1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Loops should be simplified before this analysis. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 15 #include "llvm/ADT/SCCIterator.h" 16 #include "llvm/Support/raw_ostream.h" 17 #include <deque> 18 19 using namespace llvm; 20 using namespace llvm::bfi_detail; 21 22 #define DEBUG_TYPE "block-freq" 23 24 ScaledNumber<uint64_t> BlockMass::toScaled() const { 25 if (isFull()) 26 return ScaledNumber<uint64_t>(1, 0); 27 return ScaledNumber<uint64_t>(getMass() + 1, -64); 28 } 29 30 void BlockMass::dump() const { print(dbgs()); } 31 32 static char getHexDigit(int N) { 33 assert(N < 16); 34 if (N < 10) 35 return '0' + N; 36 return 'a' + N - 10; 37 } 38 raw_ostream &BlockMass::print(raw_ostream &OS) const { 39 for (int Digits = 0; Digits < 16; ++Digits) 40 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); 41 return OS; 42 } 43 44 namespace { 45 46 typedef BlockFrequencyInfoImplBase::BlockNode BlockNode; 47 typedef BlockFrequencyInfoImplBase::Distribution Distribution; 48 typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList; 49 typedef BlockFrequencyInfoImplBase::Scaled64 Scaled64; 50 typedef BlockFrequencyInfoImplBase::LoopData LoopData; 51 typedef BlockFrequencyInfoImplBase::Weight Weight; 52 typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData; 53 54 /// \brief Dithering mass distributer. 55 /// 56 /// This class splits up a single mass into portions by weight, dithering to 57 /// spread out error. No mass is lost. The dithering precision depends on the 58 /// precision of the product of \a BlockMass and \a BranchProbability. 59 /// 60 /// The distribution algorithm follows. 61 /// 62 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the 63 /// mass to distribute in \a RemMass. 64 /// 65 /// 2. For each portion: 66 /// 67 /// 1. Construct a branch probability, P, as the portion's weight divided 68 /// by the current value of \a RemWeight. 69 /// 2. Calculate the portion's mass as \a RemMass times P. 70 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting 71 /// the current portion's weight and mass. 72 struct DitheringDistributer { 73 uint32_t RemWeight; 74 BlockMass RemMass; 75 76 DitheringDistributer(Distribution &Dist, const BlockMass &Mass); 77 78 BlockMass takeMass(uint32_t Weight); 79 }; 80 81 } // end namespace 82 83 DitheringDistributer::DitheringDistributer(Distribution &Dist, 84 const BlockMass &Mass) { 85 Dist.normalize(); 86 RemWeight = Dist.Total; 87 RemMass = Mass; 88 } 89 90 BlockMass DitheringDistributer::takeMass(uint32_t Weight) { 91 assert(Weight && "invalid weight"); 92 assert(Weight <= RemWeight); 93 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); 94 95 // Decrement totals (dither). 96 RemWeight -= Weight; 97 RemMass -= Mass; 98 return Mass; 99 } 100 101 void Distribution::add(const BlockNode &Node, uint64_t Amount, 102 Weight::DistType Type) { 103 assert(Amount && "invalid weight of 0"); 104 uint64_t NewTotal = Total + Amount; 105 106 // Check for overflow. It should be impossible to overflow twice. 107 bool IsOverflow = NewTotal < Total; 108 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); 109 DidOverflow |= IsOverflow; 110 111 // Update the total. 112 Total = NewTotal; 113 114 // Save the weight. 115 Weights.push_back(Weight(Type, Node, Amount)); 116 } 117 118 static void combineWeight(Weight &W, const Weight &OtherW) { 119 assert(OtherW.TargetNode.isValid()); 120 if (!W.Amount) { 121 W = OtherW; 122 return; 123 } 124 assert(W.Type == OtherW.Type); 125 assert(W.TargetNode == OtherW.TargetNode); 126 assert(W.Amount < W.Amount + OtherW.Amount && "Unexpected overflow"); 127 W.Amount += OtherW.Amount; 128 } 129 static void combineWeightsBySorting(WeightList &Weights) { 130 // Sort so edges to the same node are adjacent. 131 std::sort(Weights.begin(), Weights.end(), 132 [](const Weight &L, 133 const Weight &R) { return L.TargetNode < R.TargetNode; }); 134 135 // Combine adjacent edges. 136 WeightList::iterator O = Weights.begin(); 137 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; 138 ++O, (I = L)) { 139 *O = *I; 140 141 // Find the adjacent weights to the same node. 142 for (++L; L != E && I->TargetNode == L->TargetNode; ++L) 143 combineWeight(*O, *L); 144 } 145 146 // Erase extra entries. 147 Weights.erase(O, Weights.end()); 148 return; 149 } 150 static void combineWeightsByHashing(WeightList &Weights) { 151 // Collect weights into a DenseMap. 