1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the primary stateless implementation of the 10 // Alias Analysis interface that implements identities (two different 11 // globals cannot alias, etc), but does no stateful analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/BasicAliasAnalysis.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/PhiValues.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GetElementPtrTypeIterator.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalVariable.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/KnownBits.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <utility> 61 62 #define DEBUG_TYPE "basicaa" 63 64 using namespace llvm; 65 66 /// Enable analysis of recursive PHI nodes. 67 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, 68 cl::init(true)); 69 70 /// SearchLimitReached / SearchTimes shows how often the limit of 71 /// to decompose GEPs is reached. It will affect the precision 72 /// of basic alias analysis. 73 STATISTIC(SearchLimitReached, "Number of times the limit to " 74 "decompose GEPs is reached"); 75 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 76 77 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 78 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 79 /// careful with value equivalence. We use reachability to make sure a value 80 /// cannot be involved in a cycle. 81 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 82 83 // The max limit of the search depth in DecomposeGEPExpression() and 84 // getUnderlyingObject(). 85 static const unsigned MaxLookupSearchDepth = 6; 86 87 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, 88 FunctionAnalysisManager::Invalidator &Inv) { 89 // We don't care if this analysis itself is preserved, it has no state. But 90 // we need to check that the analyses it depends on have been. Note that we 91 // may be created without handles to some analyses and in that case don't 92 // depend on them. 93 if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || 94 (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) || 95 (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA))) 96 return true; 97 98 // Otherwise this analysis result remains valid. 99 return false; 100 } 101 102 //===----------------------------------------------------------------------===// 103 // Useful predicates 104 //===----------------------------------------------------------------------===// 105 106 /// Returns true if the pointer is one which would have been considered an 107 /// escape by isNonEscapingLocalObject. 108 static bool isEscapeSource(const Value *V) { 109 if (isa<CallBase>(V)) 110 return true; 111 112 // The load case works because isNonEscapingLocalObject considers all 113 // stores to be escapes (it passes true for the StoreCaptures argument 114 // to PointerMayBeCaptured). 115 if (isa<LoadInst>(V)) 116 return true; 117 118 // The inttoptr case works because isNonEscapingLocalObject considers all 119 // means of converting or equating a pointer to an int (ptrtoint, ptr store 120 // which could be followed by an integer load, ptr<->int compare) as 121 // escaping, and objects located at well-known addresses via platform-specific 122 // means cannot be considered non-escaping local objects. 123 if (isa<IntToPtrInst>(V)) 124 return true; 125 126 return false; 127 } 128 129 /// Returns the size of the object specified by V or UnknownSize if unknown. 130 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 131 const TargetLibraryInfo &TLI, 132 bool NullIsValidLoc, 133 bool RoundToAlign = false) { 134 uint64_t Size; 135 ObjectSizeOpts Opts; 136 Opts.RoundToAlign = RoundToAlign; 137 Opts.NullIsUnknownSize = NullIsValidLoc; 138 if (getObjectSize(V, Size, DL, &TLI, Opts)) 139 return Size; 140 return MemoryLocation::UnknownSize; 141 } 142 143 /// Returns true if we can prove that the object specified by V is smaller than 144 /// Size. 145 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 146 const DataLayout &DL, 147 const TargetLibraryInfo &TLI, 148 bool NullIsValidLoc) { 149 // Note that the meanings of the "object" are slightly different in the 150 // following contexts: 151 // c1: llvm::getObjectSize() 152 // c2: llvm.objectsize() intrinsic 153 // c3: isObjectSmallerThan() 154 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 155 // refers to the "entire object". 156 // 157 // Consider this example: 158 // char *p = (char*)malloc(100) 159 // char *q = p+80; 160 // 161 // In the context of c1 and c2, the "object" pointed by q refers to the 162 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 163 // 164 // However, in the context of c3, the "object" refers to the chunk of memory 165 // being allocated. So, the "object" has 100 bytes, and q points to the middle 166 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 167 // parameter, before the llvm::getObjectSize() is called to get the size of 168 // entire object, we should: 169 // - either rewind the pointer q to the base-address of the object in 170 // question (in this case rewind to p), or 171 // - just give up. It is up to caller to make sure the pointer is pointing 172 // to the base address the object. 173 // 174 // We go for 2nd option for simplicity. 175 if (!isIdentifiedObject(V)) 176 return false; 177 178 // This function needs to use the aligned object size because we allow 179 // reads a bit past the end given sufficient alignment. 180 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, 181 /*RoundToAlign*/ true); 182 183 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 184 } 185 186 /// Return the minimal extent from \p V to the end of the underlying object, 187 /// assuming the result is used in an aliasing query. E.g., we do use the query 188 /// location size and the fact that null pointers cannot alias here. 189 static uint64_t getMinimalExtentFrom(const Value &V, 190 const LocationSize &LocSize, 191 const DataLayout &DL, 192 bool NullIsValidLoc) { 193 // If we have dereferenceability information we know a lower bound for the 194 // extent as accesses for a lower offset would be valid. We need to exclude 195 // the "or null" part if null is a valid pointer. We can ignore frees, as an 196 // access after free would be undefined behavior. 197 bool CanBeNull, CanBeFreed; 198 uint64_t DerefBytes = 199 V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 200 DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; 201 // If queried with a precise location size, we assume that location size to be 202 // accessed, thus valid. 203 if (LocSize.isPrecise()) 204 DerefBytes = std::max(DerefBytes, LocSize.getValue()); 205 return DerefBytes; 206 } 207 208 /// Returns true if we can prove that the object specified by V has size Size. 209 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 210 const TargetLibraryInfo &TLI, bool NullIsValidLoc) { 211 uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); 212 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 213 } 214 215 //===----------------------------------------------------------------------===// 216 // CaptureInfo implementations 217 //===----------------------------------------------------------------------===// 218 219 CaptureInfo::~CaptureInfo() = default; 220 221 bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object, 222 const Instruction *I) { 223 return isNonEscapingLocalObject(Object, &IsCapturedCache); 224 } 225 226 bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object, 227 const Instruction *I) { 228 if (!isIdentifiedFunctionLocal(Object)) 229 return false; 230 231 auto Iter = EarliestEscapes.insert({Object, nullptr}); 232 if (Iter.second) { 233 Instruction *EarliestCapture = FindEarliestCapture( 234 Object, *const_cast<Function *>(I->getFunction()), 235 /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT, EphValues); 236 if (EarliestCapture) { 237 auto Ins = Inst2Obj.insert({EarliestCapture, {}}); 238 Ins.first->second.push_back(Object); 239 } 240 Iter.first->second = EarliestCapture; 241 } 242 243 // No capturing instruction. 244 if (!Iter.first->second) 245 return true; 246 247 return I != Iter.first->second && 248 !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI); 249 } 250 251 void EarliestEscapeInfo::removeInstruction(Instruction *I) { 252 auto Iter = Inst2Obj.find(I); 253 if (Iter != Inst2Obj.end()) { 254 for (const Value *Obj : Iter->second) 255 EarliestEscapes.erase(Obj); 256 Inst2Obj.erase(I); 257 } 258 } 259 260 //===----------------------------------------------------------------------===// 261 // GetElementPtr Instruction Decomposition and Analysis 262 //===----------------------------------------------------------------------===// 263 264 namespace { 265 /// Represents zext(sext(trunc(V))). 