1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the primary stateless implementation of the
10 // Alias Analysis interface that implements identities (two different
11 // globals cannot alias, etc), but does no stateful analysis.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/BasicAliasAnalysis.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/PhiValues.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/KnownBits.h"
58 #include <cassert>
59 #include <cstdint>
60 #include <cstdlib>
61 #include <utility>
62 
63 #define DEBUG_TYPE "basicaa"
64 
65 using namespace llvm;
66 
67 /// Enable analysis of recursive PHI nodes.
68 static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
69                                           cl::init(true));
70 
71 /// By default, even on 32-bit architectures we use 64-bit integers for
72 /// calculations. This will allow us to more-aggressively decompose indexing
73 /// expressions calculated using i64 values (e.g., long long in C) which is
74 /// common enough to worry about.
75 static cl::opt<bool> ForceAtLeast64Bits("basic-aa-force-at-least-64b",
76                                         cl::Hidden, cl::init(true));
77 static cl::opt<bool> DoubleCalcBits("basic-aa-double-calc-bits",
78                                     cl::Hidden, cl::init(false));
79 
80 /// SearchLimitReached / SearchTimes shows how often the limit of
81 /// to decompose GEPs is reached. It will affect the precision
82 /// of basic alias analysis.
83 STATISTIC(SearchLimitReached, "Number of times the limit to "
84                               "decompose GEPs is reached");
85 STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
86 
87 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
88 /// in a cycle. Because we are analysing 'through' phi nodes, we need to be
89 /// careful with value equivalence. We use reachability to make sure a value
90 /// cannot be involved in a cycle.
91 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
92 
93 // The max limit of the search depth in DecomposeGEPExpression() and
94 // getUnderlyingObject(), both functions need to use the same search
95 // depth otherwise the algorithm in aliasGEP will assert.
96 static const unsigned MaxLookupSearchDepth = 6;
97 
98 bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
99                                FunctionAnalysisManager::Invalidator &Inv) {
100   // We don't care if this analysis itself is preserved, it has no state. But
101   // we need to check that the analyses it depends on have been. Note that we
102   // may be created without handles to some analyses and in that case don't
103   // depend on them.
104   if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
105       (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)) ||
106       (LI && Inv.invalidate<LoopAnalysis>(Fn, PA)) ||
107       (PV && Inv.invalidate<PhiValuesAnalysis>(Fn, PA)))
108     return true;
109 
110   // Otherwise this analysis result remains valid.
111   return false;
112 }
113 
114 //===----------------------------------------------------------------------===//
115 // Useful predicates
116 //===----------------------------------------------------------------------===//
117 
118 /// Returns true if the pointer is one which would have been considered an
119 /// escape by isNonEscapingLocalObject.
120 static bool isEscapeSource(const Value *V) {
121   if (isa<CallBase>(V))
122     return true;
123 
124   if (isa<Argument>(V))
125     return true;
126 
127   // The load case works because isNonEscapingLocalObject considers all
128   // stores to be escapes (it passes true for the StoreCaptures argument
129   // to PointerMayBeCaptured).
130   if (isa<LoadInst>(V))
131     return true;
132 
133   return false;
134 }
135 
136 /// Returns the size of the object specified by V or UnknownSize if unknown.
137 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
138                               const TargetLibraryInfo &TLI,
139                               bool NullIsValidLoc,
140                               bool RoundToAlign = false) {
141   uint64_t Size;
142   ObjectSizeOpts Opts;
143   Opts.RoundToAlign = RoundToAlign;
144   Opts.NullIsUnknownSize = NullIsValidLoc;
145   if (getObjectSize(V, Size, DL, &TLI, Opts))
146     return Size;
147   return MemoryLocation::UnknownSize;
148 }
149 
150 /// Returns true if we can prove that the object specified by V is smaller than
151 /// Size.
152 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
153                                 const DataLayout &DL,
154                                 const TargetLibraryInfo &TLI,
155                                 bool NullIsValidLoc) {
156   // Note that the meanings of the "object" are slightly different in the
157   // following contexts:
158   //    c1: llvm::getObjectSize()
159   //    c2: llvm.objectsize() intrinsic
160   //    c3: isObjectSmallerThan()
161   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
162   // refers to the "entire object".
163   //
164   //  Consider this example:
165   //     char *p = (char*)malloc(100)
166   //     char *q = p+80;
167   //
168   //  In the context of c1 and c2, the "object" pointed by q refers to the
169   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
170   //
171   //  However, in the context of c3, the "object" refers to the chunk of memory
172   // being allocated. So, the "object" has 100 bytes, and q points to the middle
173   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
174   // parameter, before the llvm::getObjectSize() is called to get the size of
175   // entire object, we should:
176   //    - either rewind the pointer q to the base-address of the object in
177   //      question (in this case rewind to p), or
178   //    - just give up. It is up to caller to make sure the pointer is pointing
179   //      to the base address the object.
180   //
181   // We go for 2nd option for simplicity.
182   if (!isIdentifiedObject(V))
183     return false;
184 
185   // This function needs to use the aligned object size because we allow
186   // reads a bit past the end given sufficient alignment.
187   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
188                                       /*RoundToAlign*/ true);
189 
190   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
191 }
192 
193 /// Return the minimal extent from \p V to the end of the underlying object,
194 /// assuming the result is used in an aliasing query. E.g., we do use the query
195 /// location size and the fact that null pointers cannot alias here.
196 static uint64_t getMinimalExtentFrom(const Value &V,
197                                      const LocationSize &LocSize,
198                                      const DataLayout &DL,
199                                      bool NullIsValidLoc) {
200   // If we have dereferenceability information we know a lower bound for the
201   // extent as accesses for a lower offset would be valid. We need to exclude
202   // the "or null" part if null is a valid pointer.
203   bool CanBeNull;
204   uint64_t DerefBytes = V.getPointerDereferenceableBytes(DL, CanBeNull);
205   DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
206   // If queried with a precise location size, we assume that location size to be
207   // accessed, thus valid.
208   if (LocSize.isPrecise())
209     DerefBytes = std::max(DerefBytes, LocSize.getValue());
210   return DerefBytes;
211 }
212 
213 /// Returns true if we can prove that the object specified by V has size Size.
214 static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
215                          const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
216   uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc);
217   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
218 }
219 
220 //===----------------------------------------------------------------------===//
221 // GetElementPtr Instruction Decomposition and Analysis
222 //===----------------------------------------------------------------------===//
223 
224 /// Analyzes the specified value as a linear expression: "A*V + B", where A and
225 /// B are constant integers.
226 ///
227 /// Returns the scale and offset values as APInts and return V as a Value*, and
228 /// return whether we looked through any sign or zero extends.  The incoming
229 /// Value is known to have IntegerType, and it may already be sign or zero
230 /// extended.
231 ///
232 /// Note that this looks through extends, so the high bits may not be
233 /// represented in the result.
234 /*static*/ const Value *BasicAAResult::GetLinearExpression(
235     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
236     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
237     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
238   assert(V->getType()->isIntegerTy() && "Not an integer value");
239 
240   // Limit our recursion depth.
241   if (Depth == 6) {
242     Scale = 1;
243     Offset = 0;
244     return V;
245   }
246 
247   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
248     // If it's a constant, just convert it to an offset and remove the variable.
249     // If we've been called recursively, the Offset bit width will be greater
250     // than the constant's (the Offset's always as wide as the outermost call),
251     // so we'll zext here and process any extension in the isa<SExtInst> &
252     // isa<ZExtInst> cases below.
253     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
254     assert(Scale == 0 && "Constant values don't have a scale");
255     return V;
256   }
257 
258   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
259     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
260       // If we've been called recursively, then Offset and Scale will be wider
261       // than the BOp operands. We'll always zext it here as we'll process sign
262       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
263       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
264 
265       switch (BOp->getOpcode()) {
266       default:
267         // We don't understand this instruction, so we can't decompose it any
268         // further.
269         Scale = 1;
270         Offset = 0;
271         return V;
272       case Instruction::Or:
273         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
274         // analyze it.
275         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
276                                BOp, DT)) {
277           Scale = 1;
278           Offset = 0;
279           return V;
280         }
281         LLVM_FALLTHROUGH;
282       case Instruction::Add:
283         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
284                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
285         Offset += RHS;
286         break;
287       case Instruction::Sub:
288         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
289                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
290         Offset -= RHS;
291         break;
292       case Instruction::Mul:
293         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
294                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
295         Offset *= RHS;
296         Scale *= RHS;
297         break;
298       case Instruction::Shl:
299         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
300                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
301 
302         // We're trying to linearize an expression of the kind:
303         //   shl i8 -128, 36
304         // where the shift count exceeds the bitwidth of the type.
305         // We can't decompose this further (the expression would return
306         // a poison value).
307         if (Offset.getBitWidth() < RHS.getLimitedValue() ||
308             Scale.getBitWidth() < RHS.getLimitedValue()) {
309           Scale = 1;
310           Offset = 0;
311           return V;
312         }
313 
314         Offset <<= RHS.getLimitedValue();
315         Scale <<= RHS.getLimitedValue();
316         // the semantics of nsw and nuw for left shifts don't match those of
317         // multiplications, so we won't propagate them.