152 typedef DenseMap<BlockNode::IndexType, Weight> HashTable; 153 HashTable Combined(NextPowerOf2(2 * Weights.size())); 154 for (const Weight &W : Weights) 155 combineWeight(Combined[W.TargetNode.Index], W); 156 157 // Check whether anything changed. 158 if (Weights.size() == Combined.size()) 159 return; 160 161 // Fill in the new weights. 162 Weights.clear(); 163 Weights.reserve(Combined.size()); 164 for (const auto &I : Combined) 165 Weights.push_back(I.second); 166 } 167 static void combineWeights(WeightList &Weights) { 168 // Use a hash table for many successors to keep this linear. 169 if (Weights.size() > 128) { 170 combineWeightsByHashing(Weights); 171 return; 172 } 173 174 combineWeightsBySorting(Weights); 175 } 176 static uint64_t shiftRightAndRound(uint64_t N, int Shift) { 177 assert(Shift >= 0); 178 assert(Shift < 64); 179 if (!Shift) 180 return N; 181 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); 182 } 183 void Distribution::normalize() { 184 // Early exit for termination nodes. 185 if (Weights.empty()) 186 return; 187 188 // Only bother if there are multiple successors. 189 if (Weights.size() > 1) 190 combineWeights(Weights); 191 192 // Early exit when combined into a single successor. 193 if (Weights.size() == 1) { 194 Total = 1; 195 Weights.front().Amount = 1; 196 return; 197 } 198 199 // Determine how much to shift right so that the total fits into 32-bits. 200 // 201 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1 202 // for each weight can cause a 32-bit overflow. 203 int Shift = 0; 204 if (DidOverflow) 205 Shift = 33; 206 else if (Total > UINT32_MAX) 207 Shift = 33 - countLeadingZeros(Total); 208 209 // Early exit if nothing needs to be scaled. 210 if (!Shift) 211 return; 212 213 // Recompute the total through accumulation (rather than shifting it) so that 214 // it's accurate after shifting. 215 Total = 0; 216 217 // Sum the weights to each node and shift right if necessary. 218 for (Weight &W : Weights) { 219 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we 220 // can round here without concern about overflow. 221 assert(W.TargetNode.isValid()); 222 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); 223 assert(W.Amount <= UINT32_MAX); 224 225 // Update the total. 226 Total += W.Amount; 227 } 228 assert(Total <= UINT32_MAX); 229 } 230 231 void BlockFrequencyInfoImplBase::clear() { 232 // Swap with a default-constructed std::vector, since std::vector<>::clear() 233 // does not actually clear heap storage. 234 std::vector<FrequencyData>().swap(Freqs); 235 std::vector<WorkingData>().swap(Working); 236 Loops.clear(); 237 } 238 239 /// \brief Clear all memory not needed downstream. 240 /// 241 /// Releases all memory not used downstream. In particular, saves Freqs. 242 static void cleanup(BlockFrequencyInfoImplBase &BFI) { 243 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); 244 BFI.clear(); 245 BFI.Freqs = std::move(SavedFreqs); 246 } 247 248 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, 249 const LoopData *OuterLoop, 250 const BlockNode &Pred, 251 const BlockNode &Succ, 252 uint64_t Weight) { 253 if (!Weight) 254 Weight = 1; 255 256 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) { 257 return OuterLoop && OuterLoop->isHeader(Node); 258 }; 259 260 BlockNode Resolved = Working[Succ.Index].getResolvedNode(); 261 262 #ifndef NDEBUG 263 auto debugSuccessor = [&](const char *Type) { 264 dbgs() << " =>" 265 << " [" << Type << "] weight = " << Weight; 266 if (!isLoopHeader(Resolved)) 267 dbgs() << ", succ = " << getBlockName(Succ); 268 if (Resolved != Succ) 269 dbgs() << ", resolved = " << getBlockName(Resolved); 270 dbgs() << "\n"; 271 }; 272 (void)debugSuccessor; 273 #endif 274 275 if (isLoopHeader(Resolved)) { 276 DEBUG(debugSuccessor("backedge")); 277 Dist.addBackedge(OuterLoop->getHeader(), Weight); 278 return true; 279 } 280 281 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { 282 DEBUG(debugSuccessor(" exit ")); 283 Dist.addExit(Resolved, Weight); 284 return true; 285 } 286 287 if (Resolved < Pred) { 288 if (!isLoopHeader(Pred)) { 289 // If OuterLoop is an irreducible loop, we can't actually handle this. 290 assert((!OuterLoop || !OuterLoop->isIrreducible()) && 291 "unhandled irreducible control flow"); 292 293 // Irreducible backedge. Abort. 