1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/BasicAliasAnalysis.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/CFG.h" 21 #include "llvm/Analysis/CaptureTracking.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/MemoryBuiltins.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/AssumptionCache.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include <algorithm> 40 41 #define DEBUG_TYPE "basicaa" 42 43 using namespace llvm; 44 45 /// Enable analysis of recursive PHI nodes. 46 static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden, 47 cl::init(false)); 48 /// SearchLimitReached / SearchTimes shows how often the limit of 49 /// to decompose GEPs is reached. It will affect the precision 50 /// of basic alias analysis. 51 STATISTIC(SearchLimitReached, "Number of times the limit to " 52 "decompose GEPs is reached"); 53 STATISTIC(SearchTimes, "Number of times a GEP is decomposed"); 54 55 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 56 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be 57 /// careful with value equivalence. We use reachability to make sure a value 58 /// cannot be involved in a cycle. 59 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 60 61 // The max limit of the search depth in DecomposeGEPExpression() and 62 // GetUnderlyingObject(), both functions need to use the same search 63 // depth otherwise the algorithm in aliasGEP will assert. 64 static const unsigned MaxLookupSearchDepth = 6; 65 66 //===----------------------------------------------------------------------===// 67 // Useful predicates 68 //===----------------------------------------------------------------------===// 69 70 /// Returns true if the pointer is to a function-local object that never 71 /// escapes from the function. 72 static bool isNonEscapingLocalObject(const Value *V) { 73 // If this is a local allocation, check to see if it escapes. 74 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 75 // Set StoreCaptures to True so that we can assume in our callers that the 76 // pointer is not the result of a load instruction. Currently 77 // PointerMayBeCaptured doesn't have any special analysis for the 78 // StoreCaptures=false case; if it did, our callers could be refined to be 79 // more precise. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 // If this is an argument that corresponds to a byval or noalias argument, 83 // then it has not escaped before entering the function. Check if it escapes 84 // inside the function. 85 if (const Argument *A = dyn_cast<Argument>(V)) 86 if (A->hasByValAttr() || A->hasNoAliasAttr()) 87 // Note even if the argument is marked nocapture, we still need to check 88 // for copies made inside the function. The nocapture attribute only 89 // specifies that there are no copies made that outlive the function. 90 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 91 92 return false; 93 } 94 95 /// Returns true if the pointer is one which would have been considered an 96 /// escape by isNonEscapingLocalObject. 97 static bool isEscapeSource(const Value *V) { 98 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 99 return true; 100 101 // The load case works because isNonEscapingLocalObject considers all 102 // stores to be escapes (it passes true for the StoreCaptures argument 103 // to PointerMayBeCaptured). 104 if (isa<LoadInst>(V)) 105 return true; 106 107 return false; 108 } 109 110 /// Returns the size of the object specified by V or UnknownSize if unknown. 111 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 112 const TargetLibraryInfo &TLI, 113 bool RoundToAlign = false) { 114 uint64_t Size; 115 if (getObjectSize(V, Size, DL, &TLI, RoundToAlign)) 116 return Size; 117 return MemoryLocation::UnknownSize; 118 } 119 120 /// Returns true if we can prove that the object specified by V is smaller than 121 /// Size. 122 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 123 const DataLayout &DL, 124 const TargetLibraryInfo &TLI) { 125 // Note that the meanings of the "object" are slightly different in the 126 // following contexts: 127 // c1: llvm::getObjectSize() 128 // c2: llvm.objectsize() intrinsic 129 // c3: isObjectSmallerThan() 130 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 131 // refers to the "entire object". 132 // 133 // Consider this example: 134 // char *p = (char*)malloc(100) 135 // char *q = p+80; 136 // 137 // In the context of c1 and c2, the "object" pointed by q refers to the 138 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 139 // 140 // However, in the context of c3, the "object" refers to the chunk of memory 141 // being allocated. So, the "object" has 100 bytes, and q points to the middle 142 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 143 // parameter, before the llvm::getObjectSize() is called to get the size of 144 // entire object, we should: 145 // - either rewind the pointer q to the base-address of the object in 146 // question (in this case rewind to p), or 147 // - just give up. It is up to caller to make sure the pointer is pointing 148 // to the base address the object. 149 // 150 // We go for 2nd option for simplicity. 151 if (!isIdentifiedObject(V)) 152 return false; 153 154 // This function needs to use the aligned object size because we allow 155 // reads a bit past the end given sufficient alignment. 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true); 157 158 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; 159 } 160 161 /// Returns true if we can prove that the object specified by V has size Size. 162 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, 163 const TargetLibraryInfo &TLI) { 164 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 165 return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; 166 } 167 168 //===----------------------------------------------------------------------===// 169 // GetElementPtr Instruction Decomposition and Analysis 170 //===----------------------------------------------------------------------===// 171 172 /// Analyzes the specified value as a linear expression: "A*V + B", where A and 173 /// B are constant integers. 174 /// 175 /// Returns the scale and offset values as APInts and return V as a Value*, and 176 /// return whether we looked through any sign or zero extends. The incoming 177 /// Value is known to have IntegerType, and it may already be sign or zero 178 /// extended. 179 /// 180 /// Note that this looks through extends, so the high bits may not be 181 /// represented in the result. 182 /*static*/ const Value *BasicAAResult::GetLinearExpression( 183 const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits, 184 unsigned &SExtBits, const DataLayout &DL, unsigned Depth, 185 AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) { 186 assert(V->getType()->isIntegerTy() && "Not an integer value"); 187 188 // Limit our recursion depth. 189 if (Depth == 6) { 190 Scale = 1; 191 Offset = 0; 192 return V; 193 } 194 195 if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) { 196 // If it's a constant, just convert it to an offset and remove the variable. 197 // If we've been called recursively, the Offset bit width will be greater 198 // than the constant's (the Offset's always as wide as the outermost call), 199 // so we'll zext here and process any extension in the isa<SExtInst> & 200 // isa<ZExtInst> cases below. 201 Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); 202 assert(Scale == 0 && "Constant values don't have a scale"); 203 return V; 204 } 205 206 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 207 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 208 209 // If we've been called recursively, then Offset and Scale will be wider 210 // than the BOp operands. We'll always zext it here as we'll process sign 211 // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases). 212 APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); 213 214 switch (BOp->getOpcode()) { 215 default: 216 // We don't understand this instruction, so we can't decompose it any 217 // further. 