1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Loops should be simplified before this analysis. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/GraphTraits.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/SCCIterator.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/Support/BlockFrequency.h" 22 #include "llvm/Support/BranchProbability.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/ScaledNumber.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <iterator> 33 #include <list> 34 #include <numeric> 35 #include <utility> 36 #include <vector> 37 38 using namespace llvm; 39 using namespace llvm::bfi_detail; 40 41 #define DEBUG_TYPE "block-freq" 42 43 ScaledNumber<uint64_t> BlockMass::toScaled() const { 44 if (isFull()) 45 return ScaledNumber<uint64_t>(1, 0); 46 return ScaledNumber<uint64_t>(getMass() + 1, -64); 47 } 48 49 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 50 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); } 51 #endif 52 53 static char getHexDigit(int N) { 54 assert(N < 16); 55 if (N < 10) 56 return '0' + N; 57 return 'a' + N - 10; 58 } 59 60 raw_ostream &BlockMass::print(raw_ostream &OS) const { 61 for (int Digits = 0; Digits < 16; ++Digits) 62 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); 63 return OS; 64 } 65 66 namespace { 67 68 using BlockNode = BlockFrequencyInfoImplBase::BlockNode; 69 using Distribution = BlockFrequencyInfoImplBase::Distribution; 70 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList; 71 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64; 72 using LoopData = BlockFrequencyInfoImplBase::LoopData; 73 using Weight = BlockFrequencyInfoImplBase::Weight; 74 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData; 75 76 /// \brief Dithering mass distributer. 77 /// 78 /// This class splits up a single mass into portions by weight, dithering to 79 /// spread out error. No mass is lost. The dithering precision depends on the 80 /// precision of the product of \a BlockMass and \a BranchProbability. 81 /// 82 /// The distribution algorithm follows. 83 /// 84 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the 85 /// mass to distribute in \a RemMass. 86 /// 87 /// 2. For each portion: 88 /// 89 /// 1. Construct a branch probability, P, as the portion's weight divided 90 /// by the current value of \a RemWeight. 91 /// 2. Calculate the portion's mass as \a RemMass times P. 92 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting 93 /// the current portion's weight and mass. 94 struct DitheringDistributer { 95 uint32_t RemWeight; 96 BlockMass RemMass; 97 98 DitheringDistributer(Distribution &Dist, const BlockMass &Mass); 99 100 BlockMass takeMass(uint32_t Weight); 101 }; 102 103 } // end anonymous namespace 104 105 DitheringDistributer::DitheringDistributer(Distribution &Dist, 106 const BlockMass &Mass) { 107 Dist.normalize(); 108 RemWeight = Dist.Total; 109 RemMass = Mass; 110 } 111 112 BlockMass DitheringDistributer::takeMass(uint32_t Weight) { 113 assert(Weight && "invalid weight"); 114 assert(Weight <= RemWeight); 115 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); 116 117 // Decrement totals (dither). 118 RemWeight -= Weight; 119 RemMass -= Mass; 120 return Mass; 121 } 122 123 void Distribution::add(const BlockNode &Node, uint64_t Amount, 124 Weight::DistType Type) { 125 assert(Amount && "invalid weight of 0"); 126 uint64_t NewTotal = Total + Amount; 127 128 // Check for overflow. It should be impossible to overflow twice. 129 bool IsOverflow = NewTotal < Total; 130 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); 131 DidOverflow |= IsOverflow; 132 133 // Update the total. 134 Total = NewTotal; 135 136 // Save the weight. 137 Weights.push_back(Weight(Type, Node, Amount)); 138 } 139 140 static void combineWeight(Weight &W, const Weight &OtherW) { 141 assert(OtherW.TargetNode.isValid()); 142 if (!W.Amount) { 143 W = OtherW; 144 return; 145 } 146 assert(W.Type == OtherW.Type); 147 assert(W.TargetNode == OtherW.TargetNode); 148 assert(OtherW.Amount && "Expected non-zero weight"); 149 if (W.Amount > W.Amount + OtherW.Amount) 150 // Saturate on overflow. 151 W.Amount = UINT64_MAX; 152 else 153 W.Amount += OtherW.Amount; 154 } 155 156 static void combineWeightsBySorting(WeightList &Weights) { 157 // Sort so edges to the same node are adjacent. 158 std::sort(Weights.begin(), Weights.end(), 159 [](const Weight &L, 160 const Weight &R) { return L.TargetNode < R.TargetNode; }); 161 162 // Combine adjacent edges. 