1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/AliasAnalysis.h" 17 #include "llvm/Analysis/Passes.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Function.h" 21 #include "llvm/GlobalAlias.h" 22 #include "llvm/GlobalVariable.h" 23 #include "llvm/Instructions.h" 24 #include "llvm/IntrinsicInst.h" 25 #include "llvm/LLVMContext.h" 26 #include "llvm/Operator.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Analysis/CaptureTracking.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Target/TargetData.h" 33 #include "llvm/Target/TargetLibraryInfo.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GetElementPtrTypeIterator.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 //===----------------------------------------------------------------------===// 42 // Useful predicates 43 //===----------------------------------------------------------------------===// 44 45 /// isKnownNonNull - Return true if we know that the specified value is never 46 /// null. 47 static bool isKnownNonNull(const Value *V) { 48 // Alloca never returns null, malloc might. 49 if (isa<AllocaInst>(V)) return true; 50 51 // A byval argument is never null. 52 if (const Argument *A = dyn_cast<Argument>(V)) 53 return A->hasByValAttr(); 54 55 // Global values are not null unless extern weak. 56 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 57 return !GV->hasExternalWeakLinkage(); 58 return false; 59 } 60 61 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 62 /// object that never escapes from the function. 63 static bool isNonEscapingLocalObject(const Value *V) { 64 // If this is a local allocation, check to see if it escapes. 65 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 66 // Set StoreCaptures to True so that we can assume in our callers that the 67 // pointer is not the result of a load instruction. Currently 68 // PointerMayBeCaptured doesn't have any special analysis for the 69 // StoreCaptures=false case; if it did, our callers could be refined to be 70 // more precise. 71 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 72 73 // If this is an argument that corresponds to a byval or noalias argument, 74 // then it has not escaped before entering the function. Check if it escapes 75 // inside the function. 76 if (const Argument *A = dyn_cast<Argument>(V)) 77 if (A->hasByValAttr() || A->hasNoAliasAttr()) { 78 // Don't bother analyzing arguments already known not to escape. 79 if (A->hasNoCaptureAttr()) 80 return true; 81 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 82 } 83 return false; 84 } 85 86 /// isEscapeSource - Return true if the pointer is one which would have 87 /// been considered an escape by isNonEscapingLocalObject. 88 static bool isEscapeSource(const Value *V) { 89 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 90 return true; 91 92 // The load case works because isNonEscapingLocalObject considers all 93 // stores to be escapes (it passes true for the StoreCaptures argument 94 // to PointerMayBeCaptured). 95 if (isa<LoadInst>(V)) 96 return true; 97 98 return false; 99 } 100 101 /// getObjectSize - Return the size of the object specified by V, or 102 /// UnknownSize if unknown. 103 static uint64_t getObjectSize(const Value *V, const TargetData &TD) { 104 Type *AccessTy; 105 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 106 if (!GV->hasDefinitiveInitializer()) 107 return AliasAnalysis::UnknownSize; 108 AccessTy = GV->getType()->getElementType(); 109 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 110 if (!AI->isArrayAllocation()) 111 AccessTy = AI->getType()->getElementType(); 112 else 113 return AliasAnalysis::UnknownSize; 114 } else if (const CallInst* CI = extractMallocCall(V)) { 115 if (!isArrayMalloc(V, &TD)) 116 // The size is the argument to the malloc call. 117 if (const ConstantInt* C = dyn_cast<ConstantInt>(CI->getArgOperand(0))) 118 return C->getZExtValue(); 119 return AliasAnalysis::UnknownSize; 120 } else if (const Argument *A = dyn_cast<Argument>(V)) { 121 if (A->hasByValAttr()) 122 AccessTy = cast<PointerType>(A->getType())->getElementType(); 123 else 124 return AliasAnalysis::UnknownSize; 125 } else { 126 return AliasAnalysis::UnknownSize; 127 } 128 129 if (AccessTy->isSized()) 130 return TD.getTypeAllocSize(AccessTy); 131 return AliasAnalysis::UnknownSize; 132 } 133 134 /// isObjectSmallerThan - Return true if we can prove that the object specified 135 /// by V is smaller than Size. 136 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 137 const TargetData &TD) { 138 uint64_t ObjectSize = getObjectSize(V, TD); 139 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 140 } 141 142 /// isObjectSize - Return true if we can prove that the object specified 143 /// by V has size Size. 144 static bool isObjectSize(const Value *V, uint64_t Size, 145 const TargetData &TD) { 146 uint64_t ObjectSize = getObjectSize(V, TD); 147 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 148 } 149 150 //===----------------------------------------------------------------------===// 151 // GetElementPtr Instruction Decomposition and Analysis 152 //===----------------------------------------------------------------------===// 153 154 namespace { 155 enum ExtensionKind { 156 EK_NotExtended, 157 EK_SignExt, 158 EK_ZeroExt 159 }; 160 161 struct VariableGEPIndex { 162 const Value *V; 163 ExtensionKind Extension; 164 int64_t Scale; 165 }; 166 } 167 168 169 /// GetLinearExpression - Analyze the specified value as a linear expression: 170 /// "A*V + B", where A and B are constant integers. Return the scale and offset 171 /// values as APInts and return V as a Value*, and return whether we looked 172 /// through any sign or zero extends. The incoming Value is known to have 173 /// IntegerType and it may already be sign or zero extended. 