218 Scale = 1; 219 Offset = 0; 220 return V; 221 case Instruction::Or: 222 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 223 // analyze it. 224 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, 225 BOp, DT)) { 226 Scale = 1; 227 Offset = 0; 228 return V; 229 } 230 LLVM_FALLTHROUGH; 231 case Instruction::Add: 232 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 233 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 234 Offset += RHS; 235 break; 236 case Instruction::Sub: 237 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 238 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 239 Offset -= RHS; 240 break; 241 case Instruction::Mul: 242 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 243 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 244 Offset *= RHS; 245 Scale *= RHS; 246 break; 247 case Instruction::Shl: 248 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, 249 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); 250 Offset <<= RHS.getLimitedValue(); 251 Scale <<= RHS.getLimitedValue(); 252 // the semantics of nsw and nuw for left shifts don't match those of 253 // multiplications, so we won't propagate them. 254 NSW = NUW = false; 255 return V; 256 } 257 258 if (isa<OverflowingBinaryOperator>(BOp)) { 259 NUW &= BOp->hasNoUnsignedWrap(); 260 NSW &= BOp->hasNoSignedWrap(); 261 } 262 return V; 263 } 264 } 265 266 // Since GEP indices are sign extended anyway, we don't care about the high 267 // bits of a sign or zero extended value - just scales and offsets. The 268 // extensions have to be consistent though. 269 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) { 270 Value *CastOp = cast<CastInst>(V)->getOperand(0); 271 unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); 272 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 273 unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; 274 const Value *Result = 275 GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, 276 Depth + 1, AC, DT, NSW, NUW); 277 278 // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this 279 // by just incrementing the number of bits we've extended by. 280 unsigned ExtendedBy = NewWidth - SmallWidth; 281 282 if (isa<SExtInst>(V) && ZExtBits == 0) { 283 // sext(sext(%x, a), b) == sext(%x, a + b) 284 285 if (NSW) { 286 // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) 287 // into sext(%x) + sext(c). We'll sext the Offset ourselves: 288 unsigned OldWidth = Offset.getBitWidth(); 289 Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); 290 } else { 291 // We may have signed-wrapped, so don't decompose sext(%x + c) into 292 // sext(%x) + sext(c) 293 Scale = 1; 294 Offset = 0; 295 Result = CastOp; 296 ZExtBits = OldZExtBits; 297 SExtBits = OldSExtBits; 298 } 299 SExtBits += ExtendedBy; 300 } else { 301 // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) 302 303 if (!NUW) { 304 // We may have unsigned-wrapped, so don't decompose zext(%x + c) into 305 // zext(%x) + zext(c) 306 Scale = 1; 307 Offset = 0; 308 Result = CastOp; 309 ZExtBits = OldZExtBits; 310 SExtBits = OldSExtBits; 311 } 312 ZExtBits += ExtendedBy; 313 } 314 315 return Result; 316 } 317 318 Scale = 1; 319 Offset = 0; 320 return V; 321 } 322 323 /// To ensure a pointer offset fits in an integer of size PointerSize 324 /// (in bits) when that size is smaller than 64. This is an issue in 325 /// particular for 32b programs with negative indices that rely on two's 326 /// complement wrap-arounds for precise alias information. 327 static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) { 328 assert(PointerSize <= 64 && "Invalid PointerSize!"); 329 unsigned ShiftBits = 64 - PointerSize; 330 return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits; 331 } 332 333 /// If V is a symbolic pointer expression, decompose it into a base pointer 334 /// with a constant offset and a number of scaled symbolic offsets. 335 /// 336 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale 337 /// in the VarIndices vector) are Value*'s that are known to be scaled by the 338 /// specified amount, but which may have other unrepresented high bits. As 339 /// such, the gep cannot necessarily be reconstructed from its decomposed form. 340 /// 341 /// When DataLayout is around, this function is capable of analyzing everything 342 /// that GetUnderlyingObject can look through. To be able to do that 343 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 344 /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks 345 /// through pointer casts. 346 bool BasicAAResult::DecomposeGEPExpression(const Value *V, 347 DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC, 348 DominatorTree *DT) { 349 // Limit recursion depth to limit compile time in crazy cases. 350 unsigned MaxLookup = MaxLookupSearchDepth; 351 SearchTimes++; 352 353 Decomposed.StructOffset = 0; 354 Decomposed.OtherOffset = 0; 355 Decomposed.VarIndices.clear(); 356 do { 357 // See if this is a bitcast or GEP. 358 const Operator *Op = dyn_cast<Operator>(V); 359 if (!Op) { 360 // The only non-operator case we can handle are GlobalAliases. 361 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 362 if (!GA->isInterposable()) { 363 V = GA->getAliasee(); 364 continue; 365 } 366 } 367 Decomposed.Base = V; 368 return false; 369 } 370 371 if (Op->getOpcode() == Instruction::BitCast || 372 Op->getOpcode() == Instruction::AddrSpaceCast) { 373 V = Op->getOperand(0); 374 continue; 375 } 376 377 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 378 if (!GEPOp) { 379 if (auto CS = ImmutableCallSite(V)) 380 if (const Value *RV = CS.getReturnedArgOperand()) { 381 V = RV; 382 continue; 383 } 384 385 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 386 // can come up with something. This matches what GetUnderlyingObject does. 387 if (const Instruction *I = dyn_cast<Instruction>(V)) 388 // TODO: Get a DominatorTree and AssumptionCache and use them here 389 // (these are both now available in this function, but this should be 390 // updated when GetUnderlyingObject is updated). TLI should be 391 // provided also. 392 if (const Value *Simplified = 393 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 394 V = Simplified; 395 continue; 396 } 397 398 Decomposed.Base = V; 399 return false; 400 } 401 402 // Don't attempt to analyze GEPs over unsized objects. 403 if (!GEPOp->getSourceElementType()->isSized()) { 404 Decomposed.Base = V; 405 return false; 406 } 407 408 unsigned AS = GEPOp->getPointerAddressSpace(); 409 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 410 gep_type_iterator GTI = gep_type_begin(GEPOp); 411 unsigned PointerSize = DL.getPointerSizeInBits(AS); 412 // Assume all GEP operands are constants until proven otherwise. 413 bool GepHasConstantOffset = true; 414 for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); 415 I != E; ++I, ++GTI) { 416 const Value *Index = *I; 417 // Compute the (potentially symbolic) offset in bytes for this index. 418 if (StructType *STy = GTI.getStructTypeOrNull()) { 419 // For a struct, add the member offset. 420 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 421 if (FieldNo == 0) 422 continue; 423 424 Decomposed.StructOffset += 425 DL.getStructLayout(STy)->getElementOffset(FieldNo); 426 continue; 427 } 428 429 // For an array/pointer, add the element offset, explicitly scaled. 430 if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 431 if (CIdx->isZero()) 432 continue; 433 Decomposed.OtherOffset += 434 DL.getTypeAllocSize(GTI.getIndexedType()) * CIdx->getSExtValue(); 435 continue; 436 } 437 438 GepHasConstantOffset = false; 439 440 uint64_t Scale = DL.getTypeAllocSize(GTI.getIndexedType()); 441 unsigned ZExtBits = 0, SExtBits = 0; 442 443 // If the integer type is smaller than the pointer size, it is implicitly 444 // sign extended to pointer size. 445 unsigned Width = Index->getType()->getIntegerBitWidth(); 446 if (PointerSize > Width) 447 SExtBits += PointerSize - Width; 448 449 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 450 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 451 bool NSW = true, NUW = true; 452 Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, 453 SExtBits, DL, 0, AC, DT, NSW, NUW); 454 455 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 456 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 457 Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale; 458 Scale *= IndexScale.getSExtValue(); 459 460 // If we already had an occurrence of this index variable, merge this 461 // scale into it. For example, we want to handle: 462 // A[x][x] -> x*16 + x*4 -> x*20 463 // This also ensures that 'x' only appears in the index list once. 464 for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { 465 if (Decomposed.VarIndices[i].V == Index && 466 Decomposed.VarIndices[i].ZExtBits == ZExtBits && 467 Decomposed.VarIndices[i].SExtBits == SExtBits) { 468 Scale += Decomposed.VarIndices[i].Scale; 469 Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); 470 break; 471 } 472 } 473 474 // Make sure that we have a scale that makes sense for this target's 475 // pointer size. 476 Scale = adjustToPointerSize(Scale, PointerSize); 477 478 if (Scale) { 479 VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, 480 static_cast<int64_t>(Scale)}; 481 Decomposed.VarIndices.push_back(Entry); 482 } 483 } 484 485 // Take care of wrap-arounds 486 if (GepHasConstantOffset) { 487 Decomposed.StructOffset = 488 adjustToPointerSize(Decomposed.StructOffset, PointerSize); 489 Decomposed.OtherOffset = 490 adjustToPointerSize(Decomposed.OtherOffset, PointerSize); 491 } 492 493 // Analyze the base pointer next. 494 V = GEPOp->getOperand(0); 495 } while (--MaxLookup); 496 497 // If the chain of expressions is too deep, just return early. 