163 WeightList::iterator O = Weights.begin(); 164 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; 165 ++O, (I = L)) { 166 *O = *I; 167 168 // Find the adjacent weights to the same node. 169 for (++L; L != E && I->TargetNode == L->TargetNode; ++L) 170 combineWeight(*O, *L); 171 } 172 173 // Erase extra entries. 174 Weights.erase(O, Weights.end()); 175 } 176 177 static void combineWeightsByHashing(WeightList &Weights) { 178 // Collect weights into a DenseMap. 179 using HashTable = DenseMap<BlockNode::IndexType, Weight>; 180 181 HashTable Combined(NextPowerOf2(2 * Weights.size())); 182 for (const Weight &W : Weights) 183 combineWeight(Combined[W.TargetNode.Index], W); 184 185 // Check whether anything changed. 186 if (Weights.size() == Combined.size()) 187 return; 188 189 // Fill in the new weights. 190 Weights.clear(); 191 Weights.reserve(Combined.size()); 192 for (const auto &I : Combined) 193 Weights.push_back(I.second); 194 } 195 196 static void combineWeights(WeightList &Weights) { 197 // Use a hash table for many successors to keep this linear. 198 if (Weights.size() > 128) { 199 combineWeightsByHashing(Weights); 200 return; 201 } 202 203 combineWeightsBySorting(Weights); 204 } 205 206 static uint64_t shiftRightAndRound(uint64_t N, int Shift) { 207 assert(Shift >= 0); 208 assert(Shift < 64); 209 if (!Shift) 210 return N; 211 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); 212 } 213 214 void Distribution::normalize() { 215 // Early exit for termination nodes. 216 if (Weights.empty()) 217 return; 218 219 // Only bother if there are multiple successors. 220 if (Weights.size() > 1) 221 combineWeights(Weights); 222 223 // Early exit when combined into a single successor. 224 if (Weights.size() == 1) { 225 Total = 1; 226 Weights.front().Amount = 1; 227 return; 228 } 229 230 // Determine how much to shift right so that the total fits into 32-bits. 231 // 232 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1 233 // for each weight can cause a 32-bit overflow. 234 int Shift = 0; 235 if (DidOverflow) 236 Shift = 33; 237 else if (Total > UINT32_MAX) 238 Shift = 33 - countLeadingZeros(Total); 239 240 // Early exit if nothing needs to be scaled. 241 if (!Shift) { 242 // If we didn't overflow then combineWeights() shouldn't have changed the 243 // sum of the weights, but let's double-check. 244 assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0), 245 [](uint64_t Sum, const Weight &W) { 246 return Sum + W.Amount; 247 }) && 248 "Expected total to be correct"); 249 return; 250 } 251 252 // Recompute the total through accumulation (rather than shifting it) so that 253 // it's accurate after shifting and any changes combineWeights() made above. 254 Total = 0; 255 256 // Sum the weights to each node and shift right if necessary. 257 for (Weight &W : Weights) { 258 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we 259 // can round here without concern about overflow. 260 assert(W.TargetNode.isValid()); 261 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); 262 assert(W.Amount <= UINT32_MAX); 263 264 // Update the total. 265 Total += W.Amount; 266 } 267 assert(Total <= UINT32_MAX); 268 } 269 270 void BlockFrequencyInfoImplBase::clear() { 271 // Swap with a default-constructed std::vector, since std::vector<>::clear() 272 // does not actually clear heap storage. 273 std::vector<FrequencyData>().swap(Freqs); 274 std::vector<WorkingData>().swap(Working); 275 Loops.clear(); 276 } 277 278 /// \brief Clear all memory not needed downstream. 279 /// 280 /// Releases all memory not used downstream. In particular, saves Freqs. 281 static void cleanup(BlockFrequencyInfoImplBase &BFI) { 282 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); 283 BFI.clear(); 284 BFI.Freqs = std::move(SavedFreqs); 285 } 286 287 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, 288 const LoopData *OuterLoop, 289 const BlockNode &Pred, 290 const BlockNode &Succ, 291 uint64_t Weight) { 292 if (!Weight) 293 Weight = 1; 294 295 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) { 296 return OuterLoop && OuterLoop->isHeader(Node); 297 }; 298 299 BlockNode Resolved = Working[Succ.Index].getResolvedNode(); 300 301 #ifndef NDEBUG 302 auto debugSuccessor = [&](const char *Type) { 303 dbgs() << " =>" 304 << " [" << Type << "] weight = " << Weight; 305 if (!isLoopHeader(Resolved)) 306 dbgs() << ", succ = " << getBlockName(Succ); 307 if (Resolved != Succ) 308 dbgs() << ", resolved = " << getBlockName(Resolved); 309 dbgs() << "\n"; 310 }; 311 (void)debugSuccessor; 312 #endif 313 314 if (isLoopHeader(Resolved)) { 315 DEBUG(debugSuccessor("backedge")); 316 Dist.addBackedge(Resolved, Weight); 317 return true; 318 } 319 320 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { 321 DEBUG(debugSuccessor(" exit ")); 322 Dist.addExit(Resolved, Weight); 323 return true; 324 } 325 326 if (Resolved < Pred) { 327 if (!isLoopHeader(Pred)) { 328 // If OuterLoop is an irreducible loop, we can't actually handle this. 329 assert((!OuterLoop || !OuterLoop->isIrreducible()) && 330 "unhandled irreducible control flow"); 331 332 // Irreducible backedge. Abort. 333 DEBUG(debugSuccessor("abort!!!")); 334 return false; 335 } 336 337 // If "Pred" is a loop header, then this isn't really a backedge; rather, 338 // OuterLoop must be irreducible. These false backedges can come only from 339 // secondary loop headers. 340 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && 341 "unhandled irreducible control flow"); 342 } 343 344 DEBUG(debugSuccessor(" local ")); 345 Dist.addLocal(Resolved, Weight); 346 return true; 347 } 348 349 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( 350 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { 351 // Copy the exit map into Dist. 352 for (const auto &I : Loop.Exits) 353 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, 354 I.second.getMass())) 355 // Irreducible backedge. 356 return false; 357 358 return true; 359 } 360 361 /// \brief Compute the loop scale for a loop. 362 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { 363 // Compute loop scale. 364 DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n"); 365 366 // Infinite loops need special handling. If we give the back edge an infinite 367 // mass, they may saturate all the other scales in the function down to 1, 368 // making all the other region temperatures look exactly the same. Choose an 369 // arbitrary scale to avoid these issues. 370 // 371 // FIXME: An alternate way would be to select a symbolic scale which is later 372 // replaced to be the maximum of all computed scales plus 1. This would 373 // appropriately describe the loop as having a large scale, without skewing 374 // the final frequency computation. 375 const Scaled64 InfiniteLoopScale(1, 12); 376 377 // LoopScale == 1 / ExitMass 378 // ExitMass == HeadMass - BackedgeMass 379 BlockMass TotalBackedgeMass; 380 for (auto &Mass : Loop.BackedgeMass) 381 TotalBackedgeMass += Mass; 382 BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass; 383 384 // Block scale stores the inverse of the scale. If this is an infinite loop, 385 // its exit mass will be zero. In this case, use an arbitrary scale for the 386 // loop scale. 387 Loop.Scale = 388 ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse(); 389 390 DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull() 391 << " - " << TotalBackedgeMass << ")\n" 392 << " - scale = " << Loop.Scale << "\n"); 393 } 394 395 /// \brief Package up a loop. 396 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { 397 DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n"); 398 399 // Clear the subloop exits to prevent quadratic memory usage. 400 for (const BlockNode &M : Loop.Nodes) { 401 if (auto *Loop = Working[M.Index].getPackagedLoop()) 402 Loop->Exits.clear(); 403 DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); 404 } 405 Loop.IsPackaged = true; 406 } 407 408 #ifndef NDEBUG 409 static void debugAssign(const BlockFrequencyInfoImplBase &BFI, 410 const DitheringDistributer &D, const BlockNode &T, 411 const BlockMass &M, const char *Desc) { 412 dbgs() << " => assign " << M << " (" << D.RemMass << ")"; 413 if (Desc) 414 dbgs() << " [" << Desc << "]"; 415 if (T.isValid()) 416 dbgs() << " to " << BFI.getBlockName(T); 417 dbgs() << "\n"; 418 } 419 #endif 420 421 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, 422 LoopData *OuterLoop, 423 Distribution &Dist) { 424 BlockMass Mass = Working[Source.Index].getMass(); 425 DEBUG(dbgs() << " => mass: " << Mass << "\n"); 426 427 // Distribute mass to successors as laid out in Dist. 428 DitheringDistributer D(Dist, Mass); 429 430 for (const Weight &W : Dist.Weights) { 431 // Check for a local edge (non-backedge and non-exit). 