1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the primary stateless implementation of the 11 // Alias Analysis interface that implements identities (two different 12 // globals cannot alias, etc), but does no stateful analysis. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/Passes.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/AssumptionTracker.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/CaptureTracking.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopInfo.h" 25 #include "llvm/Analysis/MemoryBuiltins.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Target/TargetLibraryInfo.h" 42 #include <algorithm> 43 using namespace llvm; 44 45 /// Cutoff after which to stop analysing a set of phi nodes potentially involved 46 /// in a cycle. Because we are analysing 'through' phi nodes we need to be 47 /// careful with value equivalence. We use reachability to make sure a value 48 /// cannot be involved in a cycle. 49 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20; 50 51 // The max limit of the search depth in DecomposeGEPExpression() and 52 // GetUnderlyingObject(), both functions need to use the same search 53 // depth otherwise the algorithm in aliasGEP will assert. 54 static const unsigned MaxLookupSearchDepth = 6; 55 56 //===----------------------------------------------------------------------===// 57 // Useful predicates 58 //===----------------------------------------------------------------------===// 59 60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local 61 /// object that never escapes from the function. 62 static bool isNonEscapingLocalObject(const Value *V) { 63 // If this is a local allocation, check to see if it escapes. 64 if (isa<AllocaInst>(V) || isNoAliasCall(V)) 65 // Set StoreCaptures to True so that we can assume in our callers that the 66 // pointer is not the result of a load instruction. Currently 67 // PointerMayBeCaptured doesn't have any special analysis for the 68 // StoreCaptures=false case; if it did, our callers could be refined to be 69 // more precise. 70 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 71 72 // If this is an argument that corresponds to a byval or noalias argument, 73 // then it has not escaped before entering the function. Check if it escapes 74 // inside the function. 75 if (const Argument *A = dyn_cast<Argument>(V)) 76 if (A->hasByValAttr() || A->hasNoAliasAttr()) 77 // Note even if the argument is marked nocapture we still need to check 78 // for copies made inside the function. The nocapture attribute only 79 // specifies that there are no copies made that outlive the function. 80 return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true); 81 82 return false; 83 } 84 85 /// isEscapeSource - Return true if the pointer is one which would have 86 /// been considered an escape by isNonEscapingLocalObject. 87 static bool isEscapeSource(const Value *V) { 88 if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V)) 89 return true; 90 91 // The load case works because isNonEscapingLocalObject considers all 92 // stores to be escapes (it passes true for the StoreCaptures argument 93 // to PointerMayBeCaptured). 94 if (isa<LoadInst>(V)) 95 return true; 96 97 return false; 98 } 99 100 /// getObjectSize - Return the size of the object specified by V, or 101 /// UnknownSize if unknown. 102 static uint64_t getObjectSize(const Value *V, const DataLayout &DL, 103 const TargetLibraryInfo &TLI, 104 bool RoundToAlign = false) { 105 uint64_t Size; 106 if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign)) 107 return Size; 108 return AliasAnalysis::UnknownSize; 109 } 110 111 /// isObjectSmallerThan - Return true if we can prove that the object specified 112 /// by V is smaller than Size. 113 static bool isObjectSmallerThan(const Value *V, uint64_t Size, 114 const DataLayout &DL, 115 const TargetLibraryInfo &TLI) { 116 // Note that the meanings of the "object" are slightly different in the 117 // following contexts: 118 // c1: llvm::getObjectSize() 119 // c2: llvm.objectsize() intrinsic 120 // c3: isObjectSmallerThan() 121 // c1 and c2 share the same meaning; however, the meaning of "object" in c3 122 // refers to the "entire object". 123 // 124 // Consider this example: 125 // char *p = (char*)malloc(100) 126 // char *q = p+80; 127 // 128 // In the context of c1 and c2, the "object" pointed by q refers to the 129 // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. 130 // 131 // However, in the context of c3, the "object" refers to the chunk of memory 132 // being allocated. So, the "object" has 100 bytes, and q points to the middle 133 // the "object". In case q is passed to isObjectSmallerThan() as the 1st 134 // parameter, before the llvm::getObjectSize() is called to get the size of 135 // entire object, we should: 136 // - either rewind the pointer q to the base-address of the object in 137 // question (in this case rewind to p), or 138 // - just give up. It is up to caller to make sure the pointer is pointing 139 // to the base address the object. 140 // 141 // We go for 2nd option for simplicity. 142 if (!isIdentifiedObject(V)) 143 return false; 144 145 // This function needs to use the aligned object size because we allow 146 // reads a bit past the end given sufficient alignment. 147 uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true); 148 149 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size; 150 } 151 152 /// isObjectSize - Return true if we can prove that the object specified 153 /// by V has size Size. 154 static bool isObjectSize(const Value *V, uint64_t Size, 155 const DataLayout &DL, const TargetLibraryInfo &TLI) { 156 uint64_t ObjectSize = getObjectSize(V, DL, TLI); 157 return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size; 158 } 159 160 //===----------------------------------------------------------------------===// 161 // GetElementPtr Instruction Decomposition and Analysis 162 //===----------------------------------------------------------------------===// 163 164 namespace { 165 enum ExtensionKind { 166 EK_NotExtended, 167 EK_SignExt, 168 EK_ZeroExt 169 }; 170 171 struct VariableGEPIndex { 172 const Value *V; 173 ExtensionKind Extension; 174 int64_t Scale; 175 176 bool operator==(const VariableGEPIndex &Other) const { 177 return V == Other.V && Extension == Other.Extension && 178 Scale == Other.Scale; 179 } 180 181 bool operator!=(const VariableGEPIndex &Other) const { 182 return !operator==(Other); 183 } 184 }; 185 } 186 187 188 /// GetLinearExpression - Analyze the specified value as a linear expression: 189 /// "A*V + B", where A and B are constant integers. Return the scale and offset 190 /// values as APInts and return V as a Value*, and return whether we looked 191 /// through any sign or zero extends. The incoming Value is known to have 192 /// IntegerType and it may already be sign or zero extended. 