294 DEBUG(debugSuccessor("abort!!!")); 295 return false; 296 } 297 298 // If "Pred" is a loop header, then this isn't really a backedge; rather, 299 // OuterLoop must be irreducible. These false backedges can come only from 300 // secondary loop headers. 301 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && 302 "unhandled irreducible control flow"); 303 } 304 305 DEBUG(debugSuccessor(" local ")); 306 Dist.addLocal(Resolved, Weight); 307 return true; 308 } 309 310 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( 311 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { 312 // Copy the exit map into Dist. 313 for (const auto &I : Loop.Exits) 314 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, 315 I.second.getMass())) 316 // Irreducible backedge. 317 return false; 318 319 return true; 320 } 321 322 /// \brief Get the maximum allowed loop scale. 323 /// 324 /// Gives the maximum number of estimated iterations allowed for a loop. Very 325 /// large numbers cause problems downstream (even within 64-bits). 326 static Scaled64 getMaxLoopScale() { return Scaled64(1, 12); } 327 328 /// \brief Compute the loop scale for a loop. 329 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { 330 // Compute loop scale. 331 DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n"); 332 333 // LoopScale == 1 / ExitMass 334 // ExitMass == HeadMass - BackedgeMass 335 BlockMass ExitMass = BlockMass::getFull() - Loop.BackedgeMass; 336 337 // Block scale stores the inverse of the scale. 338 Loop.Scale = ExitMass.toScaled().inverse(); 339 340 DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull() 341 << " - " << Loop.BackedgeMass << ")\n" 342 << " - scale = " << Loop.Scale << "\n"); 343 344 if (Loop.Scale > getMaxLoopScale()) { 345 Loop.Scale = getMaxLoopScale(); 346 DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n"); 347 } 348 } 349 350 /// \brief Package up a loop. 351 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { 352 DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n"); 353 354 // Clear the subloop exits to prevent quadratic memory usage. 355 for (const BlockNode &M : Loop.Nodes) { 356 if (auto *Loop = Working[M.Index].getPackagedLoop()) 357 Loop->Exits.clear(); 358 DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); 359 } 360 Loop.IsPackaged = true; 361 } 362 363 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, 364 LoopData *OuterLoop, 365 Distribution &Dist) { 366 BlockMass Mass = Working[Source.Index].getMass(); 367 DEBUG(dbgs() << " => mass: " << Mass << "\n"); 368 369 // Distribute mass to successors as laid out in Dist. 370 DitheringDistributer D(Dist, Mass); 371 372 #ifndef NDEBUG 373 auto debugAssign = [&](const BlockNode &T, const BlockMass &M, 374 const char *Desc) { 375 dbgs() << " => assign " << M << " (" << D.RemMass << ")"; 376 if (Desc) 377 dbgs() << " [" << Desc << "]"; 378 if (T.isValid()) 379 dbgs() << " to " << getBlockName(T); 380 dbgs() << "\n"; 381 }; 382 (void)debugAssign; 383 #endif 384 385 for (const Weight &W : Dist.Weights) { 386 // Check for a local edge (non-backedge and non-exit). 387 BlockMass Taken = D.takeMass(W.Amount); 388 if (W.Type == Weight::Local) { 389 Working[W.TargetNode.Index].getMass() += Taken; 390 DEBUG(debugAssign(W.TargetNode, Taken, nullptr)); 391 continue; 392 } 393 394 // Backedges and exits only make sense if we're processing a loop. 395 assert(OuterLoop && "backedge or exit outside of loop"); 396 397 // Check for a backedge. 398 if (W.Type == Weight::Backedge) { 399 OuterLoop->BackedgeMass += Taken; 400 DEBUG(debugAssign(BlockNode(), Taken, "back")); 401 continue; 402 } 403 404 // This must be an exit. 405 assert(W.Type == Weight::Exit); 406 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken)); 407 DEBUG(debugAssign(W.TargetNode, Taken, "exit")); 408 } 409 } 410 411 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, 412 const Scaled64 &Min, const Scaled64 &Max) { 413 // Scale the Factor to a size that creates integers. Ideally, integers would 414 // be scaled so that Max == UINT64_MAX so that they can be best 415 // differentiated. However, the register allocator currently deals poorly 416 // with large numbers. Instead, push Min up a little from 1 to give some 417 // room to differentiate small, unequal numbers. 418 // 419 // TODO: fix issues downstream so that ScalingFactor can be 420 // Scaled64(1,64)/Max. 421 Scaled64 ScalingFactor = Min.inverse(); 422 if ((Max / Min).lg() < 60) 423 ScalingFactor <<= 3; 424 425 // Translate the floats to integers. 