498 Decomposed.Base = V; 499 SearchLimitReached++; 500 return true; 501 } 502 503 /// Returns whether the given pointer value points to memory that is local to 504 /// the function, with global constants being considered local to all 505 /// functions. 506 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc, 507 bool OrLocal) { 508 assert(Visited.empty() && "Visited must be cleared after use!"); 509 510 unsigned MaxLookup = 8; 511 SmallVector<const Value *, 16> Worklist; 512 Worklist.push_back(Loc.Ptr); 513 do { 514 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 515 if (!Visited.insert(V).second) { 516 Visited.clear(); 517 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 518 } 519 520 // An alloca instruction defines local memory. 521 if (OrLocal && isa<AllocaInst>(V)) 522 continue; 523 524 // A global constant counts as local memory for our purposes. 525 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 526 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 527 // global to be marked constant in some modules and non-constant in 528 // others. GV may even be a declaration, not a definition. 529 if (!GV->isConstant()) { 530 Visited.clear(); 531 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 532 } 533 continue; 534 } 535 536 // If both select values point to local memory, then so does the select. 537 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 538 Worklist.push_back(SI->getTrueValue()); 539 Worklist.push_back(SI->getFalseValue()); 540 continue; 541 } 542 543 // If all values incoming to a phi node point to local memory, then so does 544 // the phi. 545 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 546 // Don't bother inspecting phi nodes with many operands. 547 if (PN->getNumIncomingValues() > MaxLookup) { 548 Visited.clear(); 549 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 550 } 551 for (Value *IncValue : PN->incoming_values()) 552 Worklist.push_back(IncValue); 553 continue; 554 } 555 556 // Otherwise be conservative. 557 Visited.clear(); 558 return AAResultBase::pointsToConstantMemory(Loc, OrLocal); 559 560 } while (!Worklist.empty() && --MaxLookup); 561 562 Visited.clear(); 563 return Worklist.empty(); 564 } 565 566 /// Returns the behavior when calling the given call site. 567 FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) { 568 if (CS.doesNotAccessMemory()) 569 // Can't do better than this. 570 return FMRB_DoesNotAccessMemory; 571 572 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 573 574 // If the callsite knows it only reads memory, don't return worse 575 // than that. 576 if (CS.onlyReadsMemory()) 577 Min = FMRB_OnlyReadsMemory; 578 else if (CS.doesNotReadMemory()) 579 Min = FMRB_DoesNotReadMemory; 580 581 if (CS.onlyAccessesArgMemory()) 582 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 583 584 // If CS has operand bundles then aliasing attributes from the function it 585 // calls do not directly apply to the CallSite. This can be made more 586 // precise in the future. 587 if (!CS.hasOperandBundles()) 588 if (const Function *F = CS.getCalledFunction()) 589 Min = 590 FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F)); 591 592 return Min; 593 } 594 595 /// Returns the behavior when calling the given function. For use when the call 596 /// site is not known. 597 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) { 598 // If the function declares it doesn't access memory, we can't do better. 599 if (F->doesNotAccessMemory()) 600 return FMRB_DoesNotAccessMemory; 601 602 FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior; 603 604 // If the function declares it only reads memory, go with that. 605 if (F->onlyReadsMemory()) 606 Min = FMRB_OnlyReadsMemory; 607 else if (F->doesNotReadMemory()) 608 Min = FMRB_DoesNotReadMemory; 609 610 if (F->onlyAccessesArgMemory()) 611 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees); 612 else if (F->onlyAccessesInaccessibleMemory()) 613 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem); 614 else if (F->onlyAccessesInaccessibleMemOrArgMem()) 615 Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem); 616 617 return Min; 618 } 619 620 /// Returns true if this is a writeonly (i.e Mod only) parameter. 621 static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx, 622 const TargetLibraryInfo &TLI) { 623 if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly)) 624 return true; 625 626 // We can bound the aliasing properties of memset_pattern16 just as we can 627 // for memcpy/memset. This is particularly important because the 628 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 629 // whenever possible. 630 // FIXME Consider handling this in InferFunctionAttr.cpp together with other 631 // attributes. 632 LibFunc::Func F; 633 if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) && 634 F == LibFunc::memset_pattern16 && TLI.has(F)) 635 if (ArgIdx == 0) 636 return true; 637 638 // TODO: memset_pattern4, memset_pattern8 639 // TODO: _chk variants 640 // TODO: strcmp, strcpy 641 642 return false; 643 } 644 645 ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS, 646 unsigned ArgIdx) { 647 648 // Checking for known builtin intrinsics and target library functions. 649 if (isWriteOnlyParam(CS, ArgIdx, TLI)) 650 return MRI_Mod; 651 652 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly)) 653 return MRI_Ref; 654 655 if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone)) 656 return MRI_NoModRef; 657 658 return AAResultBase::getArgModRefInfo(CS, ArgIdx); 659 } 660 661 static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) { 662 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 663 return II && II->getIntrinsicID() == IID; 664 } 665 666 #ifndef NDEBUG 667 static const Function *getParent(const Value *V) { 668 if (const Instruction *inst = dyn_cast<Instruction>(V)) 669 return inst->getParent()->getParent(); 670 671 if (const Argument *arg = dyn_cast<Argument>(V)) 672 return arg->getParent(); 673 674 return nullptr; 675 } 676 677 static bool notDifferentParent(const Value *O1, const Value *O2) { 678 679 const Function *F1 = getParent(O1); 680 const Function *F2 = getParent(O2); 681 682 return !F1 || !F2 || F1 == F2; 683 } 684 #endif 685 686 AliasResult BasicAAResult::alias(const MemoryLocation &LocA, 687 const MemoryLocation &LocB) { 688 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 689 "BasicAliasAnalysis doesn't support interprocedural queries."); 690 691 // If we have a directly cached entry for these locations, we have recursed 692 // through this once, so just return the cached results. Notably, when this 693 // happens, we don't clear the cache. 694 auto CacheIt = AliasCache.find(LocPair(LocA, LocB)); 695 if (CacheIt != AliasCache.end()) 696 return CacheIt->second; 697 698 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr, 699 LocB.Size, LocB.AATags); 700 // AliasCache rarely has more than 1 or 2 elements, always use 701 // shrink_and_clear so it quickly returns to the inline capacity of the 702 // SmallDenseMap if it ever grows larger. 703 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 704 AliasCache.shrink_and_clear(); 705 VisitedPhiBBs.clear(); 706 return Alias; 707 } 708 709 /// Checks to see if the specified callsite can clobber the specified memory 710 /// object. 711 /// 712 /// Since we only look at local properties of this function, we really can't 713 /// say much about this query. We do, however, use simple "address taken" 714 /// analysis on local objects. 715 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS, 716 const MemoryLocation &Loc) { 717 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 718 "AliasAnalysis query involving multiple functions!"); 719 720 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 721 722 // If this is a tail call and Loc.Ptr points to a stack location, we know that 723 // the tail call cannot access or modify the local stack. 