266 struct CastedValue { 267 const Value *V; 268 unsigned ZExtBits = 0; 269 unsigned SExtBits = 0; 270 unsigned TruncBits = 0; 271 272 explicit CastedValue(const Value *V) : V(V) {} 273 explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, 274 unsigned TruncBits) 275 : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {} 276 277 unsigned getBitWidth() const { 278 return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + 279 SExtBits; 280 } 281 282 CastedValue withValue(const Value *NewV) const { 283 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits); 284 } 285 286 /// Replace V with zext(NewV) 287 CastedValue withZExtOfValue(const Value *NewV) const { 288 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 289 NewV->getType()->getPrimitiveSizeInBits(); 290 if (ExtendBy <= TruncBits) 291 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); 292 293 // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) 294 ExtendBy -= TruncBits; 295 return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0); 296 } 297 298 /// Replace V with sext(NewV) 299 CastedValue withSExtOfValue(const Value *NewV) const { 300 unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - 301 NewV->getType()->getPrimitiveSizeInBits(); 302 if (ExtendBy <= TruncBits) 303 return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); 304 305 // zext(sext(sext(NewV))) 306 ExtendBy -= TruncBits; 307 return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0); 308 } 309 310 APInt evaluateWith(APInt N) const { 311 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 312 "Incompatible bit width"); 313 if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); 314 if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); 315 if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); 316 return N; 317 } 318 319 ConstantRange evaluateWith(ConstantRange N) const { 320 assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && 321 "Incompatible bit width"); 322 if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); 323 if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); 324 if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); 325 return N; 326 } 327 328 bool canDistributeOver(bool NUW, bool NSW) const { 329 // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) 330 // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) 331 // trunc(x op y) == trunc(x) op trunc(y) 332 return (!ZExtBits || NUW) && (!SExtBits || NSW); 333 } 334 335 bool hasSameCastsAs(const CastedValue &Other) const { 336 return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && 337 TruncBits == Other.TruncBits; 338 } 339 }; 340 341 /// Represents zext(sext(trunc(V))) * Scale + Offset. 342 struct LinearExpression { 343 CastedValue Val; 344 APInt Scale; 345 APInt Offset; 346 347 /// True if all operations in this expression are NSW. 348 bool IsNSW; 349 350 LinearExpression(const CastedValue &Val, const APInt &Scale, 351 const APInt &Offset, bool IsNSW) 352 : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} 353 354 LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { 355 unsigned BitWidth = Val.getBitWidth(); 356 Scale = APInt(BitWidth, 1); 357 Offset = APInt(BitWidth, 0); 358 } 359 360 LinearExpression mul(const APInt &Other, bool MulIsNSW) const { 361 // The check for zero offset is necessary, because generally 362 // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). 363 bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); 364 return LinearExpression(Val, Scale * Other, Offset * Other, NSW); 365 } 366 }; 367 } 368 369 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 370 /// B are constant integers. 371 static LinearExpression GetLinearExpression( 372 const CastedValue &Val, const DataLayout &DL, unsigned Depth, 373 AssumptionCache *AC, DominatorTree *DT) { 374 // Limit our recursion depth. 375 if (Depth == 6) 376 return Val; 377 378 if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) 379 return LinearExpression(Val, APInt(Val.getBitWidth(), 0), 380 Val.evaluateWith(Const->getValue()), true); 381 382 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { 383 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 384 APInt RHS = Val.evaluateWith(RHSC->getValue()); 385 // The only non-OBO case we deal with is or, and only limited to the 386 // case where it is both nuw and nsw. 387 bool NUW = true, NSW = true; 388 if (isa<OverflowingBinaryOperator>(BOp)) { 389 NUW &= BOp->hasNoUnsignedWrap(); 390 NSW &= BOp->hasNoSignedWrap(); 391 } 392 if (!Val.canDistributeOver(NUW, NSW)) 393 return Val; 394 395 // While we can distribute over trunc, we cannot preserve nowrap flags 396 // in that case. 397 if (Val.TruncBits) 398 NUW = NSW = false; 399 400 LinearExpression E(Val); 401 switch (BOp->getOpcode()) { 402 default: 403 // We don't understand this instruction, so we can't decompose it any 404 // further. 405 return Val; 406 case Instruction::Or: 407 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 408 // analyze it. 409 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 410 BOp, DT)) 411 return Val; 412 413 LLVM_FALLTHROUGH; 414 case Instruction::Add: { 415 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 416 Depth + 1, AC, DT); 417 E.Offset += RHS; 418 E.IsNSW &= NSW; 419 break; 420 } 421 case Instruction::Sub: { 422 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 423 Depth + 1, AC, DT); 424 E.Offset -= RHS; 425 E.IsNSW &= NSW; 426 break; 427 } 428 case Instruction::Mul: 429 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 430 Depth + 1, AC, DT) 431 .mul(RHS, NSW); 432 break; 433 case Instruction::Shl: 434 // We're trying to linearize an expression of the kind: 435 // shl i8 -128, 36 436 // where the shift count exceeds the bitwidth of the type. 437 // We can't decompose this further (the expression would return 438 // a poison value). 439 if (RHS.getLimitedValue() > Val.getBitWidth()) 440 return Val; 441 442 E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, 443 Depth + 1, AC, DT); 444 E.Offset <<= RHS.getLimitedValue(); 445 E.Scale <<= RHS.getLimitedValue(); 446 E.IsNSW &= NSW; 447 break; 448 } 449 return E; 450 } 451 } 452 453 if (isa<ZExtInst>(Val.V)) 454 return GetLinearExpression( 455 Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 456 DL, Depth + 1, AC, DT); 457 458 if (isa<SExtInst>(Val.V)) 459 return GetLinearExpression( 460 Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), 461 DL, Depth + 1, AC, DT); 462 463 return Val; 464 } 465 466 /// To ensure a pointer offset fits in an integer of size IndexSize 467 /// (in bits) when that size is smaller than the maximum index size. This is 468 /// an issue, for example, in particular for 32b pointers with negative indices 469 /// that rely on two's complement wrap-arounds for precise alias information 470 /// where the maximum index size is 64b. 471 static APInt adjustToIndexSize(const APInt &Offset, unsigned IndexSize) { 472 assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!"); 473 unsigned ShiftBits = Offset.getBitWidth() - IndexSize; 474 return (Offset << ShiftBits).ashr(ShiftBits); 475 } 476 477 namespace { 478 // A linear transformation of a Value; this class represents 479 // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. 480 struct VariableGEPIndex { 481 CastedValue Val; 482 APInt Scale; 483 484 // Context instruction to use when querying information about this index. 485 const Instruction *CxtI; 486 487 /// True if all operations in this expression are NSW. 488 bool IsNSW; 489 490 void dump() const { 491 print(dbgs()); 492 dbgs() << "\n"; 493 } 494 void print(raw_ostream &OS) const { 495 OS << "(V=" << Val.V->getName() 496 << ", zextbits=" << Val.ZExtBits 497 << ", sextbits=" << Val.SExtBits 498 << ", truncbits=" << Val.TruncBits 499 << ", scale=" << Scale << ")"; 500 } 501 }; 502 } 503 504 // Represents the internal structure of a GEP, decomposed into a base pointer, 505 // constant offsets, and variable scaled indices. 506 struct BasicAAResult::DecomposedGEP { 507 // Base pointer of the GEP 508 const Value *Base; 509 // Total constant offset from base. 510 APInt Offset; 511 // Scaled variable (non-constant) indices. 512 SmallVector<VariableGEPIndex, 4> VarIndices; 513 // Are all operations inbounds GEPs or non-indexing operations? 514 // (None iff expression doesn't involve any geps) 515 Optional<bool> InBounds; 516 517 void dump() const { 518 print(dbgs()); 519 dbgs() << "\n"; 520 } 521 void print(raw_ostream &OS) const { 522 OS << "(DecomposedGEP Base=" << Base->getName() 523 << ", Offset=" << Offset 524 << ", VarIndices=["; 525 for (size_t i = 0; i < VarIndices.size(); i++) { 526 if (i != 0) 527 OS << ", "; 528 VarIndices[i].print(OS); 529 } 530 OS << "])"; 531 } 532 }; 533 534 535 /// If V is a symbolic pointer expression, decompose it into a base pointer 536 /// with a constant offset and a number of scaled symbolic offsets. 537 /// 538 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 539 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 540 /// specified amount, but which may have other unrepresented high bits. As 541 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 542 BasicAAResult::DecomposedGEP 543 BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, 544 AssumptionCache *AC, DominatorTree *DT) { 545 // Limit recursion depth to limit compile time in crazy cases. 546 unsigned MaxLookup = MaxLookupSearchDepth; 547 SearchTimes++; 548 const Instruction *CxtI = dyn_cast<Instruction>(V); 549 550 unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); 551 DecomposedGEP Decomposed; 552 Decomposed.Offset = APInt(MaxIndexSize, 0); 553 do { 554 // See if this is a bitcast or GEP. 555 const Operator *Op = dyn_cast<Operator>(V); 556 if (!Op) { 557 // The only non-operator case we can handle are GlobalAliases. 