318         NSW = NUW = false;
319         return V;
320       }
321 
322       if (isa<OverflowingBinaryOperator>(BOp)) {
323         NUW &= BOp->hasNoUnsignedWrap();
324         NSW &= BOp->hasNoSignedWrap();
325       }
326       return V;
327     }
328   }
329 
330   // Since GEP indices are sign extended anyway, we don't care about the high
331   // bits of a sign or zero extended value - just scales and offsets.  The
332   // extensions have to be consistent though.
333   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
334     Value *CastOp = cast<CastInst>(V)->getOperand(0);
335     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
336     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
337     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
338     const Value *Result =
339         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
340                             Depth + 1, AC, DT, NSW, NUW);
341 
342     // zext(zext(%x)) == zext(%x), and similarly for sext; we'll handle this
343     // by just incrementing the number of bits we've extended by.
344     unsigned ExtendedBy = NewWidth - SmallWidth;
345 
346     if (isa<SExtInst>(V) && ZExtBits == 0) {
347       // sext(sext(%x, a), b) == sext(%x, a + b)
348 
349       if (NSW) {
350         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
351         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
352         unsigned OldWidth = Offset.getBitWidth();
353         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
354       } else {
355         // We may have signed-wrapped, so don't decompose sext(%x + c) into
356         // sext(%x) + sext(c)
357         Scale = 1;
358         Offset = 0;
359         Result = CastOp;
360         ZExtBits = OldZExtBits;
361         SExtBits = OldSExtBits;
362       }
363       SExtBits += ExtendedBy;
364     } else {
365       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
366 
367       if (!NUW) {
368         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
369         // zext(%x) + zext(c)
370         Scale = 1;
371         Offset = 0;
372         Result = CastOp;
373         ZExtBits = OldZExtBits;
374         SExtBits = OldSExtBits;
375       }
376       ZExtBits += ExtendedBy;
377     }
378 
379     return Result;
380   }
381 
382   Scale = 1;
383   Offset = 0;
384   return V;
385 }
386 
387 /// To ensure a pointer offset fits in an integer of size PointerSize
388 /// (in bits) when that size is smaller than the maximum pointer size. This is
389 /// an issue, for example, in particular for 32b pointers with negative indices
390 /// that rely on two's complement wrap-arounds for precise alias information
391 /// where the maximum pointer size is 64b.
392 static APInt adjustToPointerSize(const APInt &Offset, unsigned PointerSize) {
393   assert(PointerSize <= Offset.getBitWidth() && "Invalid PointerSize!");
394   unsigned ShiftBits = Offset.getBitWidth() - PointerSize;
395   return (Offset << ShiftBits).ashr(ShiftBits);
396 }
397 
398 static unsigned getMaxPointerSize(const DataLayout &DL) {
399   unsigned MaxPointerSize = DL.getMaxPointerSizeInBits();
400   if (MaxPointerSize < 64 && ForceAtLeast64Bits) MaxPointerSize = 64;
401   if (DoubleCalcBits) MaxPointerSize *= 2;
402 
403   return MaxPointerSize;
404 }
405 
406 /// If V is a symbolic pointer expression, decompose it into a base pointer
407 /// with a constant offset and a number of scaled symbolic offsets.
408 ///
409 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
410 /// in the VarIndices vector) are Value*'s that are known to be scaled by the
411 /// specified amount, but which may have other unrepresented high bits. As
412 /// such, the gep cannot necessarily be reconstructed from its decomposed form.
413 ///
414 /// This function is capable of analyzing everything that getUnderlyingObject
415 /// can look through. To be able to do that getUnderlyingObject and
416 /// DecomposeGEPExpression must use the same search depth
417 /// (MaxLookupSearchDepth).
418 bool BasicAAResult::DecomposeGEPExpression(const Value *V,
419        DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
420        DominatorTree *DT) {
421   // Limit recursion depth to limit compile time in crazy cases.
422   unsigned MaxLookup = MaxLookupSearchDepth;
423   SearchTimes++;
424 
425   unsigned MaxPointerSize = getMaxPointerSize(DL);
426   Decomposed.VarIndices.clear();
427   do {
428     // See if this is a bitcast or GEP.
429     const Operator *Op = dyn_cast<Operator>(V);
430     if (!Op) {
431       // The only non-operator case we can handle are GlobalAliases.
432       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
433         if (!GA->isInterposable()) {
434           V = GA->getAliasee();
435           continue;
436         }
437       }
438       Decomposed.Base = V;
439       return false;
440     }
441 
442     if (Op->getOpcode() == Instruction::BitCast ||
443         Op->getOpcode() == Instruction::AddrSpaceCast) {
444       V = Op->getOperand(0);
445       continue;
446     }
447 
448     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
449     if (!GEPOp) {
450       if (const auto *PHI = dyn_cast<PHINode>(V)) {
451         // Look through single-arg phi nodes created by LCSSA.
452         if (PHI->getNumIncomingValues() == 1) {
453           V = PHI->getIncomingValue(0);
454           continue;
455         }
456       } else if (const auto *Call = dyn_cast<CallBase>(V)) {
457         // CaptureTracking can know about special capturing properties of some
458         // intrinsics like launder.invariant.group, that can't be expressed with
459         // the attributes, but have properties like returning aliasing pointer.
460         // Because some analysis may assume that nocaptured pointer is not
461         // returned from some special intrinsic (because function would have to
462         // be marked with returns attribute), it is crucial to use this function
463         // because it should be in sync with CaptureTracking. Not using it may
464         // cause weird miscompilations where 2 aliasing pointers are assumed to
465         // noalias.
466         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
467           V = RP;
468           continue;
469         }
470       }
471 
472       Decomposed.Base = V;
473       return false;
474     }
475 
476     // Don't attempt to analyze GEPs over unsized objects.
477     if (!GEPOp->getSourceElementType()->isSized()) {
478       Decomposed.Base = V;
479       return false;
480     }
481 
482     // Don't attempt to analyze GEPs if index scale is not a compile-time
483     // constant.
484     if (isa<ScalableVectorType>(GEPOp->getSourceElementType())) {
485       Decomposed.Base = V;
486       Decomposed.HasCompileTimeConstantScale = false;
487       return false;
488     }
489 
490     unsigned AS = GEPOp->getPointerAddressSpace();
491     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
492     gep_type_iterator GTI = gep_type_begin(GEPOp);
493     unsigned PointerSize = DL.getPointerSizeInBits(AS);
494     // Assume all GEP operands are constants until proven otherwise.
495     bool GepHasConstantOffset = true;
496     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
497          I != E; ++I, ++GTI) {
498       const Value *Index = *I;
499       // Compute the (potentially symbolic) offset in bytes for this index.
500       if (StructType *STy = GTI.getStructTypeOrNull()) {
501         // For a struct, add the member offset.
502         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
503         if (FieldNo == 0)
504           continue;
505 
506         Decomposed.StructOffset +=
507           DL.getStructLayout(STy)->getElementOffset(FieldNo);
508         continue;
509       }
510 
511       // For an array/pointer, add the element offset, explicitly scaled.
512       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
513         if (CIdx->isZero())
514           continue;
515         Decomposed.OtherOffset +=
516             (DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize() *
517              CIdx->getValue().sextOrSelf(MaxPointerSize))
518                 .sextOrTrunc(MaxPointerSize);
519         continue;
520       }
521 
522       GepHasConstantOffset = false;
523 
524       APInt Scale(MaxPointerSize,
525                   DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
526       unsigned ZExtBits = 0, SExtBits = 0;
527 
528       // If the integer type is smaller than the pointer size, it is implicitly
529       // sign extended to pointer size.
530       unsigned Width = Index->getType()->getIntegerBitWidth();
531       if (PointerSize > Width)
532         SExtBits += PointerSize - Width;
533 
534       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
535       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
536       bool NSW = true, NUW = true;
537       const Value *OrigIndex = Index;
538       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
539                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
540 
541       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
542       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
543 
544       // It can be the case that, even through C1*V+C2 does not overflow for
545       // relevant values of V, (C2*Scale) can overflow. In that case, we cannot
546       // decompose the expression in this way.
547       //
548       // FIXME: C1*Scale and the other operations in the decomposed
549       // (C1*Scale)*V+C2*Scale can also overflow. We should check for this
550       // possibility.
551       APInt WideScaledOffset = IndexOffset.sextOrTrunc(MaxPointerSize*2) *
552                                  Scale.sext(MaxPointerSize*2);
553       if (WideScaledOffset.getMinSignedBits() > MaxPointerSize) {
554         Index = OrigIndex;
555         IndexScale = 1;
556         IndexOffset = 0;
557 
558         ZExtBits = SExtBits = 0;
559         if (PointerSize > Width)
560           SExtBits += PointerSize - Width;
561       } else {
562         Decomposed.OtherOffset += IndexOffset.sextOrTrunc(MaxPointerSize) * Scale;
563         Scale *= IndexScale.sextOrTrunc(MaxPointerSize);
564       }
565 
566       // If we already had an occurrence of this index variable, merge this
567       // scale into it.  For example, we want to handle:
568       //   A[x][x] -> x*16 + x*4 -> x*20
569       // This also ensures that 'x' only appears in the index list once.
570       for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
571         if (Decomposed.VarIndices[i].V == Index &&
572             Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
573             Decomposed.VarIndices[i].SExtBits == SExtBits) {
574           Scale += Decomposed.VarIndices[i].Scale;
575           Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
576           break;
577         }
578       }
579 
580       // Make sure that we have a scale that makes sense for this target's
581       // pointer size.