426 DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max 427 << ", factor = " << ScalingFactor << "\n"); 428 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { 429 Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor; 430 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>()); 431 DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " 432 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled 433 << ", int = " << BFI.Freqs[Index].Integer << "\n"); 434 } 435 } 436 437 /// \brief Unwrap a loop package. 438 /// 439 /// Visits all the members of a loop, adjusting their BlockData according to 440 /// the loop's pseudo-node. 441 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { 442 DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) 443 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale 444 << "\n"); 445 Loop.Scale *= Loop.Mass.toScaled(); 446 Loop.IsPackaged = false; 447 DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n"); 448 449 // Propagate the head scale through the loop. Since members are visited in 450 // RPO, the head scale will be updated by the loop scale first, and then the 451 // final head scale will be used for updated the rest of the members. 452 for (const BlockNode &N : Loop.Nodes) { 453 const auto &Working = BFI.Working[N.Index]; 454 Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale 455 : BFI.Freqs[N.Index].Scaled; 456 Scaled64 New = Loop.Scale * F; 457 DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " << New 458 << "\n"); 459 F = New; 460 } 461 } 462 463 void BlockFrequencyInfoImplBase::unwrapLoops() { 464 // Set initial frequencies from loop-local masses. 465 for (size_t Index = 0; Index < Working.size(); ++Index) 466 Freqs[Index].Scaled = Working[Index].Mass.toScaled(); 467 468 for (LoopData &Loop : Loops) 469 unwrapLoop(*this, Loop); 470 } 471 472 void BlockFrequencyInfoImplBase::finalizeMetrics() { 473 // Unwrap loop packages in reverse post-order, tracking min and max 474 // frequencies. 475 auto Min = Scaled64::getLargest(); 476 auto Max = Scaled64::getZero(); 477 for (size_t Index = 0; Index < Working.size(); ++Index) { 478 // Update min/max scale. 479 Min = std::min(Min, Freqs[Index].Scaled); 480 Max = std::max(Max, Freqs[Index].Scaled); 481 } 482 483 // Convert to integers. 484 convertFloatingToInteger(*this, Min, Max); 485 486 // Clean up data structures. 487 cleanup(*this); 488 489 // Print out the final stats. 490 DEBUG(dump()); 491 } 492 493 BlockFrequency 494 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { 495 if (!Node.isValid()) 496 return 0; 497 return Freqs[Node.Index].Integer; 498 } 499 Scaled64 500 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { 501 if (!Node.isValid()) 502 return Scaled64::getZero(); 503 return Freqs[Node.Index].Scaled; 504 } 505 506 std::string 507 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { 508 return std::string(); 509 } 510 std::string 511 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { 512 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*"); 513 } 514 515 raw_ostream & 516 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, 517 const BlockNode &Node) const { 518 return OS << getFloatingBlockFreq(Node); 519 } 520 521 raw_ostream & 522 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, 523 const BlockFrequency &Freq) const { 524 Scaled64 Block(Freq.getFrequency(), 0); 525 Scaled64 Entry(getEntryFreq(), 0); 526 527 return OS << Block / Entry; 528 } 529 530 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { 531 Start = OuterLoop.getHeader(); 532 Nodes.reserve(OuterLoop.Nodes.size()); 533 for (auto N : OuterLoop.Nodes) 534 addNode(N); 535 indexNodes(); 536 } 537 void IrreducibleGraph::addNodesInFunction() { 538 Start = 0; 539 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) 540 if (!BFI.Working[Index].isPackaged()) 541 addNode(Index); 542 indexNodes(); 543 } 544 void IrreducibleGraph::indexNodes() { 545 for (auto &I : Nodes) 546 Lookup[I.Node.Index] = &I; 547 } 548 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, 549 const BFIBase::LoopData *OuterLoop) { 550 if (OuterLoop && OuterLoop->isHeader(Succ)) 551 return; 552 auto L = Lookup.find(Succ.Index); 553 if (L == Lookup.end()) 554 return; 555 IrrNode &SuccIrr = *L->second; 556 Irr.Edges.push_back(&SuccIrr); 557 SuccIrr.Edges.push_front(&Irr); 558 ++SuccIrr.NumIn; 559 } 560 561 namespace llvm { 562 template <> struct GraphTraits<IrreducibleGraph> { 563 typedef bfi_detail::IrreducibleGraph GraphT; 564 565 typedef const GraphT::IrrNode NodeType; 566 typedef GraphT::IrrNode::iterator ChildIteratorType; 567 568 static const NodeType *getEntryNode(const GraphT &G) { 569 return G.StartIrr; 570 } 571 static ChildIteratorType child_begin(NodeType *N) { return N->succ_begin(); } 572 static ChildIteratorType child_end(NodeType *N) { return N->succ_end(); } 573 }; 574 } 575 576 /// \brief Find extra irreducible headers. 