174 /// 175 /// Note that this looks through extends, so the high bits may not be 176 /// represented in the result. 177 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 178 ExtensionKind &Extension, 179 const TargetData &TD, unsigned Depth) { 180 assert(V->getType()->isIntegerTy() && "Not an integer value"); 181 182 // Limit our recursion depth. 183 if (Depth == 6) { 184 Scale = 1; 185 Offset = 0; 186 return V; 187 } 188 189 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 190 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 191 switch (BOp->getOpcode()) { 192 default: break; 193 case Instruction::Or: 194 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 195 // analyze it. 196 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD)) 197 break; 198 // FALL THROUGH. 199 case Instruction::Add: 200 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 201 TD, Depth+1); 202 Offset += RHSC->getValue(); 203 return V; 204 case Instruction::Mul: 205 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 206 TD, Depth+1); 207 Offset *= RHSC->getValue(); 208 Scale *= RHSC->getValue(); 209 return V; 210 case Instruction::Shl: 211 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 212 TD, Depth+1); 213 Offset <<= RHSC->getValue().getLimitedValue(); 214 Scale <<= RHSC->getValue().getLimitedValue(); 215 return V; 216 } 217 } 218 } 219 220 // Since GEP indices are sign extended anyway, we don't care about the high 221 // bits of a sign or zero extended value - just scales and offsets. The 222 // extensions have to be consistent though. 223 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 224 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 225 Value *CastOp = cast<CastInst>(V)->getOperand(0); 226 unsigned OldWidth = Scale.getBitWidth(); 227 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 228 Scale = Scale.trunc(SmallWidth); 229 Offset = Offset.trunc(SmallWidth); 230 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 231 232 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 233 TD, Depth+1); 234 Scale = Scale.zext(OldWidth); 235 Offset = Offset.zext(OldWidth); 236 237 return Result; 238 } 239 240 Scale = 1; 241 Offset = 0; 242 return V; 243 } 244 245 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 246 /// into a base pointer with a constant offset and a number of scaled symbolic 247 /// offsets. 248 /// 249 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 250 /// the VarIndices vector) are Value*'s that are known to be scaled by the 251 /// specified amount, but which may have other unrepresented high bits. As such, 252 /// the gep cannot necessarily be reconstructed from its decomposed form. 253 /// 254 /// When TargetData is around, this function is capable of analyzing everything 255 /// that GetUnderlyingObject can look through. When not, it just looks 256 /// through pointer casts. 257 /// 258 static const Value * 259 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 260 SmallVectorImpl<VariableGEPIndex> &VarIndices, 261 const TargetData *TD) { 262 // Limit recursion depth to limit compile time in crazy cases. 263 unsigned MaxLookup = 6; 264 265 BaseOffs = 0; 266 do { 267 // See if this is a bitcast or GEP. 268 const Operator *Op = dyn_cast<Operator>(V); 269 if (Op == 0) { 270 // The only non-operator case we can handle are GlobalAliases. 271 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 272 if (!GA->mayBeOverridden()) { 273 V = GA->getAliasee(); 274 continue; 275 } 276 } 277 return V; 278 } 279 280 if (Op->getOpcode() == Instruction::BitCast) { 281 V = Op->getOperand(0); 282 continue; 283 } 284 285 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 286 if (GEPOp == 0) { 287 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 288 // can come up with something. This matches what GetUnderlyingObject does. 289 if (const Instruction *I = dyn_cast<Instruction>(V)) 290 // TODO: Get a DominatorTree and use it here. 291 if (const Value *Simplified = 292 SimplifyInstruction(const_cast<Instruction *>(I), TD)) { 293 V = Simplified; 294 continue; 295 } 296 297 return V; 298 } 299 300 // Don't attempt to analyze GEPs over unsized objects. 301 if (!cast<PointerType>(GEPOp->getOperand(0)->getType()) 302 ->getElementType()->isSized()) 303 return V; 304 305 // If we are lacking TargetData information, we can't compute the offets of 306 // elements computed by GEPs. However, we can handle bitcast equivalent 307 // GEPs. 308 if (TD == 0) { 309 if (!GEPOp->hasAllZeroIndices()) 310 return V; 311 V = GEPOp->getOperand(0); 312 continue; 313 } 314 315 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 316 gep_type_iterator GTI = gep_type_begin(GEPOp); 317 for (User::const_op_iterator I = GEPOp->op_begin()+1, 318 E = GEPOp->op_end(); I != E; ++I) { 319 Value *Index = *I; 320 // Compute the (potentially symbolic) offset in bytes for this index. 321 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 322 // For a struct, add the member offset. 323 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 324 if (FieldNo == 0) continue; 325 326 BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo); 327 continue; 328 } 329 330 // For an array/pointer, add the element offset, explicitly scaled. 