582       Scale = adjustToPointerSize(Scale, PointerSize);
583 
584       if (!!Scale) {
585         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, Scale};
586         Decomposed.VarIndices.push_back(Entry);
587       }
588     }
589 
590     // Take care of wrap-arounds
591     if (GepHasConstantOffset) {
592       Decomposed.StructOffset =
593           adjustToPointerSize(Decomposed.StructOffset, PointerSize);
594       Decomposed.OtherOffset =
595           adjustToPointerSize(Decomposed.OtherOffset, PointerSize);
596     }
597 
598     // Analyze the base pointer next.
599     V = GEPOp->getOperand(0);
600   } while (--MaxLookup);
601 
602   // If the chain of expressions is too deep, just return early.
603   Decomposed.Base = V;
604   SearchLimitReached++;
605   return true;
606 }
607 
608 /// Returns whether the given pointer value points to memory that is local to
609 /// the function, with global constants being considered local to all
610 /// functions.
611 bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
612                                            AAQueryInfo &AAQI, bool OrLocal) {
613   assert(Visited.empty() && "Visited must be cleared after use!");
614 
615   unsigned MaxLookup = 8;
616   SmallVector<const Value *, 16> Worklist;
617   Worklist.push_back(Loc.Ptr);
618   do {
619     const Value *V = getUnderlyingObject(Worklist.pop_back_val());
620     if (!Visited.insert(V).second) {
621       Visited.clear();
622       return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
623     }
624 
625     // An alloca instruction defines local memory.
626     if (OrLocal && isa<AllocaInst>(V))
627       continue;
628 
629     // A global constant counts as local memory for our purposes.
630     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
631       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
632       // global to be marked constant in some modules and non-constant in
633       // others.  GV may even be a declaration, not a definition.
634       if (!GV->isConstant()) {
635         Visited.clear();
636         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
637       }
638       continue;
639     }
640 
641     // If both select values point to local memory, then so does the select.
642     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
643       Worklist.push_back(SI->getTrueValue());
644       Worklist.push_back(SI->getFalseValue());
645       continue;
646     }
647 
648     // If all values incoming to a phi node point to local memory, then so does
649     // the phi.
650     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
651       // Don't bother inspecting phi nodes with many operands.
652       if (PN->getNumIncomingValues() > MaxLookup) {
653         Visited.clear();
654         return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
655       }
656       for (Value *IncValue : PN->incoming_values())
657         Worklist.push_back(IncValue);
658       continue;
659     }
660 
661     // Otherwise be conservative.
662     Visited.clear();
663     return AAResultBase::pointsToConstantMemory(Loc, AAQI, OrLocal);
664   } while (!Worklist.empty() && --MaxLookup);
665 
666   Visited.clear();
667   return Worklist.empty();
668 }
669 
670 /// Returns the behavior when calling the given call site.
671 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const CallBase *Call) {
672   if (Call->doesNotAccessMemory())
673     // Can't do better than this.
674     return FMRB_DoesNotAccessMemory;
675 
676   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
677 
678   // If the callsite knows it only reads memory, don't return worse
679   // than that.
680   if (Call->onlyReadsMemory())
681     Min = FMRB_OnlyReadsMemory;
682   else if (Call->doesNotReadMemory())
683     Min = FMRB_OnlyWritesMemory;
684 
685   if (Call->onlyAccessesArgMemory())
686     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
687   else if (Call->onlyAccessesInaccessibleMemory())
688     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
689   else if (Call->onlyAccessesInaccessibleMemOrArgMem())
690     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
691 
692   // If the call has operand bundles then aliasing attributes from the function
693   // it calls do not directly apply to the call.  This can be made more precise
694   // in the future.
695   if (!Call->hasOperandBundles())
696     if (const Function *F = Call->getCalledFunction())
697       Min =
698           FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));
699 
700   return Min;
701 }
702 
703 /// Returns the behavior when calling the given function. For use when the call
704 /// site is not known.
705 FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
706   // If the function declares it doesn't access memory, we can't do better.
707   if (F->doesNotAccessMemory())
708     return FMRB_DoesNotAccessMemory;
709 
710   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
711 
712   // If the function declares it only reads memory, go with that.
713   if (F->onlyReadsMemory())
714     Min = FMRB_OnlyReadsMemory;
715   else if (F->doesNotReadMemory())
716     Min = FMRB_OnlyWritesMemory;
717 
718   if (F->onlyAccessesArgMemory())
719     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
720   else if (F->onlyAccessesInaccessibleMemory())
721     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleMem);
722   else if (F->onlyAccessesInaccessibleMemOrArgMem())
723     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesInaccessibleOrArgMem);
724 
725   return Min;
726 }
727 
728 /// Returns true if this is a writeonly (i.e Mod only) parameter.
729 static bool isWriteOnlyParam(const CallBase *Call, unsigned ArgIdx,
730                              const TargetLibraryInfo &TLI) {
731   if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
732     return true;
733 
734   // We can bound the aliasing properties of memset_pattern16 just as we can
735   // for memcpy/memset.  This is particularly important because the
736   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
737   // whenever possible.
738   // FIXME Consider handling this in InferFunctionAttr.cpp together with other
739   // attributes.
740   LibFunc F;
741   if (Call->getCalledFunction() &&
742       TLI.getLibFunc(*Call->getCalledFunction(), F) &&
743       F == LibFunc_memset_pattern16 && TLI.has(F))
744     if (ArgIdx == 0)
745       return true;
746 
747   // TODO: memset_pattern4, memset_pattern8
748   // TODO: _chk variants
749   // TODO: strcmp, strcpy
750 
751   return false;
752 }
753 
754 ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
755                                            unsigned ArgIdx) {
756   // Checking for known builtin intrinsics and target library functions.
757   if (isWriteOnlyParam(Call, ArgIdx, TLI))
758     return ModRefInfo::Mod;
759 
760   if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
761     return ModRefInfo::Ref;
762 
763   if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
764     return ModRefInfo::NoModRef;
765 
766   return AAResultBase::getArgModRefInfo(Call, ArgIdx);
767 }
768 
769 static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
770   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
771   return II && II->getIntrinsicID() == IID;
772 }
773 
774 #ifndef NDEBUG
775 static const Function *getParent(const Value *V) {
776   if (const Instruction *inst = dyn_cast<Instruction>(V)) {
777     if (!inst->getParent())
778       return nullptr;
779     return inst->getParent()->getParent();
780   }
781 
782   if (const Argument *arg = dyn_cast<Argument>(V))
783     return arg->getParent();
784 
785   return nullptr;
786 }
787 
788 static bool notDifferentParent(const Value *O1, const Value *O2) {
789 
790   const Function *F1 = getParent(O1);
791   const Function *F2 = getParent(O2);
792 
793   return !F1 || !F2 || F1 == F2;
794 }
795 #endif
796 
797 AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
798                                  const MemoryLocation &LocB,
799                                  AAQueryInfo &AAQI) {
800   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
801          "BasicAliasAnalysis doesn't support interprocedural queries.");
802 
803   // If we have a directly cached entry for these locations, we have recursed
804   // through this once, so just return the cached results. Notably, when this
805   // happens, we don't clear the cache.
806   auto CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocA, LocB));
807   if (CacheIt != AAQI.AliasCache.end())
808     return CacheIt->second;
809 
810   CacheIt = AAQI.AliasCache.find(AAQueryInfo::LocPair(LocB, LocA));
811   if (CacheIt != AAQI.AliasCache.end())
812     return CacheIt->second;
813 
814   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
815                                  LocB.Size, LocB.AATags, AAQI);
816 
817   VisitedPhiBBs.clear();
818   return Alias;
819 }
820 
821 /// Checks to see if the specified callsite can clobber the specified memory
822 /// object.
823 ///
824 /// Since we only look at local properties of this function, we really can't
825 /// say much about this query.  We do, however, use simple "address taken"
826 /// analysis on local objects.
827 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
828                                         const MemoryLocation &Loc,
829                                         AAQueryInfo &AAQI) {
830   assert(notDifferentParent(Call, Loc.Ptr) &&
831          "AliasAnalysis query involving multiple functions!");
832 
833   const Value *Object = getUnderlyingObject(Loc.Ptr);
834 
835   // Calls marked 'tail' cannot read or write allocas from the current frame
836   // because the current frame might be destroyed by the time they run. However,
837   // a tail call may use an alloca with byval. Calling with byval copies the
838   // contents of the alloca into argument registers or stack slots, so there is
839   // no lifetime issue.
840   if (isa<AllocaInst>(Object))
841     if (const CallInst *CI = dyn_cast<CallInst>(Call))
842       if (CI->isTailCall() &&
843           !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
844         return ModRefInfo::NoModRef;
845 
846   // Stack restore is able to modify unescaped dynamic allocas. Assume it may
847   // modify them even though the alloca is not escaped.
848   if (auto *AI = dyn_cast<AllocaInst>(Object))
849     if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
850       return ModRefInfo::Mod;
851 
852   // If the pointer is to a locally allocated object that does not escape,
853   // then the call can not mod/ref the pointer unless the call takes the pointer
854   // as an argument, and itself doesn't capture it.
855   if (!isa<Constant>(Object) && Call != Object &&
856       isNonEscapingLocalObject(Object, &AAQI.IsCapturedCache)) {
857 
858     // Optimistically assume that call doesn't touch Object and check this
859     // assumption in the following loop.
