1 //===- CFGPrinter.cpp - DOT printer for the control flow graph ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a `-dot-cfg` analysis pass, which emits the 10 // `<prefix>.<fnname>.dot` file for each function in the program, with a graph 11 // of the CFG for that function. The default value for `<prefix>` is `cfg` but 12 // can be customized as needed. 13 // 14 // The other main feature of this file is that it implements the 15 // Function::viewCFG method, which is useful for debugging passes which operate 16 // on the CFG. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/CFGPrinter.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/InitializePasses.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/FileSystem.h" 26 #include <algorithm> 27 28 using namespace llvm; 29 30 static cl::opt<std::string> 31 CFGFuncName("cfg-func-name", cl::Hidden, 32 cl::desc("The name of a function (or its substring)" 33 " whose CFG is viewed/printed.")); 34 35 static cl::opt<std::string> CFGDotFilenamePrefix( 36 "cfg-dot-filename-prefix", cl::Hidden, 37 cl::desc("The prefix used for the CFG dot file names.")); 38 39 static cl::opt<bool> HideUnreachablePaths("cfg-hide-unreachable-paths", 40 cl::init(false)); 41 42 static cl::opt<bool> HideDeoptimizePaths("cfg-hide-deoptimize-paths", 43 cl::init(false)); 44 45 static cl::opt<double> HideColdPaths( 46 "cfg-hide-cold-paths", cl::init(0.0), 47 cl::desc("Hide blocks with relative frequency below the given value")); 48 49 static cl::opt<bool> ShowHeatColors("cfg-heat-colors", cl::init(true), 50 cl::Hidden, 51 cl::desc("Show heat colors in CFG")); 52 53 static cl::opt<bool> UseRawEdgeWeight("cfg-raw-weights", cl::init(false), 54 cl::Hidden, 55 cl::desc("Use raw weights for labels. " 56 "Use percentages as default.")); 57 58 static cl::opt<bool> 59 ShowEdgeWeight("cfg-weights", cl::init(false), cl::Hidden, 60 cl::desc("Show edges labeled with weights")); 61 62 static void writeCFGToDotFile(Function &F, BlockFrequencyInfo *BFI, 63 BranchProbabilityInfo *BPI, uint64_t MaxFreq, 64 bool CFGOnly = false) { 65 std::string Filename = 66 (CFGDotFilenamePrefix + "." + F.getName() + ".dot").str(); 67 errs() << "Writing '" << Filename << "'..."; 68 69 std::error_code EC; 70 raw_fd_ostream File(Filename, EC, sys::fs::OF_Text); 71 72 DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); 73 CFGInfo.setHeatColors(ShowHeatColors); 74 CFGInfo.setEdgeWeights(ShowEdgeWeight); 75 CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); 76 77 if (!EC) 78 WriteGraph(File, &CFGInfo, CFGOnly); 79 else 80 errs() << " error opening file for writing!"; 81 errs() << "\n"; 82 } 83 84 static void viewCFG(Function &F, const BlockFrequencyInfo *BFI, 85 const BranchProbabilityInfo *BPI, uint64_t MaxFreq, 86 bool CFGOnly = false) { 87 DOTFuncInfo CFGInfo(&F, BFI, BPI, MaxFreq); 88 CFGInfo.setHeatColors(ShowHeatColors); 89 CFGInfo.setEdgeWeights(ShowEdgeWeight); 90 CFGInfo.setRawEdgeWeights(UseRawEdgeWeight); 91 92 ViewGraph(&CFGInfo, "cfg." + F.getName(), CFGOnly); 93 } 94 95 namespace { 96 struct CFGViewerLegacyPass : public FunctionPass { 97 static char ID; // Pass identifcation, replacement for typeid 98 CFGViewerLegacyPass() : FunctionPass(ID) { 99 initializeCFGViewerLegacyPassPass(*PassRegistry::getPassRegistry()); 100 } 101 102 bool runOnFunction(Function &F) override { 103 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 104 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 105 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); 106 return false; 107 } 108 109 void print(raw_ostream &OS, const Module * = nullptr) const override {} 110 111 void getAnalysisUsage(AnalysisUsage &AU) const override { 112 FunctionPass::getAnalysisUsage(AU); 113 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 114 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 115 AU.setPreservesAll(); 116 } 117 }; 118 } 119 120 