724 // We cannot exclude byval arguments here; these belong to the caller of 725 // the current function not to the current function, and a tail callee 726 // may reference them. 727 if (isa<AllocaInst>(Object)) 728 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 729 if (CI->isTailCall()) 730 return MRI_NoModRef; 731 732 // If the pointer is to a locally allocated object that does not escape, 733 // then the call can not mod/ref the pointer unless the call takes the pointer 734 // as an argument, and itself doesn't capture it. 735 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 736 isNonEscapingLocalObject(Object)) { 737 bool PassedAsArg = false; 738 unsigned OperandNo = 0; 739 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 740 CI != CE; ++CI, ++OperandNo) { 741 // Only look at the no-capture or byval pointer arguments. If this 742 // pointer were passed to arguments that were neither of these, then it 743 // couldn't be no-capture. 744 if (!(*CI)->getType()->isPointerTy() || 745 (!CS.doesNotCapture(OperandNo) && 746 OperandNo < CS.getNumArgOperands() && !CS.isByValArgument(OperandNo))) 747 continue; 748 749 // If this is a no-capture pointer argument, see if we can tell that it 750 // is impossible to alias the pointer we're checking. If not, we have to 751 // assume that the call could touch the pointer, even though it doesn't 752 // escape. 753 AliasResult AR = 754 getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object)); 755 if (AR) { 756 PassedAsArg = true; 757 break; 758 } 759 } 760 761 if (!PassedAsArg) 762 return MRI_NoModRef; 763 } 764 765 // If the CallSite is to malloc or calloc, we can assume that it doesn't 766 // modify any IR visible value. This is only valid because we assume these 767 // routines do not read values visible in the IR. TODO: Consider special 768 // casing realloc and strdup routines which access only their arguments as 769 // well. Or alternatively, replace all of this with inaccessiblememonly once 770 // that's implemented fully. 771 auto *Inst = CS.getInstruction(); 772 if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) { 773 // Be conservative if the accessed pointer may alias the allocation - 774 // fallback to the generic handling below. 775 if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias) 776 return MRI_NoModRef; 777 } 778 779 // While the assume intrinsic is marked as arbitrarily writing so that 780 // proper control dependencies will be maintained, it never aliases any 781 // particular memory location. 782 if (isIntrinsicCall(CS, Intrinsic::assume)) 783 return MRI_NoModRef; 784 785 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 786 // that proper control dependencies are maintained but they never mods any 787 // particular memory location. 788 // 789 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 790 // heap state at the point the guard is issued needs to be consistent in case 791 // the guard invokes the "deopt" continuation. 792 if (isIntrinsicCall(CS, Intrinsic::experimental_guard)) 793 return MRI_Ref; 794 795 // Like assumes, invariant.start intrinsics were also marked as arbitrarily 796 // writing so that proper control dependencies are maintained but they never 797 // mod any particular memory location visible to the IR. 798 // *Unlike* assumes (which are now modeled as NoModRef), invariant.start 799 // intrinsic is now modeled as reading memory. This prevents hoisting the 800 // invariant.start intrinsic over stores. Consider: 801 // *ptr = 40; 802 // *ptr = 50; 803 // invariant_start(ptr) 804 // int val = *ptr; 805 // print(val); 806 // 807 // This cannot be transformed to: 808 // 809 // *ptr = 40; 810 // invariant_start(ptr) 811 // *ptr = 50; 812 // int val = *ptr; 813 // print(val); 814 // 815 // The transformation will cause the second store to be ignored (based on 816 // rules of invariant.start) and print 40, while the first program always 817 // prints 50. 818 if (isIntrinsicCall(CS, Intrinsic::invariant_start)) 819 return MRI_Ref; 820 821 // The AAResultBase base class has some smarts, lets use them. 822 return AAResultBase::getModRefInfo(CS, Loc); 823 } 824 825 ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1, 826 ImmutableCallSite CS2) { 827 // While the assume intrinsic is marked as arbitrarily writing so that 828 // proper control dependencies will be maintained, it never aliases any 829 // particular memory location. 830 if (isIntrinsicCall(CS1, Intrinsic::assume) || 831 isIntrinsicCall(CS2, Intrinsic::assume)) 832 return MRI_NoModRef; 833 834 // Like assumes, guard intrinsics are also marked as arbitrarily writing so 835 // that proper control dependencies are maintained but they never mod any 836 // particular memory location. 837 // 838 // *Unlike* assumes, guard intrinsics are modeled as reading memory since the 839 // heap state at the point the guard is issued needs to be consistent in case 840 // the guard invokes the "deopt" continuation. 841 842 // NB! This function is *not* commutative, so we specical case two 843 // possibilities for guard intrinsics. 844 845 if (isIntrinsicCall(CS1, Intrinsic::experimental_guard)) 846 return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef; 847 848 if (isIntrinsicCall(CS2, Intrinsic::experimental_guard)) 849 return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef; 850 851 // The AAResultBase base class has some smarts, lets use them. 852 return AAResultBase::getModRefInfo(CS1, CS2); 853 } 854 855 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators, 856 /// both having the exact same pointer operand. 857 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1, 858 uint64_t V1Size, 859 const GEPOperator *GEP2, 860 uint64_t V2Size, 861 const DataLayout &DL) { 862 863 assert(GEP1->getPointerOperand()->stripPointerCasts() == 864 GEP2->getPointerOperand()->stripPointerCasts() && 865 GEP1->getPointerOperand()->getType() == 866 GEP2->getPointerOperand()->getType() && 867 "Expected GEPs with the same pointer operand"); 868 869 // Try to determine whether GEP1 and GEP2 index through arrays, into structs, 870 // such that the struct field accesses provably cannot alias. 871 // We also need at least two indices (the pointer, and the struct field). 872 if (GEP1->getNumIndices() != GEP2->getNumIndices() || 873 GEP1->getNumIndices() < 2) 874 return MayAlias; 875 876 // If we don't know the size of the accesses through both GEPs, we can't 877 // determine whether the struct fields accessed can't alias. 878 if (V1Size == MemoryLocation::UnknownSize || 879 V2Size == MemoryLocation::UnknownSize) 880 return MayAlias; 881 882 ConstantInt *C1 = 883 dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1)); 884 ConstantInt *C2 = 885 dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1)); 886 887 // If the last (struct) indices are constants and are equal, the other indices 888 // might be also be dynamically equal, so the GEPs can alias. 889 if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue()) 890 return MayAlias; 891 892 // Find the last-indexed type of the GEP, i.e., the type you'd get if 893 // you stripped the last index. 894 // On the way, look at each indexed type. If there's something other 895 // than an array, different indices can lead to different final types. 896 SmallVector<Value *, 8> IntermediateIndices; 897 898 // Insert the first index; we don't need to check the type indexed 899 // through it as it only drops the pointer indirection. 900 assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine"); 901 IntermediateIndices.push_back(GEP1->getOperand(1)); 902 903 // Insert all the remaining indices but the last one. 904 // Also, check that they all index through arrays. 905 for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) { 906 if (!isa<ArrayType>(GetElementPtrInst::getIndexedType( 907 GEP1->getSourceElementType(), IntermediateIndices))) 908 return MayAlias; 909 IntermediateIndices.push_back(GEP1->getOperand(i + 1)); 910 } 911 912 auto *Ty = GetElementPtrInst::getIndexedType( 913 GEP1->getSourceElementType(), IntermediateIndices); 914 StructType *LastIndexedStruct = dyn_cast<StructType>(Ty); 915 916 if (isa<SequentialType>(Ty)) { 917 // We know that: 918 // - both GEPs begin indexing from the exact same pointer; 919 // - the last indices in both GEPs are constants, indexing into a sequential 920 // type (array or pointer); 921 // - both GEPs only index through arrays prior to that. 922 // 923 // Because array indices greater than the number of elements are valid in 924 // GEPs, unless we know the intermediate indices are identical between 925 // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't 926 // partially overlap. We also need to check that the loaded size matches 927 // the element size, otherwise we could still have overlap. 