1 //===--- CaptureTracking.cpp - Determine whether a pointer is captured ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help determine which pointers are captured. 11 // A pointer value is captured if the function makes a copy of any part of the 12 // pointer that outlives the call. Not being captured means, more or less, that 13 // the pointer is only dereferenced and not stored in a global. Returning part 14 // of the pointer as the function return value may or may not count as capturing 15 // the pointer, depending on the context. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/OrderedBasicBlock.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instructions.h" 29 30 using namespace llvm; 31 32 CaptureTracker::~CaptureTracker() {} 33 34 bool CaptureTracker::shouldExplore(const Use *U) { return true; } 35 36 namespace { 37 struct SimpleCaptureTracker : public CaptureTracker { 38 explicit SimpleCaptureTracker(bool ReturnCaptures) 39 : ReturnCaptures(ReturnCaptures), Captured(false) {} 40 41 void tooManyUses() override { Captured = true; } 42 43 bool captured(const Use *U) override { 44 if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures) 45 return false; 46 47 Captured = true; 48 return true; 49 } 50 51 bool ReturnCaptures; 52 53 bool Captured; 54 }; 55 56 /// Only find pointer captures which happen before the given instruction. Uses 57 /// the dominator tree to determine whether one instruction is before another. 58 /// Only support the case where the Value is defined in the same basic block 59 /// as the given instruction and the use. 60 struct CapturesBefore : public CaptureTracker { 61 62 CapturesBefore(bool ReturnCaptures, const Instruction *I, DominatorTree *DT, 63 bool IncludeI, OrderedBasicBlock *IC) 64 : OrderedBB(IC), BeforeHere(I), DT(DT), 65 ReturnCaptures(ReturnCaptures), IncludeI(IncludeI), Captured(false) {} 66 67 void tooManyUses() override { Captured = true; } 68 69 bool isSafeToPrune(Instruction *I) { 70 BasicBlock *BB = I->getParent(); 71 // We explore this usage only if the usage can reach "BeforeHere". 72 // If use is not reachable from entry, there is no need to explore. 73 if (BeforeHere != I && !DT->isReachableFromEntry(BB)) 74 return true; 75 76 // Compute the case where both instructions are inside the same basic 77 // block. Since instructions in the same BB as BeforeHere are numbered in 78 // 'OrderedBB', avoid using 'dominates' and 'isPotentiallyReachable' 79 // which are very expensive for large basic blocks. 80 if (BB == BeforeHere->getParent()) { 81 // 'I' dominates 'BeforeHere' => not safe to prune. 82 // 83 // The value defined by an invoke/catchpad dominates an instruction only 84 // if it dominates every instruction in UseBB. A PHI is dominated only 85 // if the instruction dominates every possible use in the UseBB. Since 86 // UseBB == BB, avoid pruning. 87 if (isa<InvokeInst>(BeforeHere) || isa<CatchPadInst>(BeforeHere) || 88 isa<PHINode>(I) || I == BeforeHere) 89 return false; 90 if (!OrderedBB->dominates(BeforeHere, I)) 91 return false; 92 93 // 'BeforeHere' comes before 'I', it's safe to prune if we also 94 // guarantee that 'I' never reaches 'BeforeHere' through a back-edge or 95 // by its successors, i.e, prune if: 96 // 97 // (1) BB is an entry block or have no sucessors. 98 // (2) There's no path coming back through BB sucessors. 99 if (BB == &BB->getParent()->getEntryBlock() || 100 !BB->getTerminator()->getNumSuccessors()) 101 return true; 102 103 SmallVector<BasicBlock*, 32> Worklist; 104 Worklist.append(succ_begin(BB), succ_end(BB)); 105 if (!isPotentiallyReachableFromMany(Worklist, BB, DT)) 106 return true; 107 108 return false; 109 } 110 111 // If the value is defined in the same basic block as use and BeforeHere, 112 // there is no need to explore the use if BeforeHere dominates use. 113 // Check whether there is a path from I to BeforeHere. 