 
541   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
542     if (CE->getOpcode() == Instruction::IntToPtr &&
543         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
544       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
545                                 BytesLeft, DL);
546     }
547   }
548 
549   // Otherwise, unknown initializer type.
550   return false;
551 }
552 
553 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
554                                           const DataLayout &DL) {
555   // Bail out early. Not expect to load from scalable global variable.
556   if (isa<ScalableVectorType>(LoadTy))
557     return nullptr;
558 
559   auto *PTy = cast<PointerType>(C->getType());
560   auto *IntType = dyn_cast<IntegerType>(LoadTy);
561 
562   // If this isn't an integer load we can't fold it directly.
563   if (!IntType) {
564     unsigned AS = PTy->getAddressSpace();
565 
566     // If this is a float/double load, we can try folding it as an int32/64 load
567     // and then bitcast the result.  This can be useful for union cases.  Note
568     // that address spaces don't matter here since we're not going to result in
569     // an actual new load.
570     Type *MapTy;
571     if (LoadTy->isHalfTy())
572       MapTy = Type::getInt16Ty(C->getContext());
573     else if (LoadTy->isFloatTy())
574       MapTy = Type::getInt32Ty(C->getContext());
575     else if (LoadTy->isDoubleTy())
576       MapTy = Type::getInt64Ty(C->getContext());
577     else if (LoadTy->isVectorTy()) {
578       MapTy = PointerType::getIntNTy(
579           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
580     } else
581       return nullptr;
582 
583     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
584     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
585       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
586           !LoadTy->isX86_AMXTy())
587         // Materializing a zero can be done trivially without a bitcast
588         return Constant::getNullValue(LoadTy);
589       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
590       Res = FoldBitCast(Res, CastTy, DL);
591       if (LoadTy->isPtrOrPtrVectorTy()) {
592         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
593         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
594             !LoadTy->isX86_AMXTy())
595           return Constant::getNullValue(LoadTy);
596         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
597           // Be careful not to replace a load of an addrspace value with an inttoptr here
598           return nullptr;
599         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
600       }
601       return Res;
602     }
603     return nullptr;
604   }
605 
606   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
607   if (BytesLoaded > 32 || BytesLoaded == 0)
608     return nullptr;
609 
610   GlobalValue *GVal;
611   APInt OffsetAI;
612   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
613     return nullptr;
614 
615   auto *GV = dyn_cast<GlobalVariable>(GVal);
616   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
617       !GV->getInitializer()->getType()->isSized())
618     return nullptr;
619 
620   int64_t Offset = OffsetAI.getSExtValue();
621   int64_t InitializerSize =
622       DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
623 
624   // If we're not accessing anything in this constant, the result is undefined.
625   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
626     return UndefValue::get(IntType);
627 
628   // If we're not accessing anything in this constant, the result is undefined.
629   if (Offset >= InitializerSize)
630     return UndefValue::get(IntType);
631 
632   unsigned char RawBytes[32] = {0};
633   unsigned char *CurPtr = RawBytes;
634   unsigned BytesLeft = BytesLoaded;
635 
636   // If we're loading off the beginning of the global, some bytes may be valid.
637   if (Offset < 0) {
638     CurPtr += -Offset;
639     BytesLeft += Offset;
640     Offset = 0;
641   }
642 
643   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
644     return nullptr;
645 
646   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
647   if (DL.isLittleEndian()) {
648     ResultVal = RawBytes[BytesLoaded - 1];
649     for (unsigned i = 1; i != BytesLoaded; ++i) {
650       ResultVal <<= 8;
651       ResultVal |= RawBytes[BytesLoaded - 1 - i];
652     }
653   } else {
654     ResultVal = RawBytes[0];
655     for (unsigned i = 1; i != BytesLoaded; ++i) {
656       ResultVal <<= 8;
657       ResultVal |= RawBytes[i];
658     }
659   }
660 
661   return ConstantInt::get(IntType->getContext(), ResultVal);
662 }
663 
664 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
665                                              const DataLayout &DL) {
666   auto *SrcPtr = CE->getOperand(0);
667   if (!SrcPtr->getType()->isPointerTy())
668     return nullptr;
669 
670   return ConstantFoldLoadFromConstPtr(SrcPtr, DestTy, DL);
671 }
672 
673 } // end anonymous namespace
674 
675 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
676                                              const DataLayout &DL) {
677   // First, try the easy cases:
678   if (auto *GV = dyn_cast<GlobalVariable>(C))
679     if (GV->isConstant() && GV->hasDefinitiveInitializer())
680       return ConstantFoldLoadThroughBitcast(GV->getInitializer(), Ty, DL);
681 
682   if (auto *GA = dyn_cast<GlobalAlias>(C))
683     if (GA->getAliasee() && !GA->isInterposable())
684       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
685 
686   // If the loaded value isn't a constant expr, we can't handle it.
687   auto *CE = dyn_cast<ConstantExpr>(C);
688   if (!CE)
689     return nullptr;
690 
691   if (CE->getOpcode() == Instruction::GetElementPtr) {
692     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
693       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
694         if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(
695                 GV->getInitializer(), CE, Ty, DL))
696           return V;
697       }
698     } else {
699       // Try to simplify GEP if the pointer operand wasn't a GlobalVariable.
700       // SymbolicallyEvaluateGEP() with `ForLoadOperand = true` can potentially
701       // simplify the GEP more than it normally would have been, but should only
702       // be used for const folding loads.
703       SmallVector<Constant *> Ops;
704       for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
705         Ops.push_back(cast<Constant>(CE->getOperand(I)));
706       if (auto *Simplified = dyn_cast_or_null<ConstantExpr>(
707               SymbolicallyEvaluateGEP(cast<GEPOperator>(CE), Ops, DL, nullptr,
708                                       /*ForLoadOperand*/ true))) {
709         // If the symbolically evaluated GEP is another GEP, we can only const
710         // fold it if the resulting pointer operand is a GlobalValue. Otherwise
711         // there is nothing else to simplify since the GEP is already in the
712         // most simplified form.
713         if (isa<GEPOperator>(Simplified)) {
714           if (auto *GV = dyn_cast<GlobalVariable>(Simplified->getOperand(0))) {
715             if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
716               if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(
717                       GV->getInitializer(), Simplified, Ty, DL))
718                 return V;
719             }
720           }
721         } else {
722           return ConstantFoldLoadFromConstPtr(Simplified, Ty, DL);
723         }
724       }
725     }
726   }
727 
728   if (CE->getOpcode() == Instruction::BitCast)
729     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
730       return LoadedC;
731 
732   // Instead of loading constant c string, use corresponding integer value
733   // directly if string length is small enough.
734   StringRef Str;
735   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
736     size_t StrLen = Str.size();
737     unsigned NumBits = Ty->getPrimitiveSizeInBits();
738     // Replace load with immediate integer if the result is an integer or fp
739     // value.
740     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
741         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
742       APInt StrVal(NumBits, 0);
743       APInt SingleChar(NumBits, 0);
744       if (DL.isLittleEndian()) {
745         for (unsigned char C : reverse(Str.bytes())) {
746           SingleChar = static_cast<uint64_t>(C);
747           StrVal = (StrVal << 8) | SingleChar;
748         }
749       } else {
750         for (unsigned char C : Str.bytes()) {
751           SingleChar = static_cast<uint64_t>(C);
752           StrVal = (StrVal << 8) | SingleChar;
753         }
754         // Append NULL at the end.
755         SingleChar = 0;
756         StrVal = (StrVal << 8) | SingleChar;
757       }
758 
759       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
760       if (Ty->isFloatingPointTy())
761         Res = ConstantExpr::getBitCast(Res, Ty);
762       return Res;
763     }
764   }
765 
766   // If this load comes from anywhere in a constant global, and if the global
767   // is all undef or zero, we know what it loads.
768   if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) {
769     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
770       if (GV->getInitializer()->isNullValue())
771         return Constant::getNullValue(Ty);
772       if (isa<UndefValue>(GV->getInitializer()))
773         return UndefValue::get(Ty);
774     }
775   }
776 
777   // Try hard to fold loads from bitcasted strange and non-type-safe things.
778   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
779 }
780 
781 namespace {
782 
783 /// One of Op0/Op1 is a constant expression.
784 /// Attempt to symbolically evaluate the result of a binary operator merging
785 /// these together.  If target data info is available, it is provided as DL,
786 /// otherwise DL is null.
787 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
788                                     const DataLayout &DL) {
789   // SROA
790 
791   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
792   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
793   // bits.
794 
795   if (Opc == Instruction::And) {
796     KnownBits Known0 = computeKnownBits(Op0, DL);
797     KnownBits Known1 = computeKnownBits(Op1, DL);
798     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
799       // All the bits of Op0 that the 'and' could be masking are already zero.
800       return Op0;
801     }
802     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
803       // All the bits of Op1 that the 'and' could be masking are already zero.
804       return Op1;
805     }
806 
807     Known0 &= Known1;
808     if (Known0.isConstant())
809       return ConstantInt::get(Op0->getType(), Known0.getConstant());
810   }
811 
812   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
813   // constant.  This happens frequently when iterating over a global array.
814   if (Opc == Instruction::Sub) {
815     GlobalValue *GV1, *GV2;
816     APInt Offs1, Offs2;
817 
818     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
819       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
820         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
821 
822         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
823         // PtrToInt may change the bitwidth so we have convert to the right size
824         // first.
825         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
826                                                 Offs2.zextOrTrunc(OpSize));
827       }
828   }
829 
830   return nullptr;
831 }
832 
833 /// If array indices are not pointer-sized integers, explicitly cast them so
834 /// that they aren't implicitly casted by the getelementptr.
835 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
836                          Type *ResultTy, Optional<unsigned> InRangeIndex,
837                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
838   Type *IntIdxTy = DL.getIndexType(ResultTy);
839   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
840 
841   bool Any = false;
842   SmallVector<Constant*, 32> NewIdxs;
843   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
844     if ((i == 1 ||
845          !isa<StructType>(GetElementPtrInst::getIndexedType(
846              SrcElemTy, Ops.slice(1, i - 1)))) &&
847         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
848       Any = true;
849       Type *NewType = Ops[i]->getType()->isVectorTy()
850                           ? IntIdxTy
851                           : IntIdxScalarTy;
852       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
853                                                                       true,
854                                                                       NewType,
855                                                                       true),
856                                               Ops[i], NewType));
857     } else
858       NewIdxs.push_back(Ops[i]);
859   }
860 
861   if (!Any)
862     return nullptr;
863 
864   Constant *C = ConstantExpr::getGetElementPtr(
865       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
866   return ConstantFoldConstant(C, DL, TLI);
867 }
868 
869 /// Strip the pointer casts, but preserve the address space information.
870 Constant *StripPtrCastKeepAS(Constant *Ptr, bool ForLoadOperand) {
871   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
872   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
873   Ptr = cast<Constant>(Ptr->stripPointerCasts());
874   if (ForLoadOperand) {
875     while (isa<GlobalAlias>(Ptr) && !cast<GlobalAlias>(Ptr)->isInterposable() &&
876            !cast<GlobalAlias>(Ptr)->getBaseObject()->isInterposable()) {
877       Ptr = cast<GlobalAlias>(Ptr)->getAliasee();
878     }
879   }
880 
881   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
882 
883   // Preserve the address space number of the pointer.
884   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
885     Ptr = ConstantExpr::getPointerCast(
886         Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
887                                                  OldPtrTy->getAddressSpace()));
888   }
889   return Ptr;
890 }
891 
892 /// If we can symbolically evaluate the GEP constant expression, do so.