928 const uint64_t ElementSize = 929 DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType()); 930 if (V1Size != ElementSize || V2Size != ElementSize) 931 return MayAlias; 932 933 for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i) 934 if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1)) 935 return MayAlias; 936 937 // Now we know that the array/pointer that GEP1 indexes into and that 938 // that GEP2 indexes into must either precisely overlap or be disjoint. 939 // Because they cannot partially overlap and because fields in an array 940 // cannot overlap, if we can prove the final indices are different between 941 // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias. 942 943 // If the last indices are constants, we've already checked they don't 944 // equal each other so we can exit early. 945 if (C1 && C2) 946 return NoAlias; 947 if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1), 948 GEP2->getOperand(GEP2->getNumOperands() - 1), 949 DL)) 950 return NoAlias; 951 return MayAlias; 952 } else if (!LastIndexedStruct || !C1 || !C2) { 953 return MayAlias; 954 } 955 956 // We know that: 957 // - both GEPs begin indexing from the exact same pointer; 958 // - the last indices in both GEPs are constants, indexing into a struct; 959 // - said indices are different, hence, the pointed-to fields are different; 960 // - both GEPs only index through arrays prior to that. 961 // 962 // This lets us determine that the struct that GEP1 indexes into and the 963 // struct that GEP2 indexes into must either precisely overlap or be 964 // completely disjoint. Because they cannot partially overlap, indexing into 965 // different non-overlapping fields of the struct will never alias. 966 967 // Therefore, the only remaining thing needed to show that both GEPs can't 968 // alias is that the fields are not overlapping. 969 const StructLayout *SL = DL.getStructLayout(LastIndexedStruct); 970 const uint64_t StructSize = SL->getSizeInBytes(); 971 const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue()); 972 const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue()); 973 974 auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size, 975 uint64_t V2Off, uint64_t V2Size) { 976 return V1Off < V2Off && V1Off + V1Size <= V2Off && 977 ((V2Off + V2Size <= StructSize) || 978 (V2Off + V2Size - StructSize <= V1Off)); 979 }; 980 981 if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) || 982 EltsDontOverlap(V2Off, V2Size, V1Off, V1Size)) 983 return NoAlias; 984 985 return MayAlias; 986 } 987 988 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the 989 // beginning of the object the GEP points would have a negative offset with 990 // repsect to the alloca, that means the GEP can not alias pointer (b). 991 // Note that the pointer based on the alloca may not be a GEP. For 992 // example, it may be the alloca itself. 993 // The same applies if (b) is based on a GlobalVariable. Note that just being 994 // based on isIdentifiedObject() is not enough - we need an identified object 995 // that does not permit access to negative offsets. For example, a negative 996 // offset from a noalias argument or call can be inbounds w.r.t the actual 997 // underlying object. 998 // 999 // For example, consider: 1000 // 1001 // struct { int f0, int f1, ...} foo; 1002 // foo alloca; 1003 // foo* random = bar(alloca); 1004 // int *f0 = &alloca.f0 1005 // int *f1 = &random->f1; 1006 // 1007 // Which is lowered, approximately, to: 1008 // 1009 // %alloca = alloca %struct.foo 1010 // %random = call %struct.foo* @random(%struct.foo* %alloca) 1011 // %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0 1012 // %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1 1013 // 1014 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated 1015 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also 1016 // point into the same object. But since %f0 points to the beginning of %alloca, 1017 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher 1018 // than (%alloca - 1), and so is not inbounds, a contradiction. 1019 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp, 1020 const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 1021 uint64_t ObjectAccessSize) { 1022 // If the object access size is unknown, or the GEP isn't inbounds, bail. 1023 if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds()) 1024 return false; 1025 1026 // We need the object to be an alloca or a globalvariable, and want to know 1027 // the offset of the pointer from the object precisely, so no variable 1028 // indices are allowed. 1029 if (!(isa<AllocaInst>(DecompObject.Base) || 1030 isa<GlobalVariable>(DecompObject.Base)) || 1031 !DecompObject.VarIndices.empty()) 1032 return false; 1033 1034 int64_t ObjectBaseOffset = DecompObject.StructOffset + 1035 DecompObject.OtherOffset; 1036 1037 // If the GEP has no variable indices, we know the precise offset 1038 // from the base, then use it. If the GEP has variable indices, we're in 1039 // a bit more trouble: we can't count on the constant offsets that come 1040 // from non-struct sources, since these can be "rewound" by a negative 1041 // variable offset. So use only offsets that came from structs. 1042 int64_t GEPBaseOffset = DecompGEP.StructOffset; 1043 if (DecompGEP.VarIndices.empty()) 1044 GEPBaseOffset += DecompGEP.OtherOffset; 1045 1046 return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize); 1047 } 1048 1049 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against 1050 /// another pointer. 1051 /// 1052 /// We know that V1 is a GEP, but we don't know anything about V2. 1053 /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for 1054 /// V2. 1055 AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 1056 const AAMDNodes &V1AAInfo, const Value *V2, 1057 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1058 const Value *UnderlyingV1, 1059 const Value *UnderlyingV2) { 1060 DecomposedGEP DecompGEP1, DecompGEP2; 1061 bool GEP1MaxLookupReached = 1062 DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT); 1063 bool GEP2MaxLookupReached = 1064 DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT); 1065 1066 int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset; 1067 int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset; 1068 1069 assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 && 1070 "DecomposeGEPExpression returned a result different from " 1071 "GetUnderlyingObject"); 1072 1073 // If the GEP's offset relative to its base is such that the base would 1074 // fall below the start of the object underlying V2, then the GEP and V2 1075 // cannot alias. 1076 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1077 isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size)) 1078 return NoAlias; 1079 // If we have two gep instructions with must-alias or not-alias'ing base 1080 // pointers, figure out if the indexes to the GEP tell us anything about the 1081 // derived pointer. 1082 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 1083 // Check for the GEP base being at a negative offset, this time in the other 1084 // direction. 1085 if (!GEP1MaxLookupReached && !GEP2MaxLookupReached && 1086 isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size)) 1087 return NoAlias; 1088 // Do the base pointers alias? 1089 AliasResult BaseAlias = 1090 aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(), 1091 UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes()); 1092 1093 // Check for geps of non-aliasing underlying pointers where the offsets are 1094 // identical. 1095 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 1096 // Do the base pointers alias assuming type and size. 1097 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo, 1098 UnderlyingV2, V2Size, V2AAInfo); 1099 if (PreciseBaseAlias == NoAlias) { 1100 // See if the computed offset from the common pointer tells us about the 1101 // relation of the resulting pointer. 1102 // If the max search depth is reached the result is undefined 1103 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1104 return MayAlias; 1105 1106 // Same offsets. 1107 if (GEP1BaseOffset == GEP2BaseOffset && 1108 DecompGEP1.VarIndices == DecompGEP2.VarIndices) 1109 return NoAlias; 1110 } 1111 } 1112 1113 // If we get a No or May, then return it immediately, no amount of analysis 1114 // will improve this situation. 1115 if (BaseAlias != MustAlias) 1116 return BaseAlias; 1117 1118 // Otherwise, we have a MustAlias. Since the base pointers alias each other 1119 // exactly, see if the computed offset from the common pointer tells us 1120 // about the relation of the resulting pointer. 