193 /// 194 /// Note that this looks through extends, so the high bits may not be 195 /// represented in the result. 196 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, 197 ExtensionKind &Extension, 198 const DataLayout &DL, unsigned Depth, 199 AssumptionTracker *AT, 200 DominatorTree *DT) { 201 assert(V->getType()->isIntegerTy() && "Not an integer value"); 202 203 // Limit our recursion depth. 204 if (Depth == 6) { 205 Scale = 1; 206 Offset = 0; 207 return V; 208 } 209 210 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) { 211 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { 212 switch (BOp->getOpcode()) { 213 default: break; 214 case Instruction::Or: 215 // X|C == X+C if all the bits in C are unset in X. Otherwise we can't 216 // analyze it. 217 if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL, 0, 218 AT, BOp, DT)) 219 break; 220 // FALL THROUGH. 221 case Instruction::Add: 222 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 223 DL, Depth+1, AT, DT); 224 Offset += RHSC->getValue(); 225 return V; 226 case Instruction::Mul: 227 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 228 DL, Depth+1, AT, DT); 229 Offset *= RHSC->getValue(); 230 Scale *= RHSC->getValue(); 231 return V; 232 case Instruction::Shl: 233 V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, 234 DL, Depth+1, AT, DT); 235 Offset <<= RHSC->getValue().getLimitedValue(); 236 Scale <<= RHSC->getValue().getLimitedValue(); 237 return V; 238 } 239 } 240 } 241 242 // Since GEP indices are sign extended anyway, we don't care about the high 243 // bits of a sign or zero extended value - just scales and offsets. The 244 // extensions have to be consistent though. 245 if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) || 246 (isa<ZExtInst>(V) && Extension != EK_SignExt)) { 247 Value *CastOp = cast<CastInst>(V)->getOperand(0); 248 unsigned OldWidth = Scale.getBitWidth(); 249 unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); 250 Scale = Scale.trunc(SmallWidth); 251 Offset = Offset.trunc(SmallWidth); 252 Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt; 253 254 Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, 255 DL, Depth+1, AT, DT); 256 Scale = Scale.zext(OldWidth); 257 Offset = Offset.zext(OldWidth); 258 259 return Result; 260 } 261 262 Scale = 1; 263 Offset = 0; 264 return V; 265 } 266 267 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it 268 /// into a base pointer with a constant offset and a number of scaled symbolic 269 /// offsets. 270 /// 271 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in 272 /// the VarIndices vector) are Value*'s that are known to be scaled by the 273 /// specified amount, but which may have other unrepresented high bits. As such, 274 /// the gep cannot necessarily be reconstructed from its decomposed form. 275 /// 276 /// When DataLayout is around, this function is capable of analyzing everything 277 /// that GetUnderlyingObject can look through. To be able to do that 278 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search 279 /// depth (MaxLookupSearchDepth). 280 /// When DataLayout not is around, it just looks through pointer casts. 281 /// 282 static const Value * 283 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs, 284 SmallVectorImpl<VariableGEPIndex> &VarIndices, 285 bool &MaxLookupReached, const DataLayout *DL, 286 AssumptionTracker *AT, DominatorTree *DT) { 287 // Limit recursion depth to limit compile time in crazy cases. 288 unsigned MaxLookup = MaxLookupSearchDepth; 289 MaxLookupReached = false; 290 291 BaseOffs = 0; 292 do { 293 // See if this is a bitcast or GEP. 294 const Operator *Op = dyn_cast<Operator>(V); 295 if (!Op) { 296 // The only non-operator case we can handle are GlobalAliases. 297 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 298 if (!GA->mayBeOverridden()) { 299 V = GA->getAliasee(); 300 continue; 301 } 302 } 303 return V; 304 } 305 306 if (Op->getOpcode() == Instruction::BitCast || 307 Op->getOpcode() == Instruction::AddrSpaceCast) { 308 V = Op->getOperand(0); 309 continue; 310 } 311 312 const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); 313 if (!GEPOp) { 314 // If it's not a GEP, hand it off to SimplifyInstruction to see if it 315 // can come up with something. This matches what GetUnderlyingObject does. 316 if (const Instruction *I = dyn_cast<Instruction>(V)) 317 // TODO: Get a DominatorTree and AssumptionTracker and use them here 318 // (these are both now available in this function, but this should be 319 // updated when GetUnderlyingObject is updated). TLI should be 320 // provided also. 321 if (const Value *Simplified = 322 SimplifyInstruction(const_cast<Instruction *>(I), DL)) { 323 V = Simplified; 324 continue; 325 } 326 327 return V; 328 } 329 330 // Don't attempt to analyze GEPs over unsized objects. 331 if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized()) 332 return V; 333 334 // If we are lacking DataLayout information, we can't compute the offets of 335 // elements computed by GEPs. However, we can handle bitcast equivalent 336 // GEPs. 337 if (!DL) { 338 if (!GEPOp->hasAllZeroIndices()) 339 return V; 340 V = GEPOp->getOperand(0); 341 continue; 342 } 343 344 unsigned AS = GEPOp->getPointerAddressSpace(); 345 // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. 346 gep_type_iterator GTI = gep_type_begin(GEPOp); 347 for (User::const_op_iterator I = GEPOp->op_begin()+1, 348 E = GEPOp->op_end(); I != E; ++I) { 349 Value *Index = *I; 350 // Compute the (potentially symbolic) offset in bytes for this index. 351 if (StructType *STy = dyn_cast<StructType>(*GTI++)) { 352 // For a struct, add the member offset. 353 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); 354 if (FieldNo == 0) continue; 355 356 BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo); 357 continue; 358 } 359 360 // For an array/pointer, add the element offset, explicitly scaled. 361 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { 362 if (CIdx->isZero()) continue; 363 BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue(); 364 continue; 365 } 366 367 uint64_t Scale = DL->getTypeAllocSize(*GTI); 368 ExtensionKind Extension = EK_NotExtended; 369 370 // If the integer type is smaller than the pointer size, it is implicitly 371 // sign extended to pointer size. 372 unsigned Width = Index->getType()->getIntegerBitWidth(); 373 if (DL->getPointerSizeInBits(AS) > Width) 374 Extension = EK_SignExt; 375 376 // Use GetLinearExpression to decompose the index into a C1*V+C2 form. 377 APInt IndexScale(Width, 0), IndexOffset(Width, 0); 378 Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, 379 *DL, 0, AT, DT); 380 381 // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. 