558 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 559 if (!GA->isInterposable()) { 560 V = GA->getAliasee(); 561 continue; 562 } 563 } 564 Decomposed.Base = V; 565 return Decomposed; 566 } 567 568 if (Op->getOpcode() == Instruction::BitCast || 569 Op->getOpcode() == Instruction::AddrSpaceCast) { 570 V = Op->getOperand(0); 571 continue; 572 } 573 574 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 575 if (!GEPOp) { 576 if (const auto *PHI = dyn_cast<PHINode>(V)) { 577 // Look through single-arg phi nodes created by LCSSA. 578 if (PHI->getNumIncomingValues() == 1) { 579 V = PHI->getIncomingValue(0); 580 continue; 581 } 582 } else if (const auto *Call = dyn_cast<CallBase>(V)) { 583 // CaptureTracking can know about special capturing properties of some 584 // intrinsics like launder.invariant.group, that can't be expressed with 585 // the attributes, but have properties like returning aliasing pointer. 586 // Because some analysis may assume that nocaptured pointer is not 587 // returned from some special intrinsic (because function would have to 588 // be marked with returns attribute), it is crucial to use this function 589 // because it should be in sync with CaptureTracking. Not using it may 590 // cause weird miscompilations where 2 aliasing pointers are assumed to 591 // noalias. 592 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 593 V = RP; 594 continue; 595 } 596 } 597 598 Decomposed.Base = V; 599 return Decomposed; 600 } 601 602 // Track whether we've seen at least one in bounds gep, and if so, whether 603 // all geps parsed were in bounds. 604 if (Decomposed.InBounds == None) 605 Decomposed.InBounds = GEPOp->isInBounds(); 606 else if (!GEPOp->isInBounds()) 607 Decomposed.InBounds = false; 608 609 assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized"); 610 611 // Don't attempt to analyze GEPs if index scale is not a compile-time 612 // constant. 613 if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) { 614 Decomposed.Base = V; 615 return Decomposed; 616 } 617 618 unsigned AS = GEPOp->getPointerAddressSpace(); 619 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 620 gep_type_iterator GTI = gep_type_begin(GEPOp); 621 unsigned IndexSize = DL.getIndexSizeInBits(AS); 622 // Assume all GEP operands are constants until proven otherwise. 623 bool GepHasConstantOffset = true; 624 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 625 I != E; ++I, ++GTI) { 626 const Value *Index = *I; 627 // Compute the (potentially symbolic) offset in bytes for this index. 628 if (StructType *STy = GTI.getStructTypeOrNull()) { 629 // For a struct, add the member offset. 630 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 631 if (FieldNo == 0) 632 continue; 633 634 Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); 635 continue; 636 } 637 638 // For an array/pointer, add the element offset, explicitly scaled. 639 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 640 if (CIdx->isZero()) 641 continue; 642 Decomposed.Offset += 643 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() * 644 CIdx->getValue().sextOrTrunc(MaxIndexSize); 645 continue; 646 } 647 648 GepHasConstantOffset = false; 649 650 // If the integer type is smaller than the index size, it is implicitly 651 // sign extended or truncated to index size. 652 unsigned Width = Index->getType()->getIntegerBitWidth(); 653 unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; 654 unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; 655 LinearExpression LE = GetLinearExpression( 656 CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT); 657 658 // Scale by the type size. 659 unsigned TypeSize = 660 DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize(); 661 LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds()); 662 Decomposed.Offset += LE.Offset.sext(MaxIndexSize); 663 APInt Scale = LE.Scale.sext(MaxIndexSize); 664 665 // If we already had an occurrence of this index variable, merge this 666 // scale into it. For example, we want to handle: 667 // A[x][x] -> x*16 + x*4 -> x*20 668 // This also ensures that 'x' only appears in the index list once. 669 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 670 if (Decomposed.VarIndices[i].Val.V == LE.Val.V && 671 Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { 672 Scale += Decomposed.VarIndices[i].Scale; 673 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 674 break; 675 } 676 } 677 678 // Make sure that we have a scale that makes sense for this target's 679 // index size. 680 Scale = adjustToIndexSize(Scale, IndexSize); 681 682 if (!!Scale) { 683 VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW}; 684 Decomposed.VarIndices.push_back(Entry); 685 } 686 } 687 688 // Take care of wrap-arounds 689 if (GepHasConstantOffset) 690 Decomposed.Offset = adjustToIndexSize(Decomposed.Offset, IndexSize); 691 692 // Analyze the base pointer next. 693 V = GEPOp->getOperand(0); 694 } while (--MaxLookup); 695 696 // If the chain of expressions is too deep, just return early. 697 Decomposed.Base = V; 698 SearchLimitReached++; 699 return Decomposed; 700 } 701 702 /// Returns whether the given pointer value points to memory that is local to 703 /// the function, with global constants being considered local to all 704 /// functions. 705 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 706 AAQueryInfo &AAQI, bool OrLocal) { 707 assert(Visited.empty() && "Visited must be cleared after use!"); 708 709 unsigned MaxLookup = 8; 710 SmallVector<const Value *, 16> Worklist; 711 Worklist.push_back(Loc.Ptr); 712 do { 713 const Value *V = getUnderlyingObject(Worklist.pop_back_val()); 714 if (!Visited.insert(V).second) { 715 Visited.clear(); 716 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 717 } 718 719 // An alloca instruction defines local memory. 720 if (OrLocal && isa<AllocaInst>(V)) 721 continue; 722 723 // A global constant counts as local memory for our purposes. 724 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 725 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 726 // global to be marked constant in some modules and non-constant in 727 // others. GV may even be a declaration, not a definition. 728 if (!GV->isConstant()) { 729 Visited.clear(); 730 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 731 } 732 continue; 733 } 734 735 // If both select values point to local memory, then so does the select. 736 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 737 Worklist.push_back(SI->getTrueValue()); 738 Worklist.push_back(SI->getFalseValue()); 739 continue; 740 } 741 742 // If all values incoming to a phi node point to local memory, then so does 743 // the phi. 744 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 745 // Don't bother inspecting phi nodes with many operands. 746 if (PN->getNumIncomingValues() > MaxLookup) { 747 Visited.clear(); 748 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 749 } 750 append_range(Worklist, PN->incoming_values()); 751 continue; 752 } 753 754 // Otherwise be conservative. 755 Visited.clear(); 756 return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal); 757 } while (!Worklist.empty() && --MaxLookup); 758 759 Visited.clear(); 760 return Worklist.empty(); 761 } 762 763 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { 764 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); 765 return II && II->getIntrinsicID() == IID; 766 } 767 768 /// Returns the behavior when calling the given call site. 769 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) { 770 if (Call->doesNotAccessMemory()) 771 // Can't do better than this. 772 return FMRB_DoesNotAccessMemory; 773 774 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 775 776 // If the callsite knows it only reads memory, don't return worse 777 // than that. 778 if (Call->onlyReadsMemory()) 779 Min = FMRB_OnlyReadsMemory; 780 else if (Call->onlyWritesMemory()) 781 Min = FMRB_OnlyWritesMemory; 782 783 if (Call->onlyAccessesArgMemory()) 784 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 785 else if (Call->onlyAccessesInaccessibleMemory()) 786 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 787 else if (Call->onlyAccessesInaccessibleMemOrArgMem()) 788 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 789 790 // If the call has operand bundles then aliasing attributes from the function 791 // it calls do not directly apply to the call. This can be made more precise 792 // in the future. 793 if (!Call->hasOperandBundles()) 794 if (const Function *F = Call->getCalledFunction()) 795 Min = 796 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 797 798 return Min; 799 } 800 801 /// Returns the behavior when calling the given function. For use when the call 802 /// site is not known. 803 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 804 // If the function declares it doesn't access memory, we can't do better. 