331 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 332 if (CIdx->isZero()) continue; 333 BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 334 continue; 335 } 336 337 uint64_t Scale = TD->getTypeAllocSize(*GTI); 338 ExtensionKind Extension = EK_NotExtended; 339 340 // If the integer type is smaller than the pointer size, it is implicitly 341 // sign extended to pointer size. 342 unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth(); 343 if (TD->getPointerSizeInBits() > Width) 344 Extension = EK_SignExt; 345 346 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 347 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 348 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 349 *TD, 0); 350 351 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 352 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 353 BaseOffs += IndexOffset.getSExtValue()*Scale; 354 Scale *= IndexScale.getSExtValue(); 355 356 357 // If we already had an occurrence of this index variable, merge this 358 // scale into it. For example, we want to handle: 359 // A[x][x] -> x*16 + x*4 -> x*20 360 // This also ensures that 'x' only appears in the index list once. 361 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 362 if (VarIndices[i].V == Index && 363 VarIndices[i].Extension == Extension) { 364 Scale += VarIndices[i].Scale; 365 VarIndices.erase(VarIndices.begin()+i); 366 break; 367 } 368 } 369 370 // Make sure that we have a scale that makes sense for this target's 371 // pointer size. 372 if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) { 373 Scale <<= ShiftBits; 374 Scale = (int64_t)Scale >> ShiftBits; 375 } 376 377 if (Scale) { 378 VariableGEPIndex Entry = {Index, Extension, 379 static_cast<int64_t>(Scale)}; 380 VarIndices.push_back(Entry); 381 } 382 } 383 384 // Analyze the base pointer next. 385 V = GEPOp->getOperand(0); 386 } while (--MaxLookup); 387 388 // If the chain of expressions is too deep, just return early. 389 return V; 390 } 391 392 /// GetIndexDifference - Dest and Src are the variable indices from two 393 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 394 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 395 /// difference between the two pointers. 396 static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 397 const SmallVectorImpl<VariableGEPIndex> &Src) { 398 if (Src.empty()) return; 399 400 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 401 const Value *V = Src[i].V; 402 ExtensionKind Extension = Src[i].Extension; 403 int64_t Scale = Src[i].Scale; 404 405 // Find V in Dest. This is N^2, but pointer indices almost never have more 406 // than a few variable indexes. 407 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 408 if (Dest[j].V != V || Dest[j].Extension != Extension) continue; 409 410 // If we found it, subtract off Scale V's from the entry in Dest. If it 411 // goes to zero, remove the entry. 412 if (Dest[j].Scale != Scale) 413 Dest[j].Scale -= Scale; 414 else 415 Dest.erase(Dest.begin()+j); 416 Scale = 0; 417 break; 418 } 419 420 // If we didn't consume this entry, add it to the end of the Dest list. 421 if (Scale) { 422 VariableGEPIndex Entry = { V, Extension, -Scale }; 423 Dest.push_back(Entry); 424 } 425 } 426 } 427 428 //===----------------------------------------------------------------------===// 429 // BasicAliasAnalysis Pass 430 //===----------------------------------------------------------------------===// 431 432 #ifndef NDEBUG 433 static const Function *getParent(const Value *V) { 434 if (const Instruction *inst = dyn_cast<Instruction>(V)) 435 return inst->getParent()->getParent(); 436 437 if (const Argument *arg = dyn_cast<Argument>(V)) 438 return arg->getParent(); 439 440 return NULL; 441 } 442 443 static bool notDifferentParent(const Value *O1, const Value *O2) { 444 445 const Function *F1 = getParent(O1); 446 const Function *F2 = getParent(O2); 447 448 return !F1 || !F2 || F1 == F2; 449 } 450 #endif 451 452 namespace { 453 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 454 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 455 static char ID; // Class identification, replacement for typeinfo 456 BasicAliasAnalysis() : ImmutablePass(ID), 457 // AliasCache rarely has more than 1 or 2 elements, 458 // so start it off fairly small so that clear() 459 // doesn't have to tromp through 64 (the default) 460 // elements on each alias query. This really wants 461 // something like a SmallDenseMap. 462 AliasCache(8) { 463 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 464 } 465 466 virtual void initializePass() { 467 InitializeAliasAnalysis(this); 468 } 469 470 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 471 AU.addRequired<AliasAnalysis>(); 472 AU.addRequired<TargetLibraryInfo>(); 473 } 474 475 virtual AliasResult alias(const Location &LocA, 476 const Location &LocB) { 477 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 478 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 479 "BasicAliasAnalysis doesn't support interprocedural queries."); 480 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag, 481 LocB.Ptr, LocB.Size, LocB.TBAATag); 482 AliasCache.clear(); 483 return Alias; 484 } 485 486 virtual ModRefResult getModRefInfo(ImmutableCallSite CS, 487 const Location &Loc); 488 489 virtual ModRefResult getModRefInfo(ImmutableCallSite CS1, 490 ImmutableCallSite CS2) { 491 // The AliasAnalysis base class has some smarts, lets use them. 492 return AliasAnalysis::getModRefInfo(CS1, CS2); 493 } 494 495 /// pointsToConstantMemory - Chase pointers until we find a (constant 496 /// global) or not. 497 virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal); 498 499 /// getModRefBehavior - Return the behavior when calling the given 500 /// call site. 501 virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS); 502 503 /// getModRefBehavior - Return the behavior when calling the given function. 504 /// For use when the call site is not known. 