382 // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. 383 BaseOffs += IndexOffset.getSExtValue()*Scale; 384 Scale *= IndexScale.getSExtValue(); 385 386 // If we already had an occurrence of this index variable, merge this 387 // scale into it. For example, we want to handle: 388 // A[x][x] -> x*16 + x*4 -> x*20 389 // This also ensures that 'x' only appears in the index list once. 390 for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { 391 if (VarIndices[i].V == Index && 392 VarIndices[i].Extension == Extension) { 393 Scale += VarIndices[i].Scale; 394 VarIndices.erase(VarIndices.begin()+i); 395 break; 396 } 397 } 398 399 // Make sure that we have a scale that makes sense for this target's 400 // pointer size. 401 if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) { 402 Scale <<= ShiftBits; 403 Scale = (int64_t)Scale >> ShiftBits; 404 } 405 406 if (Scale) { 407 VariableGEPIndex Entry = {Index, Extension, 408 static_cast<int64_t>(Scale)}; 409 VarIndices.push_back(Entry); 410 } 411 } 412 413 // Analyze the base pointer next. 414 V = GEPOp->getOperand(0); 415 } while (--MaxLookup); 416 417 // If the chain of expressions is too deep, just return early. 418 MaxLookupReached = true; 419 return V; 420 } 421 422 //===----------------------------------------------------------------------===// 423 // BasicAliasAnalysis Pass 424 //===----------------------------------------------------------------------===// 425 426 #ifndef NDEBUG 427 static const Function *getParent(const Value *V) { 428 if (const Instruction *inst = dyn_cast<Instruction>(V)) 429 return inst->getParent()->getParent(); 430 431 if (const Argument *arg = dyn_cast<Argument>(V)) 432 return arg->getParent(); 433 434 return nullptr; 435 } 436 437 static bool notDifferentParent(const Value *O1, const Value *O2) { 438 439 const Function *F1 = getParent(O1); 440 const Function *F2 = getParent(O2); 441 442 return !F1 || !F2 || F1 == F2; 443 } 444 #endif 445 446 namespace { 447 /// BasicAliasAnalysis - This is the primary alias analysis implementation. 448 struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis { 449 static char ID; // Class identification, replacement for typeinfo 450 BasicAliasAnalysis() : ImmutablePass(ID) { 451 initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry()); 452 } 453 454 void initializePass() override { 455 InitializeAliasAnalysis(this); 456 } 457 458 void getAnalysisUsage(AnalysisUsage &AU) const override { 459 AU.addRequired<AliasAnalysis>(); 460 AU.addRequired<AssumptionTracker>(); 461 AU.addRequired<TargetLibraryInfo>(); 462 } 463 464 AliasResult alias(const Location &LocA, const Location &LocB) override { 465 assert(AliasCache.empty() && "AliasCache must be cleared after use!"); 466 assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && 467 "BasicAliasAnalysis doesn't support interprocedural queries."); 468 AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, 469 LocB.Ptr, LocB.Size, LocB.AATags); 470 // AliasCache rarely has more than 1 or 2 elements, always use 471 // shrink_and_clear so it quickly returns to the inline capacity of the 472 // SmallDenseMap if it ever grows larger. 473 // FIXME: This should really be shrink_to_inline_capacity_and_clear(). 474 AliasCache.shrink_and_clear(); 475 VisitedPhiBBs.clear(); 476 return Alias; 477 } 478 479 ModRefResult getModRefInfo(ImmutableCallSite CS, 480 const Location &Loc) override; 481 482 ModRefResult getModRefInfo(ImmutableCallSite CS1, 483 ImmutableCallSite CS2) override; 484 485 /// pointsToConstantMemory - Chase pointers until we find a (constant 486 /// global) or not. 487 bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override; 488 489 /// Get the location associated with a pointer argument of a callsite. 490 Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 491 ModRefResult &Mask) override; 492 493 /// getModRefBehavior - Return the behavior when calling the given 494 /// call site. 495 ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override; 496 497 /// getModRefBehavior - Return the behavior when calling the given function. 498 /// For use when the call site is not known. 499 ModRefBehavior getModRefBehavior(const Function *F) override; 500 501 /// getAdjustedAnalysisPointer - This method is used when a pass implements 502 /// an analysis interface through multiple inheritance. If needed, it 503 /// should override this to adjust the this pointer as needed for the 504 /// specified pass info. 505 void *getAdjustedAnalysisPointer(const void *ID) override { 506 if (ID == &AliasAnalysis::ID) 507 return (AliasAnalysis*)this; 508 return this; 509 } 510 511 private: 512 // AliasCache - Track alias queries to guard against recursion. 513 typedef std::pair<Location, Location> LocPair; 514 typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy; 515 AliasCacheTy AliasCache; 516 517 /// \brief Track phi nodes we have visited. When interpret "Value" pointer 518 /// equality as value equality we need to make sure that the "Value" is not 519 /// part of a cycle. Otherwise, two uses could come from different 520 /// "iterations" of a cycle and see different values for the same "Value" 521 /// pointer. 522 /// The following example shows the problem: 523 /// %p = phi(%alloca1, %addr2) 524 /// %l = load %ptr 525 /// %addr1 = gep, %alloca2, 0, %l 526 /// %addr2 = gep %alloca2, 0, (%l + 1) 527 /// alias(%p, %addr1) -> MayAlias ! 528 /// store %l, ... 529 SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs; 530 531 // Visited - Track instructions visited by pointsToConstantMemory. 532 SmallPtrSet<const Value*, 16> Visited; 533 534 /// \brief Check whether two Values can be considered equivalent. 535 /// 536 /// In addition to pointer equivalence of \p V1 and \p V2 this checks 537 /// whether they can not be part of a cycle in the value graph by looking at 538 /// all visited phi nodes an making sure that the phis cannot reach the 539 /// value. We have to do this because we are looking through phi nodes (That 540 /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). 541 bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); 542 543 /// \brief Dest and Src are the variable indices from two decomposed 544 /// GetElementPtr instructions GEP1 and GEP2 which have common base 545 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 546 /// difference between the two pointers. 547 void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest, 548 const SmallVectorImpl<VariableGEPIndex> &Src); 549 550 // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP 551 // instruction against another. 