860     ModRefInfo Result = ModRefInfo::NoModRef;
861     bool IsMustAlias = true;
862 
863     unsigned OperandNo = 0;
864     for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
865          CI != CE; ++CI, ++OperandNo) {
866       // Only look at the no-capture or byval pointer arguments.  If this
867       // pointer were passed to arguments that were neither of these, then it
868       // couldn't be no-capture.
869       if (!(*CI)->getType()->isPointerTy() ||
870           (!Call->doesNotCapture(OperandNo) &&
871            OperandNo < Call->getNumArgOperands() &&
872            !Call->isByValArgument(OperandNo)))
873         continue;
874 
875       // Call doesn't access memory through this operand, so we don't care
876       // if it aliases with Object.
877       if (Call->doesNotAccessMemory(OperandNo))
878         continue;
879 
880       // If this is a no-capture pointer argument, see if we can tell that it
881       // is impossible to alias the pointer we're checking.
882       AliasResult AR = getBestAAResults().alias(MemoryLocation(*CI),
883                                                 MemoryLocation(Object), AAQI);
884       if (AR != MustAlias)
885         IsMustAlias = false;
886       // Operand doesn't alias 'Object', continue looking for other aliases
887       if (AR == NoAlias)
888         continue;
889       // Operand aliases 'Object', but call doesn't modify it. Strengthen
890       // initial assumption and keep looking in case if there are more aliases.
891       if (Call->onlyReadsMemory(OperandNo)) {
892         Result = setRef(Result);
893         continue;
894       }
895       // Operand aliases 'Object' but call only writes into it.
896       if (Call->doesNotReadMemory(OperandNo)) {
897         Result = setMod(Result);
898         continue;
899       }
900       // This operand aliases 'Object' and call reads and writes into it.
901       // Setting ModRef will not yield an early return below, MustAlias is not
902       // used further.
903       Result = ModRefInfo::ModRef;
904       break;
905     }
906 
907     // No operand aliases, reset Must bit. Add below if at least one aliases
908     // and all aliases found are MustAlias.
909     if (isNoModRef(Result))
910       IsMustAlias = false;
911 
912     // Early return if we improved mod ref information
913     if (!isModAndRefSet(Result)) {
914       if (isNoModRef(Result))
915         return ModRefInfo::NoModRef;
916       return IsMustAlias ? setMust(Result) : clearMust(Result);
917     }
918   }
919 
920   // If the call is malloc/calloc like, we can assume that it doesn't
921   // modify any IR visible value.  This is only valid because we assume these
922   // routines do not read values visible in the IR.  TODO: Consider special
923   // casing realloc and strdup routines which access only their arguments as
924   // well.  Or alternatively, replace all of this with inaccessiblememonly once
925   // that's implemented fully.
926   if (isMallocOrCallocLikeFn(Call, &TLI)) {
927     // Be conservative if the accessed pointer may alias the allocation -
928     // fallback to the generic handling below.
929     if (getBestAAResults().alias(MemoryLocation(Call), Loc, AAQI) == NoAlias)
930       return ModRefInfo::NoModRef;
931   }
932 
933   // The semantics of memcpy intrinsics either exactly overlap or do not
934   // overlap, i.e., source and destination of any given memcpy are either
935   // no-alias or must-alias.
936   if (auto *Inst = dyn_cast<AnyMemCpyInst>(Call)) {
937     AliasResult SrcAA =
938         getBestAAResults().alias(MemoryLocation::getForSource(Inst), Loc, AAQI);
939     AliasResult DestAA =
940         getBestAAResults().alias(MemoryLocation::getForDest(Inst), Loc, AAQI);
941     // It's also possible for Loc to alias both src and dest, or neither.
942     ModRefInfo rv = ModRefInfo::NoModRef;
943     if (SrcAA != NoAlias)
944       rv = setRef(rv);
945     if (DestAA != NoAlias)
946       rv = setMod(rv);
947     return rv;
948   }
949 
950   // While the assume intrinsic is marked as arbitrarily writing so that
951   // proper control dependencies will be maintained, it never aliases any
952   // particular memory location.
953   if (isIntrinsicCall(Call, Intrinsic::assume))
954     return ModRefInfo::NoModRef;
955 
956   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
957   // that proper control dependencies are maintained but they never mods any
958   // particular memory location.
959   //
960   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
961   // heap state at the point the guard is issued needs to be consistent in case
962   // the guard invokes the "deopt" continuation.
963   if (isIntrinsicCall(Call, Intrinsic::experimental_guard))
964     return ModRefInfo::Ref;
965 
966   // Like assumes, invariant.start intrinsics were also marked as arbitrarily
967   // writing so that proper control dependencies are maintained but they never
968   // mod any particular memory location visible to the IR.
969   // *Unlike* assumes (which are now modeled as NoModRef), invariant.start
970   // intrinsic is now modeled as reading memory. This prevents hoisting the
971   // invariant.start intrinsic over stores. Consider:
972   // *ptr = 40;
973   // *ptr = 50;
974   // invariant_start(ptr)
975   // int val = *ptr;
976   // print(val);
977   //
978   // This cannot be transformed to:
979   //
980   // *ptr = 40;
981   // invariant_start(ptr)
982   // *ptr = 50;
983   // int val = *ptr;
984   // print(val);
985   //
986   // The transformation will cause the second store to be ignored (based on
987   // rules of invariant.start)  and print 40, while the first program always
988   // prints 50.
989   if (isIntrinsicCall(Call, Intrinsic::invariant_start))
990     return ModRefInfo::Ref;
991 
992   // The AAResultBase base class has some smarts, lets use them.
993   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
994 }
995 
996 ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
997                                         const CallBase *Call2,
998                                         AAQueryInfo &AAQI) {
999   // While the assume intrinsic is marked as arbitrarily writing so that
1000   // proper control dependencies will be maintained, it never aliases any
1001   // particular memory location.
1002   if (isIntrinsicCall(Call1, Intrinsic::assume) ||
1003       isIntrinsicCall(Call2, Intrinsic::assume))
1004     return ModRefInfo::NoModRef;
1005 
1006   // Like assumes, guard intrinsics are also marked as arbitrarily writing so
1007   // that proper control dependencies are maintained but they never mod any
1008   // particular memory location.
1009   //
1010   // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1011   // heap state at the point the guard is issued needs to be consistent in case
1012   // the guard invokes the "deopt" continuation.
1013 
1014   // NB! This function is *not* commutative, so we special case two
1015   // possibilities for guard intrinsics.
1016 
1017   if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1018     return isModSet(createModRefInfo(getModRefBehavior(Call2)))
1019                ? ModRefInfo::Ref
1020                : ModRefInfo::NoModRef;
1021 
1022   if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1023     return isModSet(createModRefInfo(getModRefBehavior(Call1)))
1024                ? ModRefInfo::Mod
1025                : ModRefInfo::NoModRef;
1026 
1027   // The AAResultBase base class has some smarts, lets use them.
1028   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
1029 }
1030 
1031 /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
1032 /// both having the exact same pointer operand.
1033 static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
1034                                             LocationSize MaybeV1Size,
1035                                             const GEPOperator *GEP2,
1036                                             LocationSize MaybeV2Size,
1037                                             const DataLayout &DL) {
1038   assert(GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1039              GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1040          GEP1->getPointerOperandType() == GEP2->getPointerOperandType() &&
1041          "Expected GEPs with the same pointer operand");
1042 
1043   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
1044   // such that the struct field accesses provably cannot alias.
1045   // We also need at least two indices (the pointer, and the struct field).
1046   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
1047       GEP1->getNumIndices() < 2)
1048     return MayAlias;
1049 
1050   // If we don't know the size of the accesses through both GEPs, we can't
1051   // determine whether the struct fields accessed can't alias.
1052   if (MaybeV1Size == LocationSize::unknown() ||
1053       MaybeV2Size == LocationSize::unknown())
1054     return MayAlias;
1055 
1056   const uint64_t V1Size = MaybeV1Size.getValue();
1057   const uint64_t V2Size = MaybeV2Size.getValue();
1058 
1059   ConstantInt *C1 =
1060       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
1061   ConstantInt *C2 =
1062       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
1063 
1064   // If the last (struct) indices are constants and are equal, the other indices
1065   // might be also be dynamically equal, so the GEPs can alias.
1066   if (C1 && C2) {
1067     unsigned BitWidth = std::max(C1->getBitWidth(), C2->getBitWidth());
1068     if (C1->getValue().sextOrSelf(BitWidth) ==
1069         C2->getValue().sextOrSelf(BitWidth))
1070       return MayAlias;
1071   }
1072 
1073   // Find the last-indexed type of the GEP, i.e., the type you'd get if
1074   // you stripped the last index.
1075   // On the way, look at each indexed type.  If there's something other
1076   // than an array, different indices can lead to different final types.
1077   SmallVector<Value *, 8> IntermediateIndices;
1078 
1079   // Insert the first index; we don't need to check the type indexed
1080   // through it as it only drops the pointer indirection.
1081   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
1082   IntermediateIndices.push_back(GEP1->getOperand(1));
1083 
1084   // Insert all the remaining indices but the last one.
1085   // Also, check that they all index through arrays.