805 if (F->doesNotAccessMemory()) 806 return FMRB_DoesNotAccessMemory; 807 808 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 809 810 // If the function declares it only reads memory, go with that. 811 if (F->onlyReadsMemory()) 812 Min = FMRB_OnlyReadsMemory; 813 else if (F->onlyWritesMemory()) 814 Min = FMRB_OnlyWritesMemory; 815 816 if (F->onlyAccessesArgMemory()) 817 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 818 else if (F->onlyAccessesInaccessibleMemory()) 819 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 820 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 821 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 822 823 return Min; 824 } 825 826 /// Returns true if this is a writeonly (i.e Mod only) parameter. 827 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx, 828 const TargetLibraryInfo &TLI) { 829 if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) 830 return true; 831 832 // We can bound the aliasing properties of memset_pattern16 just as we can 833 // for memcpy/memset. This is particularly important because the 834 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 835 // whenever possible. 836 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 837 // attributes. 838 LibFunc F; 839 if (Call->getCalledFunction() && 840 TLI.getLibFunc(*Call->getCalledFunction(), F) && 841 F == LibFunc_memset_pattern16 && TLI.has(F)) 842 if (ArgIdx == 0) 843 return true; 844 845 // TODO: memset_pattern4, memset_pattern8 846 // TODO: _chk variants 847 // TODO: strcmp, strcpy 848 849 return false; 850 } 851 852 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, 853 unsigned ArgIdx) { 854 // Checking for known builtin intrinsics and target library functions. 855 if (isWriteOnlyParam(Call, ArgIdx, TLI)) 856 return ModRefInfo::Mod; 857 858 if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) 859 return ModRefInfo::Ref; 860 861 if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) 862 return ModRefInfo::NoModRef; 863 864 return AAResultBase::getArgModRefInfo(Call, ArgIdx); 865 } 866 867 #ifndef NDEBUG 868 static const Function *getParent(const Value *V) { 869 if (const Instruction *inst = dyn_cast<Instruction>(V)) { 870 if (!inst->getParent()) 871 return nullptr; 872 return inst->getParent()->getParent(); 873 } 874 875 if (const Argument *arg = dyn_cast<Argument>(V)) 876 return arg->getParent(); 877 878 return nullptr; 879 } 880 881 static bool notDifferentParent(const Value *O1, const Value *O2) { 882 883 const Function *F1 = getParent(O1); 884 const Function *F2 = getParent(O2); 885 886 return !F1 || !F2 || F1 == F2; 887 } 888 #endif 889 890 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 891 const MemoryLocation &LocB, 892 AAQueryInfo &AAQI) { 893 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 894 "BasicAliasAnalysis doesn't support interprocedural queries."); 895 return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI); 896 } 897 898 /// Checks to see if the specified callsite can clobber the specified memory 899 /// object. 900 /// 901 /// Since we only look at local properties of this function, we really can't 902 /// say much about this query. We do, however, use simple "address taken" 903 /// analysis on local objects. 904 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, 905 const MemoryLocation &Loc, 906 AAQueryInfo &AAQI) { 907 assert(notDifferentParent(Call, Loc.Ptr) && 908 "AliasAnalysis query involving multiple functions!"); 909 910 const Value *Object = getUnderlyingObject(Loc.Ptr); 911 912 // Calls marked 'tail' cannot read or write allocas from the current frame 913 // because the current frame might be destroyed by the time they run. However, 914 // a tail call may use an alloca with byval. Calling with byval copies the 915 // contents of the alloca into argument registers or stack slots, so there is 916 // no lifetime issue. 917 if (isa<AllocaInst>(Object)) 918 if (const CallInst *CI = dyn_cast<CallInst>(Call)) 919 if (CI->isTailCall() && 920 !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) 921 return ModRefInfo::NoModRef; 922 923 // Stack restore is able to modify unescaped dynamic allocas. Assume it may 924 // modify them even though the alloca is not escaped. 925 if (auto *AI = dyn_cast<AllocaInst>(Object)) 926 if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) 927 return ModRefInfo::Mod; 928 929 // If the pointer is to a locally allocated object that does not escape, 930 // then the call can not mod/ref the pointer unless the call takes the pointer 931 // as an argument, and itself doesn't capture it. 932 if (!isa<Constant>(Object) && Call != Object && 933 AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) { 934 935 // Optimistically assume that call doesn't touch Object and check this 936 // assumption in the following loop. 937 ModRefInfo Result = ModRefInfo::NoModRef; 938 bool IsMustAlias = true; 939 940 unsigned OperandNo = 0; 941 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 942 CI != CE; ++CI, ++OperandNo) { 943 // Only look at the no-capture or byval pointer arguments. If this 944 // pointer were passed to arguments that were neither of these, then it 945 // couldn't be no-capture. 946 if (!(*CI)->getType()->isPointerTy() || 947 (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() && 948 !Call->isByValArgument(OperandNo))) 949 continue; 950 951 // Call doesn't access memory through this operand, so we don't care 952 // if it aliases with Object. 953 if (Call->doesNotAccessMemory(OperandNo)) 954 continue; 955 956 // If this is a no-capture pointer argument, see if we can tell that it 957 // is impossible to alias the pointer we're checking. 958 AliasResult AR = getBestAAResults().alias( 959 MemoryLocation::getBeforeOrAfter(*CI), 960 MemoryLocation::getBeforeOrAfter(Object), AAQI); 961 if (AR != AliasResult::MustAlias) 962 IsMustAlias = false; 963 // Operand doesn't alias 'Object', continue looking for other aliases 964 if (AR == AliasResult::NoAlias) 965 continue; 966 // Operand aliases 'Object', but call doesn't modify it. Strengthen 967 // initial assumption and keep looking in case if there are more aliases. 968 if (Call->onlyReadsMemory(OperandNo)) { 969 Result = setRef(Result); 970 continue; 971 } 972 // Operand aliases 'Object' but call only writes into it. 973 if (Call->onlyWritesMemory(OperandNo)) { 974 Result = setMod(Result); 975 continue; 976 } 977 // This operand aliases 'Object' and call reads and writes into it. 978 // Setting ModRef will not yield an early return below, MustAlias is not 979 // used further. 980 Result = ModRefInfo::ModRef; 981 break; 982 } 983 984 // No operand aliases, reset Must bit. Add below if at least one aliases 985 // and all aliases found are MustAlias. 986 if (isNoModRef(Result)) 987 IsMustAlias = false; 988 989 // Early return if we improved mod ref information 990 if (!isModAndRefSet(Result)) { 991 if (isNoModRef(Result)) 992 return ModRefInfo::NoModRef; 993 return IsMustAlias ? setMust(Result) : clearMust(Result); 994 } 995 } 996 997 // If the call is malloc/calloc like, we can assume that it doesn't 998 // modify any IR visible value. This is only valid because we assume these 999 // routines do not read values visible in the IR. TODO: Consider special 1000 // casing realloc and strdup routines which access only their arguments as 1001 // well. Or alternatively, replace all of this with inaccessiblememonly once 1002 // that's implemented fully. 1003 if (isMallocOrCallocLikeFn(Call, &TLI)) { 1004 // Be conservative if the accessed pointer may alias the allocation - 1005 // fallback to the generic handling below. 1006 if (getBestAAResults().alias(MemoryLocation::getBeforeOrAfter(Call), Loc, 1007 AAQI) == AliasResult::NoAlias) 1008 return ModRefInfo::NoModRef; 1009 } 1010 1011 // Ideally, there should be no need to special case for memcpy/memove 1012 // intrinsics here since general machinery (based on memory attributes) should 1013 // already handle it just fine. Unfortunately, it doesn't due to deficiency in 1014 // operand bundles support. At the moment it's not clear if complexity behind 1015 // enhancing general mechanism worths it. 1016 // TODO: Consider improving operand bundles support in general mechanism. 1017 if (auto *Inst = dyn_cast<AnyMemTransferInst>(Call)) { 1018 AliasResult SrcAA = 1019 getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI); 1020 AliasResult DestAA = 1021 getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI); 1022 // It's also possible for Loc to alias both src and dest, or neither. 1023 ModRefInfo rv = ModRefInfo::NoModRef; 1024 if (SrcAA != AliasResult::NoAlias || Call->hasReadingOperandBundles()) 1025 rv = setRef(rv); 1026 if (DestAA != AliasResult::NoAlias || Call->hasClobberingOperandBundles()) 1027 rv = setMod(rv); 1028 return rv; 1029 } 1030 1031 // Guard intrinsics are marked as arbitrarily writing so that proper control 1032 // dependencies are maintained but they never mods any particular memory 1033 // location. 1034 // 1035 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1036 // heap state at the point the guard is issued needs to be consistent in case 1037 // the guard invokes the "deopt" continuation. 1038 if (isIntrinsicCall(Call, Intrinsic::experimental_guard)) 1039 return ModRefInfo::Ref; 1040 // The same applies to deoptimize which is essentially a guard(false). 