552 AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size, 553 const AAMDNodes &V1AAInfo, 554 const Value *V2, uint64_t V2Size, 555 const AAMDNodes &V2AAInfo, 556 const Value *UnderlyingV1, const Value *UnderlyingV2); 557 558 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI 559 // instruction against another. 560 AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize, 561 const AAMDNodes &PNAAInfo, 562 const Value *V2, uint64_t V2Size, 563 const AAMDNodes &V2AAInfo); 564 565 /// aliasSelect - Disambiguate a Select instruction against another value. 566 AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize, 567 const AAMDNodes &SIAAInfo, 568 const Value *V2, uint64_t V2Size, 569 const AAMDNodes &V2AAInfo); 570 571 AliasResult aliasCheck(const Value *V1, uint64_t V1Size, 572 AAMDNodes V1AATag, 573 const Value *V2, uint64_t V2Size, 574 AAMDNodes V2AATag); 575 }; 576 } // End of anonymous namespace 577 578 // Register this pass... 579 char BasicAliasAnalysis::ID = 0; 580 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa", 581 "Basic Alias Analysis (stateless AA impl)", 582 false, true, false) 583 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 584 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 585 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa", 586 "Basic Alias Analysis (stateless AA impl)", 587 false, true, false) 588 589 590 ImmutablePass *llvm::createBasicAliasAnalysisPass() { 591 return new BasicAliasAnalysis(); 592 } 593 594 /// pointsToConstantMemory - Returns whether the given pointer value 595 /// points to memory that is local to the function, with global constants being 596 /// considered local to all functions. 597 bool 598 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) { 599 assert(Visited.empty() && "Visited must be cleared after use!"); 600 601 unsigned MaxLookup = 8; 602 SmallVector<const Value *, 16> Worklist; 603 Worklist.push_back(Loc.Ptr); 604 do { 605 const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL); 606 if (!Visited.insert(V)) { 607 Visited.clear(); 608 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 609 } 610 611 // An alloca instruction defines local memory. 612 if (OrLocal && isa<AllocaInst>(V)) 613 continue; 614 615 // A global constant counts as local memory for our purposes. 616 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { 617 // Note: this doesn't require GV to be "ODR" because it isn't legal for a 618 // global to be marked constant in some modules and non-constant in 619 // others. GV may even be a declaration, not a definition. 620 if (!GV->isConstant()) { 621 Visited.clear(); 622 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 623 } 624 continue; 625 } 626 627 // If both select values point to local memory, then so does the select. 628 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 629 Worklist.push_back(SI->getTrueValue()); 630 Worklist.push_back(SI->getFalseValue()); 631 continue; 632 } 633 634 // If all values incoming to a phi node point to local memory, then so does 635 // the phi. 636 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 637 // Don't bother inspecting phi nodes with many operands. 638 if (PN->getNumIncomingValues() > MaxLookup) { 639 Visited.clear(); 640 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 641 } 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 643 Worklist.push_back(PN->getIncomingValue(i)); 644 continue; 645 } 646 647 // Otherwise be conservative. 648 Visited.clear(); 649 return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal); 650 651 } while (!Worklist.empty() && --MaxLookup); 652 653 Visited.clear(); 654 return Worklist.empty(); 655 } 656 657 static bool isMemsetPattern16(const Function *MS, 658 const TargetLibraryInfo &TLI) { 659 if (TLI.has(LibFunc::memset_pattern16) && 660 MS->getName() == "memset_pattern16") { 661 FunctionType *MemsetType = MS->getFunctionType(); 662 if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 && 663 isa<PointerType>(MemsetType->getParamType(0)) && 664 isa<PointerType>(MemsetType->getParamType(1)) && 665 isa<IntegerType>(MemsetType->getParamType(2))) 666 return true; 667 } 668 669 return false; 670 } 671 672 /// getModRefBehavior - Return the behavior when calling the given call site. 673 AliasAnalysis::ModRefBehavior 674 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 675 if (CS.doesNotAccessMemory()) 676 // Can't do better than this. 677 return DoesNotAccessMemory; 678 679 ModRefBehavior Min = UnknownModRefBehavior; 680 681 // If the callsite knows it only reads memory, don't return worse 682 // than that. 683 if (CS.onlyReadsMemory()) 684 Min = OnlyReadsMemory; 685 686 // The AliasAnalysis base class has some smarts, lets use them. 687 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min); 688 } 689 690 /// getModRefBehavior - Return the behavior when calling the given function. 691 /// For use when the call site is not known. 692 AliasAnalysis::ModRefBehavior 693 BasicAliasAnalysis::getModRefBehavior(const Function *F) { 694 // If the function declares it doesn't access memory, we can't do better. 695 if (F->doesNotAccessMemory()) 696 return DoesNotAccessMemory; 697 698 // For intrinsics, we can check the table. 699 if (unsigned iid = F->getIntrinsicID()) { 700 #define GET_INTRINSIC_MODREF_BEHAVIOR 701 #include "llvm/IR/Intrinsics.gen" 702 #undef GET_INTRINSIC_MODREF_BEHAVIOR 703 } 704 705 ModRefBehavior Min = UnknownModRefBehavior; 706 707 // If the function declares it only reads memory, go with that. 708 if (F->onlyReadsMemory()) 709 Min = OnlyReadsMemory; 710 711 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 712 if (isMemsetPattern16(F, TLI)) 713 Min = OnlyAccessesArgumentPointees; 714 715 // Otherwise be conservative. 716 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min); 717 } 718 719 AliasAnalysis::Location 720 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx, 721 ModRefResult &Mask) { 722 Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask); 723 const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>(); 724 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 725 if (II != nullptr) 726 switch (II->getIntrinsicID()) { 727 default: break; 728 case Intrinsic::memset: 729 case Intrinsic::memcpy: 730 case Intrinsic::memmove: { 731 assert((ArgIdx == 0 || ArgIdx == 1) && 732 "Invalid argument index for memory intrinsic"); 733 if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) 734 Loc.Size = LenCI->getZExtValue(); 735 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 736 "Memory intrinsic location pointer not argument?"); 737 Mask = ArgIdx ? Ref : Mod; 738 break; 739 } 740 case Intrinsic::lifetime_start: 741 case Intrinsic::lifetime_end: 742 case Intrinsic::invariant_start: { 743 assert(ArgIdx == 1 && "Invalid argument index"); 744 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 745 "Intrinsic location pointer not argument?"); 746 Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue(); 747 break; 748 } 749 case Intrinsic::invariant_end: { 750 assert(ArgIdx == 2 && "Invalid argument index"); 751 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 752 "Intrinsic location pointer not argument?"); 753 Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue(); 754 break; 755 } 756 case Intrinsic::arm_neon_vld1: { 757 assert(ArgIdx == 0 && "Invalid argument index"); 758 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 759 "Intrinsic location pointer not argument?"); 760 // LLVM's vld1 and vst1 intrinsics currently only support a single 761 // vector register. 