1086   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
1087     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
1088             GEP1->getSourceElementType(), IntermediateIndices)))
1089       return MayAlias;
1090     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
1091   }
1092 
1093   auto *Ty = GetElementPtrInst::getIndexedType(
1094     GEP1->getSourceElementType(), IntermediateIndices);
1095   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
1096 
1097   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
1098     // We know that:
1099     // - both GEPs begin indexing from the exact same pointer;
1100     // - the last indices in both GEPs are constants, indexing into a sequential
1101     //   type (array or vector);
1102     // - both GEPs only index through arrays prior to that.
1103     //
1104     // Because array indices greater than the number of elements are valid in
1105     // GEPs, unless we know the intermediate indices are identical between
1106     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
1107     // partially overlap. We also need to check that the loaded size matches
1108     // the element size, otherwise we could still have overlap.
1109     Type *LastElementTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1110     const uint64_t ElementSize =
1111         DL.getTypeStoreSize(LastElementTy).getFixedSize();
1112     if (V1Size != ElementSize || V2Size != ElementSize)
1113       return MayAlias;
1114 
1115     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
1116       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
1117         return MayAlias;
1118 
1119     // Now we know that the array/pointer that GEP1 indexes into and that
1120     // that GEP2 indexes into must either precisely overlap or be disjoint.
1121     // Because they cannot partially overlap and because fields in an array
1122     // cannot overlap, if we can prove the final indices are different between
1123     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
1124 
1125     // If the last indices are constants, we've already checked they don't
1126     // equal each other so we can exit early.
1127     if (C1 && C2)
1128       return NoAlias;
1129     {
1130       Value *GEP1LastIdx = GEP1->getOperand(GEP1->getNumOperands() - 1);
1131       Value *GEP2LastIdx = GEP2->getOperand(GEP2->getNumOperands() - 1);
1132       if (isa<PHINode>(GEP1LastIdx) || isa<PHINode>(GEP2LastIdx)) {
1133         // If one of the indices is a PHI node, be safe and only use
1134         // computeKnownBits so we don't make any assumptions about the
1135         // relationships between the two indices. This is important if we're
1136         // asking about values from different loop iterations. See PR32314.
1137         // TODO: We may be able to change the check so we only do this when
1138         // we definitely looked through a PHINode.
1139         if (GEP1LastIdx != GEP2LastIdx &&
1140             GEP1LastIdx->getType() == GEP2LastIdx->getType()) {
1141           KnownBits Known1 = computeKnownBits(GEP1LastIdx, DL);
1142           KnownBits Known2 = computeKnownBits(GEP2LastIdx, DL);
1143           if (Known1.Zero.intersects(Known2.One) ||
1144               Known1.One.intersects(Known2.Zero))
1145             return NoAlias;
1146         }
1147       } else if (isKnownNonEqual(GEP1LastIdx, GEP2LastIdx, DL))
1148         return NoAlias;
1149     }
1150     return MayAlias;
1151   } else if (!LastIndexedStruct || !C1 || !C2) {
1152     return MayAlias;
1153   }
1154 
1155   if (C1->getValue().getActiveBits() > 64 ||
1156       C2->getValue().getActiveBits() > 64)
1157     return MayAlias;
1158 
1159   // We know that:
1160   // - both GEPs begin indexing from the exact same pointer;
1161   // - the last indices in both GEPs are constants, indexing into a struct;
1162   // - said indices are different, hence, the pointed-to fields are different;
1163   // - both GEPs only index through arrays prior to that.
1164   //
1165   // This lets us determine that the struct that GEP1 indexes into and the
1166   // struct that GEP2 indexes into must either precisely overlap or be
1167   // completely disjoint.  Because they cannot partially overlap, indexing into
1168   // different non-overlapping fields of the struct will never alias.
1169 
1170   // Therefore, the only remaining thing needed to show that both GEPs can't
1171   // alias is that the fields are not overlapping.
1172   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
1173   const uint64_t StructSize = SL->getSizeInBytes();
1174   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
1175   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
1176 
1177   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
1178                                       uint64_t V2Off, uint64_t V2Size) {
1179     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
1180            ((V2Off + V2Size <= StructSize) ||
1181             (V2Off + V2Size - StructSize <= V1Off));
1182   };
1183 
1184   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
1185       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
1186     return NoAlias;
1187 
1188   return MayAlias;
1189 }
1190 
1191 // If a we have (a) a GEP and (b) a pointer based on an alloca, and the
1192 // beginning of the object the GEP points would have a negative offset with
1193 // repsect to the alloca, that means the GEP can not alias pointer (b).
1194 // Note that the pointer based on the alloca may not be a GEP. For
1195 // example, it may be the alloca itself.
1196 // The same applies if (b) is based on a GlobalVariable. Note that just being
1197 // based on isIdentifiedObject() is not enough - we need an identified object
1198 // that does not permit access to negative offsets. For example, a negative
1199 // offset from a noalias argument or call can be inbounds w.r.t the actual
1200 // underlying object.
1201 //
1202 // For example, consider:
1203 //
1204 //   struct { int f0, int f1, ...} foo;
1205 //   foo alloca;
1206 //   foo* random = bar(alloca);
1207 //   int *f0 = &alloca.f0
1208 //   int *f1 = &random->f1;
1209 //
1210 // Which is lowered, approximately, to:
1211 //
1212 //  %alloca = alloca %struct.foo
1213 //  %random = call %struct.foo* @random(%struct.foo* %alloca)
1214 //  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
1215 //  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
1216 //
1217 // Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
1218 // by %alloca. Since the %f1 GEP is inbounds, that means %random must also
1219 // point into the same object. But since %f0 points to the beginning of %alloca,
1220 // the highest %f1 can be is (%alloca + 3). This means %random can not be higher
1221 // than (%alloca - 1), and so is not inbounds, a contradiction.
1222 bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
1223       const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
1224       LocationSize MaybeObjectAccessSize) {
1225   // If the object access size is unknown, or the GEP isn't inbounds, bail.
1226   if (MaybeObjectAccessSize == LocationSize::unknown() || !GEPOp->isInBounds())
1227     return false;
1228 
1229   const uint64_t ObjectAccessSize = MaybeObjectAccessSize.getValue();
1230 
1231   // We need the object to be an alloca or a globalvariable, and want to know
1232   // the offset of the pointer from the object precisely, so no variable
1233   // indices are allowed.
1234   if (!(isa<AllocaInst>(DecompObject.Base) ||
1235         isa<GlobalVariable>(DecompObject.Base)) ||
1236       !DecompObject.VarIndices.empty())
1237     return false;
1238 
1239   APInt ObjectBaseOffset = DecompObject.StructOffset +
1240                            DecompObject.OtherOffset;
1241 
1242   // If the GEP has no variable indices, we know the precise offset
1243   // from the base, then use it. If the GEP has variable indices,
1244   // we can't get exact GEP offset to identify pointer alias. So return
1245   // false in that case.
1246   if (!DecompGEP.VarIndices.empty())
1247     return false;
1248 
1249   APInt GEPBaseOffset = DecompGEP.StructOffset;
1250   GEPBaseOffset += DecompGEP.OtherOffset;
1251 
1252   return GEPBaseOffset.sge(ObjectBaseOffset + (int64_t)ObjectAccessSize);
1253 }
1254 
1255 /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1256 /// another pointer.
1257 ///
1258 /// We know that V1 is a GEP, but we don't know anything about V2.
1259 /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1260 /// V2.
1261 AliasResult BasicAAResult::aliasGEP(
1262     const GEPOperator *GEP1, LocationSize V1Size, const AAMDNodes &V1AAInfo,
1263     const Value *V2, LocationSize V2Size, const AAMDNodes &V2AAInfo,
1264     const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1265   DecomposedGEP DecompGEP1, DecompGEP2;
1266   unsigned MaxPointerSize = getMaxPointerSize(DL);
1267   DecompGEP1.StructOffset = DecompGEP1.OtherOffset = APInt(MaxPointerSize, 0);
1268   DecompGEP2.StructOffset = DecompGEP2.OtherOffset = APInt(MaxPointerSize, 0);
1269   DecompGEP1.HasCompileTimeConstantScale =
1270       DecompGEP2.HasCompileTimeConstantScale = true;
1271 
1272   bool GEP1MaxLookupReached =
1273     DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
1274   bool GEP2MaxLookupReached =
1275     DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);
1276 
1277   // Don't attempt to analyze the decomposed GEP if index scale is not a
1278   // compile-time constant.
1279   if (!DecompGEP1.HasCompileTimeConstantScale ||
1280       !DecompGEP2.HasCompileTimeConstantScale)
1281     return MayAlias;
1282 
1283   APInt GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
1284   APInt GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;
1285 
1286   assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
1287          "DecomposeGEPExpression returned a result different from "
1288          "getUnderlyingObject");
1289 
1290   // If the GEP's offset relative to its base is such that the base would
1291   // fall below the start of the object underlying V2, then the GEP and V2
1292   // cannot alias.
1293   if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1294       isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
1295     return NoAlias;
1296   // If we have two gep instructions with must-alias or not-alias'ing base
1297   // pointers, figure out if the indexes to the GEP tell us anything about the
1298   // derived pointer.
1299   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
1300     // Check for the GEP base being at a negative offset, this time in the other
1301     // direction.
1302     if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
1303         isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
1304       return NoAlias;
1305     // Do the base pointers alias?
1306     AliasResult BaseAlias =
1307         aliasCheck(UnderlyingV1, LocationSize::unknown(), AAMDNodes(),
1308                    UnderlyingV2, LocationSize::unknown(), AAMDNodes(), AAQI);
1309 
1310     // For GEPs with identical sizes and offsets, we can preserve the size
1311     // and AAInfo when performing the alias check on the underlying objects.