432 BlockMass Taken = D.takeMass(W.Amount); 433 if (W.Type == Weight::Local) { 434 Working[W.TargetNode.Index].getMass() += Taken; 435 DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); 436 continue; 437 } 438 439 // Backedges and exits only make sense if we're processing a loop. 440 assert(OuterLoop && "backedge or exit outside of loop"); 441 442 // Check for a backedge. 443 if (W.Type == Weight::Backedge) { 444 OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken; 445 DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back")); 446 continue; 447 } 448 449 // This must be an exit. 450 assert(W.Type == Weight::Exit); 451 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken)); 452 DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit")); 453 } 454 } 455 456 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, 457 const Scaled64 &Min, const Scaled64 &Max) { 458 // Scale the Factor to a size that creates integers. Ideally, integers would 459 // be scaled so that Max == UINT64_MAX so that they can be best 460 // differentiated. However, in the presence of large frequency values, small 461 // frequencies are scaled down to 1, making it impossible to differentiate 462 // small, unequal numbers. When the spread between Min and Max frequencies 463 // fits well within MaxBits, we make the scale be at least 8. 464 const unsigned MaxBits = 64; 465 const unsigned SpreadBits = (Max / Min).lg(); 466 Scaled64 ScalingFactor; 467 if (SpreadBits <= MaxBits - 3) { 468 // If the values are small enough, make the scaling factor at least 8 to 469 // allow distinguishing small values. 470 ScalingFactor = Min.inverse(); 471 ScalingFactor <<= 3; 472 } else { 473 // If the values need more than MaxBits to be represented, saturate small 474 // frequency values down to 1 by using a scaling factor that benefits large 475 // frequency values. 476 ScalingFactor = Scaled64(1, MaxBits) / Max; 477 } 478 479 // Translate the floats to integers. 480 DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max 481 << ", factor = " << ScalingFactor << "\n"); 482 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { 483 Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor; 484 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>()); 485 DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " 486 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled 487 << ", int = " << BFI.Freqs[Index].Integer << "\n"); 488 } 489 } 490 491 /// \brief Unwrap a loop package. 492 /// 493 /// Visits all the members of a loop, adjusting their BlockData according to 494 /// the loop's pseudo-node. 495 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { 496 DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) 497 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale 498 << "\n"); 499 Loop.Scale *= Loop.Mass.toScaled(); 500 Loop.IsPackaged = false; 501 DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n"); 502 503 // Propagate the head scale through the loop. Since members are visited in 504 // RPO, the head scale will be updated by the loop scale first, and then the 505 // final head scale will be used for updated the rest of the members. 506 for (const BlockNode &N : Loop.Nodes) { 507 const auto &Working = BFI.Working[N.Index]; 508 Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale 509 : BFI.Freqs[N.Index].Scaled; 510 Scaled64 New = Loop.Scale * F; 511 DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New 512 << "\n"); 513 F = New; 514 } 515 } 516 517 void BlockFrequencyInfoImplBase::unwrapLoops() { 518 // Set initial frequencies from loop-local masses. 519 for (size_t Index = 0; Index < Working.size(); ++Index) 520 Freqs[Index].Scaled = Working[Index].Mass.toScaled(); 521 522 for (LoopData &Loop : Loops) 523 unwrapLoop(*this, Loop); 524 } 525 526 void BlockFrequencyInfoImplBase::finalizeMetrics() { 527 // Unwrap loop packages in reverse post-order, tracking min and max 528 // frequencies. 529 auto Min = Scaled64::getLargest(); 530 auto Max = Scaled64::getZero(); 531 for (size_t Index = 0; Index < Working.size(); ++Index) { 532 // Update min/max scale. 533 Min = std::min(Min, Freqs[Index].Scaled); 534 Max = std::max(Max, Freqs[Index].Scaled); 535 } 536 537 // Convert to integers. 538 convertFloatingToInteger(*this, Min, Max); 539 540 // Clean up data structures. 541 cleanup(*this); 542 543 // Print out the final stats. 