char CFGViewerLegacyPass::ID = 0; 121 INITIALIZE_PASS(CFGViewerLegacyPass, "view-cfg", "View CFG of function", false, 122 true) 123 124 PreservedAnalyses CFGViewerPass::run(Function &F, FunctionAnalysisManager &AM) { 125 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 126 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 127 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI)); 128 return PreservedAnalyses::all(); 129 } 130 131 namespace { 132 struct CFGOnlyViewerLegacyPass : public FunctionPass { 133 static char ID; // Pass identifcation, replacement for typeid 134 CFGOnlyViewerLegacyPass() : FunctionPass(ID) { 135 initializeCFGOnlyViewerLegacyPassPass(*PassRegistry::getPassRegistry()); 136 } 137 138 bool runOnFunction(Function &F) override { 139 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 140 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 141 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 142 return false; 143 } 144 145 void print(raw_ostream &OS, const Module * = nullptr) const override {} 146 147 void getAnalysisUsage(AnalysisUsage &AU) const override { 148 FunctionPass::getAnalysisUsage(AU); 149 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 150 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 151 AU.setPreservesAll(); 152 } 153 }; 154 } 155 156 char CFGOnlyViewerLegacyPass::ID = 0; 157 INITIALIZE_PASS(CFGOnlyViewerLegacyPass, "view-cfg-only", 158 "View CFG of function (with no function bodies)", false, true) 159 160 PreservedAnalyses CFGOnlyViewerPass::run(Function &F, 161 FunctionAnalysisManager &AM) { 162 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 163 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 164 viewCFG(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 165 return PreservedAnalyses::all(); 166 } 167 168 namespace { 169 struct CFGPrinterLegacyPass : public FunctionPass { 170 static char ID; // Pass identification, replacement for typeid 171 CFGPrinterLegacyPass() : FunctionPass(ID) { 172 initializeCFGPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 173 } 174 175 bool runOnFunction(Function &F) override { 176 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 177 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 178 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); 179 return false; 180 } 181 182 void print(raw_ostream &OS, const Module * = nullptr) const override {} 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override { 185 FunctionPass::getAnalysisUsage(AU); 186 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 187 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 188 AU.setPreservesAll(); 189 } 190 }; 191 } 192 193 char CFGPrinterLegacyPass::ID = 0; 194 INITIALIZE_PASS(CFGPrinterLegacyPass, "dot-cfg", 195 "Print CFG of function to 'dot' file", false, true) 196 197 PreservedAnalyses CFGPrinterPass::run(Function &F, 198 FunctionAnalysisManager &AM) { 199 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 200 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 201 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI)); 202 return PreservedAnalyses::all(); 203 } 204 205 namespace { 206 struct CFGOnlyPrinterLegacyPass : public FunctionPass { 207 static char ID; // Pass identification, replacement for typeid 208 CFGOnlyPrinterLegacyPass() : FunctionPass(ID) { 209 initializeCFGOnlyPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); 210 } 211 212 bool runOnFunction(Function &F) override { 213 auto *BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 214 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 215 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 216 return false; 217 } 218 void print(raw_ostream &OS, const Module * = nullptr) const override {} 219 220 void getAnalysisUsage(AnalysisUsage &AU) const override { 221 FunctionPass::getAnalysisUsage(AU); 222 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 