762 if (DL) 763 Loc.Size = DL->getTypeStoreSize(II->getType()); 764 break; 765 } 766 case Intrinsic::arm_neon_vst1: { 767 assert(ArgIdx == 0 && "Invalid argument index"); 768 assert(Loc.Ptr == II->getArgOperand(ArgIdx) && 769 "Intrinsic location pointer not argument?"); 770 if (DL) 771 Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType()); 772 break; 773 } 774 } 775 776 // We can bound the aliasing properties of memset_pattern16 just as we can 777 // for memcpy/memset. This is particularly important because the 778 // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16 779 // whenever possible. 780 else if (CS.getCalledFunction() && 781 isMemsetPattern16(CS.getCalledFunction(), TLI)) { 782 assert((ArgIdx == 0 || ArgIdx == 1) && 783 "Invalid argument index for memset_pattern16"); 784 if (ArgIdx == 1) 785 Loc.Size = 16; 786 else if (const ConstantInt *LenCI = 787 dyn_cast<ConstantInt>(CS.getArgument(2))) 788 Loc.Size = LenCI->getZExtValue(); 789 assert(Loc.Ptr == CS.getArgument(ArgIdx) && 790 "memset_pattern16 location pointer not argument?"); 791 Mask = ArgIdx ? Ref : Mod; 792 } 793 // FIXME: Handle memset_pattern4 and memset_pattern8 also. 794 795 return Loc; 796 } 797 798 static bool isAssumeIntrinsic(ImmutableCallSite CS) { 799 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()); 800 if (II && II->getIntrinsicID() == Intrinsic::assume) 801 return true; 802 803 return false; 804 } 805 806 /// getModRefInfo - Check to see if the specified callsite can clobber the 807 /// specified memory object. Since we only look at local properties of this 808 /// function, we really can't say much about this query. We do, however, use 809 /// simple "address taken" analysis on local objects. 810 AliasAnalysis::ModRefResult 811 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS, 812 const Location &Loc) { 813 assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) && 814 "AliasAnalysis query involving multiple functions!"); 815 816 const Value *Object = GetUnderlyingObject(Loc.Ptr, DL); 817 818 // If this is a tail call and Loc.Ptr points to a stack location, we know that 819 // the tail call cannot access or modify the local stack. 820 // We cannot exclude byval arguments here; these belong to the caller of 821 // the current function not to the current function, and a tail callee 822 // may reference them. 823 if (isa<AllocaInst>(Object)) 824 if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) 825 if (CI->isTailCall()) 826 return NoModRef; 827 828 // If the pointer is to a locally allocated object that does not escape, 829 // then the call can not mod/ref the pointer unless the call takes the pointer 830 // as an argument, and itself doesn't capture it. 831 if (!isa<Constant>(Object) && CS.getInstruction() != Object && 832 isNonEscapingLocalObject(Object)) { 833 bool PassedAsArg = false; 834 unsigned ArgNo = 0; 835 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 836 CI != CE; ++CI, ++ArgNo) { 837 // Only look at the no-capture or byval pointer arguments. If this 838 // pointer were passed to arguments that were neither of these, then it 839 // couldn't be no-capture. 840 if (!(*CI)->getType()->isPointerTy() || 841 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 842 continue; 843 844 // If this is a no-capture pointer argument, see if we can tell that it 845 // is impossible to alias the pointer we're checking. If not, we have to 846 // assume that the call could touch the pointer, even though it doesn't 847 // escape. 848 if (!isNoAlias(Location(*CI), Location(Object))) { 849 PassedAsArg = true; 850 break; 851 } 852 } 853 854 if (!PassedAsArg) 855 return NoModRef; 856 } 857 858 // While the assume intrinsic is marked as arbitrarily writing so that 859 // proper control dependencies will be maintained, it never aliases any 860 // particular memory location. 861 if (isAssumeIntrinsic(CS)) 862 return NoModRef; 863 864 // The AliasAnalysis base class has some smarts, lets use them. 865 return AliasAnalysis::getModRefInfo(CS, Loc); 866 } 867 868 AliasAnalysis::ModRefResult 869 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1, 870 ImmutableCallSite CS2) { 871 // While the assume intrinsic is marked as arbitrarily writing so that 872 // proper control dependencies will be maintained, it never aliases any 873 // particular memory location. 874 if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2)) 875 return NoModRef; 876 877 // The AliasAnalysis base class has some smarts, lets use them. 878 return AliasAnalysis::getModRefInfo(CS1, CS2); 879 } 880 881 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction 882 /// against another pointer. We know that V1 is a GEP, but we don't know 883 /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), 884 /// UnderlyingV2 is the same for V2. 885 /// 886 AliasAnalysis::AliasResult 887 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size, 888 const AAMDNodes &V1AAInfo, 889 const Value *V2, uint64_t V2Size, 890 const AAMDNodes &V2AAInfo, 891 const Value *UnderlyingV1, 892 const Value *UnderlyingV2) { 893 int64_t GEP1BaseOffset; 894 bool GEP1MaxLookupReached; 895 SmallVector<VariableGEPIndex, 4> GEP1VariableIndices; 896 897 AssumptionTracker *AT = &getAnalysis<AssumptionTracker>(); 898 DominatorTreeWrapperPass *DTWP = 899 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 900 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 901 902 // If we have two gep instructions with must-alias or not-alias'ing base 903 // pointers, figure out if the indexes to the GEP tell us anything about the 904 // derived pointer. 905 if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) { 906 // Do the base pointers alias? 907 AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(), 908 UnderlyingV2, UnknownSize, AAMDNodes()); 909 910 // Check for geps of non-aliasing underlying pointers where the offsets are 911 // identical. 