1041 if (isIntrinsicCall(Call, Intrinsic::experimental_deoptimize)) 1042 return ModRefInfo::Ref; 1043 1044 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 1045 // writing so that proper control dependencies are maintained but they never 1046 // mod any particular memory location visible to the IR. 1047 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 1048 // intrinsic is now modeled as reading memory. This prevents hoisting the 1049 // invariant.start intrinsic over stores. Consider: 1050 // *ptr = 40; 1051 // *ptr = 50; 1052 // invariant_start(ptr) 1053 // int val = *ptr; 1054 // print(val); 1055 // 1056 // This cannot be transformed to: 1057 // 1058 // *ptr = 40; 1059 // invariant_start(ptr) 1060 // *ptr = 50; 1061 // int val = *ptr; 1062 // print(val); 1063 // 1064 // The transformation will cause the second store to be ignored (based on 1065 // rules of invariant.start) and print 40, while the first program always 1066 // prints 50. 1067 if (isIntrinsicCall(Call, Intrinsic::invariant_start)) 1068 return ModRefInfo::Ref; 1069 1070 // The AAResultBase base class has some smarts, lets use them. 1071 return AAResultBase::getModRefInfo(Call, Loc, AAQI); 1072 } 1073 1074 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, 1075 const CallBase *Call2, 1076 AAQueryInfo &AAQI) { 1077 // Guard intrinsics are marked as arbitrarily writing so that proper control 1078 // dependencies are maintained but they never mods any particular memory 1079 // location. 1080 // 1081 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 1082 // heap state at the point the guard is issued needs to be consistent in case 1083 // the guard invokes the "deopt" continuation. 1084 1085 // NB! This function is *not* commutative, so we special case two 1086 // possibilities for guard intrinsics. 1087 1088 if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) 1089 return isModSet(createModRefInfo(getModRefBehavior(Call2))) 1090 ? ModRefInfo::Ref 1091 : ModRefInfo::NoModRef; 1092 1093 if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) 1094 return isModSet(createModRefInfo(getModRefBehavior(Call1))) 1095 ? ModRefInfo::Mod 1096 : ModRefInfo::NoModRef; 1097 1098 // The AAResultBase base class has some smarts, lets use them. 1099 return AAResultBase::getModRefInfo(Call1, Call2, AAQI); 1100 } 1101 1102 /// Return true if we know V to the base address of the corresponding memory 1103 /// object. This implies that any address less than V must be out of bounds 1104 /// for the underlying object. Note that just being isIdentifiedObject() is 1105 /// not enough - For example, a negative offset from a noalias argument or call 1106 /// can be inbounds w.r.t the actual underlying object. 1107 static bool isBaseOfObject(const Value *V) { 1108 // TODO: We can handle other cases here 1109 // 1) For GC languages, arguments to functions are often required to be 1110 // base pointers. 1111 // 2) Result of allocation routines are often base pointers. Leverage TLI. 1112 return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); 1113 } 1114 1115 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1116 /// another pointer. 1117 /// 1118 /// We know that V1 is a GEP, but we don't know anything about V2. 1119 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for 1120 /// V2. 1121 AliasResult BasicAAResult::aliasGEP( 1122 const GEPOperator *GEP1, LocationSize V1Size, 1123 const Value *V2, LocationSize V2Size, 1124 const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { 1125 if (!V1Size.hasValue() && !V2Size.hasValue()) { 1126 // TODO: This limitation exists for compile-time reasons. Relax it if we 1127 // can avoid exponential pathological cases. 1128 if (!isa<GEPOperator>(V2)) 1129 return AliasResult::MayAlias; 1130 1131 // If both accesses have unknown size, we can only check whether the base 1132 // objects don't alias. 1133 AliasResult BaseAlias = getBestAAResults().alias( 1134 MemoryLocation::getBeforeOrAfter(UnderlyingV1), 1135 MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); 1136 return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias 1137 : AliasResult::MayAlias; 1138 } 1139 1140 DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); 1141 DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); 1142 1143 // Bail if we were not able to decompose anything. 1144 if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) 1145 return AliasResult::MayAlias; 1146 1147 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1148 // symbolic difference. 1149 subtractDecomposedGEPs(DecompGEP1, DecompGEP2); 1150 1151 // If an inbounds GEP would have to start from an out of bounds address 1152 // for the two to alias, then we can assume noalias. 1153 if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && 1154 V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && 1155 isBaseOfObject(DecompGEP2.Base)) 1156 return AliasResult::NoAlias; 1157 1158 if (isa<GEPOperator>(V2)) { 1159 // Symmetric case to above. 1160 if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && 1161 V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && 1162 isBaseOfObject(DecompGEP1.Base)) 1163 return AliasResult::NoAlias; 1164 } 1165 1166 // For GEPs with identical offsets, we can preserve the size and AAInfo 1167 // when performing the alias check on the underlying objects. 1168 if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) 1169 return getBestAAResults().alias(MemoryLocation(DecompGEP1.Base, V1Size), 1170 MemoryLocation(DecompGEP2.Base, V2Size), 1171 AAQI); 1172 1173 // Do the base pointers alias? 1174 AliasResult BaseAlias = getBestAAResults().alias( 1175 MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), 1176 MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); 1177 1178 // If we get a No or May, then return it immediately, no amount of analysis 1179 // will improve this situation. 1180 if (BaseAlias != AliasResult::MustAlias) { 1181 assert(BaseAlias == AliasResult::NoAlias || 1182 BaseAlias == AliasResult::MayAlias); 1183 return BaseAlias; 1184 } 1185 1186 // If there is a constant difference between the pointers, but the difference 1187 // is less than the size of the associated memory object, then we know 1188 // that the objects are partially overlapping. If the difference is 1189 // greater, we know they do not overlap. 1190 if (DecompGEP1.VarIndices.empty()) { 1191 APInt &Off = DecompGEP1.Offset; 1192 1193 // Initialize for Off >= 0 (V2 <= GEP1) case. 1194 const Value *LeftPtr = V2; 1195 const Value *RightPtr = GEP1; 1196 LocationSize VLeftSize = V2Size; 1197 LocationSize VRightSize = V1Size; 1198 const bool Swapped = Off.isNegative(); 1199 1200 if (Swapped) { 1201 // Swap if we have the situation where: 1202 // + + 1203 // | BaseOffset | 1204 // ---------------->| 1205 // |-->V1Size |-------> V2Size 1206 // GEP1 V2 1207 std::swap(LeftPtr, RightPtr); 1208 std::swap(VLeftSize, VRightSize); 1209 Off = -Off; 1210 } 1211 1212 if (!VLeftSize.hasValue()) 1213 return AliasResult::MayAlias; 1214 1215 const uint64_t LSize = VLeftSize.getValue(); 1216 if (Off.ult(LSize)) { 1217 // Conservatively drop processing if a phi was visited and/or offset is 1218 // too big. 1219 AliasResult AR = AliasResult::PartialAlias; 1220 if (VRightSize.hasValue() && Off.ule(INT32_MAX) && 1221 (Off + VRightSize.getValue()).ule(LSize)) { 1222 // Memory referenced by right pointer is nested. Save the offset in 1223 // cache. Note that originally offset estimated as GEP1-V2, but 1224 // AliasResult contains the shift that represents GEP1+Offset=V2. 1225 AR.setOffset(-Off.getSExtValue()); 1226 AR.swap(Swapped); 1227 } 1228 return AR; 1229 } 1230 return AliasResult::NoAlias; 1231 } 1232 1233 // We need to know both acess sizes for all the following heuristics. 1234 if (!V1Size.hasValue() || !V2Size.hasValue()) 1235 return AliasResult::MayAlias; 1236 1237 APInt GCD; 1238 ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); 1239 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1240 const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; 1241 const APInt &Scale = Index.Scale; 1242 APInt ScaleForGCD = Scale; 1243 if (!Index.IsNSW) 1244 ScaleForGCD = APInt::getOneBitSet(Scale.getBitWidth(), 1245 Scale.countTrailingZeros()); 1246 1247 if (i == 0) 1248 GCD = ScaleForGCD.abs(); 1249 else 1250 GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); 1251 1252 ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, 1253 true, &AC, Index.CxtI); 1254 KnownBits Known = 1255 computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); 1256 CR = CR.intersectWith( 1257 ConstantRange::fromKnownBits(Known, /* Signed */ true), 1258 ConstantRange::Signed); 1259 CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); 1260 1261 assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && 1262 "Bit widths are normalized to MaxIndexSize"); 1263 if (Index.IsNSW) 1264 OffsetRange = OffsetRange.add(CR.smul_sat(ConstantRange(Scale))); 1265 else 1266 OffsetRange = OffsetRange.add(CR.smul_fast(ConstantRange(Scale))); 1267 } 1268 1269 // We now have accesses at two offsets from the same base: 1270 // 1. (...)*GCD + DecompGEP1.Offset with size V1Size 1271 // 2. 0 with size V2Size 1272 // Using arithmetic modulo GCD, the accesses are at 1273 // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits 1274 // into the range [V2Size..GCD), then we know they cannot overlap. 