114 if (BeforeHere != I && DT->dominates(BeforeHere, I) && 115 !isPotentiallyReachable(I, BeforeHere, DT)) 116 return true; 117 118 return false; 119 } 120 121 bool shouldExplore(const Use *U) override { 122 Instruction *I = cast<Instruction>(U->getUser()); 123 124 if (BeforeHere == I && !IncludeI) 125 return false; 126 127 if (isSafeToPrune(I)) 128 return false; 129 130 return true; 131 } 132 133 bool captured(const Use *U) override { 134 if (isa<ReturnInst>(U->getUser()) && !ReturnCaptures) 135 return false; 136 137 if (!shouldExplore(U)) 138 return false; 139 140 Captured = true; 141 return true; 142 } 143 144 OrderedBasicBlock *OrderedBB; 145 const Instruction *BeforeHere; 146 DominatorTree *DT; 147 148 bool ReturnCaptures; 149 bool IncludeI; 150 151 bool Captured; 152 }; 153 } 154 155 /// PointerMayBeCaptured - Return true if this pointer value may be captured 156 /// by the enclosing function (which is required to exist). This routine can 157 /// be expensive, so consider caching the results. The boolean ReturnCaptures 158 /// specifies whether returning the value (or part of it) from the function 159 /// counts as capturing it or not. The boolean StoreCaptures specified whether 160 /// storing the value (or part of it) into memory anywhere automatically 161 /// counts as capturing it or not. 162 bool llvm::PointerMayBeCaptured(const Value *V, 163 bool ReturnCaptures, bool StoreCaptures) { 164 assert(!isa<GlobalValue>(V) && 165 "It doesn't make sense to ask whether a global is captured."); 166 167 // TODO: If StoreCaptures is not true, we could do Fancy analysis 168 // to determine whether this store is not actually an escape point. 169 // In that case, BasicAliasAnalysis should be updated as well to 170 // take advantage of this. 171 (void)StoreCaptures; 172 173 SimpleCaptureTracker SCT(ReturnCaptures); 174 PointerMayBeCaptured(V, &SCT); 175 return SCT.Captured; 176 } 177 178 /// PointerMayBeCapturedBefore - Return true if this pointer value may be 179 /// captured by the enclosing function (which is required to exist). If a 180 /// DominatorTree is provided, only captures which happen before the given 181 /// instruction are considered. This routine can be expensive, so consider 182 /// caching the results. The boolean ReturnCaptures specifies whether 183 /// returning the value (or part of it) from the function counts as capturing 184 /// it or not. The boolean StoreCaptures specified whether storing the value 185 /// (or part of it) into memory anywhere automatically counts as capturing it 186 /// or not. A ordered basic block \p OBB can be used in order to speed up 187 /// queries about relative order among instructions in the same basic block. 188 bool llvm::PointerMayBeCapturedBefore(const Value *V, bool ReturnCaptures, 189 bool StoreCaptures, const Instruction *I, 190 DominatorTree *DT, bool IncludeI, 191 OrderedBasicBlock *OBB) { 192 assert(!isa<GlobalValue>(V) && 193 "It doesn't make sense to ask whether a global is captured."); 194 bool UseNewOBB = OBB == nullptr; 195 196 if (!DT) 197 return PointerMayBeCaptured(V, ReturnCaptures, StoreCaptures); 198 if (UseNewOBB) 199 OBB = new OrderedBasicBlock(I->getParent()); 200 201 // TODO: See comment in PointerMayBeCaptured regarding what could be done 202 // with StoreCaptures. 203 204 CapturesBefore CB(ReturnCaptures, I, DT, IncludeI, OBB); 205 PointerMayBeCaptured(V, &CB); 206 207 if (UseNewOBB) 208 delete OBB; 209 return CB.Captured; 210 } 211 212 /// TODO: Write a new FunctionPass AliasAnalysis so that it can keep 213 /// a cache. Then we can move the code from BasicAliasAnalysis into 214 /// that path, and remove this threshold. 