912 if ((BaseAlias == MayAlias) && V1Size == V2Size) { 913 // Do the base pointers alias assuming type and size. 914 AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, 915 V1AAInfo, UnderlyingV2, 916 V2Size, V2AAInfo); 917 if (PreciseBaseAlias == NoAlias) { 918 // See if the computed offset from the common pointer tells us about the 919 // relation of the resulting pointer. 920 int64_t GEP2BaseOffset; 921 bool GEP2MaxLookupReached; 922 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 923 const Value *GEP2BasePtr = 924 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 925 GEP2MaxLookupReached, DL, AT, DT); 926 const Value *GEP1BasePtr = 927 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 928 GEP1MaxLookupReached, DL, AT, DT); 929 // DecomposeGEPExpression and GetUnderlyingObject should return the 930 // same result except when DecomposeGEPExpression has no DataLayout. 931 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 932 assert(!DL && 933 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 934 return MayAlias; 935 } 936 // If the max search depth is reached the result is undefined 937 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 938 return MayAlias; 939 940 // Same offsets. 941 if (GEP1BaseOffset == GEP2BaseOffset && 942 GEP1VariableIndices == GEP2VariableIndices) 943 return NoAlias; 944 GEP1VariableIndices.clear(); 945 } 946 } 947 948 // If we get a No or May, then return it immediately, no amount of analysis 949 // will improve this situation. 950 if (BaseAlias != MustAlias) return BaseAlias; 951 952 // Otherwise, we have a MustAlias. Since the base pointers alias each other 953 // exactly, see if the computed offset from the common pointer tells us 954 // about the relation of the resulting pointer. 955 const Value *GEP1BasePtr = 956 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 957 GEP1MaxLookupReached, DL, AT, DT); 958 959 int64_t GEP2BaseOffset; 960 bool GEP2MaxLookupReached; 961 SmallVector<VariableGEPIndex, 4> GEP2VariableIndices; 962 const Value *GEP2BasePtr = 963 DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, 964 GEP2MaxLookupReached, DL, AT, DT); 965 966 // DecomposeGEPExpression and GetUnderlyingObject should return the 967 // same result except when DecomposeGEPExpression has no DataLayout. 968 if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) { 969 assert(!DL && 970 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 971 return MayAlias; 972 } 973 // If the max search depth is reached the result is undefined 974 if (GEP2MaxLookupReached || GEP1MaxLookupReached) 975 return MayAlias; 976 977 // Subtract the GEP2 pointer from the GEP1 pointer to find out their 978 // symbolic difference. 979 GEP1BaseOffset -= GEP2BaseOffset; 980 GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices); 981 982 } else { 983 // Check to see if these two pointers are related by the getelementptr 984 // instruction. If one pointer is a GEP with a non-zero index of the other 985 // pointer, we know they cannot alias. 986 987 // If both accesses are unknown size, we can't do anything useful here. 988 if (V1Size == UnknownSize && V2Size == UnknownSize) 989 return MayAlias; 990 991 AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(), 992 V2, V2Size, V2AAInfo); 993 if (R != MustAlias) 994 // If V2 may alias GEP base pointer, conservatively returns MayAlias. 995 // If V2 is known not to alias GEP base pointer, then the two values 996 // cannot alias per GEP semantics: "A pointer value formed from a 997 // getelementptr instruction is associated with the addresses associated 998 // with the first operand of the getelementptr". 999 return R; 1000 1001 const Value *GEP1BasePtr = 1002 DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, 1003 GEP1MaxLookupReached, DL, AT, DT); 1004 1005 // DecomposeGEPExpression and GetUnderlyingObject should return the 1006 // same result except when DecomposeGEPExpression has no DataLayout. 1007 if (GEP1BasePtr != UnderlyingV1) { 1008 assert(!DL && 1009 "DecomposeGEPExpression and GetUnderlyingObject disagree!"); 1010 return MayAlias; 1011 } 1012 // If the max search depth is reached the result is undefined 1013 if (GEP1MaxLookupReached) 1014 return MayAlias; 1015 } 1016 1017 // In the two GEP Case, if there is no difference in the offsets of the 1018 // computed pointers, the resultant pointers are a must alias. This 1019 // hapens when we have two lexically identical GEP's (for example). 1020 // 1021 // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2 1022 // must aliases the GEP, the end result is a must alias also. 1023 if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty()) 1024 return MustAlias; 1025 1026 // If there is a constant difference between the pointers, but the difference 1027 // is less than the size of the associated memory object, then we know 1028 // that the objects are partially overlapping. If the difference is 1029 // greater, we know they do not overlap. 1030 if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) { 1031 if (GEP1BaseOffset >= 0) { 1032 if (V2Size != UnknownSize) { 1033 if ((uint64_t)GEP1BaseOffset < V2Size) 1034 return PartialAlias; 1035 return NoAlias; 1036 } 1037 } else { 1038 // We have the situation where: 1039 // + + 1040 // | BaseOffset | 1041 // ---------------->| 1042 // |-->V1Size |-------> V2Size 1043 // GEP1 V2 1044 // We need to know that V2Size is not unknown, otherwise we might have 1045 // stripped a gep with negative index ('gep <ptr>, -1, ...). 1046 if (V1Size != UnknownSize && V2Size != UnknownSize) { 1047 if (-(uint64_t)GEP1BaseOffset < V1Size) 1048 return PartialAlias; 1049 return NoAlias; 1050 } 1051 } 1052 } 1053 1054 // Try to distinguish something like &A[i][1] against &A[42][0]. 1055 // Grab the least significant bit set in any of the scales. 1056 if (!GEP1VariableIndices.empty()) { 1057 uint64_t Modulo = 0; 1058 for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) 1059 Modulo |= (uint64_t)GEP1VariableIndices[i].Scale; 1060 Modulo = Modulo ^ (Modulo & (Modulo - 1)); 1061 1062 // We can compute the difference between the two addresses 1063 // mod Modulo. Check whether that difference guarantees that the 1064 // two locations do not alias. 1065 uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1); 1066 if (V1Size != UnknownSize && V2Size != UnknownSize && 1067 ModOffset >= V2Size && V1Size <= Modulo - ModOffset) 1068 return NoAlias; 1069 } 1070 1071 // Statically, we can see that the base objects are the same, but the 1072 // pointers have dynamic offsets which we can't resolve. And none of our 1073 // little tricks above worked. 1074 // 1075 // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the 1076 // practical effect of this is protecting TBAA in the case of dynamic 1077 // indices into arrays of unions or malloc'd memory. 