1121 // If we know the two GEPs are based off of the exact same pointer (and not 1122 // just the same underlying object), see if that tells us anything about 1123 // the resulting pointers. 1124 if (GEP1->getPointerOperand()->stripPointerCasts() == 1125 GEP2->getPointerOperand()->stripPointerCasts() && 1126 GEP1->getPointerOperand()->getType() == 1127 GEP2->getPointerOperand()->getType()) { 1128 AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL); 1129 // If we couldn't find anything interesting, don't abandon just yet. 1130 if (R != MayAlias) 1131 return R; 1132 } 1133 1134 // If the max search depth is reached, the result is undefined 1135 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 1136 return MayAlias; 1137 1138 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 1139 // symbolic difference. 1140 GEP1BaseOffset -= GEP2BaseOffset; 1141 GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices); 1142 1143 } else { 1144 // Check to see if these two pointers are related by the getelementptr 1145 // instruction. If one pointer is a GEP with a non-zero index of the other 1146 // pointer, we know they cannot alias. 1147 1148 // If both accesses are unknown size, we can't do anything useful here. 1149 if (V1Size == MemoryLocation::UnknownSize && 1150 V2Size == MemoryLocation::UnknownSize) 1151 return MayAlias; 1152 1153 AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, 1154 AAMDNodes(), V2, V2Size, V2AAInfo, 1155 nullptr, UnderlyingV2); 1156 if (R != MustAlias) 1157 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 1158 // If V2 is known not to alias GEP base pointer, then the two values 1159 // cannot alias per GEP semantics: "A pointer value formed from a 1160 // getelementptr instruction is associated with the addresses associated 1161 // with the first operand of the getelementptr". 1162 return R; 1163 1164 // If the max search depth is reached the result is undefined 1165 if (GEP1MaxLookupReached) 1166 return MayAlias; 1167 } 1168 1169 // In the two GEP Case, if there is no difference in the offsets of the 1170 // computed pointers, the resultant pointers are a must alias. This 1171 // happens when we have two lexically identical GEP's (for example). 1172 // 1173 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1174 // must aliases the GEP, the end result is a must alias also. 1175 if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty()) 1176 return MustAlias; 1177 1178 // If there is a constant difference between the pointers, but the difference 1179 // is less than the size of the associated memory object, then we know 1180 // that the objects are partially overlapping. If the difference is 1181 // greater, we know they do not overlap. 1182 if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) { 1183 if (GEP1BaseOffset >= 0) { 1184 if (V2Size != MemoryLocation::UnknownSize) { 1185 if ((uint64_t)GEP1BaseOffset < V2Size) 1186 return PartialAlias; 1187 return NoAlias; 1188 } 1189 } else { 1190 // We have the situation where: 1191 // + + 1192 // | BaseOffset | 1193 // ---------------->| 1194 // |-->V1Size |-------> V2Size 1195 // GEP1 V2 1196 // We need to know that V2Size is not unknown, otherwise we might have 1197 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1198 if (V1Size != MemoryLocation::UnknownSize && 1199 V2Size != MemoryLocation::UnknownSize) { 1200 if (-(uint64_t)GEP1BaseOffset < V1Size) 1201 return PartialAlias; 1202 return NoAlias; 1203 } 1204 } 1205 } 1206 1207 if (!DecompGEP1.VarIndices.empty()) { 1208 uint64_t Modulo = 0; 1209 bool AllPositive = true; 1210 for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { 1211 1212 // Try to distinguish something like &A[i][1] against &A[42][0]. 1213 // Grab the least significant bit set in any of the scales. We 1214 // don't need std::abs here (even if the scale's negative) as we'll 1215 // be ^'ing Modulo with itself later. 1216 Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale; 1217 1218 if (AllPositive) { 1219 // If the Value could change between cycles, then any reasoning about 1220 // the Value this cycle may not hold in the next cycle. We'll just 1221 // give up if we can't determine conditions that hold for every cycle: 1222 const Value *V = DecompGEP1.VarIndices[i].V; 1223 1224 bool SignKnownZero, SignKnownOne; 1225 ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL, 1226 0, &AC, nullptr, DT); 1227 1228 // Zero-extension widens the variable, and so forces the sign 1229 // bit to zero. 1230 bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V); 1231 SignKnownZero |= IsZExt; 1232 SignKnownOne &= !IsZExt; 1233 1234 // If the variable begins with a zero then we know it's 1235 // positive, regardless of whether the value is signed or 1236 // unsigned. 1237 int64_t Scale = DecompGEP1.VarIndices[i].Scale; 1238 AllPositive = 1239 (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0); 1240 } 1241 } 1242 1243 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1244 1245 // We can compute the difference between the two addresses 1246 // mod Modulo. Check whether that difference guarantees that the 1247 // two locations do not alias. 1248 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1249 if (V1Size != MemoryLocation::UnknownSize && 1250 V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size && 1251 V1Size <= Modulo - ModOffset) 1252 return NoAlias; 1253 1254 // If we know all the variables are positive, then GEP1 >= GEP1BasePtr. 1255 // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers 1256 // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. 1257 if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset) 1258 return NoAlias; 1259 1260 if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size, 1261 GEP1BaseOffset, &AC, DT)) 1262 return NoAlias; 1263 } 1264 1265 // Statically, we can see that the base objects are the same, but the 1266 // pointers have dynamic offsets which we can't resolve. And none of our 1267 // little tricks above worked. 1268 // 1269 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1270 // practical effect of this is protecting TBAA in the case of dynamic 1271 // indices into arrays of unions or malloc'd memory. 1272 return PartialAlias; 1273 } 1274 1275 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { 1276 // If the results agree, take it. 1277 if (A == B) 1278 return A; 1279 // A mix of PartialAlias and MustAlias is PartialAlias. 1280 if ((A == PartialAlias && B == MustAlias) || 1281 (B == PartialAlias && A == MustAlias)) 1282 return PartialAlias; 1283 // Otherwise, we don't know anything. 1284 return MayAlias; 1285 } 1286 1287 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction 1288 /// against another. 1289 AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize, 1290 const AAMDNodes &SIAAInfo, 1291 const Value *V2, uint64_t V2Size, 1292 const AAMDNodes &V2AAInfo, 1293 const Value *UnderV2) { 1294 // If the values are Selects with the same condition, we can do a more precise 1295 // check: just check for aliases between the values on corresponding arms. 1296 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1297 if (SI->getCondition() == SI2->getCondition()) { 1298 AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1299 SI2->getTrueValue(), V2Size, V2AAInfo); 1300 if (Alias == MayAlias) 1301 return MayAlias; 1302 AliasResult ThisAlias = 1303 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1304 SI2->getFalseValue(), V2Size, V2AAInfo); 1305 return MergeAliasResults(ThisAlias, Alias); 1306 } 1307 1308 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1309 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1310 AliasResult Alias = 1311 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), 1312 SISize, SIAAInfo, UnderV2); 1313 if (Alias == MayAlias) 1314 return MayAlias; 1315 1316 AliasResult ThisAlias = 1317 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo, 1318 UnderV2); 1319 return MergeAliasResults(ThisAlias, Alias); 1320 } 1321 1322 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against 1323 /// another. 1324 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize, 1325 const AAMDNodes &PNAAInfo, const Value *V2, 1326 uint64_t V2Size, const AAMDNodes &V2AAInfo, 1327 const Value *UnderV2) { 1328 // Track phi nodes we have visited. We use this information when we determine 1329 // value equivalence. 1330 VisitedPhiBBs.insert(PN->getParent()); 1331 1332 // If the values are PHIs in the same block, we can do a more precise 1333 // as well as efficient check: just check for aliases between the values 1334 // on corresponding edges. 