893 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
894                                   ArrayRef<Constant *> Ops,
895                                   const DataLayout &DL,
896                                   const TargetLibraryInfo *TLI,
897                                   bool ForLoadOperand) {
898   const GEPOperator *InnermostGEP = GEP;
899   bool InBounds = GEP->isInBounds();
900 
901   Type *SrcElemTy = GEP->getSourceElementType();
902   Type *ResElemTy = GEP->getResultElementType();
903   Type *ResTy = GEP->getType();
904   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
905     return nullptr;
906 
907   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
908                                    GEP->getInRangeIndex(), DL, TLI))
909     return C;
910 
911   Constant *Ptr = Ops[0];
912   if (!Ptr->getType()->isPointerTy())
913     return nullptr;
914 
915   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
916 
917   // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
918   // "inttoptr (sub (ptrtoint Ptr), V)"
919   if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
920     auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
921     assert((!CE || CE->getType() == IntIdxTy) &&
922            "CastGEPIndices didn't canonicalize index types!");
923     if (CE && CE->getOpcode() == Instruction::Sub &&
924         CE->getOperand(0)->isNullValue()) {
925       Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
926       Res = ConstantExpr::getSub(Res, CE->getOperand(1));
927       Res = ConstantExpr::getIntToPtr(Res, ResTy);
928       return ConstantFoldConstant(Res, DL, TLI);
929     }
930   }
931 
932   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
933     if (!isa<ConstantInt>(Ops[i]))
934       return nullptr;
935 
936   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
937   APInt Offset =
938       APInt(BitWidth,
939             DL.getIndexedOffsetInType(
940                 SrcElemTy,
941                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
942   Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand);
943 
944   // If this is a GEP of a GEP, fold it all into a single GEP.
945   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
946     InnermostGEP = GEP;
947     InBounds &= GEP->isInBounds();
948 
949     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
950 
951     // Do not try the incorporate the sub-GEP if some index is not a number.
952     bool AllConstantInt = true;
953     for (Value *NestedOp : NestedOps)
954       if (!isa<ConstantInt>(NestedOp)) {
955         AllConstantInt = false;
956         break;
957       }
958     if (!AllConstantInt)
959       break;
960 
961     Ptr = cast<Constant>(GEP->getOperand(0));
962     SrcElemTy = GEP->getSourceElementType();
963     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
964     Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand);
965   }
966 
967   // If the base value for this address is a literal integer value, fold the
968   // getelementptr to the resulting integer value casted to the pointer type.
969   APInt BasePtr(BitWidth, 0);
970   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
971     if (CE->getOpcode() == Instruction::IntToPtr) {
972       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
973         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
974     }
975   }
976 
977   auto *PTy = cast<PointerType>(Ptr->getType());
978   if ((Ptr->isNullValue() || BasePtr != 0) &&
979       !DL.isNonIntegralPointerType(PTy)) {
980     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
981     return ConstantExpr::getIntToPtr(C, ResTy);
982   }
983 
984   // Otherwise form a regular getelementptr. Recompute the indices so that
985   // we eliminate over-indexing of the notional static type array bounds.
986   // This makes it easy to determine if the getelementptr is "inbounds".
987   // Also, this helps GlobalOpt do SROA on GlobalVariables.
988 
989   // For GEPs of GlobalValues, use the value type even for opaque pointers.
990   // Otherwise use an i8 GEP.
991   if (auto *GV = dyn_cast<GlobalValue>(Ptr))
992     SrcElemTy = GV->getValueType();
993   else if (!PTy->isOpaque())
994     SrcElemTy = PTy->getElementType();
995   else
996     SrcElemTy = Type::getInt8Ty(Ptr->getContext());
997 
998   if (!SrcElemTy->isSized())
999     return nullptr;
1000 
1001   Type *ElemTy = SrcElemTy;
1002   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
1003   if (Offset != 0)
1004     return nullptr;
1005 
1006   // Try to add additional zero indices to reach the desired result element
1007   // type.
1008   // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
1009   // we'll have to insert a bitcast anyway?
1010   while (ElemTy != ResElemTy) {
1011     Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
1012     if (!NextTy)
1013       break;
1014 
1015     Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
1016     ElemTy = NextTy;
1017   }
1018 
1019   SmallVector<Constant *, 32> NewIdxs;
1020   for (const APInt &Index : Indices)
1021     NewIdxs.push_back(ConstantInt::get(
1022         Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
1023 
1024   // Preserve the inrange index from the innermost GEP if possible. We must
1025   // have calculated the same indices up to and including the inrange index.
1026   Optional<unsigned> InRangeIndex;
1027   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
1028     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
1029         NewIdxs.size() > *LastIRIndex) {
1030       InRangeIndex = LastIRIndex;
1031       for (unsigned I = 0; I <= *LastIRIndex; ++I)
1032         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1033           return nullptr;
1034     }
1035 
1036   // Create a GEP.
1037   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1038                                                InBounds, InRangeIndex);
1039   assert(
1040       cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1041       "Computed GetElementPtr has unexpected type!");
1042 
1043   // If we ended up indexing a member with a type that doesn't match
1044   // the type of what the original indices indexed, add a cast.
1045   if (C->getType() != ResTy)
1046     C = FoldBitCast(C, ResTy, DL);
1047 
1048   return C;
1049 }
1050 
1051 /// Attempt to constant fold an instruction with the
1052 /// specified opcode and operands.  If successful, the constant result is
1053 /// returned, if not, null is returned.  Note that this function can fail when
1054 /// attempting to fold instructions like loads and stores, which have no
1055 /// constant expression form.
1056 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1057                                        ArrayRef<Constant *> Ops,
1058                                        const DataLayout &DL,
1059                                        const TargetLibraryInfo *TLI) {
1060   Type *DestTy = InstOrCE->getType();
1061 
1062   if (Instruction::isUnaryOp(Opcode))
1063     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1064 
1065   if (Instruction::isBinaryOp(Opcode))
1066     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1067 
1068   if (Instruction::isCast(Opcode))
1069     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1070 
1071   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1072     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI,
1073                                               /*ForLoadOperand*/ false))
1074       return C;
1075 
1076     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1077                                           Ops.slice(1), GEP->isInBounds(),
1078                                           GEP->getInRangeIndex());
1079   }
1080 
1081   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1082     return CE->getWithOperands(Ops);
1083 
1084   switch (Opcode) {
1085   default: return nullptr;
1086   case Instruction::ICmp:
1087   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1088   case Instruction::Freeze:
1089     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1090   case Instruction::Call:
1091     if (auto *F = dyn_cast<Function>(Ops.back())) {
1092       const auto *Call = cast<CallBase>(InstOrCE);
1093       if (canConstantFoldCallTo(Call, F))
1094         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1095     }
1096     return nullptr;
1097   case Instruction::Select:
1098     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1099   case Instruction::ExtractElement:
1100     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1101   case Instruction::ExtractValue:
1102     return ConstantExpr::getExtractValue(
1103         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1104   case Instruction::InsertElement:
1105     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1106   case Instruction::ShuffleVector:
1107     return ConstantExpr::getShuffleVector(
1108         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1109   }
1110 }
1111 
1112 } // end anonymous namespace
1113 
1114 //===----------------------------------------------------------------------===//
1115 // Constant Folding public APIs
1116 //===----------------------------------------------------------------------===//
1117 
1118 namespace {
1119 
1120 Constant *
1121 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1122                          const TargetLibraryInfo *TLI,
1123                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1124   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1125     return const_cast<Constant *>(C);
1126 
1127   SmallVector<Constant *, 8> Ops;
1128   for (const Use &OldU : C->operands()) {
1129     Constant *OldC = cast<Constant>(&OldU);
1130     Constant *NewC = OldC;
1131     // Recursively fold the ConstantExpr's operands. If we have already folded
1132     // a ConstantExpr, we don't have to process it again.
1133     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1134       auto It = FoldedOps.find(OldC);
1135       if (It == FoldedOps.end()) {
1136         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1137         FoldedOps.insert({OldC, NewC});
1138       } else {
1139         NewC = It->second;
1140       }
1141     }
1142     Ops.push_back(NewC);
1143   }
1144 
1145   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1146     if (CE->isCompare())
1147       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1148                                              DL, TLI);
1149 
1150     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1151   }
1152 
1153   assert(isa<ConstantVector>(C));
1154   return ConstantVector::get(Ops);
1155 }
1156 
1157 } // end anonymous namespace
1158 
1159 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1160                                         const TargetLibraryInfo *TLI) {
1161   // Handle PHI nodes quickly here...
1162   if (auto *PN = dyn_cast<PHINode>(I)) {
1163     Constant *CommonValue = nullptr;
1164 
1165     SmallDenseMap<Constant *, Constant *> FoldedOps;
1166     for (Value *Incoming : PN->incoming_values()) {
1167       // If the incoming value is undef then skip it.  Note that while we could
1168       // skip the value if it is equal to the phi node itself we choose not to
1169       // because that would break the rule that constant folding only applies if
1170       // all operands are constants.
1171       if (isa<UndefValue>(Incoming))
1172         continue;
1173       // If the incoming value is not a constant, then give up.
1174       auto *C = dyn_cast<Constant>(Incoming);
1175       if (!C)
1176         return nullptr;
1177       // Fold the PHI's operands.
1178       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1179       // If the incoming value is a different constant to
1180       // the one we saw previously, then give up.
1181       if (CommonValue && C != CommonValue)
1182         return nullptr;
1183       CommonValue = C;
1184     }
1185 
1186     // If we reach here, all incoming values are the same constant or undef.
1187     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1188   }
1189 
1190   // Scan the operand list, checking to see if they are all constants, if so,
1191   // hand off to ConstantFoldInstOperandsImpl.
1192   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1193     return nullptr;
1194 
1195   SmallDenseMap<Constant *, Constant *> FoldedOps;
1196   SmallVector<Constant *, 8> Ops;
1197   for (const Use &OpU : I->operands()) {
1198     auto *Op = cast<Constant>(&OpU);
1199     // Fold the Instruction's operands.
1200     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1201     Ops.push_back(Op);
1202   }
1203 
1204   if (const auto *CI = dyn_cast<CmpInst>(I))
1205     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1206                                            DL, TLI);
1207 
1208   if (const auto *LI = dyn_cast<LoadInst>(I)) {
1209     if (LI->isVolatile())
1210       return nullptr;
1211     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1212   }
1213 
1214   if (auto *IVI = dyn_cast<InsertValueInst>(I))
1215     return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
1216 
1217   if (auto *EVI = dyn_cast<ExtractValueInst>(I))
1218     return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
1219 
1220   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1221 }
1222 
1223 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1224                                      const TargetLibraryInfo *TLI) {
1225   SmallDenseMap<Constant *, Constant *> FoldedOps;
1226   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1227 }
1228 
1229 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1230                                          ArrayRef<Constant *> Ops,
1231                                          const DataLayout &DL,
1232                                          const TargetLibraryInfo *TLI) {
1233   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1234 }
1235 
1236 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1237                                                 Constant *Ops0, Constant *Ops1,
1238                                                 const DataLayout &DL,
1239                                                 const TargetLibraryInfo *TLI) {
1240   // fold: icmp (inttoptr x), null         -> icmp x, 0
1241   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1242   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1243   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1244   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1245   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1246   //
1247   // FIXME: The following comment is out of data and the DataLayout is here now.
1248   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1249   // around to know if bit truncation is happening.
1250   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1251     if (Ops1->isNullValue()) {
1252       if (CE0->getOpcode() == Instruction::IntToPtr) {
1253         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1254         // Convert the integer value to the right size to ensure we get the
1255         // proper extension or truncation.
1256         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1257                                                    IntPtrTy, false);
1258         Constant *Null = Constant::getNullValue(C->getType());
1259         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1260       }
1261 
1262       // Only do this transformation if the int is intptrty in size, otherwise
1263       // there is a truncation or extension that we aren't modeling.
1264       if (CE0->getOpcode() == Instruction::PtrToInt) {
1265         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1266         if (CE0->getType() == IntPtrTy) {
1267           Constant *C = CE0->getOperand(0);
1268           Constant *Null = Constant::getNullValue(C->getType());
1269           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1270         }
1271       }
1272     }
1273 
1274     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1275       if (CE0->getOpcode() == CE1->getOpcode()) {
1276         if (CE0->getOpcode() == Instruction::IntToPtr) {
1277           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1278 
1279           // Convert the integer value to the right size to ensure we get the
1280           // proper extension or truncation.
