1 //===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help determine which pointers are captured. 11 // A pointer value is captured if the function makes a copy of any part of the 12 // pointer that outlives the call. Not being captured means, more or less, that 13 // the pointer is only dereferenced and not stored in a global. Returning part 14 // of the pointer as the function return value may or may not count as capturing 15 // the pointer, depending on the context. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/OrderedBasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instructions.h" 29 30 using namespace llvm; 31 32 CaptureTracker::~CaptureTracker() {} 33 34 bool CaptureTracker::shouldExplore(const Use *U) { return true; } 35 36 namespace { 37 struct SimpleCaptureTracker : public CaptureTracker { 38 explicit SimpleCaptureTracker(bool ReturnCaptures) 39 : ReturnCaptures(ReturnCaptures), Captured(false) {} 40 41 void tooManyUses() override { Captured = true; } 42 43 bool captured(const Use *U) override { 44 if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures) 45 return false; 46 47 Captured = true; 48 return true; 49 } 50 51 bool ReturnCaptures; 52 53 bool Captured; 54 }; 55 56 /// Only find pointer captures which happen before the given instruction. Uses 57 /// the dominator tree to determine whether one instruction is before another. 58 /// Only support the case where the Value is defined in the same basic block 59 /// as the given instruction and the use. 60 struct CapturesBefore : public CaptureTracker { 61 62 CapturesBefore(bool ReturnCaptures, const Instruction *I, DominatorTree *DT, 63 bool IncludeI, OrderedBasicBlock *IC) 64 : OrderedBB(IC), BeforeHere(I), DT(DT), 65 ReturnCaptures(ReturnCaptures), IncludeI(IncludeI), Captured(false) {} 66 67 void tooManyUses() override { Captured = true; } 68 69 bool isSafeToPrune(Instruction *I) { 70 BasicBlock *BB = I->getParent(); 71 // We explore this usage only if the usage can reach "BeforeHere". 72 // If use is not reachable from entry, there is no need to explore. 73 if (BeforeHere != I && !DT->isReachableFromEntry(BB)) 74 return true; 75 76 // Compute the case where both instructions are inside the same basic 77 // block. Since instructions in the same BB as BeforeHere are numbered in 78 // 'OrderedBB', avoid using 'dominates' and 'isPotentiallyReachable' 79 // which are very expensive for large basic blocks. 80 if (BB == BeforeHere->getParent()) { 81 // 'I' dominates 'BeforeHere' => not safe to prune. 82 // 83 // The value defined by an invoke dominates an instruction only if it 84 // dominates every instruction in UseBB. A PHI is dominated only if 85 // the instruction dominates every possible use in the UseBB. Since 86 // UseBB == BB, avoid pruning. 87 if (isa<InvokeInst>(BeforeHere) || isa<PHINode>(I) || I == BeforeHere) 88 return false; 89 if (!OrderedBB->dominates(BeforeHere, I)) 90 return false; 91 92 // 'BeforeHere' comes before 'I', it's safe to prune if we also 93 // guarantee that 'I' never reaches 'BeforeHere' through a back-edge or 94 // by its successors, i.e, prune if: 95 // 96 // (1) BB is an entry block or have no sucessors. 97 // (2) There's no path coming back through BB sucessors. 98 if (BB == &BB->getParent()->getEntryBlock() || 99 !BB->getTerminator()->getNumSuccessors()) 100 return true; 101 102 SmallVector<BasicBlock*, 32> Worklist; 103 Worklist.append(succ_begin(BB), succ_end(BB)); 104 if (!isPotentiallyReachableFromMany(Worklist, BB, DT)) 105 return true; 106 107 return false; 108 } 109 110 // If the value is defined in the same basic block as use and BeforeHere, 111 // there is no need to explore the use if BeforeHere dominates use. 112 // Check whether there is a path from I to BeforeHere. 113 if (BeforeHere != I && DT->dominates(BeforeHere, I) && 114 !isPotentiallyReachable(I, BeforeHere, DT)) 115 return true; 116 117 return false; 118 } 119 120 bool shouldExplore(const Use *U) override { 121 Instruction *I = cast<Instruction>(U->getUser()); 122 123 if (BeforeHere == I && !IncludeI) 124 return false; 125 126 if (isSafeToPrune(I)) 127 return false; 128 129 return true; 130 } 131 132 bool captured(const Use *U) override { 133 if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures) 134 return false; 135 136 if (!shouldExplore(U)) 137 return false; 138 139 Captured = true; 140 return true; 141 } 142 143 OrderedBasicBlock *OrderedBB; 144 const Instruction *BeforeHere; 145 DominatorTree *DT; 146 147 bool ReturnCaptures; 148 bool IncludeI; 149 150 bool Captured; 151 }; 152 } 153 154 /// PointerMayBeCaptured - Return true if this pointer value may be captured 155 /// by the enclosing function (which is required to exist). This routine can 156 /// be expensive, so consider caching the results. The boolean ReturnCaptures 157 /// specifies whether returning the value (or part of it) from the function 158 /// counts as capturing it or not. The boolean StoreCaptures specified whether 159 /// storing the value (or part of it) into memory anywhere automatically 160 /// counts as capturing it or not. 161 bool llvm::PointerMayBeCaptured(const Value *V, 162 bool ReturnCaptures, bool StoreCaptures) { 163 assert(!isa<GlobalValue>(V) && 164 "It doesn't make sense to ask whether a global is captured."); 165 166 // TODO: If StoreCaptures is not true, we could do Fancy analysis 167 // to determine whether this store is not actually an escape point. 