1335 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1336 if (PN2->getParent() == PN->getParent()) { 1337 LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo), 1338 MemoryLocation(V2, V2Size, V2AAInfo)); 1339 if (PN > V2) 1340 std::swap(Locs.first, Locs.second); 1341 // Analyse the PHIs' inputs under the assumption that the PHIs are 1342 // NoAlias. 1343 // If the PHIs are May/MustAlias there must be (recursively) an input 1344 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1345 // there must be an operation on the PHIs within the PHIs' value cycle 1346 // that causes a MayAlias. 1347 // Pretend the phis do not alias. 1348 AliasResult Alias = NoAlias; 1349 assert(AliasCache.count(Locs) && 1350 "There must exist an entry for the phi node"); 1351 AliasResult OrigAliasResult = AliasCache[Locs]; 1352 AliasCache[Locs] = NoAlias; 1353 1354 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1355 AliasResult ThisAlias = 1356 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1357 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1358 V2Size, V2AAInfo); 1359 Alias = MergeAliasResults(ThisAlias, Alias); 1360 if (Alias == MayAlias) 1361 break; 1362 } 1363 1364 // Reset if speculation failed. 1365 if (Alias != NoAlias) 1366 AliasCache[Locs] = OrigAliasResult; 1367 1368 return Alias; 1369 } 1370 1371 SmallPtrSet<Value *, 4> UniqueSrc; 1372 SmallVector<Value *, 4> V1Srcs; 1373 bool isRecursive = false; 1374 for (Value *PV1 : PN->incoming_values()) { 1375 if (isa<PHINode>(PV1)) 1376 // If any of the source itself is a PHI, return MayAlias conservatively 1377 // to avoid compile time explosion. The worst possible case is if both 1378 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1379 // and 'n' are the number of PHI sources. 1380 return MayAlias; 1381 1382 if (EnableRecPhiAnalysis) 1383 if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) { 1384 // Check whether the incoming value is a GEP that advances the pointer 1385 // result of this PHI node (e.g. in a loop). If this is the case, we 1386 // would recurse and always get a MayAlias. Handle this case specially 1387 // below. 1388 if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 && 1389 isa<ConstantInt>(PV1GEP->idx_begin())) { 1390 isRecursive = true; 1391 continue; 1392 } 1393 } 1394 1395 if (UniqueSrc.insert(PV1).second) 1396 V1Srcs.push_back(PV1); 1397 } 1398 1399 // If this PHI node is recursive, set the size of the accessed memory to 1400 // unknown to represent all the possible values the GEP could advance the 1401 // pointer to. 1402 if (isRecursive) 1403 PNSize = MemoryLocation::UnknownSize; 1404 1405 AliasResult Alias = 1406 aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], 1407 PNSize, PNAAInfo, UnderV2); 1408 1409 // Early exit if the check of the first PHI source against V2 is MayAlias. 1410 // Other results are not possible. 1411 if (Alias == MayAlias) 1412 return MayAlias; 1413 1414 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1415 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1416 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1417 Value *V = V1Srcs[i]; 1418 1419 AliasResult ThisAlias = 1420 aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, UnderV2); 1421 Alias = MergeAliasResults(ThisAlias, Alias); 1422 if (Alias == MayAlias) 1423 break; 1424 } 1425 1426 return Alias; 1427 } 1428 1429 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as 1430 /// array references. 1431 AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size, 1432 AAMDNodes V1AAInfo, const Value *V2, 1433 uint64_t V2Size, AAMDNodes V2AAInfo, 1434 const Value *O1, const Value *O2) { 1435 // If either of the memory references is empty, it doesn't matter what the 1436 // pointer values are. 1437 if (V1Size == 0 || V2Size == 0) 1438 return NoAlias; 1439 1440 // Strip off any casts if they exist. 1441 V1 = V1->stripPointerCasts(); 1442 V2 = V2->stripPointerCasts(); 1443 1444 // If V1 or V2 is undef, the result is NoAlias because we can always pick a 1445 // value for undef that aliases nothing in the program. 1446 if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) 1447 return NoAlias; 1448 1449 // Are we checking for alias of the same value? 1450 // Because we look 'through' phi nodes, we could look at "Value" pointers from 1451 // different iterations. We must therefore make sure that this is not the 1452 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1453 // happen by looking at the visited phi nodes and making sure they cannot 1454 // reach the value. 1455 if (isValueEqualInPotentialCycles(V1, V2)) 1456 return MustAlias; 1457 1458 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1459 return NoAlias; // Scalars cannot alias each other 1460 1461 // Figure out what objects these things are pointing to if we can. 1462 if (O1 == nullptr) 1463 O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1464 1465 if (O2 == nullptr) 1466 O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1467 1468 // Null values in the default address space don't point to any object, so they 1469 // don't alias any other pointer. 1470 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1471 if (CPN->getType()->getAddressSpace() == 0) 1472 return NoAlias; 1473 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1474 if (CPN->getType()->getAddressSpace() == 0) 1475 return NoAlias; 1476 1477 if (O1 != O2) { 1478 // If V1/V2 point to two different objects, we know that we have no alias. 1479 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1480 return NoAlias; 1481 1482 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1483 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1484 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1485 return NoAlias; 1486 1487 // Function arguments can't alias with things that are known to be 1488 // unambigously identified at the function level. 1489 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1490 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1491 return NoAlias; 1492 1493 // Most objects can't alias null. 1494 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1495 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1496 return NoAlias; 1497 1498 // If one pointer is the result of a call/invoke or load and the other is a 1499 // non-escaping local object within the same function, then we know the 1500 // object couldn't escape to a point where the call could return it. 1501 // 1502 // Note that if the pointers are in different functions, there are a 1503 // variety of complications. A call with a nocapture argument may still 1504 // temporary store the nocapture argument's value in a temporary memory 1505 // location if that memory location doesn't escape. Or it may pass a 1506 // nocapture value to other functions as long as they don't capture it. 1507 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1508 return NoAlias; 1509 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1510 return NoAlias; 1511 } 1512 1513 // If the size of one access is larger than the entire object on the other 1514 // side, then we know such behavior is undefined and can assume no alias. 1515 if ((V1Size != MemoryLocation::UnknownSize && 1516 isObjectSmallerThan(O2, V1Size, DL, TLI)) || 1517 (V2Size != MemoryLocation::UnknownSize && 1518 isObjectSmallerThan(O1, V2Size, DL, TLI))) 1519 return NoAlias; 1520 1521 // Check the cache before climbing up use-def chains. This also terminates 1522 // otherwise infinitely recursive queries. 1523 LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo), 1524 MemoryLocation(V2, V2Size, V2AAInfo)); 1525 if (V1 > V2) 1526 std::swap(Locs.first, Locs.second); 1527 std::pair<AliasCacheTy::iterator, bool> Pair = 1528 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1529 if (!Pair.second) 1530 return Pair.first->second; 1531 1532 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1533 // GEP can't simplify, we don't even look at the PHI cases. 