1281           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1282                                                       IntPtrTy, false);
1283           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1284                                                       IntPtrTy, false);
1285           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1286         }
1287 
1288         // Only do this transformation if the int is intptrty in size, otherwise
1289         // there is a truncation or extension that we aren't modeling.
1290         if (CE0->getOpcode() == Instruction::PtrToInt) {
1291           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1292           if (CE0->getType() == IntPtrTy &&
1293               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1294             return ConstantFoldCompareInstOperands(
1295                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1296           }
1297         }
1298       }
1299     }
1300 
1301     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1302     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1303     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1304         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1305       Constant *LHS = ConstantFoldCompareInstOperands(
1306           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1307       Constant *RHS = ConstantFoldCompareInstOperands(
1308           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1309       unsigned OpC =
1310         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1311       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1312     }
1313   } else if (isa<ConstantExpr>(Ops1)) {
1314     // If RHS is a constant expression, but the left side isn't, swap the
1315     // operands and try again.
1316     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1317     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1318   }
1319 
1320   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1321 }
1322 
1323 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1324                                            const DataLayout &DL) {
1325   assert(Instruction::isUnaryOp(Opcode));
1326 
1327   return ConstantExpr::get(Opcode, Op);
1328 }
1329 
1330 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1331                                              Constant *RHS,
1332                                              const DataLayout &DL) {
1333   assert(Instruction::isBinaryOp(Opcode));
1334   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1335     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1336       return C;
1337 
1338   return ConstantExpr::get(Opcode, LHS, RHS);
1339 }
1340 
1341 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1342                                         Type *DestTy, const DataLayout &DL) {
1343   assert(Instruction::isCast(Opcode));
1344   switch (Opcode) {
1345   default:
1346     llvm_unreachable("Missing case");
1347   case Instruction::PtrToInt:
1348     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1349       Constant *FoldedValue = nullptr;
1350       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1351       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1352       if (CE->getOpcode() == Instruction::IntToPtr) {
1353         // zext/trunc the inttoptr to pointer size.
1354         FoldedValue = ConstantExpr::getIntegerCast(
1355             CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1356             /*IsSigned=*/false);
1357       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1358         // If we have GEP, we can perform the following folds:
1359         // (ptrtoint (gep null, x)) -> x
1360         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1361         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1362         APInt BaseOffset(BitWidth, 0);
1363         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1364             DL, BaseOffset, /*AllowNonInbounds=*/true));
1365         if (Base->isNullValue()) {
1366           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1367         }
1368       }
1369       if (FoldedValue) {
1370         // Do a zext or trunc to get to the ptrtoint dest size.
1371         return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1372                                             /*IsSigned=*/false);
1373       }
1374     }
1375     return ConstantExpr::getCast(Opcode, C, DestTy);
1376   case Instruction::IntToPtr:
1377     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1378     // the int size is >= the ptr size and the address spaces are the same.
1379     // This requires knowing the width of a pointer, so it can't be done in
1380     // ConstantExpr::getCast.
1381     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1382       if (CE->getOpcode() == Instruction::PtrToInt) {
1383         Constant *SrcPtr = CE->getOperand(0);
1384         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1385         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1386 
1387         if (MidIntSize >= SrcPtrSize) {
1388           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1389           if (SrcAS == DestTy->getPointerAddressSpace())
1390             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1391         }
1392       }
1393     }
1394 
1395     return ConstantExpr::getCast(Opcode, C, DestTy);
1396   case Instruction::Trunc:
1397   case Instruction::ZExt:
1398   case Instruction::SExt:
1399   case Instruction::FPTrunc:
1400   case Instruction::FPExt:
1401   case Instruction::UIToFP:
1402   case Instruction::SIToFP:
1403   case Instruction::FPToUI:
1404   case Instruction::FPToSI:
1405   case Instruction::AddrSpaceCast:
1406       return ConstantExpr::getCast(Opcode, C, DestTy);
1407   case Instruction::BitCast:
1408     return FoldBitCast(C, DestTy, DL);
1409   }
1410 }
1411 
1412 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1413                                                        ConstantExpr *CE,
1414                                                        Type *Ty,
1415                                                        const DataLayout &DL) {
1416   if (!CE->getOperand(1)->isNullValue())
1417     return nullptr;  // Do not allow stepping over the value!
1418 
1419   // Loop over all of the operands, tracking down which value we are
1420   // addressing.
1421   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1422     C = C->getAggregateElement(CE->getOperand(i));
1423     if (!C)
1424       return nullptr;
1425   }
1426   return ConstantFoldLoadThroughBitcast(C, Ty, DL);
1427 }
1428 
1429 Constant *
1430 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1431                                         ArrayRef<Constant *> Indices) {
1432   // Loop over all of the operands, tracking down which value we are
1433   // addressing.
1434   for (Constant *Index : Indices) {
1435     C = C->getAggregateElement(Index);
1436     if (!C)
1437       return nullptr;
1438   }
1439   return C;
1440 }
1441 
1442 //===----------------------------------------------------------------------===//
1443 //  Constant Folding for Calls
1444 //
1445 
1446 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1447   if (Call->isNoBuiltin())
1448     return false;
1449   switch (F->getIntrinsicID()) {
1450   // Operations that do not operate floating-point numbers and do not depend on
1451   // FP environment can be folded even in strictfp functions.
1452   case Intrinsic::bswap:
1453   case Intrinsic::ctpop:
1454   case Intrinsic::ctlz:
1455   case Intrinsic::cttz:
1456   case Intrinsic::fshl:
1457   case Intrinsic::fshr:
1458   case Intrinsic::launder_invariant_group:
1459   case Intrinsic::strip_invariant_group:
1460   case Intrinsic::masked_load:
1461   case Intrinsic::get_active_lane_mask:
1462   case Intrinsic::abs:
1463   case Intrinsic::smax:
1464   case Intrinsic::smin:
1465   case Intrinsic::umax:
1466   case Intrinsic::umin:
1467   case Intrinsic::sadd_with_overflow:
1468   case Intrinsic::uadd_with_overflow:
1469   case Intrinsic::ssub_with_overflow:
1470   case Intrinsic::usub_with_overflow:
1471   case Intrinsic::smul_with_overflow:
1472   case Intrinsic::umul_with_overflow:
1473   case Intrinsic::sadd_sat:
1474   case Intrinsic::uadd_sat:
1475   case Intrinsic::ssub_sat:
1476   case Intrinsic::usub_sat:
1477   case Intrinsic::smul_fix:
1478   case Intrinsic::smul_fix_sat:
1479   case Intrinsic::bitreverse:
1480   case Intrinsic::is_constant:
1481   case Intrinsic::vector_reduce_add:
1482   case Intrinsic::vector_reduce_mul:
1483   case Intrinsic::vector_reduce_and:
1484   case Intrinsic::vector_reduce_or:
1485   case Intrinsic::vector_reduce_xor:
1486   case Intrinsic::vector_reduce_smin:
1487   case Intrinsic::vector_reduce_smax:
1488   case Intrinsic::vector_reduce_umin:
1489   case Intrinsic::vector_reduce_umax:
1490   // Target intrinsics
1491   case Intrinsic::amdgcn_perm:
1492   case Intrinsic::arm_mve_vctp8:
1493   case Intrinsic::arm_mve_vctp16:
1494   case Intrinsic::arm_mve_vctp32:
1495   case Intrinsic::arm_mve_vctp64:
1496   case Intrinsic::aarch64_sve_convert_from_svbool:
1497   // WebAssembly float semantics are always known
1498   case Intrinsic::wasm_trunc_signed:
1499   case Intrinsic::wasm_trunc_unsigned:
1500     return true;
1501 
1502   // Floating point operations cannot be folded in strictfp functions in
1503   // general case. They can be folded if FP environment is known to compiler.
1504   case Intrinsic::minnum:
1505   case Intrinsic::maxnum:
1506   case Intrinsic::minimum:
1507   case Intrinsic::maximum:
1508   case Intrinsic::log:
1509   case Intrinsic::log2:
1510   case Intrinsic::log10:
1511   case Intrinsic::exp:
1512   case Intrinsic::exp2:
1513   case Intrinsic::sqrt:
1514   case Intrinsic::sin:
1515   case Intrinsic::cos:
1516   case Intrinsic::pow:
1517   case Intrinsic::powi:
1518   case Intrinsic::fma:
1519   case Intrinsic::fmuladd:
1520   case Intrinsic::fptoui_sat:
1521   case Intrinsic::fptosi_sat:
1522   case Intrinsic::convert_from_fp16:
1523   case Intrinsic::convert_to_fp16:
1524   case Intrinsic::amdgcn_cos:
1525   case Intrinsic::amdgcn_cubeid:
1526   case Intrinsic::amdgcn_cubema:
1527   case Intrinsic::amdgcn_cubesc:
1528   case Intrinsic::amdgcn_cubetc:
1529   case Intrinsic::amdgcn_fmul_legacy:
1530   case Intrinsic::amdgcn_fma_legacy:
1531   case Intrinsic::amdgcn_fract:
1532   case Intrinsic::amdgcn_ldexp:
1533   case Intrinsic::amdgcn_sin:
1534   // The intrinsics below depend on rounding mode in MXCSR.
1535   case Intrinsic::x86_sse_cvtss2si:
1536   case Intrinsic::x86_sse_cvtss2si64:
1537   case Intrinsic::x86_sse_cvttss2si:
1538   case Intrinsic::x86_sse_cvttss2si64:
1539   case Intrinsic::x86_sse2_cvtsd2si:
1540   case Intrinsic::x86_sse2_cvtsd2si64:
1541   case Intrinsic::x86_sse2_cvttsd2si:
1542   case Intrinsic::x86_sse2_cvttsd2si64:
1543   case Intrinsic::x86_avx512_vcvtss2si32:
1544   case Intrinsic::x86_avx512_vcvtss2si64:
1545   case Intrinsic::x86_avx512_cvttss2si:
1546   case Intrinsic::x86_avx512_cvttss2si64:
1547   case Intrinsic::x86_avx512_vcvtsd2si32:
1548   case Intrinsic::x86_avx512_vcvtsd2si64:
1549   case Intrinsic::x86_avx512_cvttsd2si:
1550   case Intrinsic::x86_avx512_cvttsd2si64:
1551   case Intrinsic::x86_avx512_vcvtss2usi32:
1552   case Intrinsic::x86_avx512_vcvtss2usi64:
1553   case Intrinsic::x86_avx512_cvttss2usi:
1554   case Intrinsic::x86_avx512_cvttss2usi64:
1555   case Intrinsic::x86_avx512_vcvtsd2usi32:
1556   case Intrinsic::x86_avx512_vcvtsd2usi64:
1557   case Intrinsic::x86_avx512_cvttsd2usi:
1558   case Intrinsic::x86_avx512_cvttsd2usi64:
1559     return !Call->isStrictFP();
1560 
1561   // Sign operations are actually bitwise operations, they do not raise
1562   // exceptions even for SNANs.
1563   case Intrinsic::fabs:
1564   case Intrinsic::copysign:
1565   // Non-constrained variants of rounding operations means default FP
1566   // environment, they can be folded in any case.
1567   case Intrinsic::ceil:
1568   case Intrinsic::floor:
1569   case Intrinsic::round:
1570   case Intrinsic::roundeven:
1571   case Intrinsic::trunc:
1572   case Intrinsic::nearbyint:
1573   case Intrinsic::rint:
1574   // Constrained intrinsics can be folded if FP environment is known
1575   // to compiler.