1078 return PartialAlias; 1079 } 1080 1081 static AliasAnalysis::AliasResult 1082 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) { 1083 // If the results agree, take it. 1084 if (A == B) 1085 return A; 1086 // A mix of PartialAlias and MustAlias is PartialAlias. 1087 if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) || 1088 (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias)) 1089 return AliasAnalysis::PartialAlias; 1090 // Otherwise, we don't know anything. 1091 return AliasAnalysis::MayAlias; 1092 } 1093 1094 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select 1095 /// instruction against another. 1096 AliasAnalysis::AliasResult 1097 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize, 1098 const AAMDNodes &SIAAInfo, 1099 const Value *V2, uint64_t V2Size, 1100 const AAMDNodes &V2AAInfo) { 1101 // If the values are Selects with the same condition, we can do a more precise 1102 // check: just check for aliases between the values on corresponding arms. 1103 if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) 1104 if (SI->getCondition() == SI2->getCondition()) { 1105 AliasResult Alias = 1106 aliasCheck(SI->getTrueValue(), SISize, SIAAInfo, 1107 SI2->getTrueValue(), V2Size, V2AAInfo); 1108 if (Alias == MayAlias) 1109 return MayAlias; 1110 AliasResult ThisAlias = 1111 aliasCheck(SI->getFalseValue(), SISize, SIAAInfo, 1112 SI2->getFalseValue(), V2Size, V2AAInfo); 1113 return MergeAliasResults(ThisAlias, Alias); 1114 } 1115 1116 // If both arms of the Select node NoAlias or MustAlias V2, then returns 1117 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1118 AliasResult Alias = 1119 aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo); 1120 if (Alias == MayAlias) 1121 return MayAlias; 1122 1123 AliasResult ThisAlias = 1124 aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo); 1125 return MergeAliasResults(ThisAlias, Alias); 1126 } 1127 1128 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction 1129 // against another. 1130 AliasAnalysis::AliasResult 1131 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize, 1132 const AAMDNodes &PNAAInfo, 1133 const Value *V2, uint64_t V2Size, 1134 const AAMDNodes &V2AAInfo) { 1135 // Track phi nodes we have visited. We use this information when we determine 1136 // value equivalence. 1137 VisitedPhiBBs.insert(PN->getParent()); 1138 1139 // If the values are PHIs in the same block, we can do a more precise 1140 // as well as efficient check: just check for aliases between the values 1141 // on corresponding edges. 1142 if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) 1143 if (PN2->getParent() == PN->getParent()) { 1144 LocPair Locs(Location(PN, PNSize, PNAAInfo), 1145 Location(V2, V2Size, V2AAInfo)); 1146 if (PN > V2) 1147 std::swap(Locs.first, Locs.second); 1148 // Analyse the PHIs' inputs under the assumption that the PHIs are 1149 // NoAlias. 1150 // If the PHIs are May/MustAlias there must be (recursively) an input 1151 // operand from outside the PHIs' cycle that is MayAlias/MustAlias or 1152 // there must be an operation on the PHIs within the PHIs' value cycle 1153 // that causes a MayAlias. 1154 // Pretend the phis do not alias. 1155 AliasResult Alias = NoAlias; 1156 assert(AliasCache.count(Locs) && 1157 "There must exist an entry for the phi node"); 1158 AliasResult OrigAliasResult = AliasCache[Locs]; 1159 AliasCache[Locs] = NoAlias; 1160 1161 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1162 AliasResult ThisAlias = 1163 aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo, 1164 PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), 1165 V2Size, V2AAInfo); 1166 Alias = MergeAliasResults(ThisAlias, Alias); 1167 if (Alias == MayAlias) 1168 break; 1169 } 1170 1171 // Reset if speculation failed. 1172 if (Alias != NoAlias) 1173 AliasCache[Locs] = OrigAliasResult; 1174 1175 return Alias; 1176 } 1177 1178 SmallPtrSet<Value*, 4> UniqueSrc; 1179 SmallVector<Value*, 4> V1Srcs; 1180 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1181 Value *PV1 = PN->getIncomingValue(i); 1182 if (isa<PHINode>(PV1)) 1183 // If any of the source itself is a PHI, return MayAlias conservatively 1184 // to avoid compile time explosion. The worst possible case is if both 1185 // sides are PHI nodes. In which case, this is O(m x n) time where 'm' 1186 // and 'n' are the number of PHI sources. 1187 return MayAlias; 1188 if (UniqueSrc.insert(PV1)) 1189 V1Srcs.push_back(PV1); 1190 } 1191 1192 AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo, 1193 V1Srcs[0], PNSize, PNAAInfo); 1194 // Early exit if the check of the first PHI source against V2 is MayAlias. 1195 // Other results are not possible. 1196 if (Alias == MayAlias) 1197 return MayAlias; 1198 1199 // If all sources of the PHI node NoAlias or MustAlias V2, then returns 1200 // NoAlias / MustAlias. Otherwise, returns MayAlias. 1201 for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { 1202 Value *V = V1Srcs[i]; 1203 1204 AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo, 1205 V, PNSize, PNAAInfo); 1206 Alias = MergeAliasResults(ThisAlias, Alias); 1207 if (Alias == MayAlias) 1208 break; 1209 } 1210 1211 return Alias; 1212 } 1213 1214 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases, 1215 // such as array references. 1216 // 1217 AliasAnalysis::AliasResult 1218 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size, 1219 AAMDNodes V1AAInfo, 1220 const Value *V2, uint64_t V2Size, 1221 AAMDNodes V2AAInfo) { 1222 // If either of the memory references is empty, it doesn't matter what the 1223 // pointer values are. 1224 if (V1Size == 0 || V2Size == 0) 1225 return NoAlias; 1226 1227 // Strip off any casts if they exist. 1228 V1 = V1->stripPointerCasts(); 1229 V2 = V2->stripPointerCasts(); 1230 1231 // Are we checking for alias of the same value? 1232 // Because we look 'through' phi nodes we could look at "Value" pointers from 1233 // different iterations. We must therefore make sure that this is not the 1234 // case. The function isValueEqualInPotentialCycles ensures that this cannot 1235 // happen by looking at the visited phi nodes and making sure they cannot 1236 // reach the value. 1237 if (isValueEqualInPotentialCycles(V1, V2)) 1238 return MustAlias; 1239 1240 if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) 1241 return NoAlias; // Scalars cannot alias each other 1242 1243 // Figure out what objects these things are pointing to if we can. 1244 const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth); 1245 const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth); 1246 1247 // Null values in the default address space don't point to any object, so they 1248 // don't alias any other pointer. 