544 DEBUG(dump()); 545 } 546 547 BlockFrequency 548 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { 549 if (!Node.isValid()) 550 return 0; 551 return Freqs[Node.Index].Integer; 552 } 553 554 Optional<uint64_t> 555 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F, 556 const BlockNode &Node) const { 557 return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency()); 558 } 559 560 Optional<uint64_t> 561 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F, 562 uint64_t Freq) const { 563 auto EntryCount = F.getEntryCount(); 564 if (!EntryCount) 565 return None; 566 // Use 128 bit APInt to do the arithmetic to avoid overflow. 567 APInt BlockCount(128, EntryCount.getValue()); 568 APInt BlockFreq(128, Freq); 569 APInt EntryFreq(128, getEntryFreq()); 570 BlockCount *= BlockFreq; 571 BlockCount = BlockCount.udiv(EntryFreq); 572 return BlockCount.getLimitedValue(); 573 } 574 575 Scaled64 576 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { 577 if (!Node.isValid()) 578 return Scaled64::getZero(); 579 return Freqs[Node.Index].Scaled; 580 } 581 582 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node, 583 uint64_t Freq) { 584 assert(Node.isValid() && "Expected valid node"); 585 assert(Node.Index < Freqs.size() && "Expected legal index"); 586 Freqs[Node.Index].Integer = Freq; 587 } 588 589 std::string 590 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { 591 return {}; 592 } 593 594 std::string 595 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { 596 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*"); 597 } 598 599 raw_ostream & 600 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, 601 const BlockNode &Node) const { 602 return OS << getFloatingBlockFreq(Node); 603 } 604 605 raw_ostream & 606 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, 607 const BlockFrequency &Freq) const { 608 Scaled64 Block(Freq.getFrequency(), 0); 609 Scaled64 Entry(getEntryFreq(), 0); 610 611 return OS << Block / Entry; 612 } 613 614 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { 615 Start = OuterLoop.getHeader(); 616 Nodes.reserve(OuterLoop.Nodes.size()); 617 for (auto N : OuterLoop.Nodes) 618 addNode(N); 619 indexNodes(); 620 } 621 622 void IrreducibleGraph::addNodesInFunction() { 623 Start = 0; 624 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) 625 if (!BFI.Working[Index].isPackaged()) 626 addNode(Index); 627 indexNodes(); 628 } 629 630 void IrreducibleGraph::indexNodes() { 631 for (auto &I : Nodes) 632 Lookup[I.Node.Index] = &I; 633 } 634 635 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, 636 const BFIBase::LoopData *OuterLoop) { 637 if (OuterLoop && OuterLoop->isHeader(Succ)) 638 return; 639 auto L = Lookup.find(Succ.Index); 640 if (L == Lookup.end()) 641 return; 642 IrrNode &SuccIrr = *L->second; 643 Irr.Edges.push_back(&SuccIrr); 644 SuccIrr.Edges.push_front(&Irr); 645 ++SuccIrr.NumIn; 646 } 647 648 namespace llvm { 649 650 template <> struct GraphTraits<IrreducibleGraph> { 651 using GraphT = bfi_detail::IrreducibleGraph; 652 using NodeRef = const GraphT::IrrNode *; 653 using ChildIteratorType = GraphT::IrrNode::iterator; 654 655 static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; } 656 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 657 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 658 }; 659 660 } // end namespace llvm 661 662 /// \brief Find extra irreducible headers. 663 /// 664 /// Find entry blocks and other blocks with backedges, which exist when \c G 665 /// contains irreducible sub-SCCs. 666 static void findIrreducibleHeaders( 667 const BlockFrequencyInfoImplBase &BFI, 668 const IrreducibleGraph &G, 669 const std::vector<const IrreducibleGraph::IrrNode *> &SCC, 670 LoopData::NodeList &Headers, LoopData::NodeList &Others) { 671 // Map from nodes in the SCC to whether it's an entry block. 672 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC; 673 674 // InSCC also acts the set of nodes in the graph. Seed it. 675 for (const auto *I : SCC) 676 InSCC[I] = false; 677 678 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { 679 auto &Irr = *I->first; 680 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { 681 if (InSCC.count(P)) 682 continue; 683 684 // This is an entry block. 685 I->second = true; 686 Headers.push_back(Irr.Node); 687 DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) << "\n"); 688 break; 689 } 690 } 691 assert(Headers.size() >= 2 && 692 "Expected irreducible CFG; -loop-info is likely invalid"); 693 if (Headers.size() == InSCC.size()) { 694 // Every block is a header. 