1576   case Intrinsic::experimental_constrained_fma:
1577   case Intrinsic::experimental_constrained_fmuladd:
1578   case Intrinsic::experimental_constrained_fadd:
1579   case Intrinsic::experimental_constrained_fsub:
1580   case Intrinsic::experimental_constrained_fmul:
1581   case Intrinsic::experimental_constrained_fdiv:
1582   case Intrinsic::experimental_constrained_frem:
1583   case Intrinsic::experimental_constrained_ceil:
1584   case Intrinsic::experimental_constrained_floor:
1585   case Intrinsic::experimental_constrained_round:
1586   case Intrinsic::experimental_constrained_roundeven:
1587   case Intrinsic::experimental_constrained_trunc:
1588   case Intrinsic::experimental_constrained_nearbyint:
1589   case Intrinsic::experimental_constrained_rint:
1590     return true;
1591   default:
1592     return false;
1593   case Intrinsic::not_intrinsic: break;
1594   }
1595 
1596   if (!F->hasName() || Call->isStrictFP())
1597     return false;
1598 
1599   // In these cases, the check of the length is required.  We don't want to
1600   // return true for a name like "cos\0blah" which strcmp would return equal to
1601   // "cos", but has length 8.
1602   StringRef Name = F->getName();
1603   switch (Name[0]) {
1604   default:
1605     return false;
1606   case 'a':
1607     return Name == "acos" || Name == "acosf" ||
1608            Name == "asin" || Name == "asinf" ||
1609            Name == "atan" || Name == "atanf" ||
1610            Name == "atan2" || Name == "atan2f";
1611   case 'c':
1612     return Name == "ceil" || Name == "ceilf" ||
1613            Name == "cos" || Name == "cosf" ||
1614            Name == "cosh" || Name == "coshf";
1615   case 'e':
1616     return Name == "exp" || Name == "expf" ||
1617            Name == "exp2" || Name == "exp2f";
1618   case 'f':
1619     return Name == "fabs" || Name == "fabsf" ||
1620            Name == "floor" || Name == "floorf" ||
1621            Name == "fmod" || Name == "fmodf";
1622   case 'l':
1623     return Name == "log" || Name == "logf" ||
1624            Name == "log2" || Name == "log2f" ||
1625            Name == "log10" || Name == "log10f";
1626   case 'n':
1627     return Name == "nearbyint" || Name == "nearbyintf";
1628   case 'p':
1629     return Name == "pow" || Name == "powf";
1630   case 'r':
1631     return Name == "remainder" || Name == "remainderf" ||
1632            Name == "rint" || Name == "rintf" ||
1633            Name == "round" || Name == "roundf";
1634   case 's':
1635     return Name == "sin" || Name == "sinf" ||
1636            Name == "sinh" || Name == "sinhf" ||
1637            Name == "sqrt" || Name == "sqrtf";
1638   case 't':
1639     return Name == "tan" || Name == "tanf" ||
1640            Name == "tanh" || Name == "tanhf" ||
1641            Name == "trunc" || Name == "truncf";
1642   case '_':
1643     // Check for various function names that get used for the math functions
1644     // when the header files are preprocessed with the macro
1645     // __FINITE_MATH_ONLY__ enabled.
1646     // The '12' here is the length of the shortest name that can match.
1647     // We need to check the size before looking at Name[1] and Name[2]
1648     // so we may as well check a limit that will eliminate mismatches.
1649     if (Name.size() < 12 || Name[1] != '_')
1650       return false;
1651     switch (Name[2]) {
1652     default:
1653       return false;
1654     case 'a':
1655       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1656              Name == "__asin_finite" || Name == "__asinf_finite" ||
1657              Name == "__atan2_finite" || Name == "__atan2f_finite";
1658     case 'c':
1659       return Name == "__cosh_finite" || Name == "__coshf_finite";
1660     case 'e':
1661       return Name == "__exp_finite" || Name == "__expf_finite" ||
1662              Name == "__exp2_finite" || Name == "__exp2f_finite";
1663     case 'l':
1664       return Name == "__log_finite" || Name == "__logf_finite" ||
1665              Name == "__log10_finite" || Name == "__log10f_finite";
1666     case 'p':
1667       return Name == "__pow_finite" || Name == "__powf_finite";
1668     case 's':
1669       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1670     }
1671   }
1672 }
1673 
1674 namespace {
1675 
1676 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1677   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1678     APFloat APF(V);
1679     bool unused;
1680     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1681     return ConstantFP::get(Ty->getContext(), APF);
1682   }
1683   if (Ty->isDoubleTy())
1684     return ConstantFP::get(Ty->getContext(), APFloat(V));
1685   llvm_unreachable("Can only constant fold half/float/double");
1686 }
1687 
1688 /// Clear the floating-point exception state.
1689 inline void llvm_fenv_clearexcept() {
1690 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1691   feclearexcept(FE_ALL_EXCEPT);
1692 #endif
1693   errno = 0;
1694 }
1695 
1696 /// Test if a floating-point exception was raised.
1697 inline bool llvm_fenv_testexcept() {
1698   int errno_val = errno;
1699   if (errno_val == ERANGE || errno_val == EDOM)
1700     return true;
1701 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1702   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1703     return true;
1704 #endif
1705   return false;
1706 }
1707 
1708 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1709                          Type *Ty) {
1710   llvm_fenv_clearexcept();
1711   double Result = NativeFP(V.convertToDouble());
1712   if (llvm_fenv_testexcept()) {
1713     llvm_fenv_clearexcept();
1714     return nullptr;
1715   }
1716 
1717   return GetConstantFoldFPValue(Result, Ty);
1718 }
1719 
1720 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1721                                const APFloat &V, const APFloat &W, Type *Ty) {
1722   llvm_fenv_clearexcept();
1723   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1724   if (llvm_fenv_testexcept()) {
1725     llvm_fenv_clearexcept();
1726     return nullptr;
1727   }
1728 
1729   return GetConstantFoldFPValue(Result, Ty);
1730 }
1731 
1732 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1733   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1734   if (!VT)
1735     return nullptr;
1736 
1737   // This isn't strictly necessary, but handle the special/common case of zero:
1738   // all integer reductions of a zero input produce zero.
1739   if (isa<ConstantAggregateZero>(Op))
1740     return ConstantInt::get(VT->getElementType(), 0);
1741 
1742   // This is the same as the underlying binops - poison propagates.
1743   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1744     return PoisonValue::get(VT->getElementType());
1745 
1746   // TODO: Handle undef.
1747   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1748     return nullptr;
1749 
1750   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1751   if (!EltC)
1752     return nullptr;
1753 
1754   APInt Acc = EltC->getValue();
1755   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1756     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1757       return nullptr;
1758     const APInt &X = EltC->getValue();
1759     switch (IID) {
1760     case Intrinsic::vector_reduce_add:
1761       Acc = Acc + X;
1762       break;
1763     case Intrinsic::vector_reduce_mul:
1764       Acc = Acc * X;
1765       break;
1766     case Intrinsic::vector_reduce_and:
1767       Acc = Acc & X;
1768       break;
1769     case Intrinsic::vector_reduce_or:
1770       Acc = Acc | X;
1771       break;
1772     case Intrinsic::vector_reduce_xor:
1773       Acc = Acc ^ X;
1774       break;
1775     case Intrinsic::vector_reduce_smin:
1776       Acc = APIntOps::smin(Acc, X);
1777       break;
1778     case Intrinsic::vector_reduce_smax:
1779       Acc = APIntOps::smax(Acc, X);
1780       break;
1781     case Intrinsic::vector_reduce_umin:
1782       Acc = APIntOps::umin(Acc, X);
1783       break;
1784     case Intrinsic::vector_reduce_umax:
1785       Acc = APIntOps::umax(Acc, X);
1786       break;
1787     }
1788   }
1789 
1790   return ConstantInt::get(Op->getContext(), Acc);
1791 }
1792 
1793 /// Attempt to fold an SSE floating point to integer conversion of a constant
1794 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1795 /// used (toward nearest, ties to even). This matches the behavior of the
1796 /// non-truncating SSE instructions in the default rounding mode. The desired
1797 /// integer type Ty is used to select how many bits are available for the
1798 /// result. Returns null if the conversion cannot be performed, otherwise
1799 /// returns the Constant value resulting from the conversion.
1800 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1801                                       Type *Ty, bool IsSigned) {
1802   // All of these conversion intrinsics form an integer of at most 64bits.
1803   unsigned ResultWidth = Ty->getIntegerBitWidth();
1804   assert(ResultWidth <= 64 &&
1805          "Can only constant fold conversions to 64 and 32 bit ints");
1806 
1807   uint64_t UIntVal;
1808   bool isExact = false;
1809   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1810                                               : APFloat::rmNearestTiesToEven;
1811   APFloat::opStatus status =
1812       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1813                            IsSigned, mode, &isExact);
1814   if (status != APFloat::opOK &&
1815       (!roundTowardZero || status != APFloat::opInexact))
1816     return nullptr;
1817   return ConstantInt::get(Ty, UIntVal, IsSigned);
1818 }
1819 
1820 double getValueAsDouble(ConstantFP *Op) {
1821   Type *Ty = Op->getType();
1822 
1823   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1824     return Op->getValueAPF().convertToDouble();
1825 
1826   bool unused;
1827   APFloat APF = Op->getValueAPF();
1828   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1829   return APF.convertToDouble();
1830 }
1831 
1832 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1833   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1834     C = &CI->getValue();
1835     return true;
1836   }
1837   if (isa<UndefValue>(Op)) {
1838     C = nullptr;
1839     return true;
1840   }
1841   return false;
1842 }
1843 
1844 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1845 /// to be folded.
1846 ///
1847 /// \param CI Constrained intrinsic call.
1848 /// \param St Exception flags raised during constant evaluation.
1849 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1850                                APFloat::opStatus St) {
1851   Optional<RoundingMode> ORM = CI->getRoundingMode();
1852   Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1853 
1854   // If the operation does not change exception status flags, it is safe
1855   // to fold.
1856   if (St == APFloat::opStatus::opOK) {
1857     // When FP exceptions are not ignored, intrinsic call will not be
1858     // eliminated, because it is considered as having side effect. But we
1859     // know that its evaluation does not raise exceptions, so side effect
1860     // is absent. To allow removing the call, mark it as not accessing memory.
1861     if (EB && *EB != fp::ExceptionBehavior::ebIgnore)
1862       CI->addFnAttr(Attribute::ReadNone);
1863     return true;
1864   }
1865 
1866   // If evaluation raised FP exception, the result can depend on rounding
1867   // mode. If the latter is unknown, folding is not possible.
1868   if (!ORM || *ORM == RoundingMode::Dynamic)
1869     return false;
1870 
1871   // If FP exceptions are ignored, fold the call, even if such exception is
1872   // raised.
1873   if (!EB || *EB != fp::ExceptionBehavior::ebStrict)
1874     return true;
1875 
1876   // Leave the calculation for runtime so that exception flags be correctly set
1877   // in hardware.
1878   return false;
1879 }
1880 
1881 /// Returns the rounding mode that should be used for constant evaluation.
1882 static RoundingMode
1883 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1884   Optional<RoundingMode> ORM = CI->getRoundingMode();
1885   if (!ORM || *ORM == RoundingMode::Dynamic)
1886     // Even if the rounding mode is unknown, try evaluating the operation.
1887     // If it does not raise inexact exception, rounding was not applied,
1888     // so the result is exact and does not depend on rounding mode. Whether
1889     // other FP exceptions are raised, it does not depend on rounding mode.