1275 APInt ModOffset = DecompGEP1.Offset.srem(GCD); 1276 if (ModOffset.isNegative()) 1277 ModOffset += GCD; // We want mod, not rem. 1278 if (ModOffset.uge(V2Size.getValue()) && 1279 (GCD - ModOffset).uge(V1Size.getValue())) 1280 return AliasResult::NoAlias; 1281 1282 // Compute ranges of potentially accessed bytes for both accesses. If the 1283 // interseciton is empty, there can be no overlap. 1284 unsigned BW = OffsetRange.getBitWidth(); 1285 ConstantRange Range1 = OffsetRange.add( 1286 ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); 1287 ConstantRange Range2 = 1288 ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); 1289 if (Range1.intersectWith(Range2).isEmptySet()) 1290 return AliasResult::NoAlias; 1291 1292 // Try to determine the range of values for VarIndex such that 1293 // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. 1294 Optional<APInt> MinAbsVarIndex; 1295 if (DecompGEP1.VarIndices.size() == 1) { 1296 // VarIndex = Scale*V. 1297 const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; 1298 if (Var.Val.TruncBits == 0 && 1299 isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) { 1300 // If V != 0, then abs(VarIndex) > 0. 1301 MinAbsVarIndex = APInt(Var.Scale.getBitWidth(), 1); 1302 1303 // Check if abs(V*Scale) >= abs(Scale) holds in the presence of 1304 // potentially wrapping math. 1305 auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { 1306 if (Var.IsNSW) 1307 return true; 1308 1309 int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); 1310 // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. 1311 // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a 1312 // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. 1313 int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; 1314 if (MaxScaleValueBW <= 0) 1315 return false; 1316 return Var.Scale.ule( 1317 APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth())); 1318 }; 1319 // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the 1320 // presence of potentially wrapping math. 1321 if (MultiplyByScaleNoWrap(Var)) { 1322 // If V != 0 then abs(VarIndex) >= abs(Scale). 1323 MinAbsVarIndex = Var.Scale.abs(); 1324 } 1325 } 1326 } else if (DecompGEP1.VarIndices.size() == 2) { 1327 // VarIndex = Scale*V0 + (-Scale)*V1. 1328 // If V0 != V1 then abs(VarIndex) >= abs(Scale). 1329 // Check that VisitedPhiBBs is empty, to avoid reasoning about 1330 // inequality of values across loop iterations. 1331 const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; 1332 const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; 1333 if (Var0.Scale == -Var1.Scale && Var0.Val.TruncBits == 0 && 1334 Var0.Val.hasSameCastsAs(Var1.Val) && VisitedPhiBBs.empty() && 1335 isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, 1336 DT)) 1337 MinAbsVarIndex = Var0.Scale.abs(); 1338 } 1339 1340 if (MinAbsVarIndex) { 1341 // The constant offset will have added at least +/-MinAbsVarIndex to it. 1342 APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; 1343 APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; 1344 // We know that Offset <= OffsetLo || Offset >= OffsetHi 1345 if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && 1346 OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) 1347 return AliasResult::NoAlias; 1348 } 1349 1350 if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT)) 1351 return AliasResult::NoAlias; 1352 1353 // Statically, we can see that the base objects are the same, but the 1354 // pointers have dynamic offsets which we can't resolve. And none of our 1355 // little tricks above worked. 1356 return AliasResult::MayAlias; 1357 } 1358 1359 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1360 // If the results agree, take it. 1361 if (A == B) 1362 return A; 1363 // A mix of PartialAlias and MustAlias is PartialAlias. 1364 if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || 1365 (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) 1366 return AliasResult::PartialAlias; 1367 // Otherwise, we don't know anything. 1368 return AliasResult::MayAlias; 1369 } 1370 1371 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1372 /// against another. 1373 AliasResult 1374 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, 1375 const Value *V2, LocationSize V2Size, 1376 AAQueryInfo &AAQI) { 1377 // If the values are Selects with the same condition, we can do a more precise 1378 // check: just check for aliases between the values on corresponding arms. 1379 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1380 if (SI->getCondition() == SI2->getCondition()) { 1381 AliasResult Alias = getBestAAResults().alias( 1382 MemoryLocation(SI->getTrueValue(), SISize), 1383 MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); 1384 if (Alias == AliasResult::MayAlias) 1385 return AliasResult::MayAlias; 1386 AliasResult ThisAlias = getBestAAResults().alias( 1387 MemoryLocation(SI->getFalseValue(), SISize), 1388 MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); 1389 return MergeAliasResults(ThisAlias, Alias); 1390 } 1391 1392 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1393 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1394 AliasResult Alias = 1395 getBestAAResults().alias(MemoryLocation(SI->getTrueValue(), SISize), 1396 MemoryLocation(V2, V2Size), AAQI); 1397 if (Alias == AliasResult::MayAlias) 1398 return AliasResult::MayAlias; 1399 1400 AliasResult ThisAlias = 1401 getBestAAResults().alias(MemoryLocation(SI->getFalseValue(), SISize), 1402 MemoryLocation(V2, V2Size), AAQI); 1403 return MergeAliasResults(ThisAlias, Alias); 1404 } 1405 1406 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1407 /// another. 1408 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, 1409 const Value *V2, LocationSize V2Size, 1410 AAQueryInfo &AAQI) { 1411 if (!PN->getNumIncomingValues()) 1412 return AliasResult::NoAlias; 1413 // If the values are PHIs in the same block, we can do a more precise 1414 // as well as efficient check: just check for aliases between the values 1415 // on corresponding edges. 1416 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1417 if (PN2->getParent() == PN->getParent()) { 1418 Optional<AliasResult> Alias; 1419 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1420 AliasResult ThisAlias = getBestAAResults().alias( 1421 MemoryLocation(PN->getIncomingValue(i), PNSize), 1422 MemoryLocation( 1423 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), 1424 AAQI); 1425 if (Alias) 1426 *Alias = MergeAliasResults(*Alias, ThisAlias); 1427 else 1428 Alias = ThisAlias; 1429 if (*Alias == AliasResult::MayAlias) 1430 break; 1431 } 1432 return *Alias; 1433 } 1434 1435 SmallVector<Value *, 4> V1Srcs; 1436 // If a phi operand recurses back to the phi, we can still determine NoAlias 1437 // if we don't alias the underlying objects of the other phi operands, as we 1438 // know that the recursive phi needs to be based on them in some way. 1439 bool isRecursive = false; 1440 auto CheckForRecPhi = [&](Value *PV) { 1441 if (!EnableRecPhiAnalysis) 1442 return false; 1443 if (getUnderlyingObject(PV) == PN) { 1444 isRecursive = true; 1445 return true; 1446 } 1447 return false; 1448 }; 1449 1450 if (PV) { 1451 // If we have PhiValues then use it to get the underlying phi values. 1452 const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN); 1453 // If we have more phi values than the search depth then return MayAlias 1454 // conservatively to avoid compile time explosion. The worst possible case 1455 // is if both sides are PHI nodes. In which case, this is O(m x n) time 1456 // where 'm' and 'n' are the number of PHI sources. 1457 if (PhiValueSet.size() > MaxLookupSearchDepth) 1458 return AliasResult::MayAlias; 1459 // Add the values to V1Srcs 1460 for (Value *PV1 : PhiValueSet) { 1461 if (CheckForRecPhi(PV1)) 1462 continue; 1463 V1Srcs.push_back(PV1); 1464 } 1465 } else { 1466 // If we don't have PhiInfo then just look at the operands of the phi itself 1467 // FIXME: Remove this once we can guarantee that we have PhiInfo always 1468 SmallPtrSet<Value *, 4> UniqueSrc; 1469 Value *OnePhi = nullptr; 1470 for (Value *PV1 : PN->incoming_values()) { 1471 if (isa<PHINode>(PV1)) { 1472 if (OnePhi && OnePhi != PV1) { 1473 // To control potential compile time explosion, we choose to be 1474 // conserviate when we have more than one Phi input. It is important 1475 // that we handle the single phi case as that lets us handle LCSSA 1476 // phi nodes and (combined with the recursive phi handling) simple 1477 // pointer induction variable patterns. 1478 return AliasResult::MayAlias; 1479 } 1480 OnePhi = PV1; 1481 } 1482 1483 if (CheckForRecPhi(PV1)) 1484 continue; 1485 1486 if (UniqueSrc.insert(PV1).second) 1487 V1Srcs.push_back(PV1); 1488 } 1489 1490 if (OnePhi && UniqueSrc.size() > 1) 1491 // Out of an abundance of caution, allow only the trivial lcssa and 1492 // recursive phi cases. 1493 return AliasResult::MayAlias; 1494 } 1495 1496 // If V1Srcs is empty then that means that the phi has no underlying non-phi 1497 // value. This should only be possible in blocks unreachable from the entry 1498 // block, but return MayAlias just in case. 1499 if (V1Srcs.empty()) 1500 return AliasResult::MayAlias; 1501 1502 // If this PHI node is recursive, indicate that the pointer may be moved 1503 // across iterations. We can only prove NoAlias if different underlying 1504 // objects are involved. 