168 // In that case, BasicAliasAnalysis should be updated as well to 169 // take advantage of this. 170 (void)StoreCaptures; 171 172 SimpleCaptureTracker SCT(ReturnCaptures); 173 PointerMayBeCaptured(V, &SCT); 174 return SCT.Captured; 175 } 176 177 /// PointerMayBeCapturedBefore - Return true if this pointer value may be 178 /// captured by the enclosing function (which is required to exist). If a 179 /// DominatorTree is provided, only captures which happen before the given 180 /// instruction are considered. This routine can be expensive, so consider 181 /// caching the results. The boolean ReturnCaptures specifies whether 182 /// returning the value (or part of it) from the function counts as capturing 183 /// it or not. The boolean StoreCaptures specified whether storing the value 184 /// (or part of it) into memory anywhere automatically counts as capturing it 185 /// or not. A ordered basic block \p OBB can be used in order to speed up 186 /// queries about relative order among instructions in the same basic block. 187 bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, 188 bool StoreCaptures, const Instruction *I, 189 DominatorTree *DT, bool IncludeI, 190 OrderedBasicBlock *OBB) { 191 assert(!isa<GlobalValue>(V) && 192 "It doesn't make sense to ask whether a global is captured."); 193 bool UseNewOBB = OBB == nullptr; 194 195 if (!DT) 196 return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures); 197 if (UseNewOBB) 198 OBB = new OrderedBasicBlock(I->getParent()); 199 200 // TODO: See comment in PointerMayBeCaptured regarding what could be done 201 // with StoreCaptures. 202 203 CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, OBB); 204 PointerMayBeCaptured(V, &CB); 205 206 if (UseNewOBB) 207 delete OBB; 208 return CB.Captured; 209 } 210 211 /// TODO: Write a new FunctionPass AliasAnalysis so that it can keep 212 /// a cache. Then we can move the code from BasicAliasAnalysis into 213 /// that path, and remove this threshold. 214 static int const Threshold = 20; 215 216 void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker) { 217 assert(V->getType()->isPointerTy() && "Capture is for pointers only!"); 218 SmallVector<const Use *, Threshold> Worklist; 219 SmallSet<const Use *, Threshold> Visited; 220 int Count = 0; 221 222 for (const Use &U : V->uses()) { 223 // If there are lots of uses, conservatively say that the value 224 // is captured to avoid taking too much compile time. 225 if (Count++ >= Threshold) 226 return Tracker->tooManyUses(); 227 228 if (!Tracker->shouldExplore(&U)) continue; 229 Visited.insert(&U); 230 Worklist.push_back(&U); 231 } 232 233 while (!Worklist.empty()) { 234 const Use *U = Worklist.pop_back_val(); 235 Instruction *I = cast<Instruction>(U->getUser()); 236 V = U->get(); 237 238 switch (I->getOpcode()) { 239 case Instruction::Call: 240 case Instruction::Invoke: { 241 CallSite CS(I); 242 // Not captured if the callee is readonly, doesn't return a copy through 243 // its return value and doesn't unwind (a readonly function can leak bits 244 // by throwing an exception or not depending on the input value). 245 if (CS.onlyReadsMemory() && CS.doesNotThrow() && I->getType()->isVoidTy()) 246 break; 247 248 // Not captured if only passed via 'nocapture' arguments. Note that 249 // calling a function pointer does not in itself cause the pointer to 250 // be captured. This is a subtle point considering that (for example) 251 // the callee might return its own address. It is analogous to saying 252 // that loading a value from a pointer does not cause the pointer to be 253 // captured, even though the loaded value might be the pointer itself 254 // (think of self-referential objects). 255 CallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); 256 for (CallSite::arg_iterator A = B; A != E; ++A) 257 if (A->get() == V && !CS.doesNotCapture(A - B)) 258 // The parameter is not marked 'nocapture' - captured. 259 if (Tracker->captured(U)) 260 return; 261 break; 262 } 263 case Instruction::Load: 264 // Loading from a pointer does not cause it to be captured. 265 break; 266 case Instruction::VAArg: 267 // "va-arg" from a pointer does not cause it to be captured. 268 break; 269 case Instruction::Store: 270 if (V == I->getOperand(0)) 271 // Stored the pointer - conservatively assume it may be captured. 272 if (Tracker->captured(U)) 273 return; 274 // Storing to the pointee does not cause the pointer to be captured. 275 break; 276 case Instruction::BitCast: 277 case Instruction::GetElementPtr: 278 case Instruction::PHI: 279 case Instruction::Select: 280 case Instruction::AddrSpaceCast: 281 // The original value is not captured via this if the new value isn't. 282 Count = 0; 283 for (Use &UU : I->uses()) { 284 // If there are lots of uses, conservatively say that the value 285 // is captured to avoid taking too much compile time. 286 if (Count++ >= Threshold) 287 return Tracker->tooManyUses(); 288 289 if (Visited.insert(&UU).second) 290 if (Tracker->shouldExplore(&UU)) 291 Worklist.push_back(&UU); 292 } 293 break; 294 case Instruction::ICmp: 295 // Don't count comparisons of a no-alias return value against null as 296 // captures. This allows us to ignore comparisons of malloc results 297 // with null, for example. 298 if (ConstantPointerNull *CPN = 299 dyn_cast<ConstantPointerNull>(I->getOperand(1))) 300 if (CPN->getType()->getAddressSpace() == 0) 301 if (isNoAliasCall(V->stripPointerCasts())) 302 break; 303 // Otherwise, be conservative. There are crazy ways to capture pointers 304 // using comparisons. 305 if (Tracker->captured(U)) 306 return; 307 break; 308 default: 309 // Something else - be conservative and say it is captured. 310 if (Tracker->captured(U)) 311 return; 312 break; 313 } 314 } 315 316 // All uses examined. 317 } 318