1890     return RoundingMode::NearestTiesToEven;
1891   return *ORM;
1892 }
1893 
1894 static Constant *ConstantFoldScalarCall1(StringRef Name,
1895                                          Intrinsic::ID IntrinsicID,
1896                                          Type *Ty,
1897                                          ArrayRef<Constant *> Operands,
1898                                          const TargetLibraryInfo *TLI,
1899                                          const CallBase *Call) {
1900   assert(Operands.size() == 1 && "Wrong number of operands.");
1901 
1902   if (IntrinsicID == Intrinsic::is_constant) {
1903     // We know we have a "Constant" argument. But we want to only
1904     // return true for manifest constants, not those that depend on
1905     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1906     if (Operands[0]->isManifestConstant())
1907       return ConstantInt::getTrue(Ty->getContext());
1908     return nullptr;
1909   }
1910   if (isa<UndefValue>(Operands[0])) {
1911     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1912     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1913     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1914     if (IntrinsicID == Intrinsic::cos ||
1915         IntrinsicID == Intrinsic::ctpop ||
1916         IntrinsicID == Intrinsic::fptoui_sat ||
1917         IntrinsicID == Intrinsic::fptosi_sat)
1918       return Constant::getNullValue(Ty);
1919     if (IntrinsicID == Intrinsic::bswap ||
1920         IntrinsicID == Intrinsic::bitreverse ||
1921         IntrinsicID == Intrinsic::launder_invariant_group ||
1922         IntrinsicID == Intrinsic::strip_invariant_group)
1923       return Operands[0];
1924   }
1925 
1926   if (isa<ConstantPointerNull>(Operands[0])) {
1927     // launder(null) == null == strip(null) iff in addrspace 0
1928     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1929         IntrinsicID == Intrinsic::strip_invariant_group) {
1930       // If instruction is not yet put in a basic block (e.g. when cloning
1931       // a function during inlining), Call's caller may not be available.
1932       // So check Call's BB first before querying Call->getCaller.
1933       const Function *Caller =
1934           Call->getParent() ? Call->getCaller() : nullptr;
1935       if (Caller &&
1936           !NullPointerIsDefined(
1937               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1938         return Operands[0];
1939       }
1940       return nullptr;
1941     }
1942   }
1943 
1944   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1945     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1946       APFloat Val(Op->getValueAPF());
1947 
1948       bool lost = false;
1949       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1950 
1951       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1952     }
1953 
1954     APFloat U = Op->getValueAPF();
1955 
1956     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
1957         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
1958       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
1959 
1960       if (U.isNaN())
1961         return nullptr;
1962 
1963       unsigned Width = Ty->getIntegerBitWidth();
1964       APSInt Int(Width, !Signed);
1965       bool IsExact = false;
1966       APFloat::opStatus Status =
1967           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1968 
1969       if (Status == APFloat::opOK || Status == APFloat::opInexact)
1970         return ConstantInt::get(Ty, Int);
1971 
1972       return nullptr;
1973     }
1974 
1975     if (IntrinsicID == Intrinsic::fptoui_sat ||
1976         IntrinsicID == Intrinsic::fptosi_sat) {
1977       // convertToInteger() already has the desired saturation semantics.
1978       APSInt Int(Ty->getIntegerBitWidth(),
1979                  IntrinsicID == Intrinsic::fptoui_sat);
1980       bool IsExact;
1981       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1982       return ConstantInt::get(Ty, Int);
1983     }
1984 
1985     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1986       return nullptr;
1987 
1988     // Use internal versions of these intrinsics.
1989 
1990     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1991       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1992       return ConstantFP::get(Ty->getContext(), U);
1993     }
1994 
1995     if (IntrinsicID == Intrinsic::round) {
1996       U.roundToIntegral(APFloat::rmNearestTiesToAway);
1997       return ConstantFP::get(Ty->getContext(), U);
1998     }
1999 
2000     if (IntrinsicID == Intrinsic::roundeven) {
2001       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2002       return ConstantFP::get(Ty->getContext(), U);
2003     }
2004 
2005     if (IntrinsicID == Intrinsic::ceil) {
2006       U.roundToIntegral(APFloat::rmTowardPositive);
2007       return ConstantFP::get(Ty->getContext(), U);
2008     }
2009 
2010     if (IntrinsicID == Intrinsic::floor) {
2011       U.roundToIntegral(APFloat::rmTowardNegative);
2012       return ConstantFP::get(Ty->getContext(), U);
2013     }
2014 
2015     if (IntrinsicID == Intrinsic::trunc) {
2016       U.roundToIntegral(APFloat::rmTowardZero);
2017       return ConstantFP::get(Ty->getContext(), U);
2018     }
2019 
2020     if (IntrinsicID == Intrinsic::fabs) {
2021       U.clearSign();
2022       return ConstantFP::get(Ty->getContext(), U);
2023     }
2024 
2025     if (IntrinsicID == Intrinsic::amdgcn_fract) {
2026       // The v_fract instruction behaves like the OpenCL spec, which defines
2027       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2028       //   there to prevent fract(-small) from returning 1.0. It returns the
2029       //   largest positive floating-point number less than 1.0."
2030       APFloat FloorU(U);
2031       FloorU.roundToIntegral(APFloat::rmTowardNegative);
2032       APFloat FractU(U - FloorU);
2033       APFloat AlmostOne(U.getSemantics(), 1);
2034       AlmostOne.next(/*nextDown*/ true);
2035       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2036     }
2037 
2038     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2039     // raise FP exceptions, unless the argument is signaling NaN.
2040 
2041     Optional<APFloat::roundingMode> RM;
2042     switch (IntrinsicID) {
2043     default:
2044       break;
2045     case Intrinsic::experimental_constrained_nearbyint:
2046     case Intrinsic::experimental_constrained_rint: {
2047       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2048       RM = CI->getRoundingMode();
2049       if (!RM || RM.getValue() == RoundingMode::Dynamic)
2050         return nullptr;
2051       break;
2052     }
2053     case Intrinsic::experimental_constrained_round:
2054       RM = APFloat::rmNearestTiesToAway;
2055       break;
2056     case Intrinsic::experimental_constrained_ceil:
2057       RM = APFloat::rmTowardPositive;
2058       break;
2059     case Intrinsic::experimental_constrained_floor:
2060       RM = APFloat::rmTowardNegative;
2061       break;
2062     case Intrinsic::experimental_constrained_trunc:
2063       RM = APFloat::rmTowardZero;
2064       break;
2065     }
2066     if (RM) {
2067       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2068       if (U.isFinite()) {
2069         APFloat::opStatus St = U.roundToIntegral(*RM);
2070         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2071             St == APFloat::opInexact) {
2072           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2073           if (EB && *EB == fp::ebStrict)
2074             return nullptr;
2075         }
2076       } else if (U.isSignaling()) {
2077         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2078         if (EB && *EB != fp::ebIgnore)
2079           return nullptr;
2080         U = APFloat::getQNaN(U.getSemantics());
2081       }
2082       return ConstantFP::get(Ty->getContext(), U);
2083     }
2084 
2085     /// We only fold functions with finite arguments. Folding NaN and inf is
2086     /// likely to be aborted with an exception anyway, and some host libms
2087     /// have known errors raising exceptions.
2088     if (!U.isFinite())
2089       return nullptr;
2090 
2091     /// Currently APFloat versions of these functions do not exist, so we use
2092     /// the host native double versions.  Float versions are not called
2093     /// directly but for all these it is true (float)(f((double)arg)) ==
2094     /// f(arg).  Long double not supported yet.
2095     APFloat APF = Op->getValueAPF();
2096 
2097     switch (IntrinsicID) {
2098       default: break;
2099       case Intrinsic::log:
2100         return ConstantFoldFP(log, APF, Ty);
2101       case Intrinsic::log2:
2102         // TODO: What about hosts that lack a C99 library?
2103         return ConstantFoldFP(Log2, APF, Ty);
2104       case Intrinsic::log10:
2105         // TODO: What about hosts that lack a C99 library?
2106         return ConstantFoldFP(log10, APF, Ty);
2107       case Intrinsic::exp:
2108         return ConstantFoldFP(exp, APF, Ty);
2109       case Intrinsic::exp2:
2110         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2111         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2112       case Intrinsic::sin:
2113         return ConstantFoldFP(sin, APF, Ty);
2114       case Intrinsic::cos:
2115         return ConstantFoldFP(cos, APF, Ty);
2116       case Intrinsic::sqrt:
2117         return ConstantFoldFP(sqrt, APF, Ty);
2118       case Intrinsic::amdgcn_cos:
2119       case Intrinsic::amdgcn_sin: {
2120         double V = getValueAsDouble(Op);
2121         if (V < -256.0 || V > 256.0)
2122           // The gfx8 and gfx9 architectures handle arguments outside the range
2123           // [-256, 256] differently. This should be a rare case so bail out
2124           // rather than trying to handle the difference.
2125           return nullptr;
2126         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2127         double V4 = V * 4.0;
2128         if (V4 == floor(V4)) {
2129           // Force exact results for quarter-integer inputs.
2130           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2131           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2132         } else {
2133           if (IsCos)
2134             V = cos(V * 2.0 * numbers::pi);
2135           else
2136             V = sin(V * 2.0 * numbers::pi);
2137         }
2138         return GetConstantFoldFPValue(V, Ty);
2139       }
2140     }
2141 
2142     if (!TLI)
2143       return nullptr;
2144 
2145     LibFunc Func = NotLibFunc;
2146     TLI->getLibFunc(Name, Func);
2147     switch (Func) {
2148     default:
2149       break;
2150     case LibFunc_acos:
2151     case LibFunc_acosf:
2152     case LibFunc_acos_finite:
2153     case LibFunc_acosf_finite:
2154       if (TLI->has(Func))
2155         return ConstantFoldFP(acos, APF, Ty);
2156       break;
2157     case LibFunc_asin:
2158     case LibFunc_asinf:
2159     case LibFunc_asin_finite:
2160     case LibFunc_asinf_finite:
2161       if (TLI->has(Func))
2162         return ConstantFoldFP(asin, APF, Ty);
2163       break;
2164     case LibFunc_atan:
2165     case LibFunc_atanf:
2166       if (TLI->has(Func))
2167         return ConstantFoldFP(atan, APF, Ty);
2168       break;
2169     case LibFunc_ceil:
2170     case LibFunc_ceilf:
2171       if (TLI->has(Func)) {
2172         U.roundToIntegral(APFloat::rmTowardPositive);
2173         return ConstantFP::get(Ty->getContext(), U);
2174       }
2175       break;
2176     case LibFunc_cos:
2177     case LibFunc_cosf:
2178       if (TLI->has(Func))
2179         return ConstantFoldFP(cos, APF, Ty);
2180       break;
2181     case LibFunc_cosh:
2182     case LibFunc_coshf:
2183     case LibFunc_cosh_finite:
2184     case LibFunc_coshf_finite:
2185       if (TLI->has(Func))
2186         return ConstantFoldFP(cosh, APF, Ty);
2187       break;
2188     case LibFunc_exp:
2189     case LibFunc_expf:
2190     case LibFunc_exp_finite:
2191     case LibFunc_expf_finite:
2192       if (TLI->has(Func))
2193         return ConstantFoldFP(exp, APF, Ty);
2194       break;
2195     case LibFunc_exp2:
2196     case LibFunc_exp2f:
2197     case LibFunc_exp2_finite:
2198     case LibFunc_exp2f_finite:
2199       if (TLI->has(Func))
2200         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2201         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2202       break;
2203     case LibFunc_fabs:
2204     case LibFunc_fabsf:
2205       if (TLI->has(Func)) {
2206         U.clearSign();
2207         return ConstantFP::get(Ty->getContext(), U);
2208       }
2209       break;
2210     case LibFunc_floor:
2211     case LibFunc_floorf:
2212       if (TLI->has(Func)) {
2213         U.roundToIntegral(APFloat::rmTowardNegative);
2214         return ConstantFP::get(Ty->getContext(), U);
2215       }
2216       break;
2217     case LibFunc_log:
2218     case LibFunc_logf:
2219     case LibFunc_log_finite:
2220     case LibFunc_logf_finite:
2221       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2222         return ConstantFoldFP(log, APF, Ty);
2223       break;
2224     case LibFunc_log2:
2225     case LibFunc_log2f:
2226     case LibFunc_log2_finite:
2227     case LibFunc_log2f_finite:
2228       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2229         // TODO: What about hosts that lack a C99 library?