695 std::sort(Headers.begin(), Headers.end()); 696 return; 697 } 698 699 // Look for extra headers from irreducible sub-SCCs. 700 for (const auto &I : InSCC) { 701 // Entry blocks are already headers. 702 if (I.second) 703 continue; 704 705 auto &Irr = *I.first; 706 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { 707 // Skip forward edges. 708 if (P->Node < Irr.Node) 709 continue; 710 711 // Skip predecessors from entry blocks. These can have inverted 712 // ordering. 713 if (InSCC.lookup(P)) 714 continue; 715 716 // Store the extra header. 717 Headers.push_back(Irr.Node); 718 DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) << "\n"); 719 break; 720 } 721 if (Headers.back() == Irr.Node) 722 // Added this as a header. 723 continue; 724 725 // This is not a header. 726 Others.push_back(Irr.Node); 727 DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n"); 728 } 729 std::sort(Headers.begin(), Headers.end()); 730 std::sort(Others.begin(), Others.end()); 731 } 732 733 static void createIrreducibleLoop( 734 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, 735 LoopData *OuterLoop, std::list<LoopData>::iterator Insert, 736 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) { 737 // Translate the SCC into RPO. 738 DEBUG(dbgs() << " - found-scc\n"); 739 740 LoopData::NodeList Headers; 741 LoopData::NodeList Others; 742 findIrreducibleHeaders(BFI, G, SCC, Headers, Others); 743 744 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(), 745 Headers.end(), Others.begin(), Others.end()); 746 747 // Update loop hierarchy. 748 for (const auto &N : Loop->Nodes) 749 if (BFI.Working[N.Index].isLoopHeader()) 750 BFI.Working[N.Index].Loop->Parent = &*Loop; 751 else 752 BFI.Working[N.Index].Loop = &*Loop; 753 } 754 755 iterator_range<std::list<LoopData>::iterator> 756 BlockFrequencyInfoImplBase::analyzeIrreducible( 757 const IrreducibleGraph &G, LoopData *OuterLoop, 758 std::list<LoopData>::iterator Insert) { 759 assert((OuterLoop == nullptr) == (Insert == Loops.begin())); 760 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end(); 761 762 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { 763 if (I->size() < 2) 764 continue; 765 766 // Translate the SCC into RPO. 767 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I); 768 } 769 770 if (OuterLoop) 771 return make_range(std::next(Prev), Insert); 772 return make_range(Loops.begin(), Insert); 773 } 774 775 void 776 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { 777 OuterLoop.Exits.clear(); 778 for (auto &Mass : OuterLoop.BackedgeMass) 779 Mass = BlockMass::getEmpty(); 780 auto O = OuterLoop.Nodes.begin() + 1; 781 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) 782 if (!Working[I->Index].isPackaged()) 783 *O++ = *I; 784 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end()); 785 } 786 787 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) { 788 assert(Loop.isIrreducible() && "this only makes sense on irreducible loops"); 789 790 // Since the loop has more than one header block, the mass flowing back into 791 // each header will be different. Adjust the mass in each header loop to 792 // reflect the masses flowing through back edges. 793 // 794 // To do this, we distribute the initial mass using the backedge masses 795 // as weights for the distribution. 796 BlockMass LoopMass = BlockMass::getFull(); 797 Distribution Dist; 798 799 DEBUG(dbgs() << "adjust-loop-header-mass:\n"); 800 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { 801 auto &HeaderNode = Loop.Nodes[H]; 802 auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)]; 803 DEBUG(dbgs() << " - Add back edge mass for node " 804 << getBlockName(HeaderNode) << ": " << BackedgeMass << "\n"); 805 if (BackedgeMass.getMass() > 0) 806 Dist.addLocal(HeaderNode, BackedgeMass.getMass()); 807 else 808 DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n"); 809 } 810 811 DitheringDistributer D(Dist, LoopMass); 812 813 DEBUG(dbgs() << " Distribute loop mass " << LoopMass 814 << " to headers using above weights\n"); 815 for (const Weight &W : Dist.Weights) { 816 BlockMass Taken = D.takeMass(W.Amount); 817 assert(W.Type == Weight::Local && "all weights should be local"); 818 Working[W.TargetNode.Index].getMass() = Taken; 819 DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); 820 } 821 } 822