505 virtual ModRefBehavior getModRefBehavior(const Function *F); 506 507 /// getAdjustedAnalysisPointer - This method is used when a pass implements 508 /// an analysis interface through multiple inheritance. If needed, it 509 /// should override this to adjust the this pointer as needed for the 510 /// specified pass info. 511 virtual void *getAdjustedAnalysisPointer(const void *ID) { 512 if (ID == &AliasAnalysis::ID) 513 return (AliasAnalysis*)this; 514 return this; 515 } 516 517 private: 518 // AliasCache - Track alias queries to guard against recursion. 519 typedef std::pair<Location, Location> LocPair; 520 typedef DenseMap<LocPair, AliasResult> AliasCacheTy; 521 AliasCacheTy AliasCache; 522 523 // Visited - Track instructions visited by pointsToConstantMemory. 524 SmallPtrSet<const Value*, 16> Visited; 525 526 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 527 // instruction against another. 528 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 529 const Value *V2, uint64_t V2Size, 530 const MDNode *V2TBAAInfo, 531 const Value *UnderlyingV1, const Value *UnderlyingV2); 532 533 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 534 // instruction against another. 535 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 536 const MDNode *PNTBAAInfo, 537 const Value *V2, uint64_t V2Size, 538 const MDNode *V2TBAAInfo); 539 540 /// aliasSelect - Disambiguate a Select instruction against another value. 541 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 542 const MDNode *SITBAAInfo, 543 const Value *V2, uint64_t V2Size, 544 const MDNode *V2TBAAInfo); 545 546 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 547 const MDNode *V1TBAATag, 548 const Value *V2, uint64_t V2Size, 549 const MDNode *V2TBAATag); 550 }; 551 } // End of anonymous namespace 552 553 // Register this pass... 554 char BasicAliasAnalysis::ID = 0; 555 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 556 "Basic Alias Analysis (stateless AA impl)", 557 false, true, false) 558 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 559 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 560 "Basic Alias Analysis (stateless AA impl)", 561 false, true, false) 562 563 564 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 565 return new BasicAliasAnalysis(); 566 } 567 568 /// pointsToConstantMemory - Returns whether the given pointer value 569 /// points to memory that is local to the function, with global constants being 570 /// considered local to all functions. 571 bool 572 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 573 assert(Visited.empty() && "Visited must be cleared after use!"); 574 575 unsigned MaxLookup = 8; 576 SmallVector<const Value *, 16> Worklist; 577 Worklist.push_back(Loc.Ptr); 578 do { 579 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD); 580 if (!Visited.insert(V)) { 581 Visited.clear(); 582 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 583 } 584 585 // An alloca instruction defines local memory. 586 if (OrLocal && isa<AllocaInst>(V)) 587 continue; 588 589 // A global constant counts as local memory for our purposes. 590 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 591 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 592 // global to be marked constant in some modules and non-constant in 593 // others. GV may even be a declaration, not a definition. 594 if (!GV->isConstant()) { 595 Visited.clear(); 596 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 597 } 598 continue; 599 } 600 601 // If both select values point to local memory, then so does the select. 602 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 603 Worklist.push_back(SI->getTrueValue()); 604 Worklist.push_back(SI->getFalseValue()); 605 continue; 606 } 607 608 // If all values incoming to a phi node point to local memory, then so does 609 // the phi. 610 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 611 // Don't bother inspecting phi nodes with many operands. 612 if (PN->getNumIncomingValues() > MaxLookup) { 613 Visited.clear(); 614 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 615 } 616 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 617 Worklist.push_back(PN->getIncomingValue(i)); 618 continue; 619 } 620 621 // Otherwise be conservative. 622 Visited.clear(); 623 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 624 625 } while (!Worklist.empty() && --MaxLookup); 626 627 Visited.clear(); 628 return Worklist.empty(); 629 } 630 631 /// getModRefBehavior - Return the behavior when calling the given call site. 632 AliasAnalysis::ModRefBehavior 633 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 634 if (CS.doesNotAccessMemory()) 635 // Can't do better than this. 636 return DoesNotAccessMemory; 637 638 ModRefBehavior Min = UnknownModRefBehavior; 639 640 // If the callsite knows it only reads memory, don't return worse 641 // than that. 642 if (CS.onlyReadsMemory()) 643 Min = OnlyReadsMemory; 644 645 // The AliasAnalysis base class has some smarts, lets use them. 646 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 647 } 648 649 /// getModRefBehavior - Return the behavior when calling the given function. 650 /// For use when the call site is not known. 651 AliasAnalysis::ModRefBehavior 652 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 653 // If the function declares it doesn't access memory, we can't do better. 654 if (F->doesNotAccessMemory()) 655 return DoesNotAccessMemory; 656 657 // For intrinsics, we can check the table. 658 if (unsigned iid = F->getIntrinsicID()) { 659 #define GET_INTRINSIC_MODREF_BEHAVIOR 660 #include "llvm/Intrinsics.gen" 661 #undef GET_INTRINSIC_MODREF_BEHAVIOR 662 } 663 664 ModRefBehavior Min = UnknownModRefBehavior; 665 666 // If the function declares it only reads memory, go with that. 667 if (F->onlyReadsMemory()) 668 Min = OnlyReadsMemory; 669 670 // Otherwise be conservative. 