2230         return ConstantFoldFP(Log2, APF, Ty);
2231       break;
2232     case LibFunc_log10:
2233     case LibFunc_log10f:
2234     case LibFunc_log10_finite:
2235     case LibFunc_log10f_finite:
2236       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2237         // TODO: What about hosts that lack a C99 library?
2238         return ConstantFoldFP(log10, APF, Ty);
2239       break;
2240     case LibFunc_nearbyint:
2241     case LibFunc_nearbyintf:
2242     case LibFunc_rint:
2243     case LibFunc_rintf:
2244       if (TLI->has(Func)) {
2245         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2246         return ConstantFP::get(Ty->getContext(), U);
2247       }
2248       break;
2249     case LibFunc_round:
2250     case LibFunc_roundf:
2251       if (TLI->has(Func)) {
2252         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2253         return ConstantFP::get(Ty->getContext(), U);
2254       }
2255       break;
2256     case LibFunc_sin:
2257     case LibFunc_sinf:
2258       if (TLI->has(Func))
2259         return ConstantFoldFP(sin, APF, Ty);
2260       break;
2261     case LibFunc_sinh:
2262     case LibFunc_sinhf:
2263     case LibFunc_sinh_finite:
2264     case LibFunc_sinhf_finite:
2265       if (TLI->has(Func))
2266         return ConstantFoldFP(sinh, APF, Ty);
2267       break;
2268     case LibFunc_sqrt:
2269     case LibFunc_sqrtf:
2270       if (!APF.isNegative() && TLI->has(Func))
2271         return ConstantFoldFP(sqrt, APF, Ty);
2272       break;
2273     case LibFunc_tan:
2274     case LibFunc_tanf:
2275       if (TLI->has(Func))
2276         return ConstantFoldFP(tan, APF, Ty);
2277       break;
2278     case LibFunc_tanh:
2279     case LibFunc_tanhf:
2280       if (TLI->has(Func))
2281         return ConstantFoldFP(tanh, APF, Ty);
2282       break;
2283     case LibFunc_trunc:
2284     case LibFunc_truncf:
2285       if (TLI->has(Func)) {
2286         U.roundToIntegral(APFloat::rmTowardZero);
2287         return ConstantFP::get(Ty->getContext(), U);
2288       }
2289       break;
2290     }
2291     return nullptr;
2292   }
2293 
2294   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2295     switch (IntrinsicID) {
2296     case Intrinsic::bswap:
2297       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2298     case Intrinsic::ctpop:
2299       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2300     case Intrinsic::bitreverse:
2301       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2302     case Intrinsic::convert_from_fp16: {
2303       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2304 
2305       bool lost = false;
2306       APFloat::opStatus status = Val.convert(
2307           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2308 
2309       // Conversion is always precise.
2310       (void)status;
2311       assert(status == APFloat::opOK && !lost &&
2312              "Precision lost during fp16 constfolding");
2313 
2314       return ConstantFP::get(Ty->getContext(), Val);
2315     }
2316     default:
2317       return nullptr;
2318     }
2319   }
2320 
2321   switch (IntrinsicID) {
2322   default: break;
2323   case Intrinsic::vector_reduce_add:
2324   case Intrinsic::vector_reduce_mul:
2325   case Intrinsic::vector_reduce_and:
2326   case Intrinsic::vector_reduce_or:
2327   case Intrinsic::vector_reduce_xor:
2328   case Intrinsic::vector_reduce_smin:
2329   case Intrinsic::vector_reduce_smax:
2330   case Intrinsic::vector_reduce_umin:
2331   case Intrinsic::vector_reduce_umax:
2332     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2333       return C;
2334     break;
2335   }
2336 
2337   // Support ConstantVector in case we have an Undef in the top.
2338   if (isa<ConstantVector>(Operands[0]) ||
2339       isa<ConstantDataVector>(Operands[0])) {
2340     auto *Op = cast<Constant>(Operands[0]);
2341     switch (IntrinsicID) {
2342     default: break;
2343     case Intrinsic::x86_sse_cvtss2si:
2344     case Intrinsic::x86_sse_cvtss2si64:
2345     case Intrinsic::x86_sse2_cvtsd2si:
2346     case Intrinsic::x86_sse2_cvtsd2si64:
2347       if (ConstantFP *FPOp =
2348               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2349         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2350                                            /*roundTowardZero=*/false, Ty,
2351                                            /*IsSigned*/true);
2352       break;
2353     case Intrinsic::x86_sse_cvttss2si:
2354     case Intrinsic::x86_sse_cvttss2si64:
2355     case Intrinsic::x86_sse2_cvttsd2si:
2356     case Intrinsic::x86_sse2_cvttsd2si64:
2357       if (ConstantFP *FPOp =
2358               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2359         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2360                                            /*roundTowardZero=*/true, Ty,
2361                                            /*IsSigned*/true);
2362       break;
2363     }
2364   }
2365 
2366   return nullptr;
2367 }
2368 
2369 static Constant *ConstantFoldScalarCall2(StringRef Name,
2370                                          Intrinsic::ID IntrinsicID,
2371                                          Type *Ty,
2372                                          ArrayRef<Constant *> Operands,
2373                                          const TargetLibraryInfo *TLI,
2374                                          const CallBase *Call) {
2375   assert(Operands.size() == 2 && "Wrong number of operands.");
2376 
2377   if (Ty->isFloatingPointTy()) {
2378     // TODO: We should have undef handling for all of the FP intrinsics that
2379     //       are attempted to be folded in this function.
2380     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2381     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2382     switch (IntrinsicID) {
2383     case Intrinsic::maxnum:
2384     case Intrinsic::minnum:
2385     case Intrinsic::maximum:
2386     case Intrinsic::minimum:
2387       // If one argument is undef, return the other argument.
2388       if (IsOp0Undef)
2389         return Operands[1];
2390       if (IsOp1Undef)
2391         return Operands[0];
2392       break;
2393     }
2394   }
2395 
2396   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2397     if (!Ty->isFloatingPointTy())
2398       return nullptr;
2399     APFloat Op1V = Op1->getValueAPF();
2400 
2401     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2402       if (Op2->getType() != Op1->getType())
2403         return nullptr;
2404       APFloat Op2V = Op2->getValueAPF();
2405 
2406       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2407         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2408         APFloat Res = Op1V;
2409         APFloat::opStatus St;
2410         switch (IntrinsicID) {
2411         default:
2412           return nullptr;
2413         case Intrinsic::experimental_constrained_fadd:
2414           St = Res.add(Op2V, RM);
2415           break;
2416         case Intrinsic::experimental_constrained_fsub:
2417           St = Res.subtract(Op2V, RM);
2418           break;
2419         case Intrinsic::experimental_constrained_fmul:
2420           St = Res.multiply(Op2V, RM);
2421           break;
2422         case Intrinsic::experimental_constrained_fdiv:
2423           St = Res.divide(Op2V, RM);
2424           break;
2425         case Intrinsic::experimental_constrained_frem:
2426           St = Res.mod(Op2V);
2427           break;
2428         }
2429         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2430                                St))
2431           return ConstantFP::get(Ty->getContext(), Res);
2432         return nullptr;
2433       }
2434 
2435       switch (IntrinsicID) {
2436       default:
2437         break;
2438       case Intrinsic::copysign:
2439         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2440       case Intrinsic::minnum:
2441         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2442       case Intrinsic::maxnum:
2443         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2444       case Intrinsic::minimum:
2445         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2446       case Intrinsic::maximum:
2447         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2448       }
2449 
2450       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2451         return nullptr;
2452 
2453       switch (IntrinsicID) {
2454       default:
2455         break;
2456       case Intrinsic::pow:
2457         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2458       case Intrinsic::amdgcn_fmul_legacy:
2459         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2460         // NaN or infinity, gives +0.0.
2461         if (Op1V.isZero() || Op2V.isZero())
2462           return ConstantFP::getNullValue(Ty);
2463         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2464       }
2465 
2466       if (!TLI)
2467         return nullptr;
2468 
2469       LibFunc Func = NotLibFunc;
2470       TLI->getLibFunc(Name, Func);
2471       switch (Func) {
2472       default:
2473         break;
2474       case LibFunc_pow:
2475       case LibFunc_powf:
2476       case LibFunc_pow_finite:
2477       case LibFunc_powf_finite:
2478         if (TLI->has(Func))
2479           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2480         break;
2481       case LibFunc_fmod:
2482       case LibFunc_fmodf:
2483         if (TLI->has(Func)) {
2484           APFloat V = Op1->getValueAPF();
2485           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2486             return ConstantFP::get(Ty->getContext(), V);
2487         }
2488         break;
2489       case LibFunc_remainder:
2490       case LibFunc_remainderf:
2491         if (TLI->has(Func)) {
2492           APFloat V = Op1->getValueAPF();
2493           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2494             return ConstantFP::get(Ty->getContext(), V);
2495         }
2496         break;
2497       case LibFunc_atan2:
2498       case LibFunc_atan2f:
2499       case LibFunc_atan2_finite:
2500       case LibFunc_atan2f_finite:
2501         if (TLI->has(Func))
2502           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2503         break;
2504       }
2505     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2506       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2507         return nullptr;
2508       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2509         return ConstantFP::get(
2510             Ty->getContext(),
2511             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2512                                     (int)Op2C->getZExtValue())));
2513       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2514         return ConstantFP::get(
2515             Ty->getContext(),
2516             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2517                                     (int)Op2C->getZExtValue())));
2518       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2519         return ConstantFP::get(
2520             Ty->getContext(),
2521             APFloat((double)std::pow(Op1V.convertToDouble(),
2522                                      (int)Op2C->getZExtValue())));
2523 
2524       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2525         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2526         // everywhere else.
2527 
2528         // scalbn is equivalent to ldexp with float radix 2
2529         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2530                                 APFloat::rmNearestTiesToEven);
2531         return ConstantFP::get(Ty->getContext(), Result);
2532       }
2533     }
2534     return nullptr;
2535   }
2536 
2537   if (Operands[0]->getType()->isIntegerTy() &&
2538       Operands[1]->getType()->isIntegerTy()) {
2539     const APInt *C0, *C1;
2540     if (!getConstIntOrUndef(Operands[0], C0) ||
2541         !getConstIntOrUndef(Operands[1], C1))
2542       return nullptr;
2543 
2544     unsigned BitWidth = Ty->getScalarSizeInBits();
2545     switch (IntrinsicID) {
2546     default: break;
2547     case Intrinsic::smax:
2548       if (!C0 && !C1)
2549         return UndefValue::get(Ty);
2550       if (!C0 || !C1)
2551         return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
2552       return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
2553 
2554     case Intrinsic::smin:
2555       if (!C0 && !C1)
2556         return UndefValue::get(Ty);
2557       if (!C0 || !C1)
2558         return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
2559       return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
2560 
2561     case Intrinsic::umax:
2562       if (!C0 && !C1)
2563         return UndefValue::get(Ty);
2564       if (!C0 || !C1)
2565         return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
2566       return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
2567 
2568     case Intrinsic::umin:
2569       if (!C0 && !C1)
2570         return UndefValue::get(Ty);
2571       if (!C0 || !C1)
2572         return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
2573       return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
2574 
2575     case Intrinsic::usub_with_overflow:
2576     case Intrinsic::ssub_with_overflow:
2577       // X - undef -> { 0, false }
2578       // undef - X -> { 0, false }
2579       if (!C0 || !C1)
2580         return Constant::getNullValue(Ty);
2581       LLVM_FALLTHROUGH;
2582     case Intrinsic::uadd_with_overflow:
2583     case Intrinsic::sadd_with_overflow:
2584       // X + undef -> { -1, false }
2585       // undef + x -> { -1, false }
2586       if (!C0 || !C1) {
2587         return ConstantStruct::get(
2588             cast<StructType>(Ty),
2589             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2590              Constant::getNullValue(Ty->getStructElementType(1))});
2591       }
2592       LLVM_FALLTHROUGH;
2593     case Intrinsic::smul_with_overflow:
2594     case Intrinsic::umul_with_overflow: {
2595       // undef * X -> { 0, false }
2596       // X * undef -> { 0, false }
2597       if (!C0 || !C1)
2598         return Constant::getNullValue(Ty);
2599 
2600       APInt Res;
2601       bool Overflow;
2602       switch (IntrinsicID) {
2603       default: llvm_unreachable("Invalid case");
2604       case Intrinsic::sadd_with_overflow:
2605         Res = C0->sadd_ov(*C1, Overflow);
2606         break;
2607       case Intrinsic::uadd_with_overflow:
2608         Res = C0->uadd_ov(*C1, Overflow);
2609         break;
2610       case Intrinsic::ssub_with_overflow:
2611         Res = C0->ssub_ov(*C1, Overflow);
2612         break;
2613       case Intrinsic::usub_with_overflow:
2614         Res = C0->usub_ov(*C1, Overflow);
2615         break;
2616       case Intrinsic::smul_with_overflow:
2617         Res = C0->smul_ov(*C1, Overflow);
2618         break;
2619       case Intrinsic::umul_with_overflow:
2620         Res = C0->umul_ov(*C1, Overflow);
2621         break;
2622       }
2623       Constant *Ops[] = {
2624         ConstantInt::get(Ty->getContext(), Res),
2625         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2626       };
2627       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2628     }
2629     case Intrinsic::uadd_sat:
2630     case Intrinsic::sadd_sat:
2631       if (!C0 && !C1)
2632         return UndefValue::get(Ty);
2633       if (!C0 || !C1)
2634         return Constant::getAllOnesValue(Ty);
2635       if (IntrinsicID == Intrinsic::uadd_sat)
2636         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2637       else
2638         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2639     case Intrinsic::usub_sat:
2640     case Intrinsic::ssub_sat:
2641       if (!C0 && !C1)
2642         return UndefValue::get(Ty);
2643       if (!C0 || !C1)
2644         return Constant::getNullValue(Ty);
2645       if (IntrinsicID == Intrinsic::usub_sat)
2646         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2647       else
2648         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2649     case Intrinsic::cttz:
2650     case Intrinsic::ctlz:
2651       assert(C1 && "Must be constant int");
2652 
2653       // cttz(0, 1) and ctlz(0, 1) are undef.