215 static int const Threshold = 20; 216 217 void llvm::PointerMayBeCaptured(const Value *V, CaptureTracker *Tracker) { 218 assert(V->getType()->isPointerTy() && "Capture is for pointers only!"); 219 SmallVector<const Use *, Threshold> Worklist; 220 SmallSet<const Use *, Threshold> Visited; 221 int Count = 0; 222 223 for (const Use &U : V->uses()) { 224 // If there are lots of uses, conservatively say that the value 225 // is captured to avoid taking too much compile time. 226 if (Count++ >= Threshold) 227 return Tracker->tooManyUses(); 228 229 if (!Tracker->shouldExplore(&U)) continue; 230 Visited.insert(&U); 231 Worklist.push_back(&U); 232 } 233 234 while (!Worklist.empty()) { 235 const Use *U = Worklist.pop_back_val(); 236 Instruction *I = cast<Instruction>(U->getUser()); 237 V = U->get(); 238 239 switch (I->getOpcode()) { 240 case Instruction::Call: 241 case Instruction::Invoke: { 242 CallSite CS(I); 243 // Not captured if the callee is readonly, doesn't return a copy through 244 // its return value and doesn't unwind (a readonly function can leak bits 245 // by throwing an exception or not depending on the input value). 246 if (CS.onlyReadsMemory() && CS.doesNotThrow() && I->getType()->isVoidTy()) 247 break; 248 249 // Not captured if only passed via 'nocapture' arguments. Note that 250 // calling a function pointer does not in itself cause the pointer to 251 // be captured. This is a subtle point considering that (for example) 252 // the callee might return its own address. It is analogous to saying 253 // that loading a value from a pointer does not cause the pointer to be 254 // captured, even though the loaded value might be the pointer itself 255 // (think of self-referential objects). 256 CallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end(); 257 for (CallSite::arg_iterator A = B; A != E; ++A) 258 if (A->get() == V && !CS.doesNotCapture(A - B)) 259 // The parameter is not marked 'nocapture' - captured. 260 if (Tracker->captured(U)) 261 return; 262 break; 263 } 264 case Instruction::Load: 265 // Loading from a pointer does not cause it to be captured. 266 break; 267 case Instruction::VAArg: 268 // "va-arg" from a pointer does not cause it to be captured. 269 break; 270 case Instruction::Store: 271 if (V == I->getOperand(0)) 272 // Stored the pointer - conservatively assume it may be captured. 273 if (Tracker->captured(U)) 274 return; 275 // Storing to the pointee does not cause the pointer to be captured. 276 break; 277 case Instruction::BitCast: 278 case Instruction::GetElementPtr: 279 case Instruction::PHI: 280 case Instruction::Select: 281 case Instruction::AddrSpaceCast: 282 // The original value is not captured via this if the new value isn't. 283 Count = 0; 284 for (Use &UU : I->uses()) { 285 // If there are lots of uses, conservatively say that the value 286 // is captured to avoid taking too much compile time. 287 if (Count++ >= Threshold) 288 return Tracker->tooManyUses(); 289 290 if (Visited.insert(&UU).second) 291 if (Tracker->shouldExplore(&UU)) 292 Worklist.push_back(&UU); 293 } 294 break; 295 case Instruction::ICmp: 296 // Don't count comparisons of a no-alias return value against null as 297 // captures. This allows us to ignore comparisons of malloc results 298 // with null, for example. 299 if (ConstantPointerNull *CPN = 300 dyn_cast<ConstantPointerNull>(I->getOperand(1))) 301 if (CPN->getType()->getAddressSpace() == 0) 302 if (isNoAliasCall(V->stripPointerCasts())) 303 break; 304 // Otherwise, be conservative. There are crazy ways to capture pointers 305 // using comparisons. 306 if (Tracker->captured(U)) 307 return; 308 break; 309 default: 310 // Something else - be conservative and say it is captured. 311 if (Tracker->captured(U)) 312 return; 313 break; 314 } 315 } 316 317 // All uses examined. 318 } 319