671 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 672 } 673 674 /// getModRefInfo - Check to see if the specified callsite can clobber the 675 /// specified memory object. Since we only look at local properties of this 676 /// function, we really can't say much about this query. We do, however, use 677 /// simple "address taken" analysis on local objects. 678 AliasAnalysis::ModRefResult 679 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 680 const Location &Loc) { 681 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 682 "AliasAnalysis query involving multiple functions!"); 683 684 const Value *Object = GetUnderlyingObject(Loc.Ptr, TD); 685 686 // If this is a tail call and Loc.Ptr points to a stack location, we know that 687 // the tail call cannot access or modify the local stack. 688 // We cannot exclude byval arguments here; these belong to the caller of 689 // the current function not to the current function, and a tail callee 690 // may reference them. 691 if (isa<AllocaInst>(Object)) 692 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 693 if (CI->isTailCall()) 694 return NoModRef; 695 696 // If the pointer is to a locally allocated object that does not escape, 697 // then the call can not mod/ref the pointer unless the call takes the pointer 698 // as an argument, and itself doesn't capture it. 699 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 700 isNonEscapingLocalObject(Object)) { 701 bool PassedAsArg = false; 702 unsigned ArgNo = 0; 703 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 704 CI != CE; ++CI, ++ArgNo) { 705 // Only look at the no-capture or byval pointer arguments. If this 706 // pointer were passed to arguments that were neither of these, then it 707 // couldn't be no-capture. 708 if (!(*CI)->getType()->isPointerTy() || 709 (!CS.paramHasAttr(ArgNo+1, Attribute::NoCapture) && 710 !CS.paramHasAttr(ArgNo+1, Attribute::ByVal))) 711 continue; 712 713 // If this is a no-capture pointer argument, see if we can tell that it 714 // is impossible to alias the pointer we're checking. If not, we have to 715 // assume that the call could touch the pointer, even though it doesn't 716 // escape. 717 if (!isNoAlias(Location(cast<Value>(CI)), Loc)) { 718 PassedAsArg = true; 719 break; 720 } 721 } 722 723 if (!PassedAsArg) 724 return NoModRef; 725 } 726 727 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 728 ModRefResult Min = ModRef; 729 730 // Finally, handle specific knowledge of intrinsics. 731 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 732 if (II != 0) 733 switch (II->getIntrinsicID()) { 734 default: break; 735 case Intrinsic::memcpy: 736 case Intrinsic::memmove: { 737 uint64_t Len = UnknownSize; 738 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 739 Len = LenCI->getZExtValue(); 740 Value *Dest = II->getArgOperand(0); 741 Value *Src = II->getArgOperand(1); 742 // If it can't overlap the source dest, then it doesn't modref the loc. 743 if (isNoAlias(Location(Dest, Len), Loc)) { 744 if (isNoAlias(Location(Src, Len), Loc)) 745 return NoModRef; 746 // If it can't overlap the dest, then worst case it reads the loc. 747 Min = Ref; 748 } else if (isNoAlias(Location(Src, Len), Loc)) { 749 // If it can't overlap the source, then worst case it mutates the loc. 750 Min = Mod; 751 } 752 break; 753 } 754 case Intrinsic::memset: 755 // Since memset is 'accesses arguments' only, the AliasAnalysis base class 756 // will handle it for the variable length case. 757 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) { 758 uint64_t Len = LenCI->getZExtValue(); 759 Value *Dest = II->getArgOperand(0); 760 if (isNoAlias(Location(Dest, Len), Loc)) 761 return NoModRef; 762 } 763 // We know that memset doesn't load anything. 764 Min = Mod; 765 break; 766 case Intrinsic::atomic_cmp_swap: 767 case Intrinsic::atomic_swap: 768 case Intrinsic::atomic_load_add: 769 case Intrinsic::atomic_load_sub: 770 case Intrinsic::atomic_load_and: 771 case Intrinsic::atomic_load_nand: 772 case Intrinsic::atomic_load_or: 773 case Intrinsic::atomic_load_xor: 774 case Intrinsic::atomic_load_max: 775 case Intrinsic::atomic_load_min: 776 case Intrinsic::atomic_load_umax: 777 case Intrinsic::atomic_load_umin: 778 if (TD) { 779 Value *Op1 = II->getArgOperand(0); 780 uint64_t Op1Size = TD->getTypeStoreSize(Op1->getType()); 781 MDNode *Tag = II->getMetadata(LLVMContext::MD_tbaa); 782 if (isNoAlias(Location(Op1, Op1Size, Tag), Loc)) 783 return NoModRef; 784 } 785 break; 786 case Intrinsic::lifetime_start: 787 case Intrinsic::lifetime_end: 788 case Intrinsic::invariant_start: { 789 uint64_t PtrSize = 790 cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 791 if (isNoAlias(Location(II->getArgOperand(1), 792 PtrSize, 793 II->getMetadata(LLVMContext::MD_tbaa)), 794 Loc)) 795 return NoModRef; 796 break; 797 } 798 case Intrinsic::invariant_end: { 799 uint64_t PtrSize = 800 cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 801 if (isNoAlias(Location(II->getArgOperand(2), 802 PtrSize, 803 II->getMetadata(LLVMContext::MD_tbaa)), 804 Loc)) 805 return NoModRef; 806 break; 807 } 808 case Intrinsic::arm_neon_vld1: { 809 // LLVM's vld1 and vst1 intrinsics currently only support a single 810 // vector register. 811 uint64_t Size = 812 TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize; 813 if (isNoAlias(Location(II->getArgOperand(0), Size, 814 II->getMetadata(LLVMContext::MD_tbaa)), 815 Loc)) 816 return NoModRef; 817 break; 818 } 819 case Intrinsic::arm_neon_vst1: { 820 uint64_t Size = 821 TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize; 822 if (isNoAlias(Location(II->getArgOperand(0), Size, 823 II->getMetadata(LLVMContext::MD_tbaa)), 824 Loc)) 825 return NoModRef; 826 break; 827 } 828 } 829 830 // We can bound the aliasing properties of memset_pattern16 just as we can 831 // for memcpy/memset. This is particularly important because the 832 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 833 // whenever possible. 