2654       if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2655         return UndefValue::get(Ty);
2656       if (!C0)
2657         return Constant::getNullValue(Ty);
2658       if (IntrinsicID == Intrinsic::cttz)
2659         return ConstantInt::get(Ty, C0->countTrailingZeros());
2660       else
2661         return ConstantInt::get(Ty, C0->countLeadingZeros());
2662 
2663     case Intrinsic::abs:
2664       // Undef or minimum val operand with poison min --> undef
2665       assert(C1 && "Must be constant int");
2666       if (C1->isOneValue() && (!C0 || C0->isMinSignedValue()))
2667         return UndefValue::get(Ty);
2668 
2669       // Undef operand with no poison min --> 0 (sign bit must be clear)
2670       if (C1->isNullValue() && !C0)
2671         return Constant::getNullValue(Ty);
2672 
2673       return ConstantInt::get(Ty, C0->abs());
2674     }
2675 
2676     return nullptr;
2677   }
2678 
2679   // Support ConstantVector in case we have an Undef in the top.
2680   if ((isa<ConstantVector>(Operands[0]) ||
2681        isa<ConstantDataVector>(Operands[0])) &&
2682       // Check for default rounding mode.
2683       // FIXME: Support other rounding modes?
2684       isa<ConstantInt>(Operands[1]) &&
2685       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2686     auto *Op = cast<Constant>(Operands[0]);
2687     switch (IntrinsicID) {
2688     default: break;
2689     case Intrinsic::x86_avx512_vcvtss2si32:
2690     case Intrinsic::x86_avx512_vcvtss2si64:
2691     case Intrinsic::x86_avx512_vcvtsd2si32:
2692     case Intrinsic::x86_avx512_vcvtsd2si64:
2693       if (ConstantFP *FPOp =
2694               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2695         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2696                                            /*roundTowardZero=*/false, Ty,
2697                                            /*IsSigned*/true);
2698       break;
2699     case Intrinsic::x86_avx512_vcvtss2usi32:
2700     case Intrinsic::x86_avx512_vcvtss2usi64:
2701     case Intrinsic::x86_avx512_vcvtsd2usi32:
2702     case Intrinsic::x86_avx512_vcvtsd2usi64:
2703       if (ConstantFP *FPOp =
2704               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2705         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2706                                            /*roundTowardZero=*/false, Ty,
2707                                            /*IsSigned*/false);
2708       break;
2709     case Intrinsic::x86_avx512_cvttss2si:
2710     case Intrinsic::x86_avx512_cvttss2si64:
2711     case Intrinsic::x86_avx512_cvttsd2si:
2712     case Intrinsic::x86_avx512_cvttsd2si64:
2713       if (ConstantFP *FPOp =
2714               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2715         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2716                                            /*roundTowardZero=*/true, Ty,
2717                                            /*IsSigned*/true);
2718       break;
2719     case Intrinsic::x86_avx512_cvttss2usi:
2720     case Intrinsic::x86_avx512_cvttss2usi64:
2721     case Intrinsic::x86_avx512_cvttsd2usi:
2722     case Intrinsic::x86_avx512_cvttsd2usi64:
2723       if (ConstantFP *FPOp =
2724               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2725         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2726                                            /*roundTowardZero=*/true, Ty,
2727                                            /*IsSigned*/false);
2728       break;
2729     }
2730   }
2731   return nullptr;
2732 }
2733 
2734 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2735                                                const APFloat &S0,
2736                                                const APFloat &S1,
2737                                                const APFloat &S2) {
2738   unsigned ID;
2739   const fltSemantics &Sem = S0.getSemantics();
2740   APFloat MA(Sem), SC(Sem), TC(Sem);
2741   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2742     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2743       // S2 < 0
2744       ID = 5;
2745       SC = -S0;
2746     } else {
2747       ID = 4;
2748       SC = S0;
2749     }
2750     MA = S2;
2751     TC = -S1;
2752   } else if (abs(S1) >= abs(S0)) {
2753     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2754       // S1 < 0
2755       ID = 3;
2756       TC = -S2;
2757     } else {
2758       ID = 2;
2759       TC = S2;
2760     }
2761     MA = S1;
2762     SC = S0;
2763   } else {
2764     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2765       // S0 < 0
2766       ID = 1;
2767       SC = S2;
2768     } else {
2769       ID = 0;
2770       SC = -S2;
2771     }
2772     MA = S0;
2773     TC = -S1;
2774   }
2775   switch (IntrinsicID) {
2776   default:
2777     llvm_unreachable("unhandled amdgcn cube intrinsic");
2778   case Intrinsic::amdgcn_cubeid:
2779     return APFloat(Sem, ID);
2780   case Intrinsic::amdgcn_cubema:
2781     return MA + MA;
2782   case Intrinsic::amdgcn_cubesc:
2783     return SC;
2784   case Intrinsic::amdgcn_cubetc:
2785     return TC;
2786   }
2787 }
2788 
2789 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2790                                                  Type *Ty) {
2791   const APInt *C0, *C1, *C2;
2792   if (!getConstIntOrUndef(Operands[0], C0) ||
2793       !getConstIntOrUndef(Operands[1], C1) ||
2794       !getConstIntOrUndef(Operands[2], C2))
2795     return nullptr;
2796 
2797   if (!C2)
2798     return UndefValue::get(Ty);
2799 
2800   APInt Val(32, 0);
2801   unsigned NumUndefBytes = 0;
2802   for (unsigned I = 0; I < 32; I += 8) {
2803     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2804     unsigned B = 0;
2805 
2806     if (Sel >= 13)
2807       B = 0xff;
2808     else if (Sel == 12)
2809       B = 0x00;
2810     else {
2811       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2812       if (!Src)
2813         ++NumUndefBytes;
2814       else if (Sel < 8)
2815         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2816       else
2817         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2818     }
2819 
2820     Val.insertBits(B, I, 8);
2821   }
2822 
2823   if (NumUndefBytes == 4)
2824     return UndefValue::get(Ty);
2825 
2826   return ConstantInt::get(Ty, Val);
2827 }
2828 
2829 static Constant *ConstantFoldScalarCall3(StringRef Name,
2830                                          Intrinsic::ID IntrinsicID,
2831                                          Type *Ty,
2832                                          ArrayRef<Constant *> Operands,
2833                                          const TargetLibraryInfo *TLI,
2834                                          const CallBase *Call) {
2835   assert(Operands.size() == 3 && "Wrong number of operands.");
2836 
2837   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2838     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2839       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2840         const APFloat &C1 = Op1->getValueAPF();
2841         const APFloat &C2 = Op2->getValueAPF();
2842         const APFloat &C3 = Op3->getValueAPF();
2843 
2844         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2845           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2846           APFloat Res = C1;
2847           APFloat::opStatus St;
2848           switch (IntrinsicID) {
2849           default:
2850             return nullptr;
2851           case Intrinsic::experimental_constrained_fma:
2852           case Intrinsic::experimental_constrained_fmuladd:
2853             St = Res.fusedMultiplyAdd(C2, C3, RM);
2854             break;
2855           }
2856           if (mayFoldConstrained(
2857                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
2858             return ConstantFP::get(Ty->getContext(), Res);
2859           return nullptr;
2860         }
2861 
2862         switch (IntrinsicID) {
2863         default: break;
2864         case Intrinsic::amdgcn_fma_legacy: {
2865           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2866           // NaN or infinity, gives +0.0.
2867           if (C1.isZero() || C2.isZero()) {
2868             // It's tempting to just return C3 here, but that would give the
2869             // wrong result if C3 was -0.0.