1505 if (isRecursive) 1506 PNSize = LocationSize::beforeOrAfterPointer(); 1507 1508 // In the recursive alias queries below, we may compare values from two 1509 // different loop iterations. Keep track of visited phi blocks, which will 1510 // be used when determining value equivalence. 1511 bool BlockInserted = VisitedPhiBBs.insert(PN->getParent()).second; 1512 auto _ = make_scope_exit([&]() { 1513 if (BlockInserted) 1514 VisitedPhiBBs.erase(PN->getParent()); 1515 }); 1516 1517 // If we inserted a block into VisitedPhiBBs, alias analysis results that 1518 // have been cached earlier may no longer be valid. Perform recursive queries 1519 // with a new AAQueryInfo. 1520 AAQueryInfo NewAAQI = AAQI.withEmptyCache(); 1521 AAQueryInfo *UseAAQI = BlockInserted ? &NewAAQI : &AAQI; 1522 1523 AliasResult Alias = getBestAAResults().alias( 1524 MemoryLocation(V1Srcs[0], PNSize), MemoryLocation(V2, V2Size), *UseAAQI); 1525 1526 // Early exit if the check of the first PHI source against V2 is MayAlias. 1527 // Other results are not possible. 1528 if (Alias == AliasResult::MayAlias) 1529 return AliasResult::MayAlias; 1530 // With recursive phis we cannot guarantee that MustAlias/PartialAlias will 1531 // remain valid to all elements and needs to conservatively return MayAlias. 1532 if (isRecursive && Alias != AliasResult::NoAlias) 1533 return AliasResult::MayAlias; 1534 1535 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1536 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1537 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1538 Value *V = V1Srcs[i]; 1539 1540 AliasResult ThisAlias = getBestAAResults().alias( 1541 MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), *UseAAQI); 1542 Alias = MergeAliasResults(ThisAlias, Alias); 1543 if (Alias == AliasResult::MayAlias) 1544 break; 1545 } 1546 1547 return Alias; 1548 } 1549 1550 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1551 /// array references. 1552 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, 1553 const Value *V2, LocationSize V2Size, 1554 AAQueryInfo &AAQI) { 1555 // If either of the memory references is empty, it doesn't matter what the 1556 // pointer values are. 1557 if (V1Size.isZero() || V2Size.isZero()) 1558 return AliasResult::NoAlias; 1559 1560 // Strip off any casts if they exist. 1561 V1 = V1->stripPointerCastsForAliasAnalysis(); 1562 V2 = V2->stripPointerCastsForAliasAnalysis(); 1563 1564 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1565 // value for undef that aliases nothing in the program. 1566 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1567 return AliasResult::NoAlias; 1568 1569 // Are we checking for alias of the same value? 1570 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1571 // different iterations. We must therefore make sure that this is not the 1572 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1573 // happen by looking at the visited phi nodes and making sure they cannot 1574 // reach the value. 1575 if (isValueEqualInPotentialCycles(V1, V2)) 1576 return AliasResult::MustAlias; 1577 1578 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1579 return AliasResult::NoAlias; // Scalars cannot alias each other 1580 1581 // Figure out what objects these things are pointing to if we can. 1582 const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); 1583 const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); 1584 1585 // Null values in the default address space don't point to any object, so they 1586 // don't alias any other pointer. 1587 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1588 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1589 return AliasResult::NoAlias; 1590 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1591 if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) 1592 return AliasResult::NoAlias; 1593 1594 if (O1 != O2) { 1595 // If V1/V2 point to two different objects, we know that we have no alias. 1596 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1597 return AliasResult::NoAlias; 1598 1599 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1600 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1601 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1602 return AliasResult::NoAlias; 1603 1604 // Function arguments can't alias with things that are known to be 1605 // unambigously identified at the function level. 1606 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1607 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1608 return AliasResult::NoAlias; 1609 1610 // If one pointer is the result of a call/invoke or load and the other is a 1611 // non-escaping local object within the same function, then we know the 1612 // object couldn't escape to a point where the call could return it. 1613 // 1614 // Note that if the pointers are in different functions, there are a 1615 // variety of complications. A call with a nocapture argument may still 1616 // temporary store the nocapture argument's value in a temporary memory 1617 // location if that memory location doesn't escape. Or it may pass a 1618 // nocapture value to other functions as long as they don't capture it. 1619 if (isEscapeSource(O1) && 1620 AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1))) 1621 return AliasResult::NoAlias; 1622 if (isEscapeSource(O2) && 1623 AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2))) 1624 return AliasResult::NoAlias; 1625 } 1626 1627 // If the size of one access is larger than the entire object on the other 1628 // side, then we know such behavior is undefined and can assume no alias. 1629 bool NullIsValidLocation = NullPointerIsDefined(&F); 1630 if ((isObjectSmallerThan( 1631 O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, 1632 TLI, NullIsValidLocation)) || 1633 (isObjectSmallerThan( 1634 O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, 1635 TLI, NullIsValidLocation))) 1636 return AliasResult::NoAlias; 1637 1638 // If one the accesses may be before the accessed pointer, canonicalize this 1639 // by using unknown after-pointer sizes for both accesses. This is 1640 // equivalent, because regardless of which pointer is lower, one of them 1641 // will always came after the other, as long as the underlying objects aren't 1642 // disjoint. We do this so that the rest of BasicAA does not have to deal 1643 // with accesses before the base pointer, and to improve cache utilization by 1644 // merging equivalent states. 1645 if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { 1646 V1Size = LocationSize::afterPointer(); 1647 V2Size = LocationSize::afterPointer(); 1648 } 1649 1650 // FIXME: If this depth limit is hit, then we may cache sub-optimal results 1651 // for recursive queries. For this reason, this limit is chosen to be large 1652 // enough to be very rarely hit, while still being small enough to avoid 1653 // stack overflows. 1654 if (AAQI.Depth >= 512) 1655 return AliasResult::MayAlias; 1656 1657 // Check the cache before climbing up use-def chains. This also terminates 1658 // otherwise infinitely recursive queries. 1659 AAQueryInfo::LocPair Locs({V1, V1Size}, {V2, V2Size}); 1660 const bool Swapped = V1 > V2; 1661 if (Swapped) 1662 std::swap(Locs.first, Locs.second); 1663 const auto &Pair = AAQI.AliasCache.try_emplace( 1664 Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); 1665 if (!Pair.second) { 1666 auto &Entry = Pair.first->second; 1667 if (!Entry.isDefinitive()) { 1668 // Remember that we used an assumption. 1669 ++Entry.NumAssumptionUses; 1670 ++AAQI.NumAssumptionUses; 1671 } 1672 // Cache contains sorted {V1,V2} pairs but we should return original order. 1673 auto Result = Entry.Result; 1674 Result.swap(Swapped); 1675 return Result; 1676 } 1677 1678 int OrigNumAssumptionUses = AAQI.NumAssumptionUses; 1679 unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); 1680 AliasResult Result = 1681 aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); 1682 1683 auto It = AAQI.AliasCache.find(Locs); 1684 assert(It != AAQI.AliasCache.end() && "Must be in cache"); 1685 auto &Entry = It->second; 1686 1687 // Check whether a NoAlias assumption has been used, but disproven. 1688 bool AssumptionDisproven = 1689 Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; 1690 if (AssumptionDisproven) 1691 Result = AliasResult::MayAlias; 1692 1693 // This is a definitive result now, when considered as a root query. 1694 AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; 1695 Entry.Result = Result; 1696 // Cache contains sorted {V1,V2} pairs. 1697 Entry.Result.swap(Swapped); 1698 Entry.NumAssumptionUses = -1; 1699 1700 // If the assumption has been disproven, remove any results that may have 1701 // been based on this assumption. Do this after the Entry updates above to 1702 // avoid iterator invalidation. 1703 if (AssumptionDisproven) 1704 while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) 1705 AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); 1706 1707 // The result may still be based on assumptions higher up in the chain. 