1312     if (BaseAlias == MayAlias && V1Size == V2Size &&
1313         GEP1BaseOffset == GEP2BaseOffset &&
1314         DecompGEP1.VarIndices == DecompGEP2.VarIndices &&
1315         !GEP1MaxLookupReached && !GEP2MaxLookupReached) {
1316       AliasResult PreciseBaseAlias = aliasCheck(
1317           UnderlyingV1, V1Size, V1AAInfo, UnderlyingV2, V2Size, V2AAInfo, AAQI);
1318       if (PreciseBaseAlias == NoAlias)
1319         return NoAlias;
1320     }
1321 
1322     // If we get a No or May, then return it immediately, no amount of analysis
1323     // will improve this situation.
1324     if (BaseAlias != MustAlias) {
1325       assert(BaseAlias == NoAlias || BaseAlias == MayAlias);
1326       return BaseAlias;
1327     }
1328 
1329     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
1330     // exactly, see if the computed offset from the common pointer tells us
1331     // about the relation of the resulting pointer.
1332     // If we know the two GEPs are based off of the exact same pointer (and not
1333     // just the same underlying object), see if that tells us anything about
1334     // the resulting pointers.
1335     if (GEP1->getPointerOperand()->stripPointerCastsAndInvariantGroups() ==
1336             GEP2->getPointerOperand()->stripPointerCastsAndInvariantGroups() &&
1337         GEP1->getPointerOperandType() == GEP2->getPointerOperandType()) {
1338       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
1339       // If we couldn't find anything interesting, don't abandon just yet.
1340       if (R != MayAlias)
1341         return R;
1342     }
1343 
1344     // If the max search depth is reached, the result is undefined
1345     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
1346       return MayAlias;
1347 
1348     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
1349     // symbolic difference.
1350     GEP1BaseOffset -= GEP2BaseOffset;
1351     GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);
1352 
1353   } else {
1354     // Check to see if these two pointers are related by the getelementptr
1355     // instruction.  If one pointer is a GEP with a non-zero index of the other
1356     // pointer, we know they cannot alias.
1357 
1358     // If both accesses are unknown size, we can't do anything useful here.
1359     if (V1Size == LocationSize::unknown() && V2Size == LocationSize::unknown())
1360       return MayAlias;
1361 
1362     AliasResult R = aliasCheck(UnderlyingV1, LocationSize::unknown(),
1363                                AAMDNodes(), V2, LocationSize::unknown(),
1364                                V2AAInfo, AAQI, nullptr, UnderlyingV2);
1365     if (R != MustAlias) {
1366       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
1367       // If V2 is known not to alias GEP base pointer, then the two values
1368       // cannot alias per GEP semantics: "Any memory access must be done through
1369       // a pointer value associated with an address range of the memory access,
1370       // otherwise the behavior is undefined.".
1371       assert(R == NoAlias || R == MayAlias);
1372       return R;
1373     }
1374 
1375     // If the max search depth is reached the result is undefined
1376     if (GEP1MaxLookupReached)
1377       return MayAlias;
1378   }
1379 
1380   // In the two GEP Case, if there is no difference in the offsets of the
1381   // computed pointers, the resultant pointers are a must alias.  This
1382   // happens when we have two lexically identical GEP's (for example).
1383   //
1384   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
1385   // must aliases the GEP, the end result is a must alias also.
1386   if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
1387     return MustAlias;
1388 
1389   // If there is a constant difference between the pointers, but the difference
1390   // is less than the size of the associated memory object, then we know
1391   // that the objects are partially overlapping.  If the difference is
1392   // greater, we know they do not overlap.
1393   if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
1394     if (GEP1BaseOffset.sge(0)) {
1395       if (V2Size != LocationSize::unknown()) {
1396         if (GEP1BaseOffset.ult(V2Size.getValue()))
1397           return PartialAlias;
1398         return NoAlias;
1399       }
1400     } else {
1401       // We have the situation where:
1402       // +                +
1403       // | BaseOffset     |
1404       // ---------------->|
1405       // |-->V1Size       |-------> V2Size
1406       // GEP1             V2
1407       // We need to know that V2Size is not unknown, otherwise we might have
1408       // stripped a gep with negative index ('gep <ptr>, -1, ...).
1409       if (V1Size != LocationSize::unknown() &&
1410           V2Size != LocationSize::unknown()) {
1411         if ((-GEP1BaseOffset).ult(V1Size.getValue()))
1412           return PartialAlias;
1413         return NoAlias;
1414       }
1415     }
1416   }
1417 
1418   if (!DecompGEP1.VarIndices.empty()) {
1419     APInt Modulo(MaxPointerSize, 0);
1420     bool AllPositive = true;
1421     for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1422 
1423       // Try to distinguish something like &A[i][1] against &A[42][0].
1424       // Grab the least significant bit set in any of the scales. We
1425       // don't need std::abs here (even if the scale's negative) as we'll
1426       // be ^'ing Modulo with itself later.
1427       Modulo |= DecompGEP1.VarIndices[i].Scale;
1428 
1429       if (AllPositive) {
1430         // If the Value could change between cycles, then any reasoning about
1431         // the Value this cycle may not hold in the next cycle. We'll just
1432         // give up if we can't determine conditions that hold for every cycle:
1433         const Value *V = DecompGEP1.VarIndices[i].V;
1434 
1435         KnownBits Known =
1436             computeKnownBits(V, DL, 0, &AC, dyn_cast<Instruction>(GEP1), DT);
1437         bool SignKnownZero = Known.isNonNegative();
1438         bool SignKnownOne = Known.isNegative();
1439 
1440         // Zero-extension widens the variable, and so forces the sign
1441         // bit to zero.
1442         bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
1443         SignKnownZero |= IsZExt;
1444         SignKnownOne &= !IsZExt;
1445 
1446         // If the variable begins with a zero then we know it's
1447         // positive, regardless of whether the value is signed or
1448         // unsigned.
1449         APInt Scale = DecompGEP1.VarIndices[i].Scale;
1450         AllPositive =
1451             (SignKnownZero && Scale.sge(0)) || (SignKnownOne && Scale.slt(0));
1452       }
1453     }
1454 
1455     Modulo = Modulo ^ (Modulo & (Modulo - 1));
1456 
1457     // We can compute the difference between the two addresses
1458     // mod Modulo. Check whether that difference guarantees that the
1459     // two locations do not alias.
1460     APInt ModOffset = GEP1BaseOffset & (Modulo - 1);
1461     if (V1Size != LocationSize::unknown() &&
1462         V2Size != LocationSize::unknown() && ModOffset.uge(V2Size.getValue()) &&
1463         (Modulo - ModOffset).uge(V1Size.getValue()))
1464       return NoAlias;
1465 
1466     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
1467     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
1468     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
1469     if (AllPositive && GEP1BaseOffset.sgt(0) &&
1470         V2Size != LocationSize::unknown() &&
1471         GEP1BaseOffset.uge(V2Size.getValue()))
1472       return NoAlias;
1473 
1474     if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
1475                                 GEP1BaseOffset, &AC, DT))
1476       return NoAlias;
1477   }
1478 
1479   // Statically, we can see that the base objects are the same, but the
1480   // pointers have dynamic offsets which we can't resolve. And none of our
1481   // little tricks above worked.
1482   return MayAlias;
1483 }
1484 
1485 static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1486   // If the results agree, take it.
1487   if (A == B)
1488     return A;
1489   // A mix of PartialAlias and MustAlias is PartialAlias.
1490   if ((A == PartialAlias && B == MustAlias) ||
1491       (B == PartialAlias && A == MustAlias))
1492     return PartialAlias;
1493   // Otherwise, we don't know anything.
1494   return MayAlias;
1495 }
1496 
1497 /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1498 /// against another.
1499 AliasResult
1500 BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1501                            const AAMDNodes &SIAAInfo, const Value *V2,
1502                            LocationSize V2Size, const AAMDNodes &V2AAInfo,
1503                            const Value *UnderV2, AAQueryInfo &AAQI) {
1504   // If the values are Selects with the same condition, we can do a more precise
1505   // check: just check for aliases between the values on corresponding arms.
1506   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1507     if (SI->getCondition() == SI2->getCondition()) {
1508       AliasResult Alias =
1509           aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, SI2->getTrueValue(),
1510                      V2Size, V2AAInfo, AAQI);
1511       if (Alias == MayAlias)
1512         return MayAlias;
1513       AliasResult ThisAlias =
1514           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
1515                      SI2->getFalseValue(), V2Size, V2AAInfo, AAQI);
1516       return MergeAliasResults(ThisAlias, Alias);
1517     }
1518 
1519   // If both arms of the Select node NoAlias or MustAlias V2, then returns
1520   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1521   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(),
1522                                  SISize, SIAAInfo, AAQI, UnderV2);
1523   if (Alias == MayAlias)
1524     return MayAlias;
1525 
1526   AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(),
1527                                      SISize, SIAAInfo, AAQI, UnderV2);
1528   return MergeAliasResults(ThisAlias, Alias);
1529 }
1530 
1531 /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1532 /// another.