2870             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2871           }
2872           LLVM_FALLTHROUGH;
2873         }
2874         case Intrinsic::fma:
2875         case Intrinsic::fmuladd: {
2876           APFloat V = C1;
2877           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
2878           return ConstantFP::get(Ty->getContext(), V);
2879         }
2880         case Intrinsic::amdgcn_cubeid:
2881         case Intrinsic::amdgcn_cubema:
2882         case Intrinsic::amdgcn_cubesc:
2883         case Intrinsic::amdgcn_cubetc: {
2884           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
2885           return ConstantFP::get(Ty->getContext(), V);
2886         }
2887         }
2888       }
2889     }
2890   }
2891 
2892   if (IntrinsicID == Intrinsic::smul_fix ||
2893       IntrinsicID == Intrinsic::smul_fix_sat) {
2894     // poison * C -> poison
2895     // C * poison -> poison
2896     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2897       return PoisonValue::get(Ty);
2898 
2899     const APInt *C0, *C1;
2900     if (!getConstIntOrUndef(Operands[0], C0) ||
2901         !getConstIntOrUndef(Operands[1], C1))
2902       return nullptr;
2903 
2904     // undef * C -> 0
2905     // C * undef -> 0
2906     if (!C0 || !C1)
2907       return Constant::getNullValue(Ty);
2908 
2909     // This code performs rounding towards negative infinity in case the result
2910     // cannot be represented exactly for the given scale. Targets that do care
2911     // about rounding should use a target hook for specifying how rounding
2912     // should be done, and provide their own folding to be consistent with
2913     // rounding. This is the same approach as used by
2914     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2915     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2916     unsigned Width = C0->getBitWidth();
2917     assert(Scale < Width && "Illegal scale.");
2918     unsigned ExtendedWidth = Width * 2;
2919     APInt Product = (C0->sextOrSelf(ExtendedWidth) *
2920                      C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
2921     if (IntrinsicID == Intrinsic::smul_fix_sat) {
2922       APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2923       APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2924       Product = APIntOps::smin(Product, Max);
2925       Product = APIntOps::smax(Product, Min);
2926     }
2927     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
2928   }
2929 
2930   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2931     const APInt *C0, *C1, *C2;
2932     if (!getConstIntOrUndef(Operands[0], C0) ||
2933         !getConstIntOrUndef(Operands[1], C1) ||
2934         !getConstIntOrUndef(Operands[2], C2))
2935       return nullptr;
2936 
2937     bool IsRight = IntrinsicID == Intrinsic::fshr;
2938     if (!C2)
2939       return Operands[IsRight ? 1 : 0];
2940     if (!C0 && !C1)
2941       return UndefValue::get(Ty);
2942 
2943     // The shift amount is interpreted as modulo the bitwidth. If the shift
2944     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2945     unsigned BitWidth = C2->getBitWidth();
2946     unsigned ShAmt = C2->urem(BitWidth);
2947     if (!ShAmt)
2948       return Operands[IsRight ? 1 : 0];
2949 
2950     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2951     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2952     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2953     if (!C0)
2954       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2955     if (!C1)
2956       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2957     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2958   }
2959 
2960   if (IntrinsicID == Intrinsic::amdgcn_perm)
2961     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
2962 
2963   return nullptr;
2964 }
2965 
2966 static Constant *ConstantFoldScalarCall(StringRef Name,
2967                                         Intrinsic::ID IntrinsicID,
2968                                         Type *Ty,
2969                                         ArrayRef<Constant *> Operands,
2970                                         const TargetLibraryInfo *TLI,
2971                                         const CallBase *Call) {
2972   if (Operands.size() == 1)
2973     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2974 
2975   if (Operands.size() == 2)
2976     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2977 
2978   if (Operands.size() == 3)
2979     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2980 
2981   return nullptr;
2982 }
2983 
2984 static Constant *ConstantFoldFixedVectorCall(
2985     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
2986     ArrayRef<Constant *> Operands, const DataLayout &DL,
2987     const TargetLibraryInfo *TLI, const CallBase *Call) {
2988   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
2989   SmallVector<Constant *, 4> Lane(Operands.size());
2990   Type *Ty = FVTy->getElementType();
2991 
2992   switch (IntrinsicID) {
2993   case Intrinsic::masked_load: {
2994     auto *SrcPtr = Operands[0];
2995     auto *Mask = Operands[2];
2996     auto *Passthru = Operands[3];
2997 
2998     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
2999 
3000     SmallVector<Constant *, 32> NewElements;
3001     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3002       auto *MaskElt = Mask->getAggregateElement(I);
3003       if (!MaskElt)
3004         break;
3005       auto *PassthruElt = Passthru->getAggregateElement(I);
3006       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3007       if (isa<UndefValue>(MaskElt)) {
3008         if (PassthruElt)
3009           NewElements.push_back(PassthruElt);
3010         else if (VecElt)
3011           NewElements.push_back(VecElt);
3012         else
3013           return nullptr;
3014       }
3015       if (MaskElt->isNullValue()) {
3016         if (!PassthruElt)
3017           return nullptr;
3018         NewElements.push_back(PassthruElt);
3019       } else if (MaskElt->isOneValue()) {
3020         if (!VecElt)
3021           return nullptr;
3022         NewElements.push_back(VecElt);
3023       } else {
3024         return nullptr;
3025       }
3026     }
3027     if (NewElements.size() != FVTy->getNumElements())
3028       return nullptr;
3029     return ConstantVector::get(NewElements);
3030   }
3031   case Intrinsic::arm_mve_vctp8:
3032   case Intrinsic::arm_mve_vctp16:
3033   case Intrinsic::arm_mve_vctp32:
3034   case Intrinsic::arm_mve_vctp64: {
3035     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3036       unsigned Lanes = FVTy->getNumElements();
3037       uint64_t Limit = Op->getZExtValue();
3038       // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
3039       // sure we get the limit right in that case and set all relevant lanes.
3040       if (IntrinsicID == Intrinsic::arm_mve_vctp64)
3041         Limit *= 2;
3042 
3043       SmallVector<Constant *, 16> NCs;
3044       for (unsigned i = 0; i < Lanes; i++) {
3045         if (i < Limit)
3046           NCs.push_back(ConstantInt::getTrue(Ty));
3047         else
3048           NCs.push_back(ConstantInt::getFalse(Ty));
3049       }
3050       return ConstantVector::get(NCs);
3051     }
3052     break;
3053   }
3054   case Intrinsic::get_active_lane_mask: {
3055     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3056     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3057     if (Op0 && Op1) {
3058       unsigned Lanes = FVTy->getNumElements();
3059       uint64_t Base = Op0->getZExtValue();
3060       uint64_t Limit = Op1->getZExtValue();
3061 
3062       SmallVector<Constant *, 16> NCs;
3063       for (unsigned i = 0; i < Lanes; i++) {
3064         if (Base + i < Limit)
3065           NCs.push_back(ConstantInt::getTrue(Ty));
3066         else
3067           NCs.push_back(ConstantInt::getFalse(Ty));
3068       }
3069       return ConstantVector::get(NCs);
3070     }
3071     break;
3072   }
3073   default:
3074     break;
3075   }
3076 
3077   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3078     // Gather a column of constants.
3079     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3080       // Some intrinsics use a scalar type for certain arguments.
3081       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
3082         Lane[J] = Operands[J];
3083         continue;
3084       }
3085 
3086       Constant *Agg = Operands[J]->getAggregateElement(I);
3087       if (!Agg)
3088         return nullptr;
3089 
3090       Lane[J] = Agg;
3091     }
3092 
3093     // Use the regular scalar folding to simplify this column.
3094     Constant *Folded =
3095         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3096     if (!Folded)
3097       return nullptr;
3098     Result[I] = Folded;
3099   }
3100 
3101   return ConstantVector::get(Result);
3102 }
3103 
3104 static Constant *ConstantFoldScalableVectorCall(
3105     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3106     ArrayRef<Constant *> Operands, const DataLayout &DL,
3107     const TargetLibraryInfo *TLI, const CallBase *Call) {
3108   switch (IntrinsicID) {
3109   case Intrinsic::aarch64_sve_convert_from_svbool: {
3110     auto *Src = dyn_cast<Constant>(Operands[0]);
3111     if (!Src || !Src->isNullValue())
3112       break;
3113 
3114     return ConstantInt::getFalse(SVTy);
3115   }
3116   default:
3117     break;
3118   }
3119   return nullptr;
3120 }
3121 
3122 } // end anonymous namespace
3123 
3124 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3125                                  ArrayRef<Constant *> Operands,
3126                                  const TargetLibraryInfo *TLI) {
3127   if (Call->isNoBuiltin())
3128     return nullptr;
3129   if (!F->hasName())
3130     return nullptr;
3131 
3132   // If this is not an intrinsic and not recognized as a library call, bail out.
3133   if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3134     if (!TLI)
3135       return nullptr;
3136     LibFunc LibF;
3137     if (!TLI->getLibFunc(*F, LibF))
3138       return nullptr;
3139   }
3140 
3141   StringRef Name = F->getName();
3142   Type *Ty = F->getReturnType();
3143   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3144     return ConstantFoldFixedVectorCall(
3145         Name, F->getIntrinsicID(), FVTy, Operands,
3146         F->getParent()->getDataLayout(), TLI, Call);
3147 
3148   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3149     return ConstantFoldScalableVectorCall(
3150         Name, F->getIntrinsicID(), SVTy, Operands,
3151         F->getParent()->getDataLayout(), TLI, Call);
3152 
3153   // TODO: If this is a library function, we already discovered that above,
3154   //       so we should pass the LibFunc, not the name (and it might be better
3155   //       still to separate intrinsic handling from libcalls).
3156   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3157                                 Call);
3158 }
3159 
3160 bool llvm::isMathLibCallNoop(const CallBase *Call,
3161                              const TargetLibraryInfo *TLI) {
3162   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3163   // (and to some extent ConstantFoldScalarCall).
3164   if (Call->isNoBuiltin() || Call->isStrictFP())
3165     return false;
3166   Function *F = Call->getCalledFunction();
3167   if (!F)
3168     return false;
3169 
3170   LibFunc Func;
3171   if (!TLI || !TLI->getLibFunc(*F, Func))
3172     return false;
3173 
3174   if (Call->getNumArgOperands() == 1) {
3175     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3176       const APFloat &Op = OpC->getValueAPF();
3177       switch (Func) {
3178       case LibFunc_logl:
3179       case LibFunc_log:
3180       case LibFunc_logf:
3181       case LibFunc_log2l:
3182       case LibFunc_log2:
3183       case LibFunc_log2f:
3184       case LibFunc_log10l:
3185       case LibFunc_log10:
3186       case LibFunc_log10f:
3187         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3188 
3189       case LibFunc_expl:
3190       case LibFunc_exp:
3191       case LibFunc_expf:
3192         // FIXME: These boundaries are slightly conservative.
3193         if (OpC->getType()->isDoubleTy())
3194           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3195         if (OpC->getType()->isFloatTy())
3196           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3197         break;
3198 
3199       case LibFunc_exp2l:
3200       case LibFunc_exp2:
3201       case LibFunc_exp2f:
3202         // FIXME: These boundaries are slightly conservative.
3203         if (OpC->getType()->isDoubleTy())
3204           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3205         if (OpC->getType()->isFloatTy())
3206           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3207         break;
3208 
3209       case LibFunc_sinl:
3210       case LibFunc_sin:
3211       case LibFunc_sinf:
3212       case LibFunc_cosl:
3213       case LibFunc_cos:
3214       case LibFunc_cosf:
3215         return !Op.isInfinity();
3216 
3217       case LibFunc_tanl:
3218       case LibFunc_tan:
3219       case LibFunc_tanf: {
3220         // FIXME: Stop using the host math library.
3221         // FIXME: The computation isn't done in the right precision.
3222         Type *Ty = OpC->getType();
3223         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3224           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3225         break;
3226       }
3227 
3228       case LibFunc_asinl:
3229       case LibFunc_asin:
3230       case LibFunc_asinf:
3231       case LibFunc_acosl:
3232       case LibFunc_acos:
3233       case LibFunc_acosf:
3234         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3235                  Op > APFloat(Op.getSemantics(), "1"));
3236 
3237       case LibFunc_sinh:
3238       case LibFunc_cosh:
3239       case LibFunc_sinhf:
3240       case LibFunc_coshf:
3241       case LibFunc_sinhl:
3242       case LibFunc_coshl:
3243         // FIXME: These boundaries are slightly conservative.
3244         if (OpC->getType()->isDoubleTy())
3245           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3246         if (OpC->getType()->isFloatTy())
3247           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3248         break;
3249 
3250       case LibFunc_sqrtl:
3251       case LibFunc_sqrt:
3252       case LibFunc_sqrtf:
3253         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3254 
3255       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3256       // maybe others?
3257       default:
3258         break;
3259       }
3260     }
3261   }
3262 
3263   if (Call->getNumArgOperands() == 2) {
3264     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3265     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3266     if (Op0C && Op1C) {
3267       const APFloat &Op0 = Op0C->getValueAPF();
3268       const APFloat &Op1 = Op1C->getValueAPF();
3269 
3270       switch (Func) {
3271       case LibFunc_powl:
3272       case LibFunc_pow:
3273       case LibFunc_powf: {
3274         // FIXME: Stop using the host math library.
3275         // FIXME: The computation isn't done in the right precision.
3276         Type *Ty = Op0C->getType();
3277         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3278           if (Ty == Op1C->getType())
3279             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3280         }
3281         break;
3282       }
3283 
3284       case LibFunc_fmodl:
3285       case LibFunc_fmod:
3286       case LibFunc_fmodf:
3287       case LibFunc_remainderl:
3288       case LibFunc_remainder:
3289       case LibFunc_remainderf:
3290         return Op0.isNaN() || Op1.isNaN() ||
3291                (!Op0.isInfinity() && !Op1.isZero());
3292 
3293       default:
3294         break;
3295       }
3296     }
3297   }
3298 
3299   return false;
3300 }
3301 
3302 void TargetFolder::anchor() {}
3303