1534 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1535 std::swap(V1, V2); 1536 std::swap(V1Size, V2Size); 1537 std::swap(O1, O2); 1538 std::swap(V1AAInfo, V2AAInfo); 1539 } 1540 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1541 AliasResult Result = 1542 aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1543 if (Result != MayAlias) 1544 return AliasCache[Locs] = Result; 1545 } 1546 1547 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1548 std::swap(V1, V2); 1549 std::swap(O1, O2); 1550 std::swap(V1Size, V2Size); 1551 std::swap(V1AAInfo, V2AAInfo); 1552 } 1553 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1554 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1555 V2, V2Size, V2AAInfo, O2); 1556 if (Result != MayAlias) 1557 return AliasCache[Locs] = Result; 1558 } 1559 1560 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1561 std::swap(V1, V2); 1562 std::swap(O1, O2); 1563 std::swap(V1Size, V2Size); 1564 std::swap(V1AAInfo, V2AAInfo); 1565 } 1566 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1567 AliasResult Result = 1568 aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2); 1569 if (Result != MayAlias) 1570 return AliasCache[Locs] = Result; 1571 } 1572 1573 // If both pointers are pointing into the same object and one of them 1574 // accesses the entire object, then the accesses must overlap in some way. 1575 if (O1 == O2) 1576 if ((V1Size != MemoryLocation::UnknownSize && 1577 isObjectSize(O1, V1Size, DL, TLI)) || 1578 (V2Size != MemoryLocation::UnknownSize && 1579 isObjectSize(O2, V2Size, DL, TLI))) 1580 return AliasCache[Locs] = PartialAlias; 1581 1582 // Recurse back into the best AA results we have, potentially with refined 1583 // memory locations. We have already ensured that BasicAA has a MayAlias 1584 // cache result for these, so any recursion back into BasicAA won't loop. 1585 AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second); 1586 return AliasCache[Locs] = Result; 1587 } 1588 1589 /// Check whether two Values can be considered equivalent. 1590 /// 1591 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether 1592 /// they can not be part of a cycle in the value graph by looking at all 1593 /// visited phi nodes an making sure that the phis cannot reach the value. We 1594 /// have to do this because we are looking through phi nodes (That is we say 1595 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 1596 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, 1597 const Value *V2) { 1598 if (V != V2) 1599 return false; 1600 1601 const Instruction *Inst = dyn_cast<Instruction>(V); 1602 if (!Inst) 1603 return true; 1604 1605 if (VisitedPhiBBs.empty()) 1606 return true; 1607 1608 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1609 return false; 1610 1611 // Make sure that the visited phis cannot reach the Value. This ensures that 1612 // the Values cannot come from different iterations of a potential cycle the 1613 // phi nodes could be involved in. 1614 for (auto *P : VisitedPhiBBs) 1615 if (isPotentiallyReachable(&P->front(), Inst, DT, LI)) 1616 return false; 1617 1618 return true; 1619 } 1620 1621 /// Computes the symbolic difference between two de-composed GEPs. 1622 /// 1623 /// Dest and Src are the variable indices from two decomposed GetElementPtr 1624 /// instructions GEP1 and GEP2 which have common base pointers. 1625 void BasicAAResult::GetIndexDifference( 1626 SmallVectorImpl<VariableGEPIndex> &Dest, 1627 const SmallVectorImpl<VariableGEPIndex> &Src) { 1628 if (Src.empty()) 1629 return; 1630 1631 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1632 const Value *V = Src[i].V; 1633 unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; 1634 int64_t Scale = Src[i].Scale; 1635 1636 // Find V in Dest. This is N^2, but pointer indices almost never have more 1637 // than a few variable indexes. 1638 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1639 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1640 Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) 1641 continue; 1642 1643 // If we found it, subtract off Scale V's from the entry in Dest. If it 1644 // goes to zero, remove the entry. 1645 if (Dest[j].Scale != Scale) 1646 Dest[j].Scale -= Scale; 1647 else 1648 Dest.erase(Dest.begin() + j); 1649 Scale = 0; 1650 break; 1651 } 1652 1653 // If we didn't consume this entry, add it to the end of the Dest list. 1654 if (Scale) { 1655 VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; 1656 Dest.push_back(Entry); 1657 } 1658 } 1659 } 1660 1661 bool BasicAAResult::constantOffsetHeuristic( 1662 const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size, 1663 uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC, 1664 DominatorTree *DT) { 1665 if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || 1666 V2Size == MemoryLocation::UnknownSize) 1667 return false; 1668 1669 const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; 1670 1671 if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || 1672 Var0.Scale != -Var1.Scale) 1673 return false; 1674 1675 unsigned Width = Var1.V->getType()->getIntegerBitWidth(); 1676 1677 // We'll strip off the Extensions of Var0 and Var1 and do another round 1678 // of GetLinearExpression decomposition. In the example above, if Var0 1679 // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. 1680 1681 APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), 1682 V1Offset(Width, 0); 1683 bool NSW = true, NUW = true; 1684 unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; 1685 const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, 1686 V0SExtBits, DL, 0, AC, DT, NSW, NUW); 1687 NSW = true; 1688 NUW = true; 1689 const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, 1690 V1SExtBits, DL, 0, AC, DT, NSW, NUW); 1691 1692 if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || 1693 V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) 1694 return false; 1695 1696 // We have a hit - Var0 and Var1 only differ by a constant offset! 1697 1698 // If we've been sext'ed then zext'd the maximum difference between Var0 and 1699 // Var1 is possible to calculate, but we're just interested in the absolute 1700 // minimum difference between the two. The minimum distance may occur due to 1701 // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so 1702 // the minimum distance between %i and %i + 5 is 3. 1703 APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff; 1704 MinDiff = APIntOps::umin(MinDiff, Wrapped); 1705 uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); 1706 1707 // We can't definitely say whether GEP1 is before or after V2 due to wrapping 1708 // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other 1709 // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and 1710 // V2Size can fit in the MinDiffBytes gap. 1711 return V1Size + std::abs(BaseOffset) <= MinDiffBytes && 1712 V2Size + std::abs(BaseOffset) <= MinDiffBytes; 1713 } 1714 1715 //===----------------------------------------------------------------------===// 1716 // BasicAliasAnalysis Pass 1717 //===----------------------------------------------------------------------===// 1718 1719 AnalysisKey BasicAA::Key; 1720 1721 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { 1722 return BasicAAResult(F.getParent()->getDataLayout(), 1723 AM.getResult<TargetLibraryAnalysis>(F), 1724 AM.getResult<AssumptionAnalysis>(F), 1725 &AM.getResult<DominatorTreeAnalysis>(F), 1726 AM.getCachedResult<LoopAnalysis>(F)); 1727 } 1728 1729 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { 1730 initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1731 } 1732 1733 char BasicAAWrapperPass::ID = 0; 1734 void BasicAAWrapperPass::anchor() {} 1735 1736 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa", 1737 "Basic Alias Analysis (stateless AA impl)", true, true) 1738 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1739 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1740 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1741 INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa", 1742 "Basic Alias Analysis (stateless AA impl)", true, true) 1743 1744 FunctionPass *llvm::createBasicAAWrapperPass() { 1745 return new BasicAAWrapperPass(); 1746 } 1747 1748 bool BasicAAWrapperPass::runOnFunction(Function &F) { 1749 auto &ACT = getAnalysis<AssumptionCacheTracker>(); 1750 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); 1751 auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); 1752 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 1753 1754 Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(), 1755 ACT.getAssumptionCache(F), &DTWP.getDomTree(), 1756 LIWP ? &LIWP->getLoopInfo() : nullptr)); 1757 1758 return false; 1759 } 1760 1761 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1762 AU.setPreservesAll(); 1763 AU.addRequired<AssumptionCacheTracker>(); 1764 AU.addRequired<DominatorTreeWrapperPass>(); 1765 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1766 } 1767 1768 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { 1769 return BasicAAResult( 1770 F.getParent()->getDataLayout(), 1771 P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 1772 P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); 1773 } 1774