223 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 224 AU.setPreservesAll(); 225 } 226 }; 227 } 228 229 char CFGOnlyPrinterLegacyPass::ID = 0; 230 INITIALIZE_PASS(CFGOnlyPrinterLegacyPass, "dot-cfg-only", 231 "Print CFG of function to 'dot' file (with no function bodies)", 232 false, true) 233 234 PreservedAnalyses CFGOnlyPrinterPass::run(Function &F, 235 FunctionAnalysisManager &AM) { 236 auto *BFI = &AM.getResult<BlockFrequencyAnalysis>(F); 237 auto *BPI = &AM.getResult<BranchProbabilityAnalysis>(F); 238 writeCFGToDotFile(F, BFI, BPI, getMaxFreq(F, BFI), /*CFGOnly=*/true); 239 return PreservedAnalyses::all(); 240 } 241 242 /// viewCFG - This function is meant for use from the debugger. You can just 243 /// say 'call F->viewCFG()' and a ghostview window should pop up from the 244 /// program, displaying the CFG of the current function. This depends on there 245 /// being a 'dot' and 'gv' program in your path. 246 /// 247 void Function::viewCFG() const { viewCFG(false, nullptr, nullptr); } 248 249 void Function::viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI, 250 const BranchProbabilityInfo *BPI) const { 251 if (!CFGFuncName.empty() && !getName().contains(CFGFuncName)) 252 return; 253 DOTFuncInfo CFGInfo(this, BFI, BPI, BFI ? getMaxFreq(*this, BFI) : 0); 254 ViewGraph(&CFGInfo, "cfg" + getName(), ViewCFGOnly); 255 } 256 257 /// viewCFGOnly - This function is meant for use from the debugger. It works 258 /// just like viewCFG, but it does not include the contents of basic blocks 259 /// into the nodes, just the label. If you are only interested in the CFG 260 /// this can make the graph smaller. 261 /// 262 void Function::viewCFGOnly() const { viewCFGOnly(nullptr, nullptr); } 263 264 void Function::viewCFGOnly(const BlockFrequencyInfo *BFI, 265 const BranchProbabilityInfo *BPI) const { 266 viewCFG(true, BFI, BPI); 267 } 268 269 FunctionPass *llvm::createCFGPrinterLegacyPassPass() { 270 return new CFGPrinterLegacyPass(); 271 } 272 273 FunctionPass *llvm::createCFGOnlyPrinterLegacyPassPass() { 274 return new CFGOnlyPrinterLegacyPass(); 275 } 276 277 /// Find all blocks on the paths which terminate with a deoptimize or 278 /// unreachable (i.e. all blocks which are post-dominated by a deoptimize 279 /// or unreachable). These paths are hidden if the corresponding cl::opts 280 /// are enabled. 281 void DOTGraphTraits<DOTFuncInfo *>::computeDeoptOrUnreachablePaths( 282 const Function *F) { 283 auto evaluateBB = [&](const BasicBlock *Node) { 284 if (succ_empty(Node)) { 285 const Instruction *TI = Node->getTerminator(); 286 isOnDeoptOrUnreachablePath[Node] = 287 (HideUnreachablePaths && isa<UnreachableInst>(TI)) || 288 (HideDeoptimizePaths && Node->getTerminatingDeoptimizeCall()); 289 return; 290 } 291 isOnDeoptOrUnreachablePath[Node] = 292 llvm::all_of(successors(Node), [this](const BasicBlock *BB) { 293 return isOnDeoptOrUnreachablePath[BB]; 294 }); 295 }; 296 /// The post order traversal iteration is done to know the status of 297 /// isOnDeoptOrUnreachablePath for all the successors on the current BB. 298 llvm::for_each(post_order(&F->getEntryBlock()), evaluateBB); 299 } 300 301 bool DOTGraphTraits<DOTFuncInfo *>::isNodeHidden(const BasicBlock *Node, 302 const DOTFuncInfo *CFGInfo) { 303 if (HideColdPaths.getNumOccurrences() > 0) 304 if (auto *BFI = CFGInfo->getBFI()) { 305 uint64_t NodeFreq = BFI->getBlockFreq(Node).getFrequency(); 306 uint64_t EntryFreq = BFI->getEntryFreq(); 307 // Hide blocks with relative frequency below HideColdPaths threshold. 308 if ((double)NodeFreq / EntryFreq < HideColdPaths) 309 return true; 310 } 311 if (HideUnreachablePaths || HideDeoptimizePaths) { 312 if (isOnDeoptOrUnreachablePath.find(Node) == 313 isOnDeoptOrUnreachablePath.end()) 314 computeDeoptOrUnreachablePaths(Node->getParent()); 315 return isOnDeoptOrUnreachablePath[Node]; 316 } 317 return false; 318 } 319