834 else if (TLI.has(LibFunc::memset_pattern16) && 835 CS.getCalledFunction() && 836 CS.getCalledFunction()->getName() == "memset_pattern16") { 837 const Function *MS = CS.getCalledFunction(); 838 FunctionType *MemsetType = MS->getFunctionType(); 839 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 840 isa<PointerType>(MemsetType->getParamType(0)) && 841 isa<PointerType>(MemsetType->getParamType(1)) && 842 isa<IntegerType>(MemsetType->getParamType(2))) { 843 uint64_t Len = UnknownSize; 844 if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2))) 845 Len = LenCI->getZExtValue(); 846 const Value *Dest = CS.getArgument(0); 847 const Value *Src = CS.getArgument(1); 848 // If it can't overlap the source dest, then it doesn't modref the loc. 849 if (isNoAlias(Location(Dest, Len), Loc)) { 850 // Always reads 16 bytes of the source. 851 if (isNoAlias(Location(Src, 16), Loc)) 852 return NoModRef; 853 // If it can't overlap the dest, then worst case it reads the loc. 854 Min = Ref; 855 // Always reads 16 bytes of the source. 856 } else if (isNoAlias(Location(Src, 16), Loc)) { 857 // If it can't overlap the source, then worst case it mutates the loc. 858 Min = Mod; 859 } 860 } 861 } 862 863 // The AliasAnalysis base class has some smarts, lets use them. 864 return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min); 865 } 866 867 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 868 /// against another pointer. We know that V1 is a GEP, but we don't know 869 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, TD), 870 /// UnderlyingV2 is the same for V2. 871 /// 872 AliasAnalysis::AliasResult 873 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 874 const Value *V2, uint64_t V2Size, 875 const MDNode *V2TBAAInfo, 876 const Value *UnderlyingV1, 877 const Value *UnderlyingV2) { 878 int64_t GEP1BaseOffset; 879 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 880 881 // If we have two gep instructions with must-alias'ing base pointers, figure 882 // out if the indexes to the GEP tell us anything about the derived pointer. 883 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 884 // Do the base pointers alias? 885 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0, 886 UnderlyingV2, UnknownSize, 0); 887 888 // If we get a No or May, then return it immediately, no amount of analysis 889 // will improve this situation. 890 if (BaseAlias != MustAlias) return BaseAlias; 891 892 // Otherwise, we have a MustAlias. Since the base pointers alias each other 893 // exactly, see if the computed offset from the common pointer tells us 894 // about the relation of the resulting pointer. 895 const Value *GEP1BasePtr = 896 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 897 898 int64_t GEP2BaseOffset; 899 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 900 const Value *GEP2BasePtr = 901 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD); 902 903 // If DecomposeGEPExpression isn't able to look all the way through the 904 // addressing operation, we must not have TD and this is too complex for us 905 // to handle without it. 906 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 907 assert(TD == 0 && 908 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 909 return MayAlias; 910 } 911 912 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 913 // symbolic difference. 914 GEP1BaseOffset -= GEP2BaseOffset; 915 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 916 917 } else { 918 // Check to see if these two pointers are related by the getelementptr 919 // instruction. If one pointer is a GEP with a non-zero index of the other 920 // pointer, we know they cannot alias. 921 922 // If both accesses are unknown size, we can't do anything useful here. 923 if (V1Size == UnknownSize && V2Size == UnknownSize) 924 return MayAlias; 925 926 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0, 927 V2, V2Size, V2TBAAInfo); 928 if (R != MustAlias) 929 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 930 // If V2 is known not to alias GEP base pointer, then the two values 931 // cannot alias per GEP semantics: "A pointer value formed from a 932 // getelementptr instruction is associated with the addresses associated 933 // with the first operand of the getelementptr". 934 return R; 935 936 const Value *GEP1BasePtr = 937 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD); 938 939 // If DecomposeGEPExpression isn't able to look all the way through the 940 // addressing operation, we must not have TD and this is too complex for us 941 // to handle without it. 942 if (GEP1BasePtr != UnderlyingV1) { 943 assert(TD == 0 && 944 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 945 return MayAlias; 946 } 947 } 948 949 // In the two GEP Case, if there is no difference in the offsets of the 950 // computed pointers, the resultant pointers are a must alias. This 951 // hapens when we have two lexically identical GEP's (for example). 952 // 953 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 954 // must aliases the GEP, the end result is a must alias also. 955 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 956 return MustAlias; 957 958 // If there is a constant difference between the pointers, but the difference 959 // is less than the size of the associated memory object, then we know 960 // that the objects are partially overlapping. If the difference is 961 // greater, we know they do not overlap. 962 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 963 if (GEP1BaseOffset >= 0) { 964 if (V2Size != UnknownSize) { 965 if ((uint64_t)GEP1BaseOffset < V2Size) 966 return PartialAlias; 967 return NoAlias; 968 } 969 } else { 970 if (V1Size != UnknownSize) { 971 if (-(uint64_t)GEP1BaseOffset < V1Size) 972 return PartialAlias; 973 return NoAlias; 974 } 975 } 976 } 977 978 // Try to distinguish something like &A[i][1] against &A[42][0]. 979 // Grab the least significant bit set in any of the scales. 980 if (!GEP1VariableIndices.empty()) { 981 uint64_t Modulo = 0; 982 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 983 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 984 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 985 986 // We can compute the difference between the two addresses 987 // mod Modulo. Check whether that difference guarantees that the 988 // two locations do not alias. 989 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 990 if (V1Size != UnknownSize && V2Size != UnknownSize && 991 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 992 return NoAlias; 993 } 994 995 // Statically, we can see that the base objects are the same, but the 996 // pointers have dynamic offsets which we can't resolve. And none of our 997 // little tricks above worked. 998 // 999 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1000 // practical effect of this is protecting TBAA in the case of dynamic 1001 // indices into arrays of unions. An alternative way to solve this would 1002 // be to have clang emit extra metadata for unions and/or union accesses. 1003 // A union-specific solution wouldn't handle the problem for malloc'd 1004 // memory however. 1005 return PartialAlias; 1006 } 1007 1008 static AliasAnalysis::AliasResult 1009 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1010 // If the results agree, take it. 1011 if (A == B) 1012 return A; 1013 // A mix of PartialAlias and MustAlias is PartialAlias. 1014 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1015 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1016 return AliasAnalysis::PartialAlias; 1017 // Otherwise, we don't know anything. 1018 return AliasAnalysis::MayAlias; 1019 } 1020 1021 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1022 /// instruction against another. 1023 AliasAnalysis::AliasResult 1024 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1025 const MDNode *SITBAAInfo, 1026 const Value *V2, uint64_t V2Size, 1027 const MDNode *V2TBAAInfo) { 1028 // If the values are Selects with the same condition, we can do a more precise 1029 // check: just check for aliases between the values on corresponding arms. 1030 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1031 if (SI->getCondition() == SI2->getCondition()) { 1032 AliasResult Alias = 1033 aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo, 1034 SI2->getTrueValue(), V2Size, V2TBAAInfo); 1035 if (Alias == MayAlias) 1036 return MayAlias; 1037 AliasResult ThisAlias = 1038 aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo, 1039 SI2->getFalseValue(), V2Size, V2TBAAInfo); 1040 return MergeAliasResults(ThisAlias, Alias); 1041 } 1042 1043 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1044 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1045 AliasResult Alias = 1046 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo); 1047 if (Alias == MayAlias) 1048 return MayAlias; 1049 1050 AliasResult ThisAlias = 1051 aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo); 1052 return MergeAliasResults(ThisAlias, Alias); 1053 } 1054 1055 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1056 // against another. 1057 AliasAnalysis::AliasResult 1058 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1059 const MDNode *PNTBAAInfo, 1060 const Value *V2, uint64_t V2Size, 1061 const MDNode *V2TBAAInfo) { 1062 // If the values are PHIs in the same block, we can do a more precise 1063 // as well as efficient check: just check for aliases between the values 1064 // on corresponding edges. 1065 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1066 if (PN2->getParent() == PN->getParent()) { 1067 AliasResult Alias = 1068 aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo, 1069 PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)), 1070 V2Size, V2TBAAInfo); 1071 if (Alias == MayAlias) 1072 return MayAlias; 1073 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1074 AliasResult ThisAlias = 1075 aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo, 1076 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1077 V2Size, V2TBAAInfo); 1078 Alias = MergeAliasResults(ThisAlias, Alias); 1079 if (Alias == MayAlias) 1080 break; 1081 } 1082 return Alias; 1083 } 1084 1085 SmallPtrSet<Value*, 4> UniqueSrc; 1086 SmallVector<Value*, 4> V1Srcs; 1087 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1088 Value *PV1 = PN->getIncomingValue(i); 1089 if (isa<PHINode>(PV1)) 1090 // If any of the source itself is a PHI, return MayAlias conservatively 1091 // to avoid compile time explosion. The worst possible case is if both 1092 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1093 // and 'n' are the number of PHI sources. 1094 return MayAlias; 1095 if (UniqueSrc.insert(PV1)) 1096 V1Srcs.push_back(PV1); 1097 } 1098 1099 AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo, 1100 V1Srcs[0], PNSize, PNTBAAInfo); 1101 // Early exit if the check of the first PHI source against V2 is MayAlias. 1102 // Other results are not possible. 