1708 // Remember it, so it can be purged from the cache later. 1709 if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && 1710 Result != AliasResult::MayAlias) 1711 AAQI.AssumptionBasedResults.push_back(Locs); 1712 return Result; 1713 } 1714 1715 AliasResult BasicAAResult::aliasCheckRecursive( 1716 const Value *V1, LocationSize V1Size, 1717 const Value *V2, LocationSize V2Size, 1718 AAQueryInfo &AAQI, const Value *O1, const Value *O2) { 1719 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1720 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); 1721 if (Result != AliasResult::MayAlias) 1722 return Result; 1723 } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { 1724 AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); 1725 Result.swap(); 1726 if (Result != AliasResult::MayAlias) 1727 return Result; 1728 } 1729 1730 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1731 AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); 1732 if (Result != AliasResult::MayAlias) 1733 return Result; 1734 } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { 1735 AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); 1736 Result.swap(); 1737 if (Result != AliasResult::MayAlias) 1738 return Result; 1739 } 1740 1741 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1742 AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); 1743 if (Result != AliasResult::MayAlias) 1744 return Result; 1745 } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { 1746 AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); 1747 Result.swap(); 1748 if (Result != AliasResult::MayAlias) 1749 return Result; 1750 } 1751 1752 // If both pointers are pointing into the same object and one of them 1753 // accesses the entire object, then the accesses must overlap in some way. 1754 if (O1 == O2) { 1755 bool NullIsValidLocation = NullPointerIsDefined(&F); 1756 if (V1Size.isPrecise() && V2Size.isPrecise() && 1757 (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || 1758 isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) 1759 return AliasResult::PartialAlias; 1760 } 1761 1762 return AliasResult::MayAlias; 1763 } 1764 1765 /// Check whether two Values can be considered equivalent. 1766 /// 1767 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1768 /// they can not be part of a cycle in the value graph by looking at all 1769 /// visited phi nodes an making sure that the phis cannot reach the value. We 1770 /// have to do this because we are looking through phi nodes (That is we say 1771 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1772 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1773 const Value *V2) { 1774 if (V != V2) 1775 return false; 1776 1777 const Instruction *Inst = dyn_cast<Instruction>(V); 1778 if (!Inst) 1779 return true; 1780 1781 if (VisitedPhiBBs.empty()) 1782 return true; 1783 1784 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1785 return false; 1786 1787 // Make sure that the visited phis cannot reach the Value. This ensures that 1788 // the Values cannot come from different iterations of a potential cycle the 1789 // phi nodes could be involved in. 1790 for (auto *P : VisitedPhiBBs) 1791 if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT)) 1792 return false; 1793 1794 return true; 1795 } 1796 1797 /// Computes the symbolic difference between two de-composed GEPs. 1798 void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, 1799 const DecomposedGEP &SrcGEP) { 1800 DestGEP.Offset -= SrcGEP.Offset; 1801 for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { 1802 // Find V in Dest. This is N^2, but pointer indices almost never have more 1803 // than a few variable indexes. 1804 bool Found = false; 1805 for (auto I : enumerate(DestGEP.VarIndices)) { 1806 VariableGEPIndex &Dest = I.value(); 1807 if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V) || 1808 !Dest.Val.hasSameCastsAs(Src.Val)) 1809 continue; 1810 1811 // If we found it, subtract off Scale V's from the entry in Dest. If it 1812 // goes to zero, remove the entry. 1813 if (Dest.Scale != Src.Scale) { 1814 Dest.Scale -= Src.Scale; 1815 Dest.IsNSW = false; 1816 } else { 1817 DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); 1818 } 1819 Found = true; 1820 break; 1821 } 1822 1823 // If we didn't consume this entry, add it to the end of the Dest list. 1824 if (!Found) { 1825 VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW}; 1826 DestGEP.VarIndices.push_back(Entry); 1827 } 1828 } 1829 } 1830 1831 bool BasicAAResult::constantOffsetHeuristic( 1832 const DecomposedGEP &GEP, LocationSize MaybeV1Size, 1833 LocationSize MaybeV2Size, AssumptionCache *AC, DominatorTree *DT) { 1834 if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || 1835 !MaybeV2Size.hasValue()) 1836 return false; 1837 1838 const uint64_t V1Size = MaybeV1Size.getValue(); 1839 const uint64_t V2Size = MaybeV2Size.getValue(); 1840 1841 const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; 1842 1843 if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || 1844 Var0.Scale != -Var1.Scale || 1845 Var0.Val.V->getType() != Var1.Val.V->getType()) 1846 return false; 1847 1848 // We'll strip off the Extensions of Var0 and Var1 and do another round 1849 // of GetLinearExpression decomposition. In the example above, if Var0 1850 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1851 1852 LinearExpression E0 = 1853 GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); 1854 LinearExpression E1 = 1855 GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); 1856 if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || 1857 !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V)) 1858 return false; 1859 1860 // We have a hit - Var0 and Var1 only differ by a constant offset! 1861 1862 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1863 // Var1 is possible to calculate, but we're just interested in the absolute 1864 // minimum difference between the two. The minimum distance may occur due to 1865 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1866 // the minimum distance between %i and %i + 5 is 3. 1867 APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; 1868 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1869 APInt MinDiffBytes = 1870 MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); 1871 1872 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1873 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1874 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1875 // V2Size can fit in the MinDiffBytes gap. 1876 return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && 1877 MinDiffBytes.uge(V2Size + GEP.Offset.abs()); 1878 } 1879 1880 //===----------------------------------------------------------------------===// 1881 // BasicAliasAnalysis Pass 1882 //===----------------------------------------------------------------------===// 1883 1884 AnalysisKey BasicAA::Key; 1885 1886 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1887 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1888 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1889 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1890 auto *PV = AM.getCachedResult<PhiValuesAnalysis>(F); 1891 return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT, PV); 1892 } 1893 1894 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1895 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1896 } 1897 1898 char BasicAAWrapperPass::ID = 0; 1899 1900 void BasicAAWrapperPass::anchor() {} 1901 1902 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa", 1903 "Basic Alias Analysis (stateless AA impl)", true, true) 1904 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1905 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1906 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1907 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass) 1908 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa", 1909 "Basic Alias Analysis (stateless AA impl)", true, true) 1910 1911 FunctionPass *llvm::createBasicAAWrapperPass() { 1912 return new BasicAAWrapperPass(); 1913 } 1914 1915 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1916 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1917 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1918 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1919 auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>(); 1920 1921 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, 1922 TLIWP.getTLI(F), ACT.getAssumptionCache(F), 1923 &DTWP.getDomTree(), 1924 PVWP ? &PVWP->getResult() : nullptr)); 1925 1926 return false; 1927 } 1928 1929 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1930 AU.setPreservesAll(); 1931 AU.addRequiredTransitive<AssumptionCacheTracker>(); 1932 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1933 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 1934 AU.addUsedIfAvailable<PhiValuesWrapperPass>(); 1935 } 1936 1937 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1938 return BasicAAResult( 1939 F.getParent()->getDataLayout(), F, 1940 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 1941 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1942 } 1943