1533 AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1534                                     const AAMDNodes &PNAAInfo, const Value *V2,
1535                                     LocationSize V2Size,
1536                                     const AAMDNodes &V2AAInfo,
1537                                     const Value *UnderV2, AAQueryInfo &AAQI) {
1538   // Track phi nodes we have visited. We use this information when we determine
1539   // value equivalence.
1540   VisitedPhiBBs.insert(PN->getParent());
1541 
1542   // If the values are PHIs in the same block, we can do a more precise
1543   // as well as efficient check: just check for aliases between the values
1544   // on corresponding edges.
1545   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1546     if (PN2->getParent() == PN->getParent()) {
1547       AAQueryInfo::LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
1548                                 MemoryLocation(V2, V2Size, V2AAInfo));
1549       if (PN > V2)
1550         std::swap(Locs.first, Locs.second);
1551       // Analyse the PHIs' inputs under the assumption that the PHIs are
1552       // NoAlias.
1553       // If the PHIs are May/MustAlias there must be (recursively) an input
1554       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
1555       // there must be an operation on the PHIs within the PHIs' value cycle
1556       // that causes a MayAlias.
1557       // Pretend the phis do not alias.
1558       AliasResult Alias = NoAlias;
1559       AliasResult OrigAliasResult;
1560       {
1561         // Limited lifetime iterator invalidated by the aliasCheck call below.
1562         auto CacheIt = AAQI.AliasCache.find(Locs);
1563         assert((CacheIt != AAQI.AliasCache.end()) &&
1564                "There must exist an entry for the phi node");
1565         OrigAliasResult = CacheIt->second;
1566         CacheIt->second = NoAlias;
1567       }
1568 
1569       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1570         AliasResult ThisAlias =
1571             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
1572                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1573                        V2Size, V2AAInfo, AAQI);
1574         Alias = MergeAliasResults(ThisAlias, Alias);
1575         if (Alias == MayAlias)
1576           break;
1577       }
1578 
1579       // Reset if speculation failed.
1580       if (Alias != NoAlias)
1581         AAQI.updateResult(Locs, OrigAliasResult);
1582       return Alias;
1583     }
1584 
1585   SmallVector<Value *, 4> V1Srcs;
1586   // For a recursive phi, that recurses through a contant gep, we can perform
1587   // aliasing calculations using the other phi operands with an unknown size to
1588   // specify that an unknown number of elements after the initial value are
1589   // potentially accessed.
1590   bool isRecursive = false;
1591   auto CheckForRecPhi = [&](Value *PV) {
1592     if (!EnableRecPhiAnalysis)
1593       return false;
1594     if (GEPOperator *PVGEP = dyn_cast<GEPOperator>(PV)) {
1595       // Check whether the incoming value is a GEP that advances the pointer
1596       // result of this PHI node (e.g. in a loop). If this is the case, we
1597       // would recurse and always get a MayAlias. Handle this case specially
1598       // below. We need to ensure that the phi is inbounds and has a constant
1599       // positive operand so that we can check for alias with the initial value
1600       // and an unknown but positive size.
1601       if (PVGEP->getPointerOperand() == PN && PVGEP->isInBounds() &&
1602           PVGEP->getNumIndices() == 1 && isa<ConstantInt>(PVGEP->idx_begin()) &&
1603           !cast<ConstantInt>(PVGEP->idx_begin())->isNegative()) {
1604         isRecursive = true;
1605         return true;
1606       }
1607     }
1608     return false;
1609   };
1610 
1611   if (PV) {
1612     // If we have PhiValues then use it to get the underlying phi values.
1613     const PhiValues::ValueSet &PhiValueSet = PV->getValuesForPhi(PN);
1614     // If we have more phi values than the search depth then return MayAlias
1615     // conservatively to avoid compile time explosion. The worst possible case
1616     // is if both sides are PHI nodes. In which case, this is O(m x n) time
1617     // where 'm' and 'n' are the number of PHI sources.
1618     if (PhiValueSet.size() > MaxLookupSearchDepth)
1619       return MayAlias;
1620     // Add the values to V1Srcs
1621     for (Value *PV1 : PhiValueSet) {
1622       if (CheckForRecPhi(PV1))
1623         continue;
1624       V1Srcs.push_back(PV1);
1625     }
1626   } else {
1627     // If we don't have PhiInfo then just look at the operands of the phi itself
1628     // FIXME: Remove this once we can guarantee that we have PhiInfo always
1629     SmallPtrSet<Value *, 4> UniqueSrc;
1630     for (Value *PV1 : PN->incoming_values()) {
1631       if (isa<PHINode>(PV1))
1632         // If any of the source itself is a PHI, return MayAlias conservatively
1633         // to avoid compile time explosion. The worst possible case is if both
1634         // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1635         // and 'n' are the number of PHI sources.
1636         return MayAlias;
1637 
1638       if (CheckForRecPhi(PV1))
1639         continue;
1640 
1641       if (UniqueSrc.insert(PV1).second)
1642         V1Srcs.push_back(PV1);
1643     }
1644   }
1645 
1646   // If V1Srcs is empty then that means that the phi has no underlying non-phi
1647   // value. This should only be possible in blocks unreachable from the entry
1648   // block, but return MayAlias just in case.
1649   if (V1Srcs.empty())
1650     return MayAlias;
1651 
1652   // If this PHI node is recursive, set the size of the accessed memory to
1653   // unknown to represent all the possible values the GEP could advance the
1654   // pointer to.
1655   if (isRecursive)
1656     PNSize = LocationSize::unknown();
1657 
1658   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize,
1659                                  PNAAInfo, AAQI, UnderV2);
1660 
1661   // Early exit if the check of the first PHI source against V2 is MayAlias.
1662   // Other results are not possible.
1663   if (Alias == MayAlias)
1664     return MayAlias;
1665   // With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1666   // remain valid to all elements and needs to conservatively return MayAlias.
1667   if (isRecursive && Alias != NoAlias)
1668     return MayAlias;
1669 
1670   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1671   // NoAlias / MustAlias. Otherwise, returns MayAlias.
1672   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1673     Value *V = V1Srcs[i];
1674 
1675     AliasResult ThisAlias =
1676         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo, AAQI, UnderV2);
1677     Alias = MergeAliasResults(ThisAlias, Alias);
1678     if (Alias == MayAlias)
1679       break;
1680   }
1681 
1682   return Alias;
1683 }
1684 
1685 /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1686 /// array references.
1687 AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1688                                       const AAMDNodes &V1AAInfo,
1689                                       const Value *V2, LocationSize V2Size,
1690                                       const AAMDNodes &V2AAInfo,
1691                                       AAQueryInfo &AAQI, const Value *O1,
1692                                       const Value *O2) {
1693   // If either of the memory references is empty, it doesn't matter what the
1694   // pointer values are.
1695   if (V1Size.isZero() || V2Size.isZero())
1696     return NoAlias;
1697 
1698   // Strip off any casts if they exist.
1699   V1 = V1->stripPointerCastsAndInvariantGroups();
1700   V2 = V2->stripPointerCastsAndInvariantGroups();
1701 
1702   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
1703   // value for undef that aliases nothing in the program.
1704   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1705     return NoAlias;
1706 
1707   // Are we checking for alias of the same value?
1708   // Because we look 'through' phi nodes, we could look at "Value" pointers from
1709   // different iterations. We must therefore make sure that this is not the
1710   // case. The function isValueEqualInPotentialCycles ensures that this cannot
1711   // happen by looking at the visited phi nodes and making sure they cannot
1712   // reach the value.
1713   if (isValueEqualInPotentialCycles(V1, V2))
1714     return MustAlias;
1715 
1716   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1717     return NoAlias; // Scalars cannot alias each other
1718 
1719   // Figure out what objects these things are pointing to if we can.
1720   if (O1 == nullptr)
1721     O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1722 
1723   if (O2 == nullptr)
1724     O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1725 
1726   // Null values in the default address space don't point to any object, so they
1727   // don't alias any other pointer.
1728   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1729     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1730       return NoAlias;
1731   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1732     if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1733       return NoAlias;
1734 
1735   if (O1 != O2) {
1736     // If V1/V2 point to two different objects, we know that we have no alias.
1737     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1738       return NoAlias;
1739 
1740     // Constant pointers can't alias with non-const isIdentifiedObject objects.
1741     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1742         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1743       return NoAlias;
1744 
1745     // Function arguments can't alias with things that are known to be
1746     // unambigously identified at the function level.
1747     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1748         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1749       return NoAlias;
1750 
1751     // If one pointer is the result of a call/invoke or load and the other is a
1752     // non-escaping local object within the same function, then we know the
1753     // object couldn't escape to a point where the call could return it.
1754     //
1755     // Note that if the pointers are in different functions, there are a
1756     // variety of complications. A call with a nocapture argument may still
1757     // temporary store the nocapture argument's value in a temporary memory
1758     // location if that memory location doesn't escape. Or it may pass a
1759     // nocapture value to other functions as long as they don't capture it.
1760     if (isEscapeSource(O1) &&
1761         isNonEscapingLocalObject(O2, &AAQI.IsCapturedCache))
1762       return NoAlias;
1763     if (isEscapeSource(O2) &&
1764         isNonEscapingLocalObject(O1, &AAQI.IsCapturedCache))
1765       return NoAlias;
1766   }
1767 
1768   // If the size of one access is larger than the entire object on the other
1769   // side, then we know such behavior is undefined and can assume no alias.
1770   bool NullIsValidLocation = NullPointerIsDefined(&F);
1771   if ((isObjectSmallerThan(
1772           O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1773           TLI, NullIsValidLocation)) ||
1774       (isObjectSmallerThan(
1775           O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1776           TLI, NullIsValidLocation)))
1777     return NoAlias;
1778 
1779   // Check the cache before climbing up use-def chains. This also terminates
1780   // otherwise infinitely recursive queries.
1781   AAQueryInfo::LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
1782                             MemoryLocation(V2, V2Size, V2AAInfo));
1783   if (V1 > V2)
1784     std::swap(Locs.first, Locs.second);
1785   std::pair<AAQueryInfo::AliasCacheT::iterator, bool> Pair =
1786       AAQI.AliasCache.try_emplace(Locs, MayAlias);
1787   if (!Pair.second)
1788     return Pair.first->second;
1789 
1790   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1791   // GEP can't simplify, we don't even look at the PHI cases.
1792   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1793     AliasResult Result =
1794         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2, AAQI);
1795     if (Result != MayAlias)
1796       return AAQI.updateResult(Locs, Result);
1797   } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1798     AliasResult Result =
1799         aliasGEP(GV2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O2, O1, AAQI);
1800     if (Result != MayAlias)
1801       return AAQI.updateResult(Locs, Result);
1802   }
1803 
1804   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1805     AliasResult Result =
1806         aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1807     if (Result != MayAlias)
1808       return AAQI.updateResult(Locs, Result);
1809   } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1810     AliasResult Result =
1811         aliasPHI(PN, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1812     if (Result != MayAlias)
1813       return AAQI.updateResult(Locs, Result);
1814   }
1815 
1816   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1817     AliasResult Result =
1818         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O2, AAQI);
1819     if (Result != MayAlias)
1820       return AAQI.updateResult(Locs, Result);
1821   } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1822     AliasResult Result =
1823         aliasSelect(S2, V2Size, V2AAInfo, V1, V1Size, V1AAInfo, O1, AAQI);
1824     if (Result != MayAlias)
1825       return AAQI.updateResult(Locs, Result);
1826   }
1827 
1828   // If both pointers are pointing into the same object and one of them
1829   // accesses the entire object, then the accesses must overlap in some way.
1830   if (O1 == O2)
1831     if (V1Size.isPrecise() && V2Size.isPrecise() &&
1832         (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1833          isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1834       return AAQI.updateResult(Locs, PartialAlias);
1835 
1836   // Recurse back into the best AA results we have, potentially with refined
1837   // memory locations. We have already ensured that BasicAA has a MayAlias
1838   // cache result for these, so any recursion back into BasicAA won't loop.
1839   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second, AAQI);
1840   return AAQI.updateResult(Locs, Result);
1841 }
1842 
1843 /// Check whether two Values can be considered equivalent.
1844 ///
1845 /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
1846 /// they can not be part of a cycle in the value graph by looking at all
1847 /// visited phi nodes an making sure that the phis cannot reach the value. We
1848 /// have to do this because we are looking through phi nodes (That is we say
1849 /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1850 bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1851                                                   const Value *V2) {
1852   if (V != V2)
1853     return false;
1854 
1855   const Instruction *Inst = dyn_cast<Instruction>(V);
1856   if (!Inst)
1857     return true;
1858 
1859   if (VisitedPhiBBs.empty())
1860     return true;
1861 
1862   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
1863     return false;
1864 
1865   // Make sure that the visited phis cannot reach the Value. This ensures that
1866   // the Values cannot come from different iterations of a potential cycle the
1867   // phi nodes could be involved in.
1868   for (auto *P : VisitedPhiBBs)
1869     if (isPotentiallyReachable(&P->front(), Inst, nullptr, DT, LI))
1870       return false;
1871 
1872   return true;
1873 }
1874 
1875 /// Computes the symbolic difference between two de-composed GEPs.
1876 ///
1877 /// Dest and Src are the variable indices from two decomposed GetElementPtr
1878 /// instructions GEP1 and GEP2 which have common base pointers.
1879 void BasicAAResult::GetIndexDifference(
1880     SmallVectorImpl<VariableGEPIndex> &Dest,
1881     const SmallVectorImpl<VariableGEPIndex> &Src) {
1882   if (Src.empty())
1883     return;
1884 
1885   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
1886     const Value *V = Src[i].V;
1887     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
1888     APInt Scale = Src[i].Scale;
1889 
1890     // Find V in Dest.  This is N^2, but pointer indices almost never have more
1891     // than a few variable indexes.
1892     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
1893       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
1894           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
1895         continue;
1896 
1897       // If we found it, subtract off Scale V's from the entry in Dest.  If it
1898       // goes to zero, remove the entry.
1899       if (Dest[j].Scale != Scale)
1900         Dest[j].Scale -= Scale;
1901       else
1902         Dest.erase(Dest.begin() + j);
1903       Scale = 0;
1904       break;
1905     }
1906 
1907     // If we didn't consume this entry, add it to the end of the Dest list.
1908     if (!!Scale) {
1909       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
1910       Dest.push_back(Entry);
1911     }
1912   }
1913 }
1914 
1915 bool BasicAAResult::constantOffsetHeuristic(
1916     const SmallVectorImpl<VariableGEPIndex> &VarIndices,
1917     LocationSize MaybeV1Size, LocationSize MaybeV2Size, const APInt &BaseOffset,
1918     AssumptionCache *AC, DominatorTree *DT) {
1919   if (VarIndices.size() != 2 || MaybeV1Size == LocationSize::unknown() ||
1920       MaybeV2Size == LocationSize::unknown())
1921     return false;
1922 
1923   const uint64_t V1Size = MaybeV1Size.getValue();
1924   const uint64_t V2Size = MaybeV2Size.getValue();
1925 
1926   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
1927 
1928   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
1929       Var0.Scale != -Var1.Scale)
1930     return false;
1931 
1932   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
1933 
1934   // We'll strip off the Extensions of Var0 and Var1 and do another round
1935   // of GetLinearExpression decomposition. In the example above, if Var0
1936   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1937 
1938   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
1939       V1Offset(Width, 0);
1940   bool NSW = true, NUW = true;
1941   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
1942   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
1943                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
1944   NSW = true;
1945   NUW = true;
1946   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
1947                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
1948 
1949   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
1950       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
1951     return false;
1952 
1953   // We have a hit - Var0 and Var1 only differ by a constant offset!
1954 
1955   // If we've been sext'ed then zext'd the maximum difference between Var0 and
1956   // Var1 is possible to calculate, but we're just interested in the absolute
1957   // minimum difference between the two. The minimum distance may occur due to
1958   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1959   // the minimum distance between %i and %i + 5 is 3.
1960   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
1961   MinDiff = APIntOps::umin(MinDiff, Wrapped);
1962   APInt MinDiffBytes =
1963     MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1964 
1965   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
1966   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1967   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1968   // V2Size can fit in the MinDiffBytes gap.
1969   return MinDiffBytes.uge(V1Size + BaseOffset.abs()) &&
1970          MinDiffBytes.uge(V2Size + BaseOffset.abs());
1971 }
1972 
1973 //===----------------------------------------------------------------------===//
1974 // BasicAliasAnalysis Pass
1975 //===----------------------------------------------------------------------===//
1976 
1977 AnalysisKey BasicAA::Key;
1978 
1979 BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1980   return BasicAAResult(F.getParent()->getDataLayout(),
1981                        F,
1982                        AM.getResult<TargetLibraryAnalysis>(F),
1983                        AM.getResult<AssumptionAnalysis>(F),
1984                        &AM.getResult<DominatorTreeAnalysis>(F),
1985                        AM.getCachedResult<LoopAnalysis>(F),
1986                        AM.getCachedResult<PhiValuesAnalysis>(F));
1987 }
1988 
1989 BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1990   initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1991 }
1992 
1993 char BasicAAWrapperPass::ID = 0;
1994 
1995 void BasicAAWrapperPass::anchor() {}
1996 
1997 INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1998                       "Basic Alias Analysis (stateless AA impl)", true, true)
1999 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2000 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2001 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2002 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
2003 INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
2004                     "Basic Alias Analysis (stateless AA impl)", true, true)
2005 
2006 FunctionPass *llvm::createBasicAAWrapperPass() {
2007   return new BasicAAWrapperPass();
2008 }
2009 
2010 bool BasicAAWrapperPass::runOnFunction(Function &F) {
2011   auto &ACT = getAnalysis<AssumptionCacheTracker>();
2012   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
2013   auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
2014   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
2015   auto *PVWP = getAnalysisIfAvailable<PhiValuesWrapperPass>();
2016 
2017   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F,
2018                                  TLIWP.getTLI(F), ACT.getAssumptionCache(F),
2019                                  &DTWP.getDomTree(),
2020                                  LIWP ? &LIWP->getLoopInfo() : nullptr,
2021                                  PVWP ? &PVWP->getResult() : nullptr));
2022 
2023   return false;
2024 }
2025 
2026 void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2027   AU.setPreservesAll();
2028   AU.addRequired<AssumptionCacheTracker>();
2029   AU.addRequired<DominatorTreeWrapperPass>();
2030   AU.addRequired<TargetLibraryInfoWrapperPass>();
2031   AU.addUsedIfAvailable<PhiValuesWrapperPass>();
2032 }
2033 
2034 BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
2035   return BasicAAResult(
2036       F.getParent()->getDataLayout(), F,
2037       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
2038       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
2039 }
2040