1249 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) 1250 if (CPN->getType()->getAddressSpace() == 0) 1251 return NoAlias; 1252 if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) 1253 if (CPN->getType()->getAddressSpace() == 0) 1254 return NoAlias; 1255 1256 if (O1 != O2) { 1257 // If V1/V2 point to two different objects we know that we have no alias. 1258 if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) 1259 return NoAlias; 1260 1261 // Constant pointers can't alias with non-const isIdentifiedObject objects. 1262 if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || 1263 (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) 1264 return NoAlias; 1265 1266 // Function arguments can't alias with things that are known to be 1267 // unambigously identified at the function level. 1268 if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || 1269 (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) 1270 return NoAlias; 1271 1272 // Most objects can't alias null. 1273 if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) || 1274 (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2))) 1275 return NoAlias; 1276 1277 // If one pointer is the result of a call/invoke or load and the other is a 1278 // non-escaping local object within the same function, then we know the 1279 // object couldn't escape to a point where the call could return it. 1280 // 1281 // Note that if the pointers are in different functions, there are a 1282 // variety of complications. A call with a nocapture argument may still 1283 // temporary store the nocapture argument's value in a temporary memory 1284 // location if that memory location doesn't escape. Or it may pass a 1285 // nocapture value to other functions as long as they don't capture it. 1286 if (isEscapeSource(O1) && isNonEscapingLocalObject(O2)) 1287 return NoAlias; 1288 if (isEscapeSource(O2) && isNonEscapingLocalObject(O1)) 1289 return NoAlias; 1290 } 1291 1292 // If the size of one access is larger than the entire object on the other 1293 // side, then we know such behavior is undefined and can assume no alias. 1294 if (DL) 1295 if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) || 1296 (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI))) 1297 return NoAlias; 1298 1299 // Check the cache before climbing up use-def chains. This also terminates 1300 // otherwise infinitely recursive queries. 1301 LocPair Locs(Location(V1, V1Size, V1AAInfo), 1302 Location(V2, V2Size, V2AAInfo)); 1303 if (V1 > V2) 1304 std::swap(Locs.first, Locs.second); 1305 std::pair<AliasCacheTy::iterator, bool> Pair = 1306 AliasCache.insert(std::make_pair(Locs, MayAlias)); 1307 if (!Pair.second) 1308 return Pair.first->second; 1309 1310 // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the 1311 // GEP can't simplify, we don't even look at the PHI cases. 1312 if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) { 1313 std::swap(V1, V2); 1314 std::swap(V1Size, V2Size); 1315 std::swap(O1, O2); 1316 std::swap(V1AAInfo, V2AAInfo); 1317 } 1318 if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { 1319 AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2); 1320 if (Result != MayAlias) return AliasCache[Locs] = Result; 1321 } 1322 1323 if (isa<PHINode>(V2) && !isa<PHINode>(V1)) { 1324 std::swap(V1, V2); 1325 std::swap(V1Size, V2Size); 1326 std::swap(V1AAInfo, V2AAInfo); 1327 } 1328 if (const PHINode *PN = dyn_cast<PHINode>(V1)) { 1329 AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, 1330 V2, V2Size, V2AAInfo); 1331 if (Result != MayAlias) return AliasCache[Locs] = Result; 1332 } 1333 1334 if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) { 1335 std::swap(V1, V2); 1336 std::swap(V1Size, V2Size); 1337 std::swap(V1AAInfo, V2AAInfo); 1338 } 1339 if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { 1340 AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo, 1341 V2, V2Size, V2AAInfo); 1342 if (Result != MayAlias) return AliasCache[Locs] = Result; 1343 } 1344 1345 // If both pointers are pointing into the same object and one of them 1346 // accesses is accessing the entire object, then the accesses must 1347 // overlap in some way. 1348 if (DL && O1 == O2) 1349 if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) || 1350 (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI))) 1351 return AliasCache[Locs] = PartialAlias; 1352 1353 AliasResult Result = 1354 AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo), 1355 Location(V2, V2Size, V2AAInfo)); 1356 return AliasCache[Locs] = Result; 1357 } 1358 1359 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V, 1360 const Value *V2) { 1361 if (V != V2) 1362 return false; 1363 1364 const Instruction *Inst = dyn_cast<Instruction>(V); 1365 if (!Inst) 1366 return true; 1367 1368 if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck) 1369 return false; 1370 1371 // Use dominance or loop info if available. 1372 DominatorTreeWrapperPass *DTWP = 1373 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1374 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1375 LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>(); 1376 1377 // Make sure that the visited phis cannot reach the Value. This ensures that 1378 // the Values cannot come from different iterations of a potential cycle the 1379 // phi nodes could be involved in. 1380 for (auto *P : VisitedPhiBBs) 1381 if (isPotentiallyReachable(P->begin(), Inst, DT, LI)) 1382 return false; 1383 1384 return true; 1385 } 1386 1387 /// GetIndexDifference - Dest and Src are the variable indices from two 1388 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base 1389 /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic 1390 /// difference between the two pointers. 1391 void BasicAliasAnalysis::GetIndexDifference( 1392 SmallVectorImpl<VariableGEPIndex> &Dest, 1393 const SmallVectorImpl<VariableGEPIndex> &Src) { 1394 if (Src.empty()) 1395 return; 1396 1397 for (unsigned i = 0, e = Src.size(); i != e; ++i) { 1398 const Value *V = Src[i].V; 1399 ExtensionKind Extension = Src[i].Extension; 1400 int64_t Scale = Src[i].Scale; 1401 1402 // Find V in Dest. This is N^2, but pointer indices almost never have more 1403 // than a few variable indexes. 1404 for (unsigned j = 0, e = Dest.size(); j != e; ++j) { 1405 if (!isValueEqualInPotentialCycles(Dest[j].V, V) || 1406 Dest[j].Extension != Extension) 1407 continue; 1408 1409 // If we found it, subtract off Scale V's from the entry in Dest. If it 1410 // goes to zero, remove the entry. 1411 if (Dest[j].Scale != Scale) 1412 Dest[j].Scale -= Scale; 1413 else 1414 Dest.erase(Dest.begin() + j); 1415 Scale = 0; 1416 break; 1417 } 1418 1419 // If we didn't consume this entry, add it to the end of the Dest list. 1420 if (Scale) { 1421 VariableGEPIndex Entry = { V, Extension, -Scale }; 1422 Dest.push_back(Entry); 1423 } 1424 } 1425 } 1426