577 /// 578 /// Find entry blocks and other blocks with backedges, which exist when \c G 579 /// contains irreducible sub-SCCs. 580 static void findIrreducibleHeaders( 581 const BlockFrequencyInfoImplBase &BFI, 582 const IrreducibleGraph &G, 583 const std::vector<const IrreducibleGraph::IrrNode *> &SCC, 584 LoopData::NodeList &Headers, LoopData::NodeList &Others) { 585 // Map from nodes in the SCC to whether it's an entry block. 586 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC; 587 588 // InSCC also acts the set of nodes in the graph. Seed it. 589 for (const auto *I : SCC) 590 InSCC[I] = false; 591 592 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { 593 auto &Irr = *I->first; 594 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { 595 if (InSCC.count(P)) 596 continue; 597 598 // This is an entry block. 599 I->second = true; 600 Headers.push_back(Irr.Node); 601 DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) << "\n"); 602 break; 603 } 604 } 605 assert(Headers.size() >= 2 && "Should be irreducible"); 606 if (Headers.size() == InSCC.size()) { 607 // Every block is a header. 608 std::sort(Headers.begin(), Headers.end()); 609 return; 610 } 611 612 // Look for extra headers from irreducible sub-SCCs. 613 for (const auto &I : InSCC) { 614 // Entry blocks are already headers. 615 if (I.second) 616 continue; 617 618 auto &Irr = *I.first; 619 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { 620 // Skip forward edges. 621 if (P->Node < Irr.Node) 622 continue; 623 624 // Skip predecessors from entry blocks. These can have inverted 625 // ordering. 626 if (InSCC.lookup(P)) 627 continue; 628 629 // Store the extra header. 630 Headers.push_back(Irr.Node); 631 DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) << "\n"); 632 break; 633 } 634 if (Headers.back() == Irr.Node) 635 // Added this as a header. 636 continue; 637 638 // This is not a header. 639 Others.push_back(Irr.Node); 640 DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n"); 641 } 642 std::sort(Headers.begin(), Headers.end()); 643 std::sort(Others.begin(), Others.end()); 644 } 645 646 static void createIrreducibleLoop( 647 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, 648 LoopData *OuterLoop, std::list<LoopData>::iterator Insert, 649 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) { 650 // Translate the SCC into RPO. 651 DEBUG(dbgs() << " - found-scc\n"); 652 653 LoopData::NodeList Headers; 654 LoopData::NodeList Others; 655 findIrreducibleHeaders(BFI, G, SCC, Headers, Others); 656 657 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(), 658 Headers.end(), Others.begin(), Others.end()); 659 660 // Update loop hierarchy. 661 for (const auto &N : Loop->Nodes) 662 if (BFI.Working[N.Index].isLoopHeader()) 663 BFI.Working[N.Index].Loop->Parent = &*Loop; 664 else 665 BFI.Working[N.Index].Loop = &*Loop; 666 } 667 668 iterator_range<std::list<LoopData>::iterator> 669 BlockFrequencyInfoImplBase::analyzeIrreducible( 670 const IrreducibleGraph &G, LoopData *OuterLoop, 671 std::list<LoopData>::iterator Insert) { 672 assert((OuterLoop == nullptr) == (Insert == Loops.begin())); 673 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end(); 674 675 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { 676 if (I->size() < 2) 677 continue; 678 679 // Translate the SCC into RPO. 680 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I); 681 } 682 683 if (OuterLoop) 684 return make_range(std::next(Prev), Insert); 685 return make_range(Loops.begin(), Insert); 686 } 687 688 void 689 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { 690 OuterLoop.Exits.clear(); 691 OuterLoop.BackedgeMass = BlockMass::getEmpty(); 692 auto O = OuterLoop.Nodes.begin() + 1; 693 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) 694 if (!Working[I->Index].isPackaged()) 695 *O++ = *I; 696 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end()); 697 } 698