1103 if (Alias == MayAlias) 1104 return MayAlias; 1105 1106 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1107 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1108 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1109 Value *V = V1Srcs[i]; 1110 1111 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo, 1112 V, PNSize, PNTBAAInfo); 1113 Alias = MergeAliasResults(ThisAlias, Alias); 1114 if (Alias == MayAlias) 1115 break; 1116 } 1117 1118 return Alias; 1119 } 1120 1121 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1122 // such as array references. 1123 // 1124 AliasAnalysis::AliasResult 1125 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1126 const MDNode *V1TBAAInfo, 1127 const Value *V2, uint64_t V2Size, 1128 const MDNode *V2TBAAInfo) { 1129 // If either of the memory references is empty, it doesn't matter what the 1130 // pointer values are. 1131 if (V1Size == 0 || V2Size == 0) 1132 return NoAlias; 1133 1134 // Strip off any casts if they exist. 1135 V1 = V1->stripPointerCasts(); 1136 V2 = V2->stripPointerCasts(); 1137 1138 // Are we checking for alias of the same value? 1139 if (V1 == V2) return MustAlias; 1140 1141 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1142 return NoAlias; // Scalars cannot alias each other 1143 1144 // Figure out what objects these things are pointing to if we can. 1145 const Value *O1 = GetUnderlyingObject(V1, TD); 1146 const Value *O2 = GetUnderlyingObject(V2, TD); 1147 1148 // Null values in the default address space don't point to any object, so they 1149 // don't alias any other pointer. 1150 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1151 if (CPN->getType()->getAddressSpace() == 0) 1152 return NoAlias; 1153 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1154 if (CPN->getType()->getAddressSpace() == 0) 1155 return NoAlias; 1156 1157 if (O1 != O2) { 1158 // If V1/V2 point to two different objects we know that we have no alias. 1159 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1160 return NoAlias; 1161 1162 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1163 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1164 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1165 return NoAlias; 1166 1167 // Arguments can't alias with local allocations or noalias calls 1168 // in the same function. 1169 if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) || 1170 (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1))))) 1171 return NoAlias; 1172 1173 // Most objects can't alias null. 1174 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1175 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1176 return NoAlias; 1177 1178 // If one pointer is the result of a call/invoke or load and the other is a 1179 // non-escaping local object within the same function, then we know the 1180 // object couldn't escape to a point where the call could return it. 1181 // 1182 // Note that if the pointers are in different functions, there are a 1183 // variety of complications. A call with a nocapture argument may still 1184 // temporary store the nocapture argument's value in a temporary memory 1185 // location if that memory location doesn't escape. Or it may pass a 1186 // nocapture value to other functions as long as they don't capture it. 1187 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1188 return NoAlias; 1189 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1190 return NoAlias; 1191 } 1192 1193 // If the size of one access is larger than the entire object on the other 1194 // side, then we know such behavior is undefined and can assume no alias. 1195 if (TD) 1196 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD)) || 1197 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD))) 1198 return NoAlias; 1199 1200 // Check the cache before climbing up use-def chains. This also terminates 1201 // otherwise infinitely recursive queries. 1202 LocPair Locs(Location(V1, V1Size, V1TBAAInfo), 1203 Location(V2, V2Size, V2TBAAInfo)); 1204 if (V1 > V2) 1205 std::swap(Locs.first, Locs.second); 1206 std::pair<AliasCacheTy::iterator, bool> Pair = 1207 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1208 if (!Pair.second) 1209 return Pair.first->second; 1210 1211 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1212 // GEP can't simplify, we don't even look at the PHI cases. 1213 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1214 std::swap(V1, V2); 1215 std::swap(V1Size, V2Size); 1216 std::swap(O1, O2); 1217 } 1218 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1219 AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, V2TBAAInfo, O1, O2); 1220 if (Result != MayAlias) return AliasCache[Locs] = Result; 1221 } 1222 1223 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1224 std::swap(V1, V2); 1225 std::swap(V1Size, V2Size); 1226 } 1227 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1228 AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo, 1229 V2, V2Size, V2TBAAInfo); 1230 if (Result != MayAlias) return AliasCache[Locs] = Result; 1231 } 1232 1233 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1234 std::swap(V1, V2); 1235 std::swap(V1Size, V2Size); 1236 } 1237 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1238 AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo, 1239 V2, V2Size, V2TBAAInfo); 1240 if (Result != MayAlias) return AliasCache[Locs] = Result; 1241 } 1242 1243 // If both pointers are pointing into the same object and one of them 1244 // accesses is accessing the entire object, then the accesses must 1245 // overlap in some way. 1246 if (TD && O1 == O2) 1247 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD)) || 1248 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD))) 1249 return AliasCache[Locs] = PartialAlias; 1250 1251 AliasResult Result = 1252 AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo), 1253 Location(V2, V